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E. Rocca (Università degli Studi di Pavia) Entropic solutions July 31 - August 4, 2017 2 / 43



Outline

1 Mathematical problems arising from Thermomechanics

2 Liquid Crystals flows

3 Damage phenomena

4 Further perspectives
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Mathematical problems arising from Thermomechanics

Hydrodynamics of liquid crystals flows:

I a liquid crystal may flow like a liquid, but its molecules may be oriented in a

crystal-like way
I aim: deal with the nematic liquid crystals in the Landau-de Gennes theory, in which

the order parameter describing the orientation of molecules is a matrix, the so-called

Q-tensor and to include velocity and temperature dependence in the model

Damage phenomena:

I aim: deal with a non-isothermal diffuse interface models in thermoviscoelasticity

accounting for the evolution of the displacement variables, the order (damage)

parameter z, indicating the local proportion of damage

Another problem: Two-phase mixtures of fluids (see Giulio’s talk on Thursday):

I avoid analytical problems of interface singularities: an alternative approach to the

sharp interface models is the diffuse interface models (the H-model). The sharp

interface is replaced by a thin interfacial region where a partial mixing of the fluids is

allowed; a new variable ϕ represents the concentration difference of the fluids
I aim: to consider the non-isothermal version of the model
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Common features: the nonlinearity of the related PDEs

Liquid crystals

θt + v · ∇xθ + div q = θ
(
∂t f (Q) + u · ∇x f (Q)

)
+ σ : ∇xv + Γ(θ)|H|2

div v = 0, vt + div(v ⊗ v) = div σ + g , σ = ν(θ)(∇xv +∇t
xv)− pI + T(θ,Q)

Qt + v · ∇xQ− S(∇xv ,Q) = Γ(θ)H, H = ∆Q− θ
∂f (Q)

∂Q
−
∂G(Q)

∂Q
Two-phase mixtures of fluids

θt + v · ∇xθ + div q = −θ(ϕt + v · ∇xϕ) + σ : ∇xv+|∇xµ|2

div v = 0 , vt + div(v ⊗ v) = div σ − µ∇xϕ, σ = ν(θ)
(
∇xv +∇t

xv
)
− pI

ϕt + v · ∇xϕ = ∆µ , µ = −∆ϕ+ W ′(ϕ)− θ

Damage

θt + ctθ + ztθ + ρθ div(ut) + div q = g + |ct |2 + |zt |2

+a(c, z)ε(ut) : Vε(ut) + m(c, z)|∇µ|2

utt − div
(
a(c, z)Vε(ut) + b(c, z)C(ε(u)− ε∗(c))− ρθ1

)
= f

zt + ∂I(−∞,0](zt)−∆p(z) + ∂I[0,∞)(z) + σ′(z) 3 −
1

2
b,zC(ε(u)− ε∗(c)) : (ε(u)− ε∗(c)) + θ

ct = div(m(c, z)∇µ)

µ = −∆p(c) + φ′(c) +
1

2

(
b(c, z)C(ε(u)− ε∗(c)) : (ε(u)− ε∗(c))

)
,c
− θ + ct
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The main ideas to handle nonlinearities

Reinterpret the nonlinear PDEs

Combining the concept of weak solution satisfying

1. a suitable energy conservation and entropy inequality inspired by:

1.1. the works of E. Feireisl and co-authors ([Feireisl, Comput. Math. Appl. (2007)] and

[Buĺıček, Feireisl, & Málek, Nonlinear Anal. Real World Appl. (2009)]) for heat

conduction in fluids

2. a generalization of the principle of virtual powers inspired by:

2.1. a notion of weak solution introduced by [Heinemann, Kraus, Adv. Math. Sci. Appl.

(2011)] for non-degenerating isothermal diffuse interface models for phase separation

and damage
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Liquid Crystals flows

I The motivations:

I Theoretical studies of these types of materials are motivated by real-world applications:

proper functioning of many practical devices relies on optical properties of certain

liquid crystalline substances in the presence or absence of an electric field: a

multi-billion dollar industry

I At the molecular level, what marks the difference between a liquid crystal and an

ordinary, isotropic fluid is that, while the centers of mass of LC molecules do not exhibit

any long-range correlation, molecular orientations do exhibit orientational correlations

I The objective: include the temperature dependence in models describing the

evolution of nematic liquid crystal flows within the Landau-De Gennes theories (cf.

[De Gennes, Prost (1995)])
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Main LC types

To the present state of knowledge, three main types of liquid crystals are distinguished,

termed smectic, nematic and cholesteric

http://www.laynetworks.com/Molecular-Orientation-in-Liquid-Crystal-Phases.htm

The smectic phase forms well-defined layers that can slide one over another in a manner very

similar to that of a soap

The nematic phase: the molecules have long-range orientational order, but no tendency to

the formation of layers. Their center of mass positions all point in the same direction (within

each specific domain)

Crystals in the cholesteric phase exhibit a twisting of the molecules perpendicular to the

director, with the molecular axis parallel to the director
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Our main aim

We consider the range of temperatures typical for the nematic phase

http://www.netwalk.com/ laserlab/lclinks.html

The nematic liquid crystals are composed of rod-like molecules, with the long axes

of neighboring molecules aligned

Most mathematical work has been done on the Oseen-Frank theory, in which the

mean orientation of the rod-like molecules is described by a vector field d . However,

more popular among physicists is the Landau-de Gennes theory, in which the order

parameter describing the orientation of molecules is a matrix, the so-called Q-tensor

I The flow velocity v evidently disturbs the alignment of the molecules and also the

converse is true: a change in the alignment will produce a perturbation of the

velocity field v . Moreover, we want to include in our model also the changes of the

temperature θ
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The Landau-de Gennes theory: the molecular orientation

Consider a nematic liquid crystal filling a bounded connected container Ω in R3 with

“regular” boundary

The distribution of molecular orientations in a ball B(x0, δ), x0 ∈ Ω can be

represented as a probability measure µ on the unit sphere S2 satisfying

µ(E) = µ(−E) for E ⊂ S2

For a continuously distributed measure we have dµ(p) = ρ(p)dp where dp is an

element of the surface area on S2 and ρ ≥ 0,
∫
S2 ρ(p)dp = 1, ρ(p) = ρ(−p)
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The Landau-de Gennes theory: the Q-tensor

The first moment
∫
S2 p dµ(p) = 0, the second moment M =

∫
S2 p ⊗ p dµ(p) is a

symmetric non-negative 3× 3 matrix (for every v ∈ S2,

v ·M · v =
∫
S2 (v · p)2 dµ(p) =< cos2 θ >, where θ is the angle between p and v)

satisfying tr(M) = 1

If the orientation of molecules is equally distributed in all directions (the distribution

is isotropic) and then µ = µ0, where dµ0(p) = 1
4π
dS . In this case the second

moment tensor is M0 = 1
4π

∫
S2 p ⊗ p dS = 1

3
1, because

∫
S2 p1p2 dS = 0,∫

S2 p
2
1 dS =

∫
S2 p

2
2 dS , etc., and tr(M0) = 1

I The de Gennes Q-tensor measures the deviation of M from its isotropic value

Q = M −M0 =

∫
S2

(
p ⊗ p − 1

3
1

)
dµ(p)
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Some properties of the Q-tensors

The de Gennes Q-tensor measures the deviation of M from its isotropic value

Q = M −M0 =

∫
S2

(
p ⊗ p − 1

3
1

)
dµ(p)

Note that (cf. [Ball, Majumdar, Molecular Crystals and Liquid Crystals (2010)])

1. Q = QT

2. tr(Q) = 0

3. Q ≥ − 1
3
1

1.+2. implies Q = λ1n1 ⊗ n1 + λ2n2 ⊗ n2 + λ3n3 ⊗ n3, where {ni} is an othonormal basis of

eigenvectors of Q with corresponding eigenvalues λi such that λ1 + λ2 + λ3 = 0

2.+3. implies − 1
3
≤ λi ≤ 2

3

Q = 0 does not imply µ = µ0 (e.g. µ = 1
6

∑3
i=1(δei + δ−ei ))
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The Ball-Majumdar singular potential

In the Landau-de Gennes free energy there is no a-priori bound on the eigenvalues

In order to naturally enforce the physical constraints in the eigenvalues of the

symmetric, traceless tensors Q, Ball and Majumdar have recently introduced in [Ball,

Majumdar, Molecular Crystals and Liquid Crystals (2010)] a singular component

f (Q) =


infρ∈AQ

∫
S2 ρ(p) log(ρ(p)) dp if λi [Q] ∈ (−1/3, 2/3), i = 1, 2, 3,

∞ otherwise,

AQ =

{
ρ : S2 → [0,∞)

∣∣∣ ∫
S2

ρ(p) dp = 1;Q =

∫
S2

(
p⊗ p− 1

3
I
)
ρ(p) dp

}
.

to the bulk free-energy fB enforcing the eigenvalues to stay in the interval (− 1
3
, 2

3
)

[⇒] For the Landau-de Gennes free energy with “regular” potential, the

hydrodynamic theory has been developed in [Paicu, Zarnescu, SIAM (2011) and ARMA

(2012)] in the isothermal case

E. Rocca (Università degli Studi di Pavia) Entropic solutions July 31 - August 4, 2017 14 / 43



The Ball-Majumdar singular potential

In the Landau-de Gennes free energy there is no a-priori bound on the eigenvalues

In order to naturally enforce the physical constraints in the eigenvalues of the

symmetric, traceless tensors Q, Ball and Majumdar have recently introduced in [Ball,

Majumdar, Molecular Crystals and Liquid Crystals (2010)] a singular component

f (Q) =


infρ∈AQ

∫
S2 ρ(p) log(ρ(p)) dp if λi [Q] ∈ (−1/3, 2/3), i = 1, 2, 3,

∞ otherwise,

AQ =

{
ρ : S2 → [0,∞)

∣∣∣ ∫
S2

ρ(p) dp = 1;Q =

∫
S2

(
p⊗ p− 1

3
I
)
ρ(p) dp

}
.

to the bulk free-energy fB enforcing the eigenvalues to stay in the interval (− 1
3
, 2

3
)

[⇒] For the Landau-de Gennes free energy with “regular” potential, the

hydrodynamic theory has been developed in [Paicu, Zarnescu, SIAM (2011) and ARMA

(2012)] in the isothermal case

E. Rocca (Università degli Studi di Pavia) Entropic solutions July 31 - August 4, 2017 14 / 43



The Ball-Majumdar singular potential

In the Landau-de Gennes free energy there is no a-priori bound on the eigenvalues

In order to naturally enforce the physical constraints in the eigenvalues of the

symmetric, traceless tensors Q, Ball and Majumdar have recently introduced in [Ball,

Majumdar, Molecular Crystals and Liquid Crystals (2010)] a singular component

f (Q) =


infρ∈AQ

∫
S2 ρ(p) log(ρ(p)) dp if λi [Q] ∈ (−1/3, 2/3), i = 1, 2, 3,

∞ otherwise,

AQ =

{
ρ : S2 → [0,∞)

∣∣∣ ∫
S2

ρ(p) dp = 1;Q =

∫
S2

(
p⊗ p− 1

3
I
)
ρ(p) dp

}
.

to the bulk free-energy fB enforcing the eigenvalues to stay in the interval (− 1
3
, 2

3
)

[⇒] For the Landau-de Gennes free energy with “regular” potential, the

hydrodynamic theory has been developed in [Paicu, Zarnescu, SIAM (2011) and ARMA

(2012)] in the isothermal case
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Our main contributions

We study the non-isothermal evolutionary system for nematic liquid crystals within the

recent Ball-Majumdar Q-tensorial model preserving the physical eigenvalue constraint on

the traceless and symmetric matrices Q:

1. [E. Feireisl, E. R., G. Schimperna, A. Zarnescu], Evolution of non-isothermal

Landau-de Gennes nematic liquid crystals flows with singular potential, Comm.

Math. Sci., 12 (2014), 317–343

2. [E. Feireisl, E. R., G. Schimperna, A. Zarnescu], Nonisothermal nematic liquid

crystal flows with the Ball-Majumdar free energy, Annali di Matematica, 194 (2015),

1269–1299

We work in the three-dimensional torus Ω ⊂ R3 in order to avoid complications connected

with boundary conditions. We consider the evolution of the following variables:

the mean velocity field v

the tensor field Q, representing preferred (local) orientation of the crystals

the absolute temperature θ
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Energy and dissipation

The free energy density takes the form

F =
1

2
|∇Q|2 + fB(θ,Q)−θ log θ − aθm

where

I fB(θ,Q) = θf (Q) + G(Q) is bulk the configuration potential
I f is the convex l.s.c. and singular Ball-Majumdar potential
I G is a smooth function of Q
I aθm prescribes a power-like specific heat

The dissipation pseudo-potential is given by

P =
ν(θ)

2
|∇v +∇tv |2 + I{0}(div v) +

κ(θ)

2θ
|∇θ|2 +

1

2Γ(θ)
|DtQ|2

I ν, κ and Γ are the smooth viscosity, the heat conductivity, and the collective rotational

coefficients, DtQ is a “generalized material derivative”
I Incompressibility: I0 the indicator function of {0}: I0 = 0 if div v = 0, +∞ otherwise
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Q-tensor equation

We assume that the driving force governing the dynamics of the director Q is of

“gradient type” ∂QF :

∂tQ + v · ∇Q− S(∇v ,Q) = Γ(θ)H (eq-Q)

The left hand side is the “generalized material derivative”

DtQ = ∂tQ + v · ∇Q− S(∇v ,Q)

S represents deformation and stretching effects of the crystal director along the flow

The right hand side is of “gradient type” −H = ∂QF , i.e.

H = ∆Q− θ ∂f (Q)
∂Q −

∂G(Q)
∂Q = ∆Q− θ ∂f (Q)

∂Q + λQ, λ ≥ 0

Γ(θ) represents a collective rotational viscosity coefficient

The function f represents a convex singular potential of [Ball-Majumdar] type
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The Ball-Majumdar potential

The Ball-Majumdar potential (cf. [Ball, Majumdar (2010)]) exhibit a logarithmic

divergence as the eigenvalues of Q approaches − 1
3

and 2
3

f (Q) =


infρ∈AQ

∫
S2 ρ(p) log(ρ(p)) dp if λi [Q] ∈ (−1/3, 2/3), i = 1, 2, 3,

∞ otherwise,

AQ =

{
ρ : S2 → [0,∞)

∣∣∣ ∫
S2

ρ(p) dp = 1;Q =

∫
S2

(
p⊗ p− 1

3
I
)
ρ(p) dp

}
.

=⇒ It explodes “logarithmically” as one of the eigenvalues of Q approaches the limiting

values −1/3 or 2/3.
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Equation of momentum

In the context of nematic liquid crystals, we have the incompressibility constraint

div v = 0

By virtue of Newton’s second law, the balance of momentum reads

∂tv + div(v ⊗ v) = div σ + g (eq-v)

The stress σ is given by

σ = ν(θ)(∇v +∇tv)− pI + T

The coupling term (or “extra-stress”) T depends both on θ and Q

T = 2ξ (H : Q)

(
Q +

1

3
I
)
− ξ
[
H
(
Q +

1

3
I
)

+

(
Q +

1

3
I
)
H
]

+ (QH− HQ)−∇Q�∇Q

where ξ is a fixed scalar parameter
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Entropy inequality

The evolution of temperature is prescribed by stating the entropy inequality

st + v · ∇s − div

(
κ(θ)

θ
∇θ
)

(eq-θ)

≥ 1

θ

(
ν(θ)

∣∣∇v +∇tv
∣∣2 + Γ(θ)|H|2 +

κ(θ)

θ
|∇θ|2

)

where s“ = −∂θF ′′ = −f (Q) + 1 + log θ + maθm−1

The viscosity ν is smooth and bounded - without any growth condition

κ(r) = A0 + Ak r
k , A0, Ak > 0, 3k+2m

3
> 9, 3

2
< m ≤ 6k

5

Γ(r) = Γ0 + Γ1r , Γ0, Γ1 > 0

The “heat” balance can be recovered by (formally) multiplying by θ

Due to the quadratic terms, we can only interpret (eq-θ) as an inequality
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Total energy balance

Passing from the heat equation to the entropy inequality gives rise to some

information loss

Following an idea by [Buĺıček, Feireisl, & Málek (2009)], we can complement the

system with the total energy balance

∂t

(
1

2
|v |2 + e

)
+ div

(
(

1

2
|v |2 + e)v

)
+ div q (eq-bal)

= div(σv) + div

(
Γ(θ)∇Q :

(
∆Q− θ ∂f (Q)

∂Q
+ λθ

))
+ g · v

where e = F + sθ is the internal energy

Note the explicit occurrence of the pressure p “hidden” inside

σ = ν(θ)(∇v +∇tv)− pI + T

To control it, assuming periodic b.c.’s is essential
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E. Rocca (Università degli Studi di Pavia) Entropic solutions July 31 - August 4, 2017 21 / 43



Total energy balance

Passing from the heat equation to the entropy inequality gives rise to some

information loss
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Main result: the “Entropic formulation”

Theorem: existence of global in time “Entropic solutions”

We can prove existence of at least one “Entropic solution” to

system (eq-v)+(eq-Q)+(eq-θ)+(eq-bal) for finite-energy initial data , namely

θ0 ∈ L∞(Ω), essinfx∈Ω θ0(x) = θ > 0,

Q0 ∈ H1(Ω), f (Q0) ∈ L1(Ω),

v0 ∈ L2(Ω), div v0 = 0.

Notice that, if the solution is more regular, the entropy inequality becomes an

equality and, multiplying it by θ we just get the standard internal energy balance

θt + v · ∇xθ + div q = θ
(
∂t f (Q) + u · ∇x f (Q)

)
+ ν(θ)

∣∣∇xv +∇t
xv
∣∣2 + Γ(θ)|H|2

However, this regularity is out of reach for this model: that is why this solution

notion is significative
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1 Mathematical problems arising from Thermomechanics

2 Liquid Crystals flows

3 Damage phenomena

4 Further perspectives
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The damage phenomena

We report here abouth the paper

[C. Heinemann, C. Kraus, E. R., R. Rossi, A temperature-dependent phase-field model

for phase separation and damage, Arch. Ration. Mech. Anal. (2017)]

where we study a model for phase separation and damage in thermoviscoelastic materials.

The main novelty:

in contrast with previous works in the literature we encompass in the model thermal

processes nonlinearly coupled with the damage, concentration and displacement

evolutions

We prove

the existence of “entropic weak solutions”

Our global-in-time existence result is obtained by passing to the limit in a carefully

devised time-discretization scheme by means of proper compactness and

lower-semincontinuity arguments
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E. Rocca (Università degli Studi di Pavia) Entropic solutions July 31 - August 4, 2017 24 / 43



The damage phenomena

We report here abouth the paper

[C. Heinemann, C. Kraus, E. R., R. Rossi, A temperature-dependent phase-field model

for phase separation and damage, Arch. Ration. Mech. Anal. (2017)]

where we study a model for phase separation and damage in thermoviscoelastic materials.

The main novelty:

in contrast with previous works in the literature we encompass in the model thermal

processes nonlinearly coupled with the damage, concentration and displacement

evolutions

We prove

the existence of “entropic weak solutions”

Our global-in-time existence result is obtained by passing to the limit in a carefully

devised time-discretization scheme by means of proper compactness and

lower-semincontinuity arguments
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The state variables and the PDEs

- the absolute temperature θ

- the (small) displacement variables u (εij(u) := (ui,j + uj,i )/2, i , j = 1, 2, 3)

- the damage parameter z ∈ [0, 1]: z = 0 (completely damaged), z = 1 (completely

undamaged)

- the concentration c

solve the PDEs in Ω× (0,T ) with Ω ⊂ Rd bded domain

θt + ctθ + ztθ + ρθ div(ut)− div(K(θ)∇θ) = g + |ct |2 + |zt |2

+ a(c, z)ε(ut) : Vε(ut) + m(c, z)|∇µ|2

utt − div
(
a(c, z)Vε(ut) + b(c, z)C(ε(u)− ε∗(c))− ρθ1

)
= f

zt + ∂I(−∞,0](zt)−∆p(z) + ∂I[0,∞)(z) + σ′(z) 3 −
1

2
b,z (c, z)C(ε(u)− ε∗(c)) : (ε(u)− ε∗(c)) + θ

ct = div(m(c, z)∇µ)

µ = −∆p(c) + φ′(c) +
1

2

(
b(c, z)C(ε(u)− ε∗(c)) : (ε(u)− ε∗(c))

)
,c
− θ + ct

with the initial-boundary conditions

θ(0) = θ0, u(0) = u0, ut(0) = v0, z(0) = z0, c(0) = c0 a.e. in Ω

K(θ)∇θ · n = h, u = d , ∇z · n = 0, ∇c · n = 0, m(c, z)∇µ · n = 0 a.e. on ∂Ω× (0,T )
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Nonlinearities and data

θt + ctθ + ztθ + ρθ div(ut)− div(K(θ)∇θ) = g + |ct |2 + |zt |2

+ a(c, z)ε(ut) : Vε(ut) + m(c, z)|∇µ|2

utt − div
(
a(c, z)Vε(ut) + b(c, z)C(ε(u)− ε∗(c))− ρθ1

)
= f

zt + ∂I(−∞,0](zt)−∆p(z) + ∂I[0,∞)(z) + σ′(z) 3 −
1

2
b,z (c, z)C(ε(u)− ε∗(c)) : (ε(u)− ε∗(c)) + θ

ct = div(m(c, z)∇µ)

µ = −∆p(c) + φ′(c) +
1

2

(
b(c, z)C(ε(u)− ε∗(c)) : (ε(u)− ε∗(c))

)
,c
− θ + ct

ρ  thermal expansion coefficient;

K  continuous heat conductivity: ∃κ > 1: c0(1 + θκ) ≤ K(θ) ≤ c1(1 + θκ);

m  mobility is a smooth function bounded from below by a positive constant;

C  elasticity tensor and V  viscosity tensor, V = ωC, ω > 0;

a  bounded away from zero and from above as well as az and ac ,

b ∈ C1([0, 1]; [0,+∞));

σ  regular;

φ = β̂+ γ  mixing potential with β̂ convex possibly non-smooth and γ λ-concave,

e.g. β̂(c) = (1 + c) log(1 + c) + (1− c) log(1− c) or β̂(c) = I[−1,1](c) and γ(c) = −c2;

f volume force and g heat source
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Gradient theory for damage

Our approach is based on a gradient theory of phase separation and damage processes

due to M. Frémond (2012), M. Gurtin (1996) and J.W. Cahn and J.E. Hilliard (1958).

From the physical viewpoint in the free-energy∫
Ω

1

p
|∇c|p +

1

p
|∇z|p +W (c, ε(u), z)+φ(c) + σ(z)+ I[0,+∞)(z)−θ log θ−θ

(
c + z + ρ div(u)

)
dx

the first two terms model nonlocality of the damage process, since the gradient of z

accounts for the influence of damage at a material point, undamaged in its

neighborhood. The mathematical advantages attached to the presence of this term,

and of the analogous contribution 1
p
|∇c|p with p > d : it ensures that c and z are

estimated in W 1,p(Ω) ⊂ C0(Ω), and has been adopted for the analysis of other

damage models

the elastic energy W = 1
2
b(c, z)C(ε− ε∗(c)) : (ε− ε∗(c)) accounts for possible

inhomogeneity of elasticity on the one hand, and is characteristic for damage on the

other hand. The natural choice is b ≡ 0 for z = 0 (complete damage)

the functions φ and σ represent the mixing potentials

the term θ(c + z + ρ div u) models the phase and thermal expansion
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Mathematical difficulties

θt + ctθ + ztθ + ρθ div(ut)− div(K(θ)∇θ) = g + |ct |2 + |zt |2

+a(c, z)ε(ut) : Vε(ut) + m(c, z)|∇µ|2

utt − div
(
a(c, z)Vε(ut) + b(c, z)C(ε(u)− ε∗(c))− ρθ1

)
= f

zt + ∂I(−∞,0](zt)−∆p(z) + ∂I[0,∞)(z) + σ′(z) 3 −
1

2
b,z (c, z)C(ε(u)− ε∗(c)) : (ε(u)− ε∗(c)) + θ

ct = div(m(c, z)∇µ)

µ = −∆p(c) + φ′(c) +
1

2

(
b(c, z)C(ε(u)− ε∗(c)) : (ε(u)− ε∗(c))

)
,c
− θ + ct

presence of the quadratic dissipative terms on the right-hand side in the internal

energy balance;

the doubly nonlinear and possibly nonsmooth carachter of the damage relation

We shall resort to a weak solution notion partially drawn from [E. R., R. Rossi: SIAM J.

Math. Anal. 47 (2015)] and [C. Heinemann, C. Kraus: Adv. Math. Sci. Appl. 21 (2011)]:

the Cahn-Hilliard system and the balance of forces read a.e. in Ω× (0,T );

an “entropic” formulation of the heat equation;

a weak formulation of the damage flow rule

Other approaches to treat PDE systems with an L1-right-hand side are available in the literature:

resorting to the notion of renormalized solution, and or by means of Boccardo-Galloüet type

techniques for example
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The literature

Several contributions on systems coupling

rate-dependent damage and thermal processes (cf., e.g. works by Bonetti, Bonfanti,

E.R., Rossi, etc.) as well as

rate-dependent damage and phase separation (cf., e.g., [Heinemann, Kraus, 2011,

2013, 2015]) are available in the literature

Up to our knowledge, this is one of the first contributions on the analysis of a model

encompassing all of the three processes (temperature evolution, damage, phase

separation) in a thermoviscoelastic material. Recently, a thermodynamically consistent,

quite general model describing diffusion of a solute or a fluid in a solid undergoing

possible phase transformations and rate-independent damage, beside possible

visco-inelastic processes, has been studied in [Roub́ıček, Tomassetti: ZAMM (2015)]:

the evolution of the damage process is therein considered rate-independent, which

clearly affects the weak solution concept

dealing with a rate-dependent flow rule for the damage variable is one of the

challenges of our own analysis, due to the presence of the quadratic nonlinearity in

ε(u) on the right-hand side of the damage equation
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The “entropic” formulation of the heat equation
We restate the heat equation

θt + ctθ + ztθ + ρθ div(ut)− div(K(θ)∇θ) = g + |ct |2 + |zt |2

+a(c, z)ε(ut) : Vε(ut) + m(c, z)|∇µ|2 as

the weak entropy inequality (for a.a. 0 ≤ s ≤ t ≤ T and s = 0, and for sufficiently regular and

positive tests ϕ)∫ t

s

∫
Ω

(log(θ) + c + z)ϕt dx dr − ρ
∫ t

s

∫
Ω

div(ut)ϕ dx dr −
∫ t

s

∫
Ω

K(θ)∇ log(θ) · ∇ϕ dx dr

≤
(∫

Ω
(log(θ(r)) + c(r) + z(r))ϕ(r) dx

)r=t

r=s

−
∫ t

s

∫
Ω

K(θ)|∇ log(θ)|2ϕ dx dr

−
∫ t

s

∫
Ω

(
g + |ct |2 + |zt |2 + a(c, z)ε(ut) : Vε(ut) + m(c, z)|∇µ|2

) ϕ
θ

dx dr −
∫ t

s

∫
∂Ω

h
ϕ

θ
dS dr

coupled with the total energy inequality (for a.a. 0 ≤ s ≤ t ≤ T and s = 0)

E(t) ≤ E(s) +

∫ t

s

∫
Ω
g dx dr +

∫ t

s

∫
∂Ω

h dS dr +

∫ t

s

∫
Ω

f · ut dx dr +

∫ t

s

∫
∂Ω

(
σn
)
· dt dS dr

where

E =

∫
Ω

1

p
|∇c|p +

1

p
|∇z|p + W (c, ε(u), z) + φ(c) + σ(z) + I[0,+∞)(z) + θ +

1

2
|ut |2 dx

Main tool: apply upper semicontinuity arguments for the limit passage in the

time-discrete approximation of system
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The weak formulation of the damage flow rule

We replace the damage inclusion

zt + ∂I(−∞,0](zt)−∆p(z) + ∂I[0,∞)(z) + σ′(z) 3 −∂z(c, ε(u), z) + θ by

the damage energy-dissipation inequality (for all t ∈ (0,T ], s = 0, and a.a. 0 < s ≤ t )∫ t

s

∫
Ω

|zt |2 dx dr +

∫
Ω

(
1

p
|∇z(t)|p + σ(z(t))

)
dx

≤
∫

Ω

(
1

p
|∇z(s)|p + σ(z(s))

)
dx +

∫ t

s

∫
Ω

zt (−W,z(c, ε(u), z) + θ) dx dr

and the one-sided variational inequality for the damage process∫
Ω

(
ztζ + |∇z |p−2∇z · ∇ζ + ξζ + σ′(z(t))ζ + W,z(c, ε(u), z)ζ − θζ

)
dx ≥ 0 a.e. in (0,T )

for all sufficiently regular test functions ζ, where ξ ∈ ∂I[0,+∞)(z) a.e. in Q, and

z(x , t) ∈ [0, 1], zt(x , t) ∈ (−∞, 0] a.e. inQ
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Consistency with the standard solution notion

Concerning the entropy+total energy inequalities: if the functions θ, c, z are

sufficiently smooth, then inequalities combined with the c, u, and z relations yield

the pointwise formulation of the heat equation:

by contradiction suppose that the

weak heat equation (equivalent to the entropy inequality with identity sign) does not

hold. Then the entropy inequality holds with a strict inequality sign. Hence, we

could test the momentum balance by ut , the damage flow rule by zt , the

Cahn-Hilliard equation by µ and choose ϕ = θ (which is admissible for a sufficiently

smooth θ) in the entropy strict inequality. Summing up we would conclude the total

energy balance is not satisfied

Concerning the weak formulation of the damage flow rule, the two previous
inequalities on z yield the damage variational inequality (with ξ ∈ ∂I[0,+∞)(z))∫ t

s

∫
Ω
|∇z|p−2∇z · ∇ζ dx dr −

∫
Ω

1

p
|∇z(t)|p dx +

∫
Ω

1

p
|∇z(s)|p dx

+

∫ t

s

∫
Ω

(
zt(ζ − zt) + σ′(z)(ζ − zt) + ξ(ζ − zt)

)
dx dr

≥
∫ t

s

∫
Ω

(
−W,z (c, ε(u), z)(ζ − zt) + θ(ζ − zt)

)
dx dr

∀ t ∈ (0,T ], s = 0, for a.a. 0 < s ≤ t and for all ζ ∈ Lp(0,T ;W 1,p
− (Ω))∩ L∞(0,T ; L∞(Ω))
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smooth θ) in the entropy strict inequality.

Summing up we would conclude the total

energy balance is not satisfied

Concerning the weak formulation of the damage flow rule, the two previous
inequalities on z yield the damage variational inequality (with ξ ∈ ∂I[0,+∞)(z))∫ t

s

∫
Ω
|∇z|p−2∇z · ∇ζ dx dr −

∫
Ω

1

p
|∇z(t)|p dx +

∫
Ω

1

p
|∇z(s)|p dx

+

∫ t

s

∫
Ω

(
zt(ζ − zt) + σ′(z)(ζ − zt) + ξ(ζ − zt)

)
dx dr

≥
∫ t

s

∫
Ω

(
−W,z (c, ε(u), z)(ζ − zt) + θ(ζ − zt)

)
dx dr

∀ t ∈ (0,T ], s = 0, for a.a. 0 < s ≤ t and for all ζ ∈ Lp(0,T ;W 1,p
− (Ω))∩ L∞(0,T ; L∞(Ω))
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The “Entropic” weak formulation

We call a quintuple (c, µ, z , θ, u) an entropic weak solution to the PDE system if

c ∈ L∞(0,T ;W 1,p(Ω)) ∩ H1(0,T ; L2(Ω)), ∆p(c) ∈ L2(0,T ; L2(Ω))

µ ∈ L2(0,T ;H2
N(Ω))

z ∈ L∞(0,T ;W 1,p(Ω)) ∩ H1(0,T ; L2(Ω)),

θ ∈ L2(0,T ;H1(Ω)) ∩ L∞(0,T ; L1(Ω)), θ
κ+α

2 ∈ L2(0,T ;H1(Ω)) for all α ∈ (0, 1),

u ∈ H1(0,T ;H2(Ω;Rd)) ∩W 1,∞(0,T ;H1(Ω;Rd)) ∩ H2(0,T ; L2(Ω;Rd)),

the initial-boundary conditions

c(0) = c0, z(0) = z0, u(0) = u0, ut(0) = v 0 a.e. in Ω, u = d a.e. on ∂Ω× (0,T )

and

the “entropic” heat formulation

the weak damage flow rule

the a.e. Cahn-Hilliard equation

are satisfied
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Existence of “Entropic” solutions

Theorem Under the previous hypotheses and assuming that

d ∈ H1(0,T ;H2(Ω;Rd )) ∩W 1,∞(0,T ;W 1,∞(Ω;Rd )) ∩ H2(0,T ;H1(Ω;Rd ))

f ∈ L2(0,T ; L2(Ω)), g ∈ L1(0,T ; L1(Ω)) ∩ L2(0,T ;H1(Ω)′), g ≥ 0 a.e. in Q

h ∈ L1(0,T ; L2(∂Ω)), h ≥ 0 a.e. in ∂Ω× (0,T )

and that the initial data fulfill

c0 ∈W 1,p(Ω), β̂(c0) ∈ L1(Ω), m(c0) belongs to the interior of dom(β)

z0 ∈W 1,p(Ω), 0 ≤ z0 ≤ 1 in Ω

θ0 ∈ L1(Ω), log θ0 ∈ L1(Ω), ∃ θ∗ > 0 : θ0 ≥ θ∗ > 0 a.e. in Ω

u0 ∈ H2(Ω;Rd ) with u0 = d (0) a.e. on ∂Ω, v0 ∈ H1(Ω;Rd )

then there exists an entropic weak solution (c, µ, z , θ, u) to the PDE system such that

log(θ) ∈ L∞(0,T ; Lp(Ω)) for all p ∈ [1,∞)

If in addition in the heat conductivity κ ∈ (1, 5/3) if d = 3 and κ ∈ (1, 2) if d = 2, then

we have

θ ∈ BV([0,T ];W 2,d+ε(Ω)′) for every ε > 0

and the total energy inequality holds for all t ∈ [0,T ], for s = 0, and for almost all

s ∈ (0, t)
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Sketch of the estimates at a continuum level

From the total energy balance, being the total energy

E =

∫
Ω

1

p
|∇c|p +

1

p
|∇z|p + W (c, ε(u), z) + φ(c) + σ(z) + I[0,+∞)(z) + θ +

1

2
|ut |2 dx ,

we derive bounds on the non-dissipative variables c, z, θ, u and on ‖ut‖L∞(0,T ;L2(Ω;Rd ))

Following then [Feireisl-Petzeltovà-R., MMAS, 2009] we derive a bound for ‖θ‖L2(0,T ;H1(Ω))

via a clever test of the heat equation (a Dafermos type estimate)

Exploiting the previously obtained estimates, we obtain bounds for the dissipative variables

ct , zt , ε(ut), as well as for ∇µ

Via an elliptic regularity estimate on the momentum equation, we gain a (uniform in time)

bound on ‖u‖H2(Ω;Rd ) which translates into an (uniform in time) L2(Ω)-bound for the term
1
2

(
b(c, z)C(ε(u)− ε∗(c)) : (ε(u)− ε∗(c))

)
,c

in the chemical potential µ

We obtain a bound on the L2(0,T ;H1(Ω))-norm of µ from a bound on its mean

value
∫

Ω µ dx , combined with the previously obtained bound for ∇µ via the Poincaré

inequality

We are then in the position to obtain a L2(0,T ; L2(Ω;Rd ))-estimate for each term in µ

Then we gain some information on the (BV-)time regularity of log(θ) and θ, respectively (in

the latter case, under the further condition on the growth exponent κ of K)

We resort to higher elliptic regularity results to gain a uniform bound on ‖µ‖L2(0,T ;H2(Ω))
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Following then [Feireisl-Petzeltovà-R., MMAS, 2009] we derive a bound for ‖θ‖L2(0,T ;H1(Ω))

via a clever test of the heat equation (a Dafermos type estimate)

Exploiting the previously obtained estimates, we obtain bounds for the dissipative variables

ct , zt , ε(ut), as well as for ∇µ

Via an elliptic regularity estimate on the momentum equation, we gain a (uniform in time)

bound on ‖u‖H2(Ω;Rd ) which translates into an (uniform in time) L2(Ω)-bound for the term
1
2

(
b(c, z)C(ε(u)− ε∗(c)) : (ε(u)− ε∗(c))

)
,c

in the chemical potential µ

We obtain a bound on the L2(0,T ;H1(Ω))-norm of µ from a bound on its mean

value
∫

Ω µ dx , combined with the previously obtained bound for ∇µ via the Poincaré
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Following then [Feireisl-Petzeltovà-R., MMAS, 2009] we derive a bound for ‖θ‖L2(0,T ;H1(Ω))

via a clever test of the heat equation (a Dafermos type estimate)

Exploiting the previously obtained estimates, we obtain bounds for the dissipative variables

ct , zt , ε(ut), as well as for ∇µ

Via an elliptic regularity estimate on the momentum equation, we gain a (uniform in time)

bound on ‖u‖H2(Ω;Rd ) which translates into an (uniform in time) L2(Ω)-bound for the term
1
2

(
b(c, z)C(ε(u)− ε∗(c)) : (ε(u)− ε∗(c))

)
,c

in the chemical potential µ

We obtain a bound on the L2(0,T ;H1(Ω))-norm of µ from a bound on its mean

value
∫

Ω µ dx , combined with the previously obtained bound for ∇µ via the Poincaré

inequality

We are then in the position to obtain a L2(0,T ; L2(Ω;Rd ))-estimate for each term in µ

Then we gain some information on the (BV-)time regularity of log(θ) and θ, respectively (in

the latter case, under the further condition on the growth exponent κ of K)

We resort to higher elliptic regularity results to gain a uniform bound on ‖µ‖L2(0,T ;H2(Ω))
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Estimates for θ

.. a trick from [Feireisl-Petzeltovà-R. 2009] (a Dafermos type estimate)

θ ∈ L2(0,T ;H1(Ω)) derives from the test of the θ-equation by θα−1 (α ∈ (0, 1))

θt + g + |ct |2 + |zt |2+a(c, z)ε(ut) : Vε(ut) + m(c, z)|∇µ|2

− div(K(θ)∇θ) = ctθ + ztθ + ρθ div(ut)

The quadratic dissipative terms on the left-hand side are nonnegative!

1

α

∫
Ω
θα(t) dx +

∫∫
Ω×(0,t)

(
g + a(c, z)ε(ut) : Vε(ut) + |zt |2 + |ct |2 + m(c, z)|∇µ|2

)
θα−1 dxds

−
∫∫

Ω×(0,t)
K(θ)∇θ∇(θα−1) dxds︸ ︷︷ ︸

∼
∫∫

Ω×(0,t)
|∇θ(κ+α)/2|2 dxds

=

∫∫
Ω×(0,t)

(ct + zt + ρ div(ut)) θα dxds︸ ︷︷ ︸
estimate by l.h.s. via Young and Gagliardo-Nirenberg

+ OK terms

∫∫
Ω×(0,t)

(ct + zt + ρ div(ut)) θα dxds ≤
1

2

∫∫
Ω×(0,t)

(|ct |2 + |zt |2 + |ε(ut)|2)θα−1 dxds

+ C

∫∫
Ω×(0,t)

θα+1 dxds

Get
∫∫

Ω×(0,t) |∇θ
(κ+α)/2|2 dxds ≤ C , hence

∫∫
Ω×(0,t) |∇θ|

2 dxds ≤ C
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Enhanced regularity for u

u ∈ H1(0,T ;H2
0 (Ω;Rd)) ∩W 1,∞(0,T ;H1

0 (Ω;Rd)) derives from∫∫ (
utt − div

(
a(c, z)Vε(ut) + b(c, z)C(ε(u)− ε∗(c))− ρθ1

)
= f

)
× (− div(ε(ut)))

where

in

∫∫
div
(
a(c, z)Vε(ut)

)
div(ε(ut)) we calculate div(a(c, z)Vε(ut))

 need for ∇c and ∇z bdd in Lp(Ω), p > d

in

∫∫
div(−ρθ1) div(ε(ut))  need for θ bdd in H1(Ω)

Still, the right-hand side of

θt + ctθ + ztθ + ρθ div(ut)− div(K(θ)∇θ) = g + |ct |2 + |zt |2

+ a(c, z)ε(ut) : Vε(ut) + m(c, z)|∇µ|2

is only L1, because |zt |2 ∈ L1 ⇒ “entropic” formulation still needed
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Rigorous proof

All the estimates can be made rigorous via time-discretization

Time-discrete scheme carefully tailored to nonlinear estimates of heat equation
I fully implicit  essential for strict positivity
I eqns. tightly coupled ⇒ existence via fixed point theorem
I discrete versions of total energy inequality & entropy inequality hold → estimates &

passage to the limit ⇒ conclusion of existence proof

Compactness

Limit passage via lower semicontinuity + maximal monotone operator techniques

Note that the fact that the inqualities can be proved at a discrete level could be

useful for numerics
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Outline

1 Mathematical problems arising from Thermomechanics

2 Liquid Crystals flows

3 Damage phenomena

4 Further perspectives
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Advantages and further developments

Future perspectives for the damage case:

I uniqueness of solutions, at least for the isothermal case

I the global-in-time existence analysis for the complete damage (degenerating) case, in

which the coefficient a in the momentum balance is allowed to vanish in some parts of

the domain (cf. [R.-Rossi, SIMA 2015] for the case without phase separation and

[Heinemann-Kraus, NORWA 2015] for the isothermal case)

I Weak-strong uniqueness for this model

Motivated by Thermodynamics and promising in other contexts:

I it is possible to make a strongly nonlinear system mathematically tractable by means

just of the use of the standard principles of Thermodynamics

I the regularity of solutions and initial data is just the one suggested by the energy and

entropy estimates. Hence we respect the physical conditions

I it can be applied in different contexts: damage, liquid crystals

[Feireisl-R.-Schimperna-Zarnescu], two phase fluids [Eleuteri-R.-Schimperna] (Giulio

will talk about that on Thursday!), porous media with hysteresis [Detmann-Krejci-R.]

etc.
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E. Rocca (Università degli Studi di Pavia) Entropic solutions July 31 - August 4, 2017 40 / 43



Advantages and further developments

Future perspectives for the damage case:

I uniqueness of solutions, at least for the isothermal case

I the global-in-time existence analysis for the complete damage (degenerating) case, in

which the coefficient a in the momentum balance is allowed to vanish in some parts of

the domain (cf. [R.-Rossi, SIMA 2015] for the case without phase separation and

[Heinemann-Kraus, NORWA 2015] for the isothermal case)

I Weak-strong uniqueness for this model

Motivated by Thermodynamics and promising in other contexts:

I it is possible to make a strongly nonlinear system mathematically tractable by means

just of the use of the standard principles of Thermodynamics

I the regularity of solutions and initial data is just the one suggested by the energy and

entropy estimates. Hence we respect the physical conditions

I it can be applied in different contexts: damage, liquid crystals

[Feireisl-R.-Schimperna-Zarnescu], two phase fluids [Eleuteri-R.-Schimperna] (Giulio

will talk about that on Thursday!), porous media with hysteresis [Detmann-Krejci-R.]

etc.
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The team cooperating on these problems

The damage phenomena:

The LC flows:

The two-fluids mixtures:
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Many thanks to all of you for the attention!

http://matematica.unipv.it/rocca/

BUT LET ME CONCLUDE WITH ...
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Thanks to Eduard! Especially for

the interesting lectures and stimulating discussions

his help in organizing schools/workshops

his way of attracting young PhD students
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