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On mosaics
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mosaic. A picture or pattern produced by
arranging together small pieces
of stone, tile, glass, etc. §

(Oxford English Dictionary) Farss
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Put things into their proper context!




The Milovy Meeting in June 1997
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Subject: Report on Czech-U.S. Workshop on Iterative Methods

~

Report on the :
Czech-U.S. Workshop on Iterative Methods and Parallel Computing (IMPC'97),
June 16-21, 1997, Milovy, Czech Republic.

Submited by Daniel Szyld and Zdenek Strakos

Over 120 scientists from 20 countries met at the hotel Devet Skal in
Milovy (literally ‘'‘Nine Rocks") near the Bohemian-Moravian Highlands
(Central part of the Czech Republic). About half the participants were
from the Czech Republic and the United States. The rest came from almost
every (Eastern and Western) European country as well as Turkey, and Israel.
All enjoyed the moderate weather, the wonderful atmosphere of camaraderie,
and the lake view (and a few even dared a swim in it).



Miro’s PhD thesis

INSTITUTE OF COMPUTER SCIENCE
ACADEMY OF SCIENCES OF THE CZECH Rl{l’l‘Bl.lC

PRAGUE

CZECH TECHNICAL UNIVERSITY

FACULTY OF NUCLEAR SCIENCE AND PHYSICAL

ENGINEERING, PRAGUE

NUMERICAL STABILITY
OF THE GMRES METHOD

Miroslav Rozloznik

PhD Thesis. April 1997

AKADEMIE VED CESKE REPUBLIKY
USTAV INFORMATIKY A VYPOCETNI TECHNIK Y

e Miro’s PhD thesis (completed in April 1997) served as a role model
for my own thesis writing (completed in November 1998).

e Quoting Miro: “I also want to give special thanks to Zdenék
for setting high standards and then expecting them from me.”
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High standards and attention to detail
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e One of the main results:
Householder GMRES is backward stable.

e Important open question:
Is modified Gram-Schmidt GMRES backward stable as well?



Origins of backward error analysis

The idea of a backward error analysis, was to some extent implicit in the papers of von

Neumann and Goldstine [18) and Turing [23]. It was described explicitly in Givens' paper [8]

in the section on the calculation of the cigenvalues of a tri-diagonal matrix by the Sturm-

sequence process. The error analysis in that paper seems not to have attracted as much

attention as it deserved, possibly because it was not published in a readily available journal.

An onalysis of rounding errors - Backward analysis has been used extensively by the author for the treatment of algebraic

o of modomhion. | processes and has the advantage of suggesting automatically a convenient basis for comparison
speed computers, sufficiently With lhe computed “luc‘.

general to apply to all
existing computers

{
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PRENTICE-HALL
SERIES

IN AUTOMATIC
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speed computers, sufficiently
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existing computers
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The idea of a backward error analysis, was to some extent mphut in the papers of von
Neumann and Goldstine [18) and Turing [23). It was described explicitly in Givens' paper [8]
in the section on the calculation of the ecigenvalues of a tri-diagonal matrix by the Sturm-
sequence process. The error analysis in that paper seems not to have attracted as much
attention as it deserved, possibly because it was not published in a readily available journal.
Backward analysis has been used extensively by the author for the treatment of algebraic
processes and has the advantage of suggesting automatically a convenient basis for comparison
with the computed values.

NUMERICAL COMPUTATION OF THE CHARACTERISTIC YALUES
OF A REAL SYMMETRIC MATRIX

Wallace Givens

3.2 INVERSION OF THE ERROR PROBLEM

Considered in broad terms, a method of computation should be regarded as an operator which is applied
to a selected one of a class of permissible M-compeonent data vectors and which yields an ordered set of
N numbers, that is, a solution vector.!!) This single-valued mapping of a region of the ‘‘data space”’

onto some region of the ‘‘solution space’’ is what we mean by a numerical method.

(1954)

(1964)



A different section of Givens paper from 1954

TABLE 6

Time to Reduce to Jacobi Form
Order of the

1 -
Given Matrix m"5'(?: - 2n = 1)(4n + 83)1072 seconds

10 3 seconds
20 19 seconds
30 55 seconds
40* 2 minutes
100* 26 minutes
1000* 15.7 days (of 24 hr)

*For matrices of order greater than about 36, the internal memory will not suffice, ond the estimates will re-
quire sharp upward revision, The reliability of present machines would probably not permit a matrix of order 1000

to be reduced in any reasonable time.

e In 1954 it took 1.356.480 seconds to tridiagonalize a real symmetric matrix of order 1000.



A different section of Givens paper from 1954

TABLE 6 >> A=randn(1000) ; A=A+A";
Order of the | Time to Reduce to Jocobi Forn >> tic, [Anew,Ql=tridiagonalize(A); toc,
Given Matrix N 3n = D - Nén + 83107 seconds Elapsed time is 28.552937 seconds.
10 3 seconds >> norm(eye(1000)-Q*Q’)
20 19 seconds ans =
30 55 seconds
40* 2 minutes 1.2264e-14
100* 26 minutes >> norm(AneW—Q*A*Q ) )
1000* 15.7 days (of 24 hr) ans =

*For matrices of order greater than about 36, the internal memory will not suffice, ond the estimates will re- 3 66386_13
quire sharp upward revision, The reliability of present machines would probably not permit a matrix of order 1000 ‘

to be reduced in any reasonable time.

e In 1954 it took 1.356.480 seconds to tridiagonalize a real symmetric matrix of order 1000.

e Today it takes 28 seconds in MATLAB on my notebook with an ad hoc implementation based on
Householder transformations. _ ,

An analysis of rounding errors

involved in the arithmetic

operations of modern, high-

speed computers, sufficiently

general to apply to all

existing computers

e Computational devices (quickly) become outdated. Mathematics is timeless.



The ubiquitous nature of backward error analysis

e Backward error analysis was originally considered by Givens in the context of tridiagonalizing a real
symmetric matrix.

e Through synthetization, abstraction and generalization it has become a mature theory which is applied
throughout numerical mathematics.

e This is the strength of mathematics (cf. Mehrmann, Schilders & Strakos, ICTAM Newsletter, 01/2017).

i Nicolas Fillion S8 S TR
A Graduate “A good numerical method gives you
Introduction to nearly the right solution
Numerical Methods  to nearly the right problem.”

From the Viewpoint
of Backward Error Analysis



Backward error analysis for Ax = b

Consider a linear algebraic system Ax = b with A € R™"*" and b € R".
If = is an approximate solution, then ||« — Z|| is the (absolute) forward error.

Backward error idea: Which linear algebraic system is solved exactly by the approximation z?
If (A+ AA)z = b+ Ab, then ||AA| and ||Ab|| are called the (absolute) backward errors in A and b.
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Consider a linear algebraic system Ax = b with A € R™"*" and b € R".

If = is an approximate solution, then ||« — Z|| is the (absolute) forward error.

Backward error idea: Which linear algebraic system is solved exactly by the approximation z?
If (A+ AA)z = b+ Ab, then ||AA| and ||Ab|| are called the (absolute) backward errors in A and b.

Nichotas J. Higham
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“The data frequently contains uncertainties due to measurements,
previous computations, or errors comitted in storing machine numbers
on the computer.

If the backward error is no larger than these uncertainties, then the
computed solution may hardly be criticised — it may be the solution
we are seeking — for all we know.”



Backward error analysis for Ax = b

e Consider a linear algebraic system Az = b with A € R™*™ and b € R".
e If 7 is an approximate solution, then |z — Z|| is the (absolute) forward error.

e Backward error idea: Which linear algebraic system is solved exactly by the approximation z?
o If (A+ AA)x =b+ Ab, then |AA| and ||Ab|| are called the (absolute) backward errors in A and b.

Theorem (Rigal & Gaches, 1967)
Let r = b — AZ be the residual, then the normwise relative backward error of T is given by

[l

1ol + (LA

B(7) = min {e : (A+ AA)T = b+ Ab with |AA||/||A|| < & and ||Ab]|/||b]] < e} =

where the second equality is attained by explicitly known the perturbations.

e A numerical method is normwise backward stable when its computed approximation Z satisfies

B(xr) ~u (= machine precision).



The GMRES method

e Consider Ar = b with A € R™*"™ nonsingular and b € R™. Let xg € R™ and rqg = b — Axy.

e The GMRES method (Saad & Schultz, 1986) for Ax = b generates a sequence xy, k = 1,2,..., with

rr € vo+ Kp(A,r9) and ||rg|| = ||b — Az || = min 16— Az||,
z€xog+Kk(A,ro)

where Kp (A, rg) = span{rg, Arg, ... A*"1rg} is the kth Krylov subspace generated by A and rg.

e GMRES is one of the most important iterative methods for general linear algebraic systems.



The GMRES method

Consider Ax = b with A € R™*™ nonsingular and b € R"™. Let zg € R™ and rg = b — Axg.

The GMRES method (Saad & Schultz, 1986) for Ax = b generates a sequence zg, k = 1,2,..., with

rr € x0 + Ki(A,r9) and ||rg|| = ||b — Axi|| = min 16— Az]|,
z€xo+Ky (A,ro)

where K (A, rg) = span{rg, Arg, ... A*"1ry} is the kth Krylov subspace generated by A and 7.

GMRES is one of the most important iterative methods for general linear algebraic systems.

The paper of Saad & Schultz has 10.500 citations on Google Scholar (as of July 2017).

Note: The 1992 paper of van der Vorst on Bi-CGStab, which in 2000 was named “the most-cited
mathematics paper of the last decade” by the Institute of Scientific Information (ISI), currently has
5.300 citations on Google Scholar.



Backward stability of Householder GMRES

GMRES uses Arnoldi’s method for computing orthogonal bases of Ky (A, rq).
The Arnoldi decomposition in step k is given by AVy = Viy1 Hyyq k.

Ideally, VkTV;[E = I;, but in finite precision computations we loose orthogonality.
In the Householder implementation of Arnoldi we have ||I; — VI V|| ~ u.

One can show that the (final) computed x,, satisfies

16— Az |

/8('7;71) — ~ U,
1] + [[ Al |z |

i.e., Householder GMRES is normwise backward stable (see Miro’s PhD thesis).

In practice the cheaper modified Gram-Schmidt (MGS) implementation is used.



GMRES and linear least squares

e The GMRES minimization problem is a linear least squares problem:

Il = min  [lb—Az] = m

z€xo+Ky(A,r0)

ye

in ||ro — By|| <=
Rk

where the columns of B € R™** form any basis of AKX (A, ).

By ~ To,

Theorem
If v > 0 is a scaling parameter, then

Irill =

Omin([r07, B))

Y

J

1

lllllllllllllllllll
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O-j([rof}/a B]) .

oj(B)

(C) 2002 Society for Industrial and Applied Mathematics

LEAST SQUARES RESIDUALS AND
MINIMAL RESIDUAL METHODS*

J. LIESENT, M. ROZLOZNIK!, AND Z. STRAKOS!




GMRES and linear least squares

e The GMRES minimization problem is a linear least squares problem:

re|| = min b— Az|| = min ||lro — B <— By=~r
el = min [lb— Azl = min ro — By v~ o,

where the columns of B € R™** form any basis of AKX (A, ).

Theorem AN sor, conpur.

. . LEAST SQUARES RESIDUALS AND
If v > 0 is a scaling parameter, then MINIMAL RESIDUAL METHODS®

J. LIESENT, M. ROZLOZNIK!, AND Z. STRAKOS!

O-miﬂ([TOfYa B]) O'j([?"o’}/, B]) .

Y o 9i(B)

Irill =

IIIIII . Sc1. COMPUT. (C) 2002 Society for Industrial and Applied Mathematics

e With v = ||rg]|7! and B = QR we obtain

oo/ 7ol @) < YEL < B (lro/ ol @),

~ 7ol

which is useful for analyzing certain implementations, e.g., Simpler GMRES (Walker & Zhou, 1994).



Written in Bielefeld, Urbana, Atlanta, Zurich & Prague

(Emory University, 1999)



Least squares and total least squares

e The least squares (LS) distance for the problem By = r( is given by

min ||r|| subject to By =1y —r.

]

e This is a backward error like interpretation:
The LS residual r is a minimal correction to the right hand side ry in order to make the corrected
system compatible.



Least squares and total least squares

The least squares (LS) distance for the problem By = rg is given by

min ||r|| subject to By =1y —r.

]

This is a backward error like interpretation:
The LS residual r is a minimal correction to the right hand side ry in order to make the corrected
system compatible.

If we allow corrections to both B and rg, we get the total least squares problem.
For each parameter v > 0, the scaled total least squares (STLS) distance is given by

n}én |[s, E]||r subject to (B+ E)zy =rgy — s.
S z

? ?

The STLS distance is equal to owin ([0, B]), which is an important quantity in the GMRES context.



Laying the foundations

e In order to understand this situation, Zdenék and Chris Paige completely reworked the foundations of
LS and STLS problems:

Theorem

Numer. Math. (2002) 91: 117-146 O
Digital Object Identifier (DOI) 10.1007/s002110100314 Nurr‘erISChe

Mathematik
For v — 0 the STLS solution becomes the LS solution, and

Scaled total least squares fundamentals

Christopher C. Paige'*, Zdenék Strakos®**
. Umin([?“o")/, B])
1
lig =2

= ||r]| (LS distance).




Laying the foundations

e In order to understand this situation, Zdenék and Chris Paige completely reworked the foundations of
LS and STLS problems:

Numer. Math. (2002) 91: 117-146 2
Theorem Digital Object Identifier (DOI) 10.1007/5002110100314 Mgwhgrrﬁact’?ls
For v — 0 the STLS solution becomes the LS solution, and Scaled total least squares fundamentals
Christopher C. Paige!'*, Zdenék Strako§?**
. Omin(|T07, B .

lim roy, Bl) _ |7]] (LS distance).

v—0 y
Theorem ;‘IU;llltzllé@?;&féﬂiﬁ}fii(;ﬁ;}lﬁﬂ100"500211010031" [\N/I%mgg‘]sgt}?ke
Wlth 9(’}/) — O‘n_lin([f]"of)/j B])/Umax(B) and 6(’7) — O‘min([’]"of)/, B])/Umm(B)a Bounds for the least squares distance

using scaled total least squares

Christopher C. Paige!*, Zdenék Strakos?**

1/2 1/2
(1+ 7ly? )/ R [ A (1+ 7ly? ) -
1 —0(v)* = omin([roy, B]) T 1 —4(y)?




Backward error and loss of orthogonality in MGS-GMRES

e A classical result of Bjork (1967) implies that in the finite precision MGS-Arnoldi algorithm we have

|7 = Vi Villr = 5([rov, AVi—1]) u.

Theorem
With certain (optimal) scalings v > 0 and diagonal Dy_1 > 0, FESTBEAT AN EAGKIARD EREH HOUND 1N NI
and Wheﬂ 6’{', << 1’ CHRISTOPHER C. PAIGE! AND ZDENEK STRAKOS!
1 16 — Axy||
— < k([rovy, AVi_1Dy_1]) < 2.
V2 ’ 0[] + (| All[|z ||

e Thus, the product of the loss of orthogonality and the normwise relative backward error satisfies

16 — Az
~ O(1)u.
161 + [[ Al

11—V, Vil r



All this holds in finite precision MGS-GMRES
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Figure 5.30 Results of MGS GMRES computations with the matrices Sherman2 (left)
and West132 (right) from Matrix Market. Throughout the computation the product
(dots) of the normwise relative backward error (dashed line) and the loss of
orthogonality among the MGS Arnoldi vectors (dashed-dotted line) are close to (or

below) machine precision.
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Figure 5.31 The same as in Figure 5.30 for matrices from the convection—diffusion Pictures from (L. & Strakos,
model problem with dominating convection (see Section 5.7.5), the discontinuous Krylov Subspace Methods,

inflow boundary conditions, the vertical wind (left) and the curl wind (right). Oxford University Press, 2013)



Completing the MGS-GMRES mosaic

SIAM J. MATRIX ANAL. APPL. (C) 2006 Society for Industrial and Applied Mathematics
Vol. 28, No. 1, pp. 264-284

MODIFIED GRAM-SCHMIDT (MGS), LEAST SQUARES,
AND BACKWARD STABILITY OF MGS-GMRES*

CHRISTOPHER C. PAIGET, MIROSLAV ROZLOZNIK*®, AND ZDENEK STRAKOS?

8.2. Backward stability of MGS-GMRES for Az = b in (1.1). Even
though MGS-GMRES always computes a backward stable solution 7 for the least
squares problem (7.3), see section 8.1, we still have to prove that V.7, will be a
backward stable solution for the original system (1.1) for some k (we take this k to be
m—1 in (6.1)), and this is exceptionally difficult. Usually we want to show we have
a backward stable solution when we know we have a small residual. The analysis
here is different in that we will first prove that By, is numerically rank deficient, see
(8.4), but to prove backward stability, we will then have to prove that our residual
will be small, amongst other things, and this is far from obvious. Fortunately two
little known researchers have studied this arcane area, and we will take ideas from
[17]; see Theorem 2.4. To simplify the development and expressions we will absorb
all small constants into the 4y, terms below.



Completing the MGS-GMRES mosaic

Using the usual approach of combining (8.15) with the definitions

1b]|2 L ,
——7(Uk), AA =
1bll2 + ||A| Fl|Zk]2 (5)
shows (A + AAg + AAL)Z, = b+ Abg(7i) + Ab,,

[AA + AALF < YrnllAllr,  |Abk(Fr) + Abill2 < Yin b2,
proving that the MGS-GMRES solution Z; is backward stable for (1.1).

|A|FlZelle 7(ys)Z)

Bll2 + 1Al F [ Zklla (12513

Ab, = —

b




Completing the MGS-GMRES mosaic

Using the usual approach of combining (8.15) with the definitions

1] o ,
——7.(yr), AAL=
B + 1Al Tzl )

shows (A + AA, + AA)Z, =b+ Ab(gy) + Ab,
|AAL + AALlF < Wl Allr, || Abk(Tr) + Abill2 < Finl|bl|2,

proving that the MGS-GMRES solution Z; is backward stable for (1.1).

|A|FlZelle 7(ys)Z)

Bll2 + 1Al F [ Zklla (12513

Ab, = —

b

A higher level of understanding —
when Truth and Beauty become one.

Vlastimil Pték
(19251999)



Completing the MGS-GMRES mosaic

Using the usual approach of combining (8.15) with the definitions
T

1] o ,, IAlplZells @)
—— (), AAL = - - :
Bl + 1Al lzelz c o) AT EEEE
shows (A + AA, + AA)Z, =b+ Ab(gy) + Ab,

[AA + AALF < YrnllAllr,  |Abk(Fr) + Abill2 < Yin b2,
proving that the MGS-GMRES solution Z; is backward stable for (1.1).

Ab, = —

A higher level of understanding —
when Truth and Beauty become one.

V. Ptak, Circumstances of the submission of my paper in 1956,
LAA 310 (2000):

“It is a comforting thought that the validity of mathematical
theorems cannot be affected by ideological disputes ...

Even on the shelves of mathematical libraries the 1956 volume of
Acta Szeged is conspicuous by the poorer quality of the paper. AN N
The presence of a foreign army on the territory of Hungary Vlastimil Ptdk
made it difficult to keep the usual standard ...” (1925-1999)




The convergence behavior of GMRES

BIT 0006-3835,/98 /3804-0636 $12.00
1998, Vol. 38, No. 4, pp. 636643 © Swets & Zeitlinger

KRYLOV SEQUENCES OF MAXIMAL LENGTH
AND CONVERGENCE OF GMRES *

M. ARIOLI' , V. PTAK? and Z. STRAKOS? i



The convergence behavior of GMRES

BIT 0006-3835,/98 /3804-0636 $12.00
1998, Vol. 38, No. 4, pp. 636643 © Swets & Zeitlinger

KRYLOV SEQUENCES OF MAXIMAL LENGTH
AND CONVERGENCE OF GMRES *

M. ARIOLI' , V. PTAK? and Z. STRAKOS? i

e Complete characterization of all matrices A
with prescribed eigenvalues and right hand
sides b, such that GMRES attains a prescribed

convergence curve.

e In particular, any nonincreasing convergence
curve is possible for GMRES for a matrix having
any eigenvalues.

Theorem 5.7.8
Consider N given positive numbers fo = f1 = - -+ = fy—1 > 0 and N nonzero complex
numbers Ay, ..., AN, not necessarily distinct. Let A € CN*N gnd b € CN. Then the

following three assertions are equivalent:

(1) The eigenvalues of A are A1, . . ., An and GMRES applied to Ax = b with
xo = 0 yields the residual norms ||r,|| = f, forn =10,1,...,N — 1.

(2) A = WyRNCRy' Wi and b = Wigh, where
« Wy is a unitary matrix,
« Cis the companion matrix of the polynomial

N-—1
gqA) = (k=i - (A —ay) =2V — Za}-l}
j=0

(this matrix is stated in (5.7.24) above),

e h=1[gi,...,en]T, whereg, = (f,f'—1 —ff’)”z‘, n=1,...,N,andwe
set fy =0,

« Ry is nonsingular and upper triangular such that Ryys = h, where

A A N
§= ['El;-'-)‘i:N]T and p(2) :( l) T (l;w) = I*Z'{S‘;M,

1

ie. &= —ay/ag, n=1,...,N—1, and &n = 1/ao.

(3) A = WNYCY WS and b = Wih, where Wy, C and h are defined as in (2),

where gy, . .., gn are defined as in (2),and Risan (N — 1) x (N — 1)
nonsingular upper triangular matrix.



The convergence behavior of GMRES

SIAM J. Sc1. COMPUT.
Vol. 26, No. &, pp. 1980-2000

(©) 2005 Society for Industrial and Applied Mathematics

GMRES CONVERGENCE ANALYSIS FOR A
CONVECTION-DIFFUSION MODEL PROBLEM~

J. LIESENT AND Z. STRAKOSH

e The length initial phase of stagnation depends on
the boundary conditions in the model problem.

e The convergence of GMRES in particular for nonnormal
matrices may depend strongly on the right hand side.

30

35



The convergence behavior of GMRES

SIAM J. 5c1. COMPUT. (©) 2005 Society for Industrial and Applied Mathematics i
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GMRES CONVERGENCE ANALYSIS FOR A
CONVECTION-DIFFUSION MODEL PROBLEM~ 10 F .

J. LIESENT AND Z. STRAKOSH

e The length initial phase of stagnation depends on 0] ]
the boundary conditions in the model problem.

e The convergence of GMRES in particular for nonnormal
matrices may depend strongly on the right hand side.

0 5 10 15 20 25 30 35

Some pieces have been placed in the GMRES convergence mosaic, but the overall picture is still unclear.



Piecing together the mosaic
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Backward stability
of GMRES

All nonincreasing convergence
curves are possible for GMRES
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