Entropic solutions arising in complex fluids dynamics and damage phenomena

E. Rocca

Università degli Studi di Pavia

Implicitly constituted materials: Modeling, Analysis and Computing Roztoky, July 31 - August 4, 2017

joint with E. Feireisl, C. Heinemann, C. Kraus, R. Rossi, G. Schimperna, A. Zarnescu

Fondazione Cariplo and Regione Lombardia Grant MEGAsTaR 2016-2019

Outline

1 Mathematical problems arising from Thermomechanics

- 2 Liquid Crystals flows
- 3 Damage phenomena

Further perspectives

Outline

Mathematical problems arising from Thermomechanics

- 2 Liquid Crystals flows
- Damage phenomena

Further perspectives

- Hydrodynamics of liquid crystals flows:
 - a liquid crystal may flow like a liquid, but its molecules may be oriented in a crystal-like way
 - aim: deal with the nematic liquid crystals in the Landau-de Gennes theory, in which the order parameter describing the orientation of molecules is a matrix, the so-called Q-tensor and to include velocity and temperature dependence in the model

- Hydrodynamics of liquid crystals flows:
 - a liquid crystal may flow like a liquid, but its molecules may be oriented in a crystal-like way
 - aim: deal with the nematic liquid crystals in the Landau-de Gennes theory, in which the order parameter describing the orientation of molecules is a matrix, the so-called Q-tensor and to include velocity and temperature dependence in the model
- Damage phenomena:
 - aim: deal with a non-isothermal diffuse interface models in thermoviscoelasticity accounting for the evolution of the displacement variables, the order (damage) parameter z, indicating the local proportion of damage

- Hydrodynamics of liquid crystals flows:
 - a liquid crystal may flow like a liquid, but its molecules may be oriented in a crystal-like way
 - aim: deal with the nematic liquid crystals in the Landau-de Gennes theory, in which the order parameter describing the orientation of molecules is a matrix, the so-called Q-tensor and to include velocity and temperature dependence in the model
- Damage phenomena:
 - aim: deal with a non-isothermal diffuse interface models in thermoviscoelasticity accounting for the evolution of the displacement variables, the order (damage) parameter z, indicating the local proportion of damage
- Another problem: Two-phase mixtures of fluids (see Giulio's talk on Thursday):
 - ightharpoonup avoid analytical problems of interface singularities: an alternative approach to the sharp interface models is the diffuse interface models (the H-model). The sharp interface is replaced by a thin interfacial region where a partial mixing of the fluids is allowed; a new variable φ represents the concentration difference of the fluids
 - ▶ aim: to consider the non-isothermal version of the model

Common features: the nonlinearity of the related PDEs

Common features: the nonlinearity of the related PDEs

Liquid crystals

$$\begin{aligned} &\theta_t + \mathbf{v} \cdot \nabla_{\mathbf{x}} \theta + \operatorname{div} \mathbf{q} = \theta \left(\partial_t f(\mathbb{Q}) + \mathbf{u} \cdot \nabla_{\mathbf{x}} f(\mathbb{Q}) \right) + \sigma : \nabla_{\mathbf{x}} \mathbf{v} + \Gamma(\theta) |\mathbb{H}|^2 \\ &\operatorname{div} \mathbf{v} = 0, \ \mathbf{v}_t + \operatorname{div}(\mathbf{v} \otimes \mathbf{v}) = \operatorname{div} \sigma + \mathbf{g}, \quad \sigma = \nu(\theta) (\nabla_{\mathbf{x}} \mathbf{v} + \nabla_{\mathbf{x}}^t \mathbf{v}) - \rho \mathbb{I} + \mathbb{T}(\theta, \mathbb{Q}) \\ &\mathbb{Q}_t + \mathbf{v} \cdot \nabla_{\mathbf{x}} \mathbb{Q} - \mathbb{S}(\nabla_{\mathbf{x}} \mathbf{v}, \mathbb{Q}) = \Gamma(\theta) \mathbb{H}, \quad \mathbb{H} = \Delta \mathbb{Q} - \theta \frac{\partial f(\mathbb{Q})}{\partial \mathbb{Q}} - \frac{\partial G(\mathbb{Q})}{\partial \mathbb{Q}} \end{aligned}$$

Two-phase mixtures of fluids

$$\begin{split} & \theta_t + \mathbf{v} \cdot \nabla_{\mathbf{x}} \theta + \operatorname{div} \mathbf{q} = -\theta(\varphi_t + \mathbf{v} \cdot \nabla_{\mathbf{x}} \varphi) + \sigma : \nabla_{\mathbf{x}} \mathbf{v} + |\nabla_{\mathbf{x}} \mu|^2 \\ & \operatorname{div} \mathbf{v} = 0 \,, \; \mathbf{v}_t + \operatorname{div}(\mathbf{v} \otimes \mathbf{v}) = \operatorname{div} \sigma - \mu \nabla_{\mathbf{x}} \varphi, \quad \sigma = \nu(\theta) \left(\nabla_{\mathbf{x}} \mathbf{v} + \nabla_{\mathbf{x}}^t \mathbf{v} \right) - p \mathbb{I} \\ & \varphi_t + \mathbf{v} \cdot \nabla_{\mathbf{x}} \varphi = \Delta \mu \,, \quad \mu = -\Delta \varphi + W'(\varphi) - \theta \end{split}$$

Damage

$$\theta_t + c_t \theta + z_t \theta + \rho \theta \operatorname{div}(\boldsymbol{u}_t) + \operatorname{div} \boldsymbol{q} = g + |c_t|^2 + |z_t|^2 + a(c, z)\epsilon(\boldsymbol{u}_t) : \mathbb{V}\epsilon(\boldsymbol{u}_t) + m(c, z)|\nabla \mu|^2$$

$$\boldsymbol{u}_{tt} - \operatorname{div}\left(a(c, z)\mathbb{V}\epsilon(\boldsymbol{u}_t) + b(c, z)\mathbb{C}(\epsilon(\boldsymbol{u}) - \epsilon^*(c)) - \rho \theta 1\right) = \boldsymbol{f}$$

$$z_t + \partial I_{(-\infty,0]}(z_t) - \Delta_{\rho}(z) + \partial I_{[0,\infty)}(z) + \sigma'(z) \ni -\frac{1}{2}b_{,z}\mathbb{C}(\epsilon(\boldsymbol{u}) - \epsilon^*(c)) : (\epsilon(\boldsymbol{u}) - \epsilon^*(c)) + \theta$$

$$c_t = \operatorname{div}(m(c, z)\nabla \mu)$$

$$\mu = -\Delta_{\rho}(c) + \phi'(c) + \frac{1}{2}(b(c, z)\mathbb{C}(\epsilon(\boldsymbol{u}) - \epsilon^*(c)) : (\epsilon(\boldsymbol{u}) - \epsilon^*(c)))_{,c} - \theta + c_t$$

• Reinterpret the nonlinear PDEs

- Reinterpret the nonlinear PDEs
- Combining the concept of weak solution satisfying

- Reinterpret the nonlinear PDEs
- Combining the concept of weak solution satisfying
- 1. a suitable *energy conservation* and *entropy inequality* inspired by:
 - 1.1. the works of E. Feireisl and co-authors ([Feireisl, Comput. Math. Appl. (2007)] and [Bulíček, Feireisl, & Málek, Nonlinear Anal. Real World Appl. (2009)]) for heat conduction in fluids

- Reinterpret the nonlinear PDEs
- Combining the concept of weak solution satisfying
- 1. a suitable *energy conservation* and *entropy inequality* inspired by:
 - 1.1. the works of E. Feireisl and co-authors ([Feireisl, Comput. Math. Appl. (2007)] and [Bulíček, Feireisl, & Málek, Nonlinear Anal. Real World Appl. (2009)]) for heat conduction in fluids
- 2. a generalization of the principle of virtual powers inspired by:
 - 2.1. a notion of weak solution introduced by [Heinemann, Kraus, Adv. Math. Sci. Appl. (2011)] for non-degenerating isothermal diffuse interface models for phase separation and damage

Outline

Mathematical problems arising from Thermomechanics

- 2 Liquid Crystals flows
- Damage phenomena

Further perspectives

Liquid Crystals flows

The motivations:

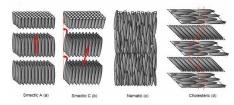
- Theoretical studies of these types of materials are motivated by real-world applications: proper functioning of many practical devices relies on optical properties of certain liquid crystalline substances in the presence or absence of an electric field: a multi-billion dollar industry
- At the molecular level, what marks the difference between a liquid crystal and an ordinary, isotropic fluid is that, while the centers of mass of LC molecules do not exhibit any long-range correlation, molecular orientations do exhibit orientational correlations

Liquid Crystals flows

- The motivations:
 - Theoretical studies of these types of materials are motivated by real-world applications: proper functioning of many practical devices relies on optical properties of certain liquid crystalline substances in the presence or absence of an electric field: a multi-billion dollar industry
 - At the molecular level, what marks the difference between a liquid crystal and an ordinary, isotropic fluid is that, while the centers of mass of LC molecules do not exhibit any long-range correlation, molecular orientations do exhibit orientational correlations
- ► The objective: include the temperature dependence in models describing the evolution of nematic liquid crystal flows within the Landau-De Gennes theories (cf. [De Gennes, Prost (1995)])

Main LC types

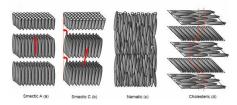
To the present state of knowledge, three main types of liquid crystals are distinguished, termed *smectic*, nematic and *cholesteric*



http://www.laynetworks.com/Molecular-Orientation-in-Liquid-Crystal-Phases.htm

Main LC types

To the present state of knowledge, three main types of liquid crystals are distinguished, termed *smectic*, *nematic* and *cholesteric*



http://www.laynetworks.com/Molecular-Orientation-in-Liquid-Crystal-Phases.htm

The *smectic* phase forms well-defined layers that can slide one over another in a manner very similar to that of a soap

The nematic phase: the molecules have long-range orientational order, but no tendency to the formation of layers. Their center of mass positions all point in the same direction (within each specific domain)

Crystals in the *cholesteric* phase exhibit a twisting of the molecules perpendicular to the director, with the molecular axis parallel to the director

• We consider the range of temperatures typical for the nematic phase

http://www.netwalk.com/ laserlab/lclinks.html

 The nematic liquid crystals are composed of rod-like molecules, with the long axes of neighboring molecules aligned

• We consider the range of temperatures typical for the nematic phase

http://www.netwalk.com/ laserlab/lclinks.html

- The nematic liquid crystals are composed of rod-like molecules, with the long axes of neighboring molecules aligned
- Most mathematical work has been done on the Oseen-Frank theory, in which the mean orientation of the rod-like molecules is described by a vector field \mathbf{d} . However, more popular among physicists is the Landau-de Gennes theory, in which the order parameter describing the orientation of molecules is a matrix, the so-called O-tensor

• We consider the range of temperatures typical for the nematic phase

http://www.netwalk.com/ laserlab/lclinks.html

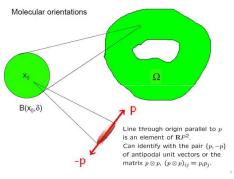
- The nematic liquid crystals are composed of rod-like molecules, with the long axes of neighboring molecules aligned
- Most mathematical work has been done on the Oseen-Frank theory, in which the mean orientation of the rod-like molecules is described by a vector field d. However, more popular among physicists is the Landau-de Gennes theory, in which the order parameter describing the orientation of molecules is a matrix, the so-called O-tensor
- The flow velocity ν evidently disturbs the alignment of the molecules and also the converse is true: a change in the alignment will produce a perturbation of the velocity field v. Moreover, we want to include in our model also the changes of the temperature θ 4 D > 4 P > 4 B > 4 B >

The Landau-de Gennes theory: the molecular orientation

ullet Consider a nematic liquid crystal filling a bounded connected container Ω in \mathbb{R}^3 with "regular" boundary

The Landau-de Gennes theory: the molecular orientation

- Consider a nematic liquid crystal filling a bounded connected container Ω in \mathbb{R}^3 with "regular" boundary
- The distribution of molecular orientations in a ball $B(x_0, \delta)$, $x_0 \in \Omega$ can be represented as a probability measure μ on the unit sphere \mathbb{S}^2 satisfying $\mu(E) = \mu(-E)$ for $E \subset \mathbb{S}^2$
- For a continuously distributed measure we have $d\mu(p)=\rho(p)dp$ where dp is an element of the surface area on \mathbb{S}^2 and $\rho\geq 0$, $\int_{\mathbb{S}^2}\rho(p)dp=1$, $\rho(p)=\rho(-p)$



The Landau-de Gennes theory: the Q-tensor

• The first moment $\int_{\mathbb{S}^2} p \, d\mu(p) = 0$, the second moment $M = \int_{\mathbb{S}^2} p \otimes p \, d\mu(p)$ is a symmetric non-negative 3×3 matrix (for every $v \in \mathbb{S}^2$,

 $\mathbf{v}\cdot M\cdot \mathbf{v}=\int_{\mathbb{S}^2}(\mathbf{v}\cdot p)^2\,d\mu(p)=<\cos^2\theta>$, where θ is the angle between p and \mathbf{v}) satisfying $\mathrm{tr}(M)=1$

The Landau-de Gennes theory: the Q-tensor

- The first moment $\int_{\mathbb{S}^2} p \, d\mu(p) = 0$, the second moment $M = \int_{\mathbb{S}^2} p \otimes p \, d\mu(p)$ is a symmetric non-negative 3×3 matrix (for every $v \in \mathbb{S}^2$, $v \cdot M \cdot v = \int_{\mathbb{S}^2} (v \cdot p)^2 \, d\mu(p) = <\cos^2\theta>$, where θ is the angle between p and v) satisfying $\operatorname{tr}(M) = 1$
- If the orientation of molecules is equally distributed in all directions (the distribution is *isotropic*) and then $\mu=\mu_0$, where $d\mu_0(p)=\frac{1}{4\pi}dS$. In this case the second moment tensor is $M_0=\frac{1}{4\pi}\int_{\mathbb{S}^2}p\otimes p\,dS=\frac{1}{3}1$, because $\int_{\mathbb{S}^2}p_1p_2\,dS=0$, $\int_{\mathbb{S}^2}p_1^2\,dS=\int_{\mathbb{S}^2}p_2^2\,dS$, etc., and $\operatorname{tr}(M_0)=1$

The Landau-de Gennes theory: the Q-tensor

- The first moment $\int_{\mathbb{S}^2} p \, d\mu(p) = 0$, the second moment $M = \int_{\mathbb{S}^2} p \otimes p \, d\mu(p)$ is a symmetric non-negative 3×3 matrix (for every $v \in \mathbb{S}^2$, $v \cdot M \cdot v = \int_{\mathbb{S}^2} (v \cdot p)^2 \, d\mu(p) = <\cos^2\theta>$, where θ is the angle between p and v) satisfying $\operatorname{tr}(M) = 1$
- If the orientation of molecules is equally distributed in all directions (the distribution is *isotropic*) and then $\mu=\mu_0$, where $d\mu_0(p)=\frac{1}{4\pi}dS$. In this case the second moment tensor is $M_0=\frac{1}{4\pi}\int_{\mathbb{S}^2}p\otimes p\,dS=\frac{1}{3}1$, because $\int_{\mathbb{S}^2}p_1p_2\,dS=0$, $\int_{\mathbb{S}^2}p_1^2\,dS=\int_{\mathbb{S}^2}p_2^2\,dS$, etc., and $\mathrm{tr}(M_0)=1$
- ▶ The de Gennes Q-tensor measures the deviation of *M* from its isotropic value

$$\mathbb{Q} = M - M_0 = \int_{\mathbb{S}^2} \left(p \otimes p - \frac{1}{3} 1 \right) d\mu(p)$$

Some properties of the Q-tensors

The de Gennes \mathbb{Q} -tensor measures the deviation of M from its isotropic value

$$\mathbb{Q} = M - M_0 = \int_{\mathbb{S}^2} \left(p \otimes p - \frac{1}{3} 1 \right) d\mu(p)$$

Note that (cf. [Ball, Majumdar, Molecular Crystals and Liquid Crystals (2010)])

- 1. $\mathbb{Q} = \mathbb{Q}^T$
- 2. $tr(\mathbb{Q}) = 0$
- 3. $\mathbb{Q} \ge -\frac{1}{3}1$

13 / 43

Some properties of the Q-tensors

The de Gennes \mathbb{Q} -tensor measures the deviation of M from its isotropic value

$$\mathbb{Q}=M-M_0=\int_{\mathbb{S}^2}\left(p\otimes p-\frac{1}{3}1\right)\,d\mu(p)$$

Note that (cf. [Ball, Majumdar, Molecular Crystals and Liquid Crystals (2010)])

- 1. $\mathbb{Q} = \mathbb{Q}^T$
- 2. $tr(\mathbb{Q}) = 0$
- 3. $\mathbb{Q} \geq -\frac{1}{3}\mathbf{1}$
- 1.+2. implies $\mathbb{Q}=\lambda_1 n_1\otimes n_1+\lambda_2 n_2\otimes n_2+\lambda_3 n_3\otimes n_3$, where $\{n_i\}$ is an othonormal basis of eigenvectors of \mathbb{Q} with corresponding eigenvalues λ_i such that $\lambda_1+\lambda_2+\lambda_3=0$
- 2.+3. implies $-\frac{1}{3} \le \lambda_i \le \frac{2}{3}$
 - $\mathbb{Q}=0$ does not imply $\mu=\mu_0$ (e.g. $\mu=\frac{1}{6}\sum_{i=1}^3(\delta_{e_i}+\delta_{-e_i})$)

The Ball-Majumdar singular potential

The Ball-Majumdar singular potential

• In the Landau-de Gennes free energy there is no a-priori bound on the eigenvalues

The Ball-Majumdar singular potential

- In the Landau-de Gennes free energy there is no a-priori bound on the eigenvalues
- In order to naturally enforce the physical constraints in the eigenvalues of the symmetric, traceless tensors Q, Ball and Majumdar have recently introduced in [Ball, Majumdar, Molecular Crystals and Liquid Crystals (2010)] a singular component

$$f(\mathbb{Q}) = \begin{cases} \inf_{\rho \in \mathcal{A}_{\mathbb{Q}}} \int_{\mathbb{S}^2} \rho(\mathsf{p}) \log(\rho(\mathsf{p})) \; \mathrm{d}\mathsf{p} \; \mathrm{if} \; \lambda_i[\mathbb{Q}] \in (-1/3, 2/3), \; i = 1, 2, 3, \\ \\ \infty \; \mathrm{otherwise}, \end{cases}$$

$$\mathcal{A}_{\mathbb{Q}} = \left\{ \rho : S^2 \to [0,\infty) \ \middle| \ \int_{S^2} \rho(\mathsf{p}) \ d\mathsf{p} = 1; \mathbb{Q} = \int_{S^2} \left(\mathsf{p} \otimes \mathsf{p} - \frac{1}{3} \mathbb{I} \right) \rho(\mathsf{p}) \ d\mathsf{p} \right\}.$$

to the bulk free-energy f_B enforcing the eigenvalues to stay in the interval $\left(-\frac{1}{3},\frac{2}{3}\right)$

[⇒] For the Landau-de Gennes free energy with "regular" potential, the hydrodynamic theory has been developed in [Paicu, Zarnescu, SIAM (2011) and ARMA (2012)] in the isothermal case

14 / 43

Our main contributions

We study the non-isothermal evolutionary system for nematic liquid crystals within the recent Ball-Majumdar \mathbb{Q} -tensorial model preserving the physical eigenvalue constraint on the traceless and symmetric matrices \mathbb{Q} :

Our main contributions

We study the non-isothermal evolutionary system for nematic liquid crystals within the recent Ball-Majumdar \mathbb{Q} -tensorial model preserving the physical eigenvalue constraint on the traceless and symmetric matrices \mathbb{Q} :

 [E. Feireisl, E. R., G. Schimperna, A. Zarnescu], Evolution of non-isothermal Landau-de Gennes nematic liquid crystals flows with singular potential, Comm. Math. Sci., 12 (2014), 317–343

Our main contributions

We study the non-isothermal evolutionary system for nematic liquid crystals within the recent Ball-Majumdar \mathbb{Q} -tensorial model preserving the physical eigenvalue constraint on the traceless and symmetric matrices \mathbb{Q} :

- [E. Feireisl, E. R., G. Schimperna, A. Zarnescu], Evolution of non-isothermal Landau-de Gennes nematic liquid crystals flows with singular potential, Comm. Math. Sci., 12 (2014), 317–343
- 2. [E. Feireisl, E. R., G. Schimperna, A. Zarnescu], *Nonisothermal nematic liquid crystal flows with the Ball-Majumdar free energy*, Annali di Matematica, 194 (2015), 1269–1299

Our main contributions

We study the non-isothermal evolutionary system for nematic liquid crystals within the recent Ball-Majumdar \mathbb{Q} -tensorial model preserving the physical eigenvalue constraint on the traceless and symmetric matrices \mathbb{Q} :

- [E. Feireisl, E. R., G. Schimperna, A. Zarnescu], Evolution of non-isothermal Landau-de Gennes nematic liquid crystals flows with singular potential, Comm. Math. Sci., 12 (2014), 317–343
- 2. [E. Feireisl, E. R., G. Schimperna, A. Zarnescu], *Nonisothermal nematic liquid crystal flows with the Ball-Majumdar free energy*, Annali di Matematica, 194 (2015), 1269–1299

We work in the three-dimensional torus $\Omega\subset\mathbb{R}^3$ in order to avoid complications connected with boundary conditions. We consider the evolution of the following variables:

- ullet the mean velocity field $oldsymbol{v}$
- the tensor field Q, representing preferred (local) orientation of the crystals
- the absolute temperature θ

Energy and dissipation

The free energy density takes the form

$$\mathcal{F} = \frac{1}{2} |\nabla \mathbb{Q}|^2 + f_B(\theta, \mathbb{Q}) - \theta \log \theta - a\theta^m$$

where

- $f_B(\theta, \mathbb{Q}) = \theta f(\mathbb{Q}) + G(\mathbb{Q})$ is bulk the configuration potential
- ▶ f is the convex l.s.c. and singular Ball-Majumdar potential
- ▶ *G* is a smooth function of ℚ
- ightharpoonup prescribes a power-like specific heat

Energy and dissipation

• The free energy density takes the form

$$\mathcal{F} = \frac{1}{2} |\nabla \mathbb{Q}|^2 + f_B(\theta, \mathbb{Q}) - \theta \log \theta - a\theta^m$$

where

- $f_B(\theta, \mathbb{Q}) = \theta f(\mathbb{Q}) + G(\mathbb{Q})$ is bulk the configuration potential
- ▶ f is the convex l.s.c. and singular Ball-Majumdar potential
- ▶ **G** is a smooth function of **O**
- ightharpoonup prescribes a power-like specific heat
- The dissipation pseudo-potential is given by

$$\mathcal{P} = rac{
u(heta)}{2} |
abla oldsymbol{v} +
abla^t oldsymbol{v}|^2 + I_{\{0\}}(\operatorname{div}oldsymbol{v}) + rac{\kappa(heta)}{2 heta} |
abla heta|^2 + rac{1}{2\Gamma(heta)} |D_t \mathbb{Q}|^2$$

- \triangleright ν, κ and Γ are the smooth viscosity, the heat conductivity, and the collective rotational coefficients, $D_t\mathbb{Q}$ is a "generalized material derivative"
- ▶ Incompressibility: I_0 the indicator function of $\{0\}$: $I_0 = 0$ if div $\mathbf{v} = 0, +\infty$ otherwise

 \mathbb{Q} -tensor equation

Q-tensor equation

We assume that the driving force governing the dynamics of the director \mathbb{Q} is of "gradient type" $\partial_{\mathbb{Q}}\mathcal{F}$:

$$\partial_t \mathbb{Q} + \mathbf{v} \cdot \nabla \mathbb{Q} - \mathbb{S}(\nabla \mathbf{v}, \mathbb{Q}) = \Gamma(\theta) \mathbb{H}$$
 (eq-Q)

- The left hand side is the "generalized material derivative"
 - $D_t \mathbb{Q} = \partial_t \mathbb{Q} + \mathbf{v} \cdot \nabla \mathbb{Q} \mathbb{S}(\nabla \mathbf{v}, \mathbb{Q})$
- \bullet $\,\mathbb{S}$ represents deformation and stretching effects of the crystal director along the flow

Q-tensor equation

We assume that the driving force governing the dynamics of the director $\mathbb Q$ is of "gradient type" $\partial_{\mathbb Q}\mathcal F$:

$$\partial_t \mathbb{Q} + \mathbf{v} \cdot \nabla \mathbb{Q} - \mathbb{S}(\nabla \mathbf{v}, \mathbb{Q}) = \Gamma(\theta) \mathbb{H}$$
 (eq-Q)

- The left hand side is the "generalized material derivative" $D_t \mathbb{O} = \partial_t \mathbb{O} + \mathbf{v} \cdot \nabla \mathbb{O} \mathbb{S}(\nabla \mathbf{v}, \mathbb{O})$
- ullet S represents deformation and stretching effects of the crystal director along the flow
- The right hand side is of "gradient type" $-\mathbb{H} = \partial_{\mathbb{Q}} \mathcal{F}$, i.e.
- $\mathbb{H} = \Delta \mathbb{Q} \theta \frac{\partial f(\mathbb{Q})}{\partial \mathbb{Q}} \frac{\partial G(\mathbb{Q})}{\partial \mathbb{Q}} = \Delta \mathbb{Q} \theta \frac{\partial f(\mathbb{Q})}{\partial \mathbb{Q}} + \lambda \mathbb{Q}, \ \lambda \geq 0$
- ullet $\Gamma(heta)$ represents a collective rotational viscosity coefficient
- The function f represents a convex singular potential of [Ball-Majumdar] type

The Ball-Majumdar potential

The Ball-Majumdar potential (cf. [Ball, Majumdar (2010)]) exhibit a logarithmic divergence as the eigenvalues of $\mathbb Q$ approaches $-\frac{1}{3}$ and $\frac{2}{3}$

$$f(\mathbb{Q}) = \left\{ \begin{array}{l} \inf_{\rho \in \mathcal{A}_{\mathbb{Q}}} \int_{\mathbb{S}^2} \rho(\mathsf{p}) \log(\rho(\mathsf{p})) \; \mathrm{d}\mathsf{p} \; \mathrm{if} \; \lambda_i[\mathbb{Q}] \in (-1/3,2/3), \; i = 1,2,3, \\ \\ \infty \; \mathrm{otherwise}, \end{array} \right.$$

$$\mathcal{A}_{\mathbb{Q}} = \left\{ \rho : S^2 \to [0,\infty) \ \middle| \ \int_{S^2} \rho(p) \ dp = 1; \mathbb{Q} = \int_{S^2} \left(p \otimes p - \frac{1}{3} \mathbb{I} \right) \rho(p) \ dp \right\}.$$

 \implies It explodes "logarithmically" as one of the eigenvalues of $\mathbb Q$ approaches the limiting values -1/3 or 2/3.

• In the context of nematic liquid crystals, we have the incompressibility constraint

$$\text{div } \boldsymbol{\nu} = 0$$

• In the context of nematic liquid crystals, we have the incompressibility constraint

$$\operatorname{div} \mathbf{v} = 0$$

• By virtue of Newton's second law, the balance of momentum reads

$$\partial_t \mathbf{v} + \operatorname{div}(\mathbf{v} \otimes \mathbf{v}) = \operatorname{div} \sigma + \mathbf{g}$$
 (eq-v)

• In the context of nematic liquid crystals, we have the incompressibility constraint

$$\operatorname{div} \mathbf{v} = 0$$

By virtue of Newton's second law, the balance of momentum reads

$$\partial_t \mathbf{v} + \operatorname{div}(\mathbf{v} \otimes \mathbf{v}) = \operatorname{div} \sigma + \mathbf{g}$$
 (eq-v)

 \bullet The stress σ is given by

$$\sigma = \nu(\theta)(\nabla \mathbf{v} + \nabla^t \mathbf{v}) - p\mathbb{I} + \mathbb{T}$$

• In the context of nematic liquid crystals, we have the incompressibility constraint

$$\operatorname{div} \mathbf{v} = 0$$

By virtue of Newton's second law, the balance of momentum reads

$$\partial_t \mathbf{v} + \operatorname{div}(\mathbf{v} \otimes \mathbf{v}) = \operatorname{div} \sigma + \mathbf{g}$$
 (eq-v)

• The stress σ is given by

$$\sigma = \nu(\theta)(\nabla \mathbf{v} + \nabla^t \mathbf{v}) - \rho \mathbb{I} + \mathbb{T}$$

 \bullet The coupling term (or "extra-stress") $\mathbb T$ depends both on θ and $\mathbb Q$

$$\mathbb{T} = 2\xi \left(\mathbb{H}:\mathbb{Q}\right) \left(\mathbb{Q} + \frac{1}{3}\mathbb{I}\right) - \xi \left[\mathbb{H}\left(\mathbb{Q} + \frac{1}{3}\mathbb{I}\right) + \left(\mathbb{Q} + \frac{1}{3}\mathbb{I}\right)\mathbb{H}\right] + \left(\mathbb{Q}\mathbb{H} - \mathbb{H}\mathbb{Q}\right) - \nabla\mathbb{Q}\odot\nabla\mathbb{Q}$$

where ξ is a fixed scalar parameter

The evolution of temperature is prescribed by stating the entropy inequality

The evolution of temperature is prescribed by stating the entropy inequality

$$egin{align*} oldsymbol{s}_t + oldsymbol{v} \cdot
abla s - \operatorname{div}\left(rac{\kappa(heta)}{ heta}
abla heta
ight) \ & \geq rac{1}{ heta}\left(
u(heta)ig|
abla oldsymbol{v} +
abla^t oldsymbol{v}ig|^2 + \Gamma(heta)ig|\mathbb{H}ig|^2 + rac{\kappa(heta)}{ heta}ig|
abla hetaig|^2
ight) \ & ext{where } oldsymbol{s}'' = -oldsymbol{ heta}oldsymbol{ heta}ig|\mathbb{Q}ig) + 1 + \log heta + ma heta^{m-1} \end{split}$$

- ullet The viscosity u is smooth and bounded without any growth condition
- $\kappa(r) = A_0 + A_k r^k$, A_0 , $A_k > 0$, $\frac{3k+2m}{3} > 9$, $\frac{3}{2} < m \le \frac{6k}{5}$
- $\Gamma(r) = \Gamma_0 + \Gamma_1 r$, Γ_0 , $\Gamma_1 > 0$

The evolution of temperature is prescribed by stating the entropy inequality

$$egin{aligned} m{s}_t + m{v} \cdot
abla m{s} - \operatorname{div}\left(rac{\kappa(heta)}{ heta}
abla heta
ight) \end{aligned}$$
 $(\operatorname{eq} - heta)$ $\geq rac{1}{ heta} \left(
u(heta) ig|
abla m{v} +
abla^t m{v} ig|^2 + \Gamma(heta) |\mathbb{H}|^2 + rac{\kappa(heta)}{ heta} |
abla heta|^2
ight)$ where $m{s}'' = -m{b}_{ heta} \mathcal{F}'' = -m{f}(\mathbb{Q}) + 1 + \log heta + ma heta^{m-1}$

- \bullet The viscosity ν is smooth and bounded without any growth condition
- $\kappa(r) = A_0 + A_k r^k$, A_0 , $A_k > 0$, $\frac{3k+2m}{3} > 9$, $\frac{3}{2} < m \le \frac{6k}{5}$
- $\Gamma(r) = \Gamma_0 + \Gamma_1 r$, Γ_0 , $\Gamma_1 > 0$
- ullet The "heat" balance can be recovered by (formally) multiplying by heta
- ullet Due to the quadratic terms, we can only interpret (eq-heta) as an inequality

 Passing from the heat equation to the entropy inequality gives rise to some information loss

- Passing from the heat equation to the entropy inequality gives rise to some information loss
- Following an idea by [Bulíček, Feireisl, & Málek (2009)], we can complement the system with the total energy balance

$$\begin{split} &\partial_t \left(\frac{1}{2} |\textbf{\textit{v}}|^2 + e \right) + \operatorname{div} \left((\frac{1}{2} |\textbf{\textit{v}}|^2 + e) \textbf{\textit{v}} \right) + \operatorname{div} \textbf{\textit{q}} \\ &= \operatorname{div}(\sigma \textbf{\textit{v}}) + \operatorname{div} \left(\Gamma(\theta) \nabla \mathbb{Q} : \left(\Delta \mathbb{Q} - \theta \frac{\partial f(\mathbb{Q})}{\partial \mathbb{Q}} + \lambda \theta \right) \right) + \textbf{\textit{g}} \cdot \textbf{\textit{v}} \end{split}$$

where $e = \mathcal{F} + s\theta$ is the internal energy

- Passing from the heat equation to the entropy inequality gives rise to some information loss
- Following an idea by [Bulíček, Feireisl, & Málek (2009)], we can complement the system with the total energy balance

$$\begin{split} &\partial_t \left(\frac{1}{2} |\textbf{\textit{v}}|^2 + e \right) + \operatorname{div} \left(\left(\frac{1}{2} |\textbf{\textit{v}}|^2 + e \right) \textbf{\textit{v}} \right) + \operatorname{div} \textbf{\textit{q}} \end{aligned} \tag{eq-bal)} \\ &= \operatorname{div}(\sigma \textbf{\textit{v}}) + \operatorname{div} \left(\Gamma(\theta) \nabla \mathbb{Q} : \left(\Delta \mathbb{Q} - \theta \frac{\partial f(\mathbb{Q})}{\partial \mathbb{Q}} + \lambda \theta \right) \right) + \textbf{\textit{g}} \cdot \textbf{\textit{v}} \end{split}$$

where $e = \mathcal{F} + s\theta$ is the internal energy

• Note the explicit occurrence of the pressure *p* "hidden" inside

$$\sigma = \nu(\theta)(\nabla \mathbf{v} + \nabla^t \mathbf{v}) - \rho \mathbb{I} + \mathbb{T}$$

- Passing from the heat equation to the entropy inequality gives rise to some information loss
- Following an idea by [Bulíček, Feireisl, & Málek (2009)], we can complement the system with the total energy balance

$$\begin{split} &\partial_t \left(\frac{1}{2} |\textbf{\textit{v}}|^2 + e \right) + \mathsf{div} \left((\frac{1}{2} |\textbf{\textit{v}}|^2 + e) \textbf{\textit{v}} \right) + \mathsf{div} \, \textbf{\textit{q}} \\ &= \mathsf{div}(\sigma \, \textbf{\textit{v}}) + \mathsf{div} \left(\Gamma(\theta) \nabla \mathbb{Q} : \left(\Delta \mathbb{Q} - \theta \frac{\partial f(\mathbb{Q})}{\partial \mathbb{Q}} + \lambda \theta \right) \right) + \textbf{\textit{g}} \cdot \textbf{\textit{v}} \end{split}$$

where $e = \mathcal{F} + s\theta$ is the internal energy

• Note the explicit occurrence of the pressure *p* "hidden" inside

$$\sigma = \nu(\theta)(\nabla \mathbf{v} + \nabla^t \mathbf{v}) - p\mathbb{I} + \mathbb{T}$$

• To control it, assuming periodic b.c.'s is essential

21 / 43

Main result: the "Entropic formulation"

Theorem: existence of global in time "Entropic solutions"

We can prove existence of at least one "Entropic solution" to system $(eq-v)+(eq-\theta)+(eq-bal)$ for finite-energy initial data , namely

$$\begin{split} &\theta_0 \in L^\infty(\Omega), \ \operatorname{essinf}_{x \in \Omega} \theta_0(x) = \underline{\theta} > 0, \\ &\mathbb{Q}_0 \in H^1(\Omega), \ f(\mathbb{Q}_0) \in L^1(\Omega), \\ &\mathbf{v}_0 \in L^2(\Omega), \ \operatorname{div} \mathbf{v}_0 = 0. \end{split}$$

Main result: the "Entropic formulation"

Theorem: existence of global in time "Entropic solutions"

We can prove existence of at least one "Entropic solution" to system $(eq-v)+(eq-\theta)+(eq-bal)$ for finite-energy initial data , namely

$$\begin{split} &\theta_0 \in L^\infty(\Omega), \ \text{essinf}_{x \in \Omega} \, \theta_0(x) = \underline{\theta} > 0, \\ &\mathbb{Q}_0 \in H^1(\Omega), \ f(\mathbb{Q}_0) \in L^1(\Omega), \\ &\textbf{\textit{v}}_0 \in L^2(\Omega), \ \text{div} \, \textbf{\textit{v}}_0 = 0. \end{split}$$

ullet Notice that, if the solution is more regular, the entropy inequality becomes an equality and, multiplying it by heta we just get the standard internal energy balance

$$\theta_t + \mathbf{v} \cdot \nabla_{\mathbf{x}} \theta + \operatorname{div} \mathbf{q} = \theta (\partial_t f(\mathbb{Q}) + \mathbf{u} \cdot \nabla_{\mathbf{x}} f(\mathbb{Q})) + \nu(\theta) |\nabla_{\mathbf{x}} \mathbf{v} + \nabla_{\mathbf{x}}^t \mathbf{v}|^2 + \Gamma(\theta) |\mathbb{H}|^2$$

Main result: the "Entropic formulation"

Theorem: existence of global in time "Entropic solutions"

We can prove existence of at least one "Entropic solution" to system $(eq-v)+(eq-\theta)+(eq-bal)$ for finite-energy initial data , namely

$$\begin{split} &\theta_0 \in L^\infty(\Omega), \ \operatorname{essinf}_{x \in \Omega} \theta_0(x) = \underline{\theta} > 0, \\ &\mathbb{Q}_0 \in H^1(\Omega), \ f(\mathbb{Q}_0) \in L^1(\Omega), \\ &\textbf{\textit{v}}_0 \in L^2(\Omega), \ \operatorname{div} \textbf{\textit{v}}_0 = 0. \end{split}$$

ullet Notice that, if the solution is more regular, the entropy inequality becomes an equality and, multiplying it by heta we just get the standard internal energy balance

$$egin{aligned} eta_t + oldsymbol{v} \cdot
abla_{\mathcal{X}} heta + \operatorname{div} oldsymbol{q} &= heta ig(\partial_t f(\mathbb{Q}) + oldsymbol{u} \cdot
abla_{\mathcal{X}} f(\mathbb{Q}) ig) +
u(heta) ig|
abla_{\mathcal{X}} oldsymbol{v} +
abla_{\mathcal{X}}^t oldsymbol{v} ig|^2 + \Gamma(heta) |\mathbb{H}|^2 \end{aligned}$$

• However, this regularity is out of reach for this model: that is why this solution notion is significative

Outline

Mathematical problems arising from Thermomechanics

- 2 Liquid Crystals flows
- 3 Damage phenomena

Further perspectives

We report here abouth the paper

[C. Heinemann, C. Kraus, E. R., R. Rossi, A temperature-dependent phase-field model for phase separation and damage, Arch. Ration. Mech. Anal. (2017)] where we study a model for phase separation and damage in thermoviscoelastic materials.

We report here abouth the paper

[C. Heinemann, C. Kraus, E. R., R. Rossi, A temperature-dependent phase-field model for phase separation and damage, Arch. Ration. Mech. Anal. (2017)] where we study a model for phase separation and damage in thermoviscoelastic materials.

The main novelty:

 in contrast with previous works in the literature we encompass in the model thermal processes nonlinearly coupled with the damage, concentration and displacement evolutions

24 / 43

We report here abouth the paper

[C. Heinemann, C. Kraus, E. R., R. Rossi, A temperature-dependent phase-field model for phase separation and damage, Arch. Ration. Mech. Anal. (2017)] where we study a model for phase separation and damage in thermoviscoelastic materials.

The main novelty:

 in contrast with previous works in the literature we encompass in the model thermal processes nonlinearly coupled with the damage, concentration and displacement evolutions

We prove

• the existence of "entropic weak solutions"

We report here abouth the paper

[C. Heinemann, C. Kraus, E. R., R. Rossi, A temperature-dependent phase-field model for phase separation and damage, Arch. Ration. Mech. Anal. (2017)] where we study a model for phase separation and damage in thermoviscoelastic materials.

The main novelty:

 in contrast with previous works in the literature we encompass in the model thermal processes nonlinearly coupled with the damage, concentration and displacement evolutions

We prove

- the existence of "entropic weak solutions"
- Our global-in-time existence result is obtained by passing to the limit in a carefully devised time-discretization scheme by means of proper compactness and lower-semincontinuity arguments

The state variables and the PDEs

- the absolute temperature heta
- the (small) displacement variables \boldsymbol{u} $(\epsilon_{ij}(\boldsymbol{u}):=(\boldsymbol{u}_{i,j}+\boldsymbol{u}_{j,i})/2,\ i,j=1,2,3)$
- the damage parameter $z \in [0,1]$: z=0 (completely damaged), z=1 (completely undamaged)
- the concentration c

solve the PDEs in $\Omega\times(0,\,\mathcal{T})$ with $\Omega\subset\mathbb{R}^d$ bded domain

The state variables and the PDEs

- the absolute temperature heta
- the (small) displacement variables \boldsymbol{u} $(\epsilon_{ij}(\boldsymbol{u}):=(\boldsymbol{u}_{i,j}+\boldsymbol{u}_{j,i})/2,\ i,j=1,2,3)$
- the damage parameter $z \in [0,1]$: z=0 (completely damaged), z=1 (completely undamaged)
- the concentration c

solve the PDEs in $\Omega \times (0, T)$ with $\Omega \subset \mathbb{R}^d$ bded domain

$$\theta_t + c_t \theta + z_t \theta + \rho \theta \operatorname{div}(\boldsymbol{u}_t) - \operatorname{div}(\mathsf{K}(\theta) \nabla \theta) = g + |c_t|^2 + |z_t|^2 \\ + a(c, z) \epsilon(\boldsymbol{u}_t) : \mathbb{V}\epsilon(\boldsymbol{u}_t) + m(c, z) |\nabla \mu|^2$$

$$\boldsymbol{u}_{tt} - \operatorname{div}(a(c, z) \mathbb{V}\epsilon(\boldsymbol{u}_t) + b(c, z) \mathbb{C}(\epsilon(\boldsymbol{u}) - \epsilon^*(c)) - \rho \theta 1) = \boldsymbol{f}$$

$$z_t + \partial I_{(-\infty, 0]}(z_t) - \Delta_{\rho}(z) + \partial I_{[0, \infty)}(z) + \sigma'(z) \ni -\frac{1}{2}b_{,z}(c, z) \mathbb{C}(\epsilon(\boldsymbol{u}) - \epsilon^*(c)) : (\epsilon(\boldsymbol{u}) - \epsilon^*(c)) + \theta$$

$$c_t = \operatorname{div}(m(c, z) \nabla \mu)$$

$$\mu = -\Delta_p(c) + \phi'(c) + \frac{1}{2} (b(c, z) \mathbb{C}(\epsilon(\boldsymbol{u}) - \epsilon^*(c)) : (\epsilon(\boldsymbol{u}) - \epsilon^*(c)))_{,c} - \theta + c_t$$

The state variables and the PDEs

- the absolute temperature θ
- the (small) displacement variables \boldsymbol{u} $(\epsilon_{ij}(\boldsymbol{u}):=(\boldsymbol{u}_{i,j}+\boldsymbol{u}_{j,i})/2,\ i,j=1,2,3)$
- the damage parameter $z \in [0,1]$: z=0 (completely damaged), z=1 (completely undamaged)
- the concentration c

solve the PDEs in $\Omega \times (0, T)$ with $\Omega \subset \mathbb{R}^d$ bded domain

$$\begin{aligned} \theta_t + c_t \theta + z_t \theta + \rho \theta \operatorname{div}(\boldsymbol{u}_t) - \operatorname{div}(\mathsf{K}(\theta) \nabla \theta) &= g + |c_t|^2 + |z_t|^2 \\ &\quad + a(c,z) \epsilon(\boldsymbol{u}_t) : \mathbb{V} \epsilon(\boldsymbol{u}_t) + m(c,z) |\nabla \mu|^2 \end{aligned}$$

$$\boldsymbol{u}_{tt} - \operatorname{div}\left(a(c,z) \mathbb{V} \epsilon(\boldsymbol{u}_t) + b(c,z) \mathbb{C}(\epsilon(\boldsymbol{u}) - \epsilon^*(c)) - \rho \theta 1\right) &= \boldsymbol{f}$$

$$z_t + \partial I_{(-\infty,0]}(z_t) - \Delta_{\rho}(z) + \partial I_{[0,\infty)}(z) + \sigma'(z) \ni -\frac{1}{2} b_{,z}(c,z) \mathbb{C}(\epsilon(\boldsymbol{u}) - \epsilon^*(c)) : (\epsilon(\boldsymbol{u}) - \epsilon^*(c)) + \theta C_t = \operatorname{div}(m(c,z) \nabla \mu)$$

$$\mu = -\Delta_p(c) + \phi'(c) + \frac{1}{2} (b(c,z)\mathbb{C}(\epsilon(\boldsymbol{u}) - \epsilon^*(c)) : (\epsilon(\boldsymbol{u}) - \epsilon^*(c)))_{,c} - \theta + c_t$$

with the initial-boundary conditions

$$\theta(0) = \theta^0$$
, $\mathbf{u}(0) = \mathbf{u}^0$, $\mathbf{u}_t(0) = \mathbf{v}^0$, $z(0) = z^0$, $c(0) = c^0$ a.e. in Ω
 $\mathsf{K}(\theta)\nabla\theta\cdot\mathbf{n} = \mathbf{h}$, $\mathbf{u} = \mathbf{d}$, $\nabla z\cdot\mathbf{n} = 0$, $\nabla c\cdot\mathbf{n} = 0$, $m(c,z)\nabla\mu\cdot\mathbf{n} = 0$ a.e. on $\partial\Omega\times(0,T)$

Nonlinearities and data

$$\begin{aligned} \theta_t + c_t \theta + z_t \theta + \rho \theta \operatorname{div}(\boldsymbol{u}_t) - \operatorname{div}(\mathsf{K}(\theta) \nabla \theta) &= g + |c_t|^2 + |z_t|^2 \\ &\quad + a(c,z) \epsilon(\boldsymbol{u}_t) : \mathbb{V} \epsilon(\boldsymbol{u}_t) + m(c,z) |\nabla \mu|^2 \end{aligned}$$

$$\boldsymbol{u}_{tt} - \operatorname{div}\left(a(c,z) \mathbb{V} \epsilon(\boldsymbol{u}_t) + b(c,z) \mathbb{C}(\epsilon(\boldsymbol{u}) - \epsilon^*(c)) - \rho \theta 1\right) &= \boldsymbol{f}$$

$$z_t + \partial I_{(-\infty,0]}(z_t) - \Delta_{\rho}(z) + \partial I_{[0,\infty)}(z) + \sigma'(z) \ni -\frac{1}{2} b_{,z}(c,z) \mathbb{C}(\epsilon(\boldsymbol{u}) - \epsilon^*(c)) : (\epsilon(\boldsymbol{u}) - \epsilon^*(c)) + \theta C_t &= \operatorname{div}(m(c,z) \nabla \mu) \end{aligned}$$

$$\mu = -\Delta_p(c) + \phi'(c) + \frac{1}{2} \big(b(c,z)\mathbb{C}(\epsilon(\boldsymbol{u}) - \epsilon^*(c)) : (\epsilon(\boldsymbol{u}) - \epsilon^*(c))\big)_{,c} - \theta + c_t$$

 $\rho \, \rightsquigarrow \,$ thermal expansion coefficient;

 $\mathsf{K} \, \rightsquigarrow \, \mathsf{continuous \ heat \ conductivity:} \, \, \exists \, \kappa > 1 \colon \, c_0(1+\theta^\kappa) \leq \mathsf{K}(\theta) \leq c_1(1+\theta^\kappa);$

 $m \rightsquigarrow$ mobility is a smooth function bounded from below by a positive constant;

 $\mathbb{C} \rightsquigarrow \text{elasticity tensor and } \mathbb{V} \rightsquigarrow \text{viscosity tensor, } \mathbb{V} = \omega \mathbb{C}, \, \omega > 0;$

 $a \rightsquigarrow$ bounded away from zero and from above as well as a_z and a_c ,

$$b \in C^1([0,1];[0,+\infty));$$

 $\sigma \,\,\leadsto\,\, {\rm regular};$

 $\phi = \widehat{\beta} + \gamma \ \leadsto \ \text{mixing potential with} \ \widehat{\beta} \ \text{convex possibly non-smooth and} \ \gamma \ \lambda \text{-concave},$

e.g.
$$\widehat{\beta}(c) = (1+c)\log(1+c) + (1-c)\log(1-c)$$
 or $\widehat{\beta}(c) = I_{[-1,1]}(c)$ and $\gamma(c) = -c^2$;

f volume force and g heat source

Gradient theory for damage

Our approach is based on a gradient theory of phase separation and damage processes due to M. Frémond (2012), M. Gurtin (1996) and J.W. Cahn and J.E. Hilliard (1958).

Gradient theory for damage

Our approach is based on a gradient theory of phase separation and damage processes due to M. Frémond (2012), M. Gurtin (1996) and J.W. Cahn and J.E. Hilliard (1958).

From the physical viewpoint in the free-energy

$$\int_{\Omega} \frac{1}{\rho} |\nabla c|^{\rho} + \frac{1}{\rho} |\nabla z|^{\rho} + W(c, \epsilon(\boldsymbol{u}), z) + \phi(c) + \sigma(z) + I_{[0, +\infty)}(z) - \theta \log \theta - \theta(c + z + \rho \operatorname{div}(\boldsymbol{u})) dx$$

Gradient theory for damage

Our approach is based on a gradient theory of phase separation and damage processes due to M. Frémond (2012), M. Gurtin (1996) and J.W. Cahn and J.E. Hilliard (1958).

From the physical viewpoint in the free-energy

$$\int_{\Omega} \frac{1}{\rho} |\nabla c|^{\rho} + \frac{1}{\rho} |\nabla z|^{\rho} + W(c, \epsilon(\boldsymbol{u}), z) + \phi(c) + \sigma(z) + I_{[0, +\infty)}(z) - \theta \log \theta - \theta(c + z + \rho \operatorname{div}(\boldsymbol{u})) dx$$

the first two terms model nonlocality of the damage process, since the gradient of z
accounts for the influence of damage at a material point, undamaged in its
neighborhood.

27 / 43

Our approach is based on a gradient theory of phase separation and damage processes due to M. Frémond (2012), M. Gurtin (1996) and J.W. Cahn and J.E. Hilliard (1958). From the physical viewpoint in the free-energy

$$\int_{\Omega} \frac{1}{\rho} |\nabla c|^{\rho} + \frac{1}{\rho} |\nabla z|^{\rho} + W(c, \epsilon(\boldsymbol{u}), z) + \phi(c) + \sigma(z) + I_{[0, +\infty)}(z) - \theta \log \theta - \theta(c + z + \rho \operatorname{div}(\boldsymbol{u})) dx$$

• the first two terms model nonlocality of the damage process, since the gradient of z accounts for the influence of damage at a material point, undamaged in its neighborhood. The mathematical advantages attached to the presence of this term, and of the analogous contribution $\frac{1}{p}|\nabla c|^p$ with p>d: it ensures that c and z are estimated in $W^{1,p}(\Omega)\subset C^0(\overline{\Omega})$, and has been adopted for the analysis of other damage models

From the physical viewpoint in the free-energy

Our approach is based on a gradient theory of phase separation and damage processes due to M. Frémond (2012), M. Gurtin (1996) and J.W. Cahn and J.E. Hilliard (1958).

$$\int_{\Omega} \frac{1}{\rho} |\nabla c|^{\rho} + \frac{1}{\rho} |\nabla z|^{\rho} + W(c, \epsilon(\boldsymbol{u}), z) + \phi(c) + \sigma(z) + I_{[0, +\infty)}(z) - \theta \log \theta - \theta(c + z + \rho \operatorname{div}(\boldsymbol{u})) dx$$

- the first two terms model nonlocality of the damage process, since the gradient of z accounts for the influence of damage at a material point, undamaged in its neighborhood. The mathematical advantages attached to the presence of this term, and of the analogous contribution $\frac{1}{p}|\nabla c|^p$ with p>d: it ensures that c and z are estimated in $W^{1,p}(\Omega)\subset \mathrm{C}^0(\overline{\Omega})$, and has been adopted for the analysis of other damage models
- the elastic energy $W = \frac{1}{2}b(c,z)\mathbb{C}(\epsilon \epsilon^*(c)) : (\epsilon \epsilon^*(c))$ accounts for possible inhomogeneity of elasticity on the one hand, and is characteristic for damage on the other hand

Our approach is based on a gradient theory of phase separation and damage processes due to M. Frémond (2012), M. Gurtin (1996) and J.W. Cahn and J.E. Hilliard (1958). From the physical viewpoint in the free-energy

$$\int_{\Omega} \frac{1}{\rho} |\nabla c|^{\rho} + \frac{1}{\rho} |\nabla z|^{\rho} + W(c, \epsilon(\boldsymbol{u}), z) + \phi(c) + \sigma(z) + I_{[0, +\infty)}(z) - \theta \log \theta - \theta(c + z + \rho \operatorname{div}(\boldsymbol{u})) dx$$

- the first two terms model nonlocality of the damage process, since the gradient of z accounts for the influence of damage at a material point, undamaged in its neighborhood. The mathematical advantages attached to the presence of this term, and of the analogous contribution $\frac{1}{p}|\nabla c|^p$ with p>d: it ensures that c and z are estimated in $W^{1,p}(\Omega)\subset C^0(\overline{\Omega})$, and has been adopted for the analysis of other damage models
- the elastic energy $W = \frac{1}{2}b(c,z)\mathbb{C}(\epsilon \epsilon^*(c)) : (\epsilon \epsilon^*(c))$ accounts for possible inhomogeneity of elasticity on the one hand, and is characteristic for damage on the other hand. The natural choice is $b \equiv 0$ for z = 0 (complete damage)

Our approach is based on a gradient theory of phase separation and damage processes due to M. Frémond (2012), M. Gurtin (1996) and J.W. Cahn and J.E. Hilliard (1958).

From the physical viewpoint in the free-energy

$$\int_{\Omega} \frac{1}{\rho} |\nabla c|^{\rho} + \frac{1}{\rho} |\nabla z|^{\rho} + W(c, \epsilon(\boldsymbol{u}), z) + \phi(c) + \sigma(z) + I_{[0, +\infty)}(z) - \theta \log \theta - \theta(c + z + \rho \operatorname{div}(\boldsymbol{u})) dx$$

- the first two terms model nonlocality of the damage process, since the gradient of z accounts for the influence of damage at a material point, undamaged in its neighborhood. The mathematical advantages attached to the presence of this term, and of the analogous contribution $\frac{1}{p}|\nabla c|^p$ with p>d: it ensures that c and z are estimated in $W^{1,p}(\Omega)\subset C^0(\overline{\Omega})$, and has been adopted for the analysis of other damage models
- the elastic energy $W=\frac{1}{2}b(c,z)\mathbb{C}(\epsilon-\epsilon^*(c)):(\epsilon-\epsilon^*(c))$ accounts for possible inhomogeneity of elasticity on the one hand, and is characteristic for damage on the other hand. The natural choice is $b\equiv 0$ for z=0 (complete damage)
- \bullet the functions ϕ and σ represent the mixing potentials

Our approach is based on a gradient theory of phase separation and damage processes due to M. Frémond (2012), M. Gurtin (1996) and J.W. Cahn and J.E. Hilliard (1958). From the physical viewpoint in the free-energy

$$\int_{\Omega} \frac{1}{\rho} |\nabla c|^{\rho} + \frac{1}{\rho} |\nabla z|^{\rho} + W(c, \epsilon(\boldsymbol{u}), z) + \phi(c) + \sigma(z) + I_{[0, +\infty)}(z) - \theta \log \theta - \theta(c + z + \rho \operatorname{div}(\boldsymbol{u})) dx$$

- the first two terms model nonlocality of the damage process, since the gradient of z accounts for the influence of damage at a material point, undamaged in its neighborhood. The mathematical advantages attached to the presence of this term, and of the analogous contribution $\frac{1}{p}|\nabla c|^p$ with p>d: it ensures that c and z are estimated in $W^{1,p}(\Omega)\subset C^0(\overline{\Omega})$, and has been adopted for the analysis of other damage models
- the elastic energy $W=\frac{1}{2}b(c,z)\mathbb{C}(\epsilon-\epsilon^*(c)):(\epsilon-\epsilon^*(c))$ accounts for possible inhomogeneity of elasticity on the one hand, and is characteristic for damage on the other hand. The natural choice is $b\equiv 0$ for z=0 (complete damage)
- \bullet the functions ϕ and σ represent the mixing potentials
- the term $\theta(c + z + \rho \operatorname{div} \boldsymbol{u})$ models the phase and thermal expansion

$$\begin{aligned} \theta_t + c_t \theta + z_t \theta + \rho \theta \operatorname{div}(\boldsymbol{u}_t) - \operatorname{div}(\mathsf{K}(\theta) \nabla \theta) &= g + |c_t|^2 + |z_t|^2 \\ &\quad + a(c,z) \epsilon(\boldsymbol{u}_t) : \mathbb{V} \epsilon(\boldsymbol{u}_t) + m(c,z) |\nabla \mu|^2 \end{aligned}$$

$$\boldsymbol{u}_{tt} - \operatorname{div}\left(a(c,z) \mathbb{V} \epsilon(\boldsymbol{u}_t) + b(c,z) \mathbb{C}(\epsilon(\boldsymbol{u}) - \epsilon^*(c)) - \rho \theta 1\right) &= \boldsymbol{f}$$

$$\boldsymbol{z}_t + \partial \boldsymbol{I}_{(-\infty,0]}(\boldsymbol{z}_t) - \Delta_{\rho}(\boldsymbol{z}) + \partial \boldsymbol{I}_{[0,\infty)}(\boldsymbol{z}) + \sigma'(\boldsymbol{z}) \ni -\frac{1}{2} b_{,z}(c,z) \mathbb{C}(\epsilon(\boldsymbol{u}) - \epsilon^*(c)) : (\epsilon(\boldsymbol{u}) - \epsilon^*(c)) + \theta$$

$$\boldsymbol{c}_t = \operatorname{div}(m(c,z) \nabla \mu)$$

$$\mu = -\Delta_p(c) + \phi'(c) + \frac{1}{2} (b(c, z) \mathbb{C}(\epsilon(\mathbf{u}) - \epsilon^*(c)) : (\epsilon(\mathbf{u}) - \epsilon^*(c)))_{,c} - \theta + c_t$$

 presence of the quadratic dissipative terms on the right-hand side in the internal energy balance;

$$\begin{aligned} \theta_t + c_t \theta + z_t \theta + \rho \theta \operatorname{div}(\boldsymbol{u}_t) - \operatorname{div}(\mathsf{K}(\theta) \nabla \theta) &= g + |c_t|^2 + |z_t|^2 \\ &\quad + a(c,z) \epsilon(\boldsymbol{u}_t) : \mathbb{V} \epsilon(\boldsymbol{u}_t) + m(c,z) |\nabla \mu|^2 \end{aligned}$$

$$\boldsymbol{u}_{tt} - \operatorname{div}\left(a(c,z) \mathbb{V} \epsilon(\boldsymbol{u}_t) + b(c,z) \mathbb{C}(\epsilon(\boldsymbol{u}) - \epsilon^*(c)) - \rho \theta 1\right) &= \boldsymbol{f}$$

$$z_t + \partial I_{(-\infty,0]}(z_t) - \Delta_{\rho}(z) + \partial I_{[0,\infty)}(z) + \sigma'(z) \ni -\frac{1}{2} b_{,z}(c,z) \mathbb{C}(\epsilon(\boldsymbol{u}) - \epsilon^*(c)) : (\epsilon(\boldsymbol{u}) - \epsilon^*(c)) + \theta$$

$$c_t = \operatorname{div}(m(c,z) \nabla \mu)$$

$$\mu = -\Delta_p(c) + \phi'(c) + \frac{1}{2} \left(b(c,z)\mathbb{C}(\epsilon(\boldsymbol{u}) - \epsilon^*(c)) : (\epsilon(\boldsymbol{u}) - \epsilon^*(c))\right)_{,c} - \theta + c_t$$

- presence of the quadratic dissipative terms on the right-hand side in the internal energy balance;
- the doubly nonlinear and possibly nonsmooth carachter of the damage relation

$$\begin{aligned} \theta_t + c_t \theta + z_t \theta + \rho \theta \operatorname{div}(\boldsymbol{u}_t) - \operatorname{div}(\mathsf{K}(\theta) \nabla \theta) &= g + |c_t|^2 + |z_t|^2 \\ &\quad + a(c,z) \epsilon(\boldsymbol{u}_t) : \mathbb{V} \epsilon(\boldsymbol{u}_t) + m(c,z) |\nabla \mu|^2 \end{aligned}$$

$$\boldsymbol{u}_{tt} - \operatorname{div}\left(a(c,z) \mathbb{V} \epsilon(\boldsymbol{u}_t) + b(c,z) \mathbb{C}(\epsilon(\boldsymbol{u}) - \epsilon^*(c)) - \rho \theta 1\right) &= \boldsymbol{f}$$

$$\boldsymbol{z}_t + \partial \boldsymbol{I}_{(-\infty,0]}(\boldsymbol{z}_t) - \Delta_{\boldsymbol{\rho}}(\boldsymbol{z}) + \partial \boldsymbol{I}_{[0,\infty)}(\boldsymbol{z}) + \sigma'(\boldsymbol{z}) \ni -\frac{1}{2} b_{,z}(c,z) \mathbb{C}(\epsilon(\boldsymbol{u}) - \epsilon^*(c)) : (\epsilon(\boldsymbol{u}) - \epsilon^*(c)) + \theta$$

$$\boldsymbol{c}_t = \operatorname{div}(m(c,z) \nabla \mu)$$

$$\mu = -\Delta_p(c) + \phi'(c) + \frac{1}{2} \left(b(c,z)\mathbb{C}(\epsilon(\boldsymbol{u}) - \epsilon^*(c)) : (\epsilon(\boldsymbol{u}) - \epsilon^*(c))\right)_{,c} - \theta + c_t$$

- presence of the quadratic dissipative terms on the right-hand side in the internal energy balance;
- the doubly nonlinear and possibly nonsmooth carachter of the damage relation

We shall resort to a weak solution notion partially drawn from [E. R., R. Rossi: SIAM J. Math. Anal. 47 (2015)] and [C. Heinemann, C. Kraus: Adv. Math. Sci. Appl. 21 (2011)]:

$$\begin{split} \theta_t + c_t \theta + z_t \theta + \rho \theta \operatorname{div}(\boldsymbol{u}_t) - \operatorname{div}(\mathsf{K}(\theta) \nabla \theta) &= g + |c_t|^2 + |z_t|^2 \\ &\quad + a(c,z) \epsilon(\boldsymbol{u}_t) : \mathbb{V} \epsilon(\boldsymbol{u}_t) + m(c,z) |\nabla \mu|^2 \\ \boldsymbol{u}_{tt} - \operatorname{div}\left(a(c,z) \mathbb{V} \epsilon(\boldsymbol{u}_t) + b(c,z) \mathbb{C}(\epsilon(\boldsymbol{u}) - \epsilon^*(c)) - \rho \theta 1\right) &= \boldsymbol{f} \\ z_t + \partial I_{(-\infty,0]}(z_t) - \Delta_{\rho}(z) + \partial I_{[0,\infty)}(z) + \sigma'(z) \ni -\frac{1}{2} b_{,z}(c,z) \mathbb{C}(\epsilon(\boldsymbol{u}) - \epsilon^*(c)) : (\epsilon(\boldsymbol{u}) - \epsilon^*(c)) + \theta \\ c_t &= \operatorname{div}(m(c,z) \nabla \mu) \end{split}$$

$$\mu = -\Delta_p(c) + \phi'(c) + \frac{1}{2} \left(b(c, z) \mathbb{C}(\epsilon(\boldsymbol{u}) - \epsilon^*(c)) : (\epsilon(\boldsymbol{u}) - \epsilon^*(c)) \right)_{,c} - \theta + c_t$$

- presence of the quadratic dissipative terms on the right-hand side in the internal energy balance;
- the doubly nonlinear and possibly nonsmooth carachter of the damage relation

We shall resort to a weak solution notion partially drawn from [E. R., R. Rossi: SIAM J.

Math. Anal. 47 (2015)] and [C. Heinemann, C. Kraus: Adv. Math. Sci. Appl. 21 (2011)]:

- the Cahn-Hilliard system and the balance of forces read a.e. in $\Omega \times (0, T)$;
- an "entropic" formulation of the heat equation;
- a weak formulation of the damage flow rule

$$\begin{aligned} \theta_t + c_t \theta + z_t \theta + \rho \theta \operatorname{div}(\boldsymbol{u}_t) - \operatorname{div}(\mathsf{K}(\theta) \nabla \theta) &= g + |c_t|^2 + |z_t|^2 \\ &\quad + a(c,z) \epsilon(\boldsymbol{u}_t) : \mathbb{V} \epsilon(\boldsymbol{u}_t) + m(c,z) |\nabla \mu|^2 \end{aligned}$$

$$\boldsymbol{u}_{tt} - \operatorname{div}\left(a(c,z) \mathbb{V} \epsilon(\boldsymbol{u}_t) + b(c,z) \mathbb{C}(\epsilon(\boldsymbol{u}) - \epsilon^*(c)) - \rho \theta 1\right) &= \boldsymbol{f}$$

$$\boldsymbol{z}_t + \partial \boldsymbol{I}_{(-\infty,0]}(\boldsymbol{z}_t) - \Delta_{\rho}(\boldsymbol{z}) + \partial \boldsymbol{I}_{[0,\infty)}(\boldsymbol{z}) + \sigma'(\boldsymbol{z}) \ni -\frac{1}{2} b_{,z}(c,z) \mathbb{C}(\epsilon(\boldsymbol{u}) - \epsilon^*(c)) : (\epsilon(\boldsymbol{u}) - \epsilon^*(c)) + \theta$$

$$\boldsymbol{c}_t = \operatorname{div}(m(c,z) \nabla \mu)$$

$$\mu = -\Delta_p(c) + \phi'(c) + \frac{1}{2} \left(b(c, z) \mathbb{C}(\epsilon(\boldsymbol{u}) - \epsilon^*(c)) : (\epsilon(\boldsymbol{u}) - \epsilon^*(c)) \right)_{,c} - \theta + c_t$$

- presence of the quadratic dissipative terms on the right-hand side in the internal energy balance;
- the doubly nonlinear and possibly nonsmooth carachter of the damage relation

We shall resort to a weak solution notion partially drawn from [E. R., R. Rossi: SIAM J.

Math. Anal. 47 (2015)] and [C. Heinemann, C. Kraus: Adv. Math. Sci. Appl. 21 (2011)]:

- the Cahn-Hilliard system and the balance of forces read a.e. in $\Omega \times (0, T)$;
- an "entropic" formulation of the heat equation;
- a weak formulation of the damage flow rule

Other approaches to treat PDE systems with an L^1 -right-hand side are available in the literature: resorting to the notion of *renormalized solution*, and or by means of *Boccardo-Galloüet* type techniques for example

Several contributions on systems coupling

- rate-dependent damage and thermal processes (cf., e.g. works by Bonetti, Bonfanti, E.R., Rossi, etc.) as well as
- rate-dependent damage and phase separation (cf., e.g., [Heinemann, Kraus, 2011, 2013, 2015]) are available in the literature

Several contributions on systems coupling

- rate-dependent damage and thermal processes (cf., e.g. works by Bonetti, Bonfanti, E.R., Rossi, etc.) as well as
- rate-dependent damage and phase separation (cf., e.g., [Heinemann, Kraus, 2011, 2013, 2015]) are available in the literature

Up to our knowledge, this is one of the first contributions on the analysis of a model encompassing all of the three processes (temperature evolution, damage, phase separation) in a thermoviscoelastic material.

Several contributions on systems coupling

- rate-dependent damage and thermal processes (cf., e.g. works by Bonetti, Bonfanti, E.R., Rossi, etc.) as well as
- rate-dependent damage and phase separation (cf., e.g., [Heinemann, Kraus, 2011, 2013, 2015]) are available in the literature

Up to our knowledge, this is one of the first contributions on the analysis of a model encompassing all of the three processes (temperature evolution, damage, phase separation) in a thermoviscoelastic material. Recently, a thermodynamically consistent, quite general model describing diffusion of a solute or a fluid in a solid undergoing possible phase transformations and rate-independent damage, beside possible visco-inelastic processes, has been studied in [Roubíček, Tomassetti: ZAMM (2015)]:

Several contributions on systems coupling

- rate-dependent damage and thermal processes (cf., e.g. works by Bonetti, Bonfanti, E.R., Rossi, etc.) as well as
- rate-dependent damage and phase separation (cf., e.g., [Heinemann, Kraus, 2011, 2013, 2015]) are available in the literature

Up to our knowledge, this is one of the first contributions on the analysis of a model encompassing all of the three processes (temperature evolution, damage, phase separation) in a thermoviscoelastic material. Recently, a thermodynamically consistent, quite general model describing diffusion of a solute or a fluid in a solid undergoing possible phase transformations and rate-independent damage, beside possible visco-inelastic processes, has been studied in [Roubíček, Tomassetti: ZAMM (2015)]:

- the evolution of the damage process is therein considered *rate-independent*, which clearly affects the weak solution concept
- dealing with a rate-dependent flow rule for the damage variable is one of the challenges of our own analysis, due to the presence of the quadratic nonlinearity in $\epsilon(u)$ on the right-hand side of the damage equation

29 / 43

We restate the heat equation

$$\begin{aligned} \theta_t + c_t \theta + z_t \theta + \rho \theta \operatorname{div}(\boldsymbol{u}_t) - \operatorname{div}(\mathsf{K}(\theta) \nabla \theta) &= g + |c_t|^2 + |z_t|^2 \\ &\quad + a(c,z) \epsilon(\boldsymbol{u}_t) : \mathbb{V} \epsilon(\boldsymbol{u}_t) + m(c,z) |\nabla \mu|^2 \quad \text{as} \end{aligned}$$

We restate the heat equation

$$\begin{split} \theta_t + c_t \theta + z_t \theta + \rho \theta \operatorname{div}(\boldsymbol{u}_t) - \operatorname{div}(\mathsf{K}(\theta) \nabla \theta) &= g + |c_t|^2 + |z_t|^2 \\ &\quad + a(c,z) \epsilon(\boldsymbol{u}_t) : \mathbb{V} \epsilon(\boldsymbol{u}_t) + m(c,z) |\nabla \mu|^2 \quad \text{as} \end{split}$$

the weak entropy inequality (for a.a. $0 \le s \le t \le T$ and s = 0, and for sufficiently regular and positive tests φ)

$$\begin{split} &\int_{s}^{t} \int_{\Omega} (\log(\theta) + c + z) \varphi_{t} \, dx \, dr - \rho \int_{s}^{t} \int_{\Omega} \operatorname{div}(\boldsymbol{u}_{t}) \varphi \, dx \, dr - \int_{s}^{t} \int_{\Omega} \mathsf{K}(\theta) \nabla \log(\theta) \cdot \nabla \varphi \, dx \, dr \\ & \leq \left(\int_{\Omega} (\log(\theta(r)) + c(r) + z(r)) \varphi(r) \, dx \right)_{r=s}^{r=t} - \int_{s}^{t} \int_{\Omega} \mathsf{K}(\theta) |\nabla \log(\theta)|^{2} \varphi \, dx \, dr \\ & - \int_{s}^{t} \int_{\Omega} \left(g + |c_{t}|^{2} + |z_{t}|^{2} + a(c, z) \varepsilon(\boldsymbol{u}_{t}) : \mathbb{V}\varepsilon(\boldsymbol{u}_{t}) + m(c, z) |\nabla \mu|^{2} \right) \frac{\varphi}{\theta} \, dx \, dr - \int_{s}^{t} \int_{\partial \Omega} h \frac{\varphi}{\theta} \, dS \, dr \end{split}$$

We restate the heat equation

$$\begin{aligned} \theta_t + c_t \theta + z_t \theta + \rho \theta \operatorname{div}(\boldsymbol{u}_t) - \operatorname{div}(\mathsf{K}(\theta) \nabla \theta) &= g + |c_t|^2 + |z_t|^2 \\ &+ a(c,z) \epsilon(\boldsymbol{u}_t) : \mathbb{V} \epsilon(\boldsymbol{u}_t) + m(c,z) |\nabla \mu|^2 \quad \text{as} \end{aligned}$$

the weak entropy inequality (for a.a. $0 \le s \le t \le T$ and s = 0, and for sufficiently regular and positive tests φ)

$$\begin{split} &\int_{s}^{t} \int_{\Omega} (\log(\theta) + c + z) \varphi_{t} \, \mathrm{d}x \, \mathrm{d}r - \rho \int_{s}^{t} \int_{\Omega} \mathrm{div}(\textbf{\textit{u}}_{t}) \varphi \, \mathrm{d}x \, \mathrm{d}r - \int_{s}^{t} \int_{\Omega} \mathsf{K}(\theta) \nabla \log(\theta) \cdot \nabla \varphi \, \mathrm{d}x \, \mathrm{d}r \\ & \leq \left(\int_{\Omega} (\log(\theta(r)) + c(r) + z(r)) \varphi(r) \, \mathrm{d}x \right)_{r=s}^{r=t} - \int_{s}^{t} \int_{\Omega} \mathsf{K}(\theta) |\nabla \log(\theta)|^{2} \varphi \, \mathrm{d}x \, \mathrm{d}r \\ & - \int_{s}^{t} \int_{\Omega} \left(g + |c_{t}|^{2} + |z_{t}|^{2} + a(c,z) \varepsilon(\textbf{\textit{u}}_{t}) : \mathbb{V}\varepsilon(\textbf{\textit{u}}_{t}) + m(c,z) |\nabla \mu|^{2} \right) \frac{\varphi}{\theta} \, \mathrm{d}x \, \mathrm{d}r - \int_{s}^{t} \int_{\partial \Omega} h \frac{\varphi}{\theta} \, \mathrm{d}S \, \mathrm{d}r \\ & \text{coupled with the total energy inequality (for a.a. } 0 \leq s \leq t \leq T \text{ and } s = 0) \end{split}$$

$$\mathcal{E}(t) \leq \mathcal{E}(s) + \int_{s}^{t} \int_{\Omega} g \, dx \, dr + \int_{s}^{t} \int_{\partial \Omega} h \, dS \, dr + \int_{s}^{t} \int_{\Omega} f \cdot u_{t} \, dx \, dr + \int_{s}^{t} \int_{\partial \Omega} (\boldsymbol{\sigma} n) \cdot \boldsymbol{d}_{t} \, dS \, dr$$

where

$$\mathcal{E} = \int_{\Omega} \frac{1}{\rho} |\nabla c|^{\rho} + \frac{1}{\rho} |\nabla z|^{\rho} + W(c, \epsilon(\boldsymbol{u}), z) + \phi(c) + \sigma(z) + I_{[0, +\infty)}(z) + \theta + \frac{1}{2} |\boldsymbol{u}_{t}|^{2} dx$$

We restate the heat equation

$$\begin{aligned} \theta_t + c_t \theta + z_t \theta + \rho \theta \operatorname{div}(\boldsymbol{u}_t) - \operatorname{div}(\mathsf{K}(\theta) \nabla \theta) &= g + |c_t|^2 + |z_t|^2 \\ &+ a(c,z) \epsilon(\boldsymbol{u}_t) : \mathbb{V} \epsilon(\boldsymbol{u}_t) + m(c,z) |\nabla \mu|^2 \quad \text{as} \end{aligned}$$

the weak entropy inequality (for a.a. $0 \le s \le t \le T$ and s = 0, and for sufficiently regular and positive tests φ)

$$\begin{split} &\int_{s}^{t} \int_{\Omega} (\log(\theta) + c + z) \varphi_{t} \, \mathrm{d}x \, \mathrm{d}r - \rho \int_{s}^{t} \int_{\Omega} \mathrm{div}(\textbf{\textit{u}}_{t}) \varphi \, \mathrm{d}x \, \mathrm{d}r - \int_{s}^{t} \int_{\Omega} \mathsf{K}(\theta) \nabla \log(\theta) \cdot \nabla \varphi \, \mathrm{d}x \, \mathrm{d}r \\ & \leq \left(\int_{\Omega} (\log(\theta(r)) + c(r) + z(r)) \varphi(r) \, \mathrm{d}x \right)_{r=s}^{r=t} - \int_{s}^{t} \int_{\Omega} \mathsf{K}(\theta) |\nabla \log(\theta)|^{2} \varphi \, \mathrm{d}x \, \mathrm{d}r \\ & - \int_{s}^{t} \int_{\Omega} \left(g + |c_{t}|^{2} + |z_{t}|^{2} + a(c,z) \varepsilon(\textbf{\textit{u}}_{t}) : \mathbb{V}\varepsilon(\textbf{\textit{u}}_{t}) + m(c,z) |\nabla \mu|^{2} \right) \frac{\varphi}{\theta} \, \mathrm{d}x \, \mathrm{d}r - \int_{s}^{t} \int_{\partial \Omega} h \frac{\varphi}{\theta} \, \mathrm{d}S \, \mathrm{d}r \\ & \text{coupled with the total energy inequality (for a.a. } 0 \leq s \leq t \leq T \text{ and } s = 0) \end{split}$$

$$\mathcal{E}(t) \leq \mathcal{E}(s) + \int_{s}^{t} \int_{\Omega} g \, dx \, dr + \int_{s}^{t} \int_{\partial \Omega} h \, dS \, dr + \int_{s}^{t} \int_{\Omega} f \cdot u_{t} \, dx \, dr + \int_{s}^{t} \int_{\partial \Omega} (\boldsymbol{\sigma} n) \cdot \boldsymbol{d}_{t} \, dS \, dr$$

where

$$\mathcal{E} = \int_{\Omega} \frac{1}{\rho} |\nabla c|^{\rho} + \frac{1}{\rho} |\nabla z|^{\rho} + W(c, \epsilon(\boldsymbol{u}), z) + \phi(c) + \sigma(z) + I_{[0, +\infty)}(z) + \theta + \frac{1}{2} |\boldsymbol{u}_{t}|^{2} dx$$

Main tool: apply upper semicontinuity arguments for the limit passage in the time-discrete approximation of system

The weak formulation of the damage flow rule

We replace the damage inclusion

$$z_t + \partial I_{(-\infty,0]}(z_t) - \Delta_{\rho}(z) + \partial I_{[0,\infty)}(z) + \sigma'(z) \ni -\partial z(c,\epsilon(u),z) + \theta$$
 by

The weak formulation of the damage flow rule

We replace the damage inclusion

$$z_t + \partial I_{(-\infty,0]}(z_t) - \Delta_{\rho}(z) + \partial I_{[0,\infty)}(z) + \sigma'(z) \ni -\partial z(c,\epsilon(\boldsymbol{u}),z) + \theta$$
 by

the damage energy-dissipation inequality (for all $t \in (0, T]$, s = 0, and a.a. $0 < s \le t$)

$$\int_{s}^{t} \int_{\Omega} |z_{t}|^{2} dx dr + \int_{\Omega} \left(\frac{1}{p} |\nabla z(t)|^{p} + \sigma(z(t)) \right) dx$$

$$\leq \int_{\Omega} \left(\frac{1}{p} |\nabla z(s)|^{p} + \sigma(z(s)) \right) dx + \int_{s}^{t} \int_{\Omega} z_{t} \left(-W_{,z}(c, \epsilon(\boldsymbol{u}), z) + \theta \right) dx dr$$

and the one-sided variational inequality for the damage process

$$\int_{\Omega} \left(z_t \zeta + |\nabla z|^{p-2} \nabla z \cdot \nabla \zeta + \xi \zeta + \sigma'(z(t)) \zeta + W_{,z}(c,\epsilon(\textbf{\textit{u}}),z) \zeta - \theta \zeta \right) \mathrm{d}x \geq 0 \quad \text{a.e. in } (0,7) \leq 0$$

for all sufficiently regular test functions ζ , where $\xi \in \partial I_{[0,+\infty)}(z)$ a.e. in Q, and $z(x,t) \in [0,1], z_t(x,t) \in (-\infty,0]$ a.e. in Q

• Concerning the entropy+total energy inequalities: if the functions θ , c, z are sufficiently smooth, then inequalities combined with the c, u, and z relations yield the pointwise formulation of the heat equation:

32 / 43

• Concerning the entropy+total energy inequalities: if the functions θ , c, z are sufficiently smooth, then inequalities combined with the c, u, and z relations yield the pointwise formulation of the heat equation: by contradiction suppose that the weak heat equation (equivalent to the entropy inequality with identity sign) does not hold. Then the entropy inequality holds with a strict inequality sign.

• Concerning the entropy+total energy inequalities: if the functions θ , c, z are sufficiently smooth, then inequalities combined with the c, u, and z relations yield the pointwise formulation of the heat equation: by contradiction suppose that the weak heat equation (equivalent to the entropy inequality with identity sign) does not hold. Then the entropy inequality holds with a strict inequality sign. Hence, we could test the momentum balance by u_t , the damage flow rule by z_t , the Cahn-Hilliard equation by μ and choose $\varphi = \theta$ (which is admissible for a sufficiently smooth θ) in the entropy strict inequality.

• Concerning the entropy+total energy inequalities: if the functions θ , c, z are sufficiently smooth, then inequalities combined with the c, u, and z relations yield the pointwise formulation of the heat equation: by contradiction suppose that the weak heat equation (equivalent to the entropy inequality with identity sign) does not hold. Then the entropy inequality holds with a strict inequality sign. Hence, we could test the momentum balance by u_t , the damage flow rule by z_t , the Cahn-Hilliard equation by μ and choose $\varphi = \theta$ (which is admissible for a sufficiently smooth θ) in the entropy strict inequality. Summing up we would conclude the total energy balance is not satisfied

- Concerning the entropy+total energy inequalities: if the functions θ , c, z are sufficiently smooth, then inequalities combined with the c, u, and z relations yield the pointwise formulation of the heat equation: by contradiction suppose that the weak heat equation (equivalent to the entropy inequality with identity sign) does not hold. Then the entropy inequality holds with a strict inequality sign. Hence, we could test the momentum balance by u_t , the damage flow rule by z_t , the Cahn-Hilliard equation by μ and choose $\varphi = \theta$ (which is admissible for a sufficiently smooth θ) in the entropy strict inequality. Summing up we would conclude the total energy balance is not satisfied
- Concerning the weak formulation of the damage flow rule, the two previous inequalities on z yield the damage variational inequality (with $\xi \in \partial I_{[0,+\infty)}(z)$)

$$\int_{s}^{t} \int_{\Omega} |\nabla z|^{p-2} \nabla z \cdot \nabla \zeta \, dx \, dr - \int_{\Omega} \frac{1}{p} |\nabla z(t)|^{p} \, dx + \int_{\Omega} \frac{1}{p} |\nabla z(s)|^{p} \, dx
+ \int_{s}^{t} \int_{\Omega} \left(z_{t}(\zeta - z_{t}) + \sigma'(z)(\zeta - z_{t}) + \xi(\zeta - z_{t}) \right) dx \, dr
\geq \int_{s}^{t} \int_{\Omega} \left(-W_{,z}(c, \epsilon(\boldsymbol{u}), z)(\zeta - z_{t}) + \theta(\zeta - z_{t}) \right) dx \, dr$$

 $\forall t \in (0,T], s = 0$, for a.a. $0 < s \le t$ and for all $\zeta \in L^p(0,T;W^{1,p}_-(\Omega)) \cap L^\infty(0,T;L^\infty(\Omega))$

The "Entropic" weak formulation

We call a quintuple $(c, \mu, z, \theta, \textbf{\textit{u}})$ an entropic weak solution to the PDE system if

$$c \in L^{\infty}(0, T; W^{1,p}(\Omega)) \cap H^{1}(0, T; L^{2}(\Omega)), \ \Delta_{p}(c) \in L^{2}(0, T; L^{2}(\Omega))$$

$$\mu \in L^{2}(0, T; H_{N}^{2}(\Omega))$$

$$z \in L^{\infty}(0, T; W^{1,p}(\Omega)) \cap H^{1}(0, T; L^{2}(\Omega)),$$

$$\theta \in L^{2}(0, T; H^{1}(\Omega)) \cap L^{\infty}(0, T; L^{1}(\Omega)), \quad \theta^{\frac{\kappa+\alpha}{2}} \in L^{2}(0, T; H^{1}(\Omega)) \text{ for all } \alpha \in (0, 1),$$

$$u \in H^{1}(0, T; H^{2}(\Omega; \mathbb{R}^{d})) \cap W^{1,\infty}(0, T; H^{1}(\Omega; \mathbb{R}^{d})) \cap H^{2}(0, T; L^{2}(\Omega; \mathbb{R}^{d})),$$

the initial-boundary conditions

$$c(0) = c^{0}, z(0) = z^{0}, u(0) = u^{0}, u_{t}(0) = v^{0}$$
 a.e. in Ω , $u = d$ a.e. on $\partial \Omega \times (0, T)$

and

- the "entropic" heat formulation
 - the weak damage flow rule
 - the a.e. Cahn-Hilliard equation

are satisfied

Theorem Under the previous hypotheses and assuming that

$$\begin{split} & \textbf{\textit{d}} \in H^1(0,\,T;H^2(\Omega;\mathbb{R}^d)) \cap W^{1,\infty}(0,\,T;W^{1,\infty}(\Omega;\mathbb{R}^d)) \cap H^2(0,\,T;H^1(\Omega;\mathbb{R}^d)) \\ & \text{f} \in L^2(0,\,T;L^2(\Omega)), \quad g \in L^1(0,\,T;L^1(\Omega)) \cap L^2(0,\,T;H^1(\Omega)'), \quad g \geq 0 \quad \text{a.e. in } Q \\ & h \in L^1(0,\,T;L^2(\partial\Omega)), \quad h \geq 0 \quad \text{a.e. in } \partial\Omega \times (0,\,T) \end{split}$$

and that the initial data fulfill

$$\begin{split} c^0 &\in W^{1,p}(\Omega), \quad \widehat{\beta}(c^0) \in L^1(\Omega), \quad m(c^0) \text{ belongs to the interior of } \operatorname{dom}(\beta) \\ z^0 &\in W^{1,p}(\Omega), \quad 0 \leq z^0 \leq 1 \text{ in } \Omega \\ \theta^0 &\in L^1(\Omega), \quad \log \theta^0 \in L^1(\Omega), \quad \exists \, \theta_* > 0 \, : \, \theta^0 \geq \theta_* > 0 \text{ a.e. in } \Omega \\ \boldsymbol{u}^0 &\in H^2(\Omega; \mathbb{R}^d) \text{ with } \boldsymbol{u}^0 = \boldsymbol{d}(0) \text{ a.e. on } \partial\Omega, \quad \boldsymbol{v}^0 \in H^1(\Omega; \mathbb{R}^d) \end{split}$$

Theorem Under the previous hypotheses and assuming that

$$\begin{split} & \textbf{\textit{d}} \in H^1(0,\,T;H^2(\Omega;\mathbb{R}^d)) \cap W^{1,\infty}(0,\,T;W^{1,\infty}(\Omega;\mathbb{R}^d)) \cap H^2(0,\,T;H^1(\Omega;\mathbb{R}^d)) \\ & \text{f} \in L^2(0,\,T;L^2(\Omega)), \quad g \in L^1(0,\,T;L^1(\Omega)) \cap L^2(0,\,T;H^1(\Omega)'), \quad g \geq 0 \quad \text{a.e. in } Q \\ & h \in L^1(0,\,T;L^2(\partial\Omega)), \quad h \geq 0 \quad \text{a.e. in } \partial\Omega \times (0,\,T) \end{split}$$

and that the initial data fulfill

$$\begin{split} c^0 &\in W^{1,p}(\Omega), \quad \widehat{\beta}(c^0) \in L^1(\Omega), \quad \textit{m}(c^0) \text{ belongs to the interior of } \mathrm{dom}(\beta) \\ z^0 &\in W^{1,p}(\Omega), \quad 0 \leq z^0 \leq 1 \text{ in } \Omega \\ \theta^0 &\in L^1(\Omega), \quad \log \theta^0 \in L^1(\Omega), \quad \exists \, \theta_* > 0 \, : \, \theta^0 \geq \theta_* > 0 \text{ a.e. in } \Omega \\ \pmb{u}^0 &\in H^2(\Omega; \mathbb{R}^d) \text{ with } \pmb{u}^0 = \pmb{d}(0) \text{ a.e. on } \partial\Omega, \quad \pmb{v}^0 \in H^1(\Omega; \mathbb{R}^d) \end{split}$$

then there exists an entropic weak solution (c, μ, z, θ, u) to the PDE system such that

$$\log(\theta) \in L^{\infty}(0, T; L^{p}(\Omega))$$
 for all $p \in [1, \infty)$

Theorem Under the previous hypotheses and assuming that

$$\begin{split} & \textbf{\textit{d}} \in H^1(0,\,T;H^2(\Omega;\mathbb{R}^d)) \cap W^{1,\infty}(0,\,T;W^{1,\infty}(\Omega;\mathbb{R}^d)) \cap H^2(0,\,T;H^1(\Omega;\mathbb{R}^d)) \\ & \text{f} \in L^2(0,\,T;L^2(\Omega)), \quad g \in L^1(0,\,T;L^1(\Omega)) \cap L^2(0,\,T;H^1(\Omega)'), \quad g \geq 0 \quad \text{a.e. in } Q \\ & h \in L^1(0,\,T;L^2(\partial\Omega)), \quad h \geq 0 \quad \text{a.e. in } \partial\Omega \times (0,\,T) \end{split}$$

and that the initial data fulfill

$$\begin{split} c^0 &\in W^{1,p}(\Omega), \quad \widehat{\beta}(c^0) \in L^1(\Omega), \quad \textit{m}(c^0) \text{ belongs to the interior of } \mathrm{dom}(\beta) \\ z^0 &\in W^{1,p}(\Omega), \quad 0 \leq z^0 \leq 1 \text{ in } \Omega \\ \theta^0 &\in L^1(\Omega), \quad \log \theta^0 \in L^1(\Omega), \quad \exists \, \theta_* > 0 \, : \, \theta^0 \geq \theta_* > 0 \text{ a.e. in } \Omega \\ \pmb{u}^0 &\in H^2(\Omega; \mathbb{R}^d) \text{ with } \pmb{u}^0 = \pmb{d}(0) \text{ a.e. on } \partial\Omega, \quad \pmb{v}^0 \in H^1(\Omega; \mathbb{R}^d) \end{split}$$

then there exists an entropic weak solution (c, μ, z, θ, u) to the PDE system such that

$$\log(\theta) \in L^{\infty}(0, T; L^{p}(\Omega))$$
 for all $p \in [1, \infty)$

If in addition in the heat conductivity $\kappa \in (1,5/3)$ if d=3 and $\kappa \in (1,2)$ if d=2, then we have

$$\theta \in \mathrm{BV}([0,T];W^{2,d+\epsilon}(\Omega)')$$
 for every $\epsilon > 0$

and the total energy inequality holds for all $t \in [0, T]$, for s = 0, and for almost all $s \in (0, t)$

• From the total energy balance, being the total energy

$$\mathcal{E} = \int_{\Omega} \frac{1}{\rho} |\nabla c|^{\rho} + \frac{1}{\rho} |\nabla z|^{\rho} + W(c, \epsilon(\boldsymbol{u}), z) + \phi(c) + \sigma(z) + I_{[0, +\infty)}(z) + \theta + \frac{1}{2} |\boldsymbol{u}_{t}|^{2} dx,$$

• From the total energy balance, being the total energy

$$\mathcal{E} = \int_{\Omega} \frac{1}{\rho} |\nabla c|^{\rho} + \frac{1}{\rho} |\nabla z|^{\rho} + W(c, \epsilon(\boldsymbol{u}), z) + \phi(c) + \sigma(z) + I_{[0, +\infty)}(z) + \theta + \frac{1}{2} |\boldsymbol{u}_{t}|^{2} dx,$$

we derive bounds on the *non-dissipative* variables c, z, θ, u and on $\|u_t\|_{L^{\infty}(0,T;L^2(\Omega;\mathbb{R}^d))}$

• Following then [Feireisl-Petzeltovà-R., MMAS, 2009] we derive a bound for $\|\theta\|_{L^2(0,T;H^1(\Omega))}$ via a clever test of the heat equation (a Dafermos type estimate)

• From the total energy balance, being the total energy

$$\mathcal{E} = \int_{\Omega} \frac{1}{\rho} |\nabla c|^{\rho} + \frac{1}{\rho} |\nabla z|^{\rho} + W(c, \epsilon(\boldsymbol{u}), z) + \phi(c) + \sigma(z) + I_{[0, +\infty)}(z) + \theta + \frac{1}{2} |\boldsymbol{u}_{t}|^{2} dx,$$

- Following then [Feireisl-Petzeltovà-R., MMAS, 2009] we derive a bound for $\|\theta\|_{L^2(0,T;H^1(\Omega))}$ via a clever test of the heat equation (a Dafermos type estimate)
- Exploiting the previously obtained estimates, we obtain bounds for the *dissipative* variables c_t , z_t , $\epsilon(\boldsymbol{u}_t)$, as well as for $\nabla \mu$

• From the total energy balance, being the total energy

$$\mathcal{E} = \int_{\Omega} \frac{1}{\rho} |\nabla c|^{\rho} + \frac{1}{\rho} |\nabla z|^{\rho} + W(c, \epsilon(\boldsymbol{u}), z) + \phi(c) + \sigma(z) + I_{[0, +\infty)}(z) + \theta + \frac{1}{2} |\boldsymbol{u}_{t}|^{2} dx,$$

- Following then [Feireisl-Petzeltovà-R., MMAS, 2009] we derive a bound for $\|\theta\|_{L^2(0,T;H^1(\Omega))}$ via a clever test of the heat equation (a Dafermos type estimate)
- Exploiting the previously obtained estimates, we obtain bounds for the *dissipative* variables c_t , z_t , $\epsilon(\textbf{\textit{u}}_t)$, as well as for $\nabla \mu$
- Via an elliptic regularity estimate on the momentum equation, we gain a (uniform in time) bound on $\| \boldsymbol{u} \|_{H^2(\Omega;\mathbb{R}^d)}$ which translates into an (uniform in time) $L^2(\Omega)$ -bound for the term $\frac{1}{2} \left(b(c,z) \mathbb{C}(\epsilon(\boldsymbol{u}) \epsilon^*(c)) : (\epsilon(\boldsymbol{u}) \epsilon^*(c)) \right)_{,c}$ in the chemical potential μ

• From the total energy balance, being the total energy

$$\mathcal{E} = \int_{\Omega} \frac{1}{\rho} |\nabla c|^{\rho} + \frac{1}{\rho} |\nabla z|^{\rho} + W(c, \epsilon(\boldsymbol{u}), z) + \phi(c) + \sigma(z) + I_{[0, +\infty)}(z) + \theta + \frac{1}{2} |\boldsymbol{u}_{t}|^{2} dx,$$

- Following then [Feireisl-Petzeltovà-R., MMAS, 2009] we derive a bound for $\|\theta\|_{L^2(0,T;H^1(\Omega))}$ via a clever test of the heat equation (a Dafermos type estimate)
- Exploiting the previously obtained estimates, we obtain bounds for the *dissipative* variables c_t , z_t , $\epsilon(\boldsymbol{u}_t)$, as well as for $\nabla \mu$
- Via an elliptic regularity estimate on the momentum equation, we gain a (uniform in time) bound on $\| \boldsymbol{u} \|_{H^2(\Omega;\mathbb{R}^d)}$ which translates into an (uniform in time) $L^2(\Omega)$ -bound for the term $\frac{1}{2} \left(b(c,z) \mathbb{C}(\epsilon(\boldsymbol{u}) \epsilon^*(c)) : (\epsilon(\boldsymbol{u}) \epsilon^*(c)) \right)_{,c}$ in the chemical potential μ
- We obtain a bound on the $L^2(0,T;H^1(\Omega))$ -norm of μ from a bound on its mean value $\int_{\Omega} \mu \, \mathrm{d}x$, combined with the previously obtained bound for $\nabla \mu$ via the Poincaré inequality

Sketch of the estimates at a continuum level

• From the total energy balance, being the total energy

$$\mathcal{E} = \int_{\Omega} \frac{1}{\rho} |\nabla c|^{\rho} + \frac{1}{\rho} |\nabla z|^{\rho} + W(c, \epsilon(\boldsymbol{u}), z) + \phi(c) + \sigma(z) + I_{[0, +\infty)}(z) + \theta + \frac{1}{2} |\boldsymbol{u}_{t}|^{2} dx,$$

we derive bounds on the *non-dissipative* variables c, z, θ, u and on $\|u_t\|_{L^{\infty}(0,T;L^2(\Omega;\mathbb{R}^d))}$

- Following then [Feireisl-Petzeltovà-R., MMAS, 2009] we derive a bound for $\|\theta\|_{L^2(0,T;H^1(\Omega))}$ via a clever test of the heat equation (a Dafermos type estimate)
- Exploiting the previously obtained estimates, we obtain bounds for the *dissipative* variables c_t , z_t , $\epsilon(\mathbf{u}_t)$, as well as for $\nabla \mu$
- Via an elliptic regularity estimate on the momentum equation, we gain a (uniform in time) bound on $\| \boldsymbol{u} \|_{H^2(\Omega;\mathbb{R}^d)}$ which translates into an (uniform in time) $L^2(\Omega)$ -bound for the term $\frac{1}{2} \left(b(c,z) \mathbb{C}(\epsilon(\boldsymbol{u}) \epsilon^*(c)) : (\epsilon(\boldsymbol{u}) \epsilon^*(c)) \right)_{,c}$ in the chemical potential μ
- We obtain a bound on the $L^2(0,T;H^1(\Omega))$ -norm of μ from a bound on its mean value $\int_\Omega \mu \, \mathrm{d}x$, combined with the previously obtained bound for $\nabla \mu$ via the Poincaré inequality
- We are then in the position to obtain a $L^2(0,T;L^2(\Omega;\mathbb{R}^d))$ -estimate for each term in μ

Sketch of the estimates at a continuum level

• From the total energy balance, being the total energy

$$\mathcal{E} = \int_{\Omega} \frac{1}{\rho} |\nabla c|^{\rho} + \frac{1}{\rho} |\nabla z|^{\rho} + W(c, \epsilon(\boldsymbol{u}), z) + \phi(c) + \sigma(z) + I_{[0, +\infty)}(z) + \theta + \frac{1}{2} |\boldsymbol{u}_{t}|^{2} dx,$$

we derive bounds on the *non-dissipative* variables c, z, θ, u and on $\|u_t\|_{L^{\infty}(0,T;L^2(\Omega;\mathbb{R}^d))}$

- Following then [Feireisl-Petzeltovà-R., MMAS, 2009] we derive a bound for $\|\theta\|_{L^2(0,T;H^1(\Omega))}$ via a clever test of the heat equation (a Dafermos type estimate)
- Exploiting the previously obtained estimates, we obtain bounds for the *dissipative* variables c_t , z_t , $\epsilon(\textbf{\textit{u}}_t)$, as well as for $\nabla \mu$
- Via an elliptic regularity estimate on the momentum equation, we gain a (uniform in time) bound on $\| \boldsymbol{u} \|_{H^2(\Omega;\mathbb{R}^d)}$ which translates into an (uniform in time) $L^2(\Omega)$ -bound for the term $\frac{1}{2} \left(b(c,z) \mathbb{C}(\epsilon(\boldsymbol{u}) \epsilon^*(c)) : (\epsilon(\boldsymbol{u}) \epsilon^*(c)) \right)_{,c}$ in the chemical potential μ
- We obtain a bound on the $L^2(0,T;H^1(\Omega))$ -norm of μ from a bound on its mean value $\int_{\Omega} \mu \, \mathrm{d}x$, combined with the previously obtained bound for $\nabla \mu$ via the Poincaré inequality
- ullet We are then in the position to obtain a $L^2(0,T;L^2(\Omega;\mathbb{R}^d))$ -estimate for each term in μ
- Then we gain some information on the (BV-)time regularity of $\log(\theta)$ and θ , respectively (in the latter case, under the further condition on the growth exponent κ of K)

Sketch of the estimates at a continuum level

• From the total energy balance, being the total energy

$$\mathcal{E} = \int_{\Omega} \frac{1}{\rho} |\nabla c|^{\rho} + \frac{1}{\rho} |\nabla z|^{\rho} + W(c, \epsilon(\boldsymbol{u}), z) + \phi(c) + \sigma(z) + I_{[0, +\infty)}(z) + \theta + \frac{1}{2} |\boldsymbol{u}_{t}|^{2} dx,$$

we derive bounds on the *non-dissipative* variables c, z, θ, u and on $\|u_t\|_{L^{\infty}(0,T;L^2(\Omega;\mathbb{R}^d))}$

- Following then [Feireisl-Petzeltovà-R., MMAS, 2009] we derive a bound for $\|\theta\|_{L^2(0,T;H^1(\Omega))}$ via a clever test of the heat equation (a Dafermos type estimate)
- Exploiting the previously obtained estimates, we obtain bounds for the *dissipative* variables c_t , z_t , $\epsilon(\boldsymbol{u}_t)$, as well as for $\nabla \mu$
- Via an elliptic regularity estimate on the momentum equation, we gain a (uniform in time) bound on $\| \boldsymbol{u} \|_{H^2(\Omega;\mathbb{R}^d)}$ which translates into an (uniform in time) $L^2(\Omega)$ -bound for the term $\frac{1}{2} \left(b(c,z) \mathbb{C}(\epsilon(\boldsymbol{u}) \epsilon^*(c)) : (\epsilon(\boldsymbol{u}) \epsilon^*(c)) \right)_{,c}$ in the chemical potential μ
- We obtain a bound on the $L^2(0,T;H^1(\Omega))$ -norm of μ from a bound on its mean value $\int_{\Omega} \mu \, \mathrm{d}x$, combined with the previously obtained bound for $\nabla \mu$ via the Poincaré inequality
- We are then in the position to obtain a $L^2(0,T;L^2(\Omega;\mathbb{R}^d))$ -estimate for each term in μ
- Then we gain some information on the (BV-)time regularity of $\log(\theta)$ and θ , respectively (in the latter case, under the further condition on the growth exponent κ of K)
- We resort to higher elliptic regularity results to gain a uniform bound on $\|\mu\|_{L^2(0,T;H^2(\Omega))}$

.. a trick from [Feireisl-Petzeltovà-R. 2009] (a Dafermos type estimate)

- .. a trick from [Feireisl-Petzeltovà-R. 2009] (a Dafermos type estimate)
 - $\theta \in L^2(0,T;H^1(\Omega))$ derives from the test of the θ -equation by $\theta^{\alpha-1}$ $(\alpha \in (0,1))$

$$\begin{aligned} \theta_t + g + |c_t|^2 + |z_t|^2 + a(c, z)\epsilon(\mathbf{u}_t) : \mathbb{V}\epsilon(\mathbf{u}_t) + m(c, z)|\nabla \mu|^2 \\ - \operatorname{div}(\mathsf{K}(\theta)\nabla \theta) &= c_t\theta + z_t\theta + \rho\theta\operatorname{div}(\mathbf{u}_t) \end{aligned}$$

- .. a trick from [Feireisl-Petzeltovà-R. 2009] (a Dafermos type estimate)
 - $\theta \in L^2(0,T;H^1(\Omega))$ derives from the test of the θ -equation by $\theta^{\alpha-1}$ $(\alpha \in (0,1))$

$$\theta_t + g + |c_t|^2 + |z_t|^2 + a(c, z)\epsilon(\mathbf{u}_t) : \mathbb{V}\epsilon(\mathbf{u}_t) + m(c, z)|\nabla \mu|^2$$
$$-\operatorname{div}(\mathsf{K}(\theta)\nabla \theta) = c_t\theta + z_t\theta + \rho\theta\operatorname{div}(\mathbf{u}_t)$$

The quadratic dissipative terms on the left-hand side are nonnegative!

$$\frac{1}{\alpha} \int_{\Omega} \theta^{\alpha}(t) \, \mathrm{d}x \ + \iint_{\Omega \times (0,t)} \left(g + \mathbf{a}(c,z) \varepsilon(\mathbf{u}_t) : \mathbb{V}\varepsilon(\mathbf{u}_t) + |z_t|^2 + |c_t|^2 + m(c,z) |\nabla \mu|^2 \right) \theta^{\alpha-1} \, \mathrm{d}x \mathrm{d}s$$

$$- \iint_{\Omega \times (0,t)} \mathsf{K}(\theta) \nabla \theta \nabla(\theta^{\alpha-1}) \, \mathrm{d}x \mathrm{d}s \ = \ \iint_{\Omega \times (0,t)} \left(c_t + z_t + \rho \operatorname{div}(\mathbf{u}_t) \right) \theta^{\alpha} \, \mathrm{d}x \mathrm{d}s \quad + \mathsf{OK} \ \mathsf{terms}$$

$$\sim \iint_{\Omega \times (0,t)} |\nabla \theta^{(\kappa+\alpha)/2}|^2 dx ds$$

estimate by l.h.s. via Young and Gagliardo-Nirenberg

- .. a trick from [Feireisl-Petzeltovà-R. 2009] (a Dafermos type estimate)
 - $\theta \in L^2(0,T;H^1(\Omega))$ derives from the test of the θ -equation by $\theta^{\alpha-1}$ $(\alpha \in (0,1))$

$$\theta_t + g + |c_t|^2 + |z_t|^2 + a(c, z)\epsilon(\mathbf{u}_t) : \mathbb{V}\epsilon(\mathbf{u}_t) + m(c, z)|\nabla \mu|^2$$
$$-\operatorname{div}(\mathsf{K}(\theta)\nabla \theta) = c_t\theta + z_t\theta + \rho\theta\operatorname{div}(\mathbf{u}_t)$$

The quadratic dissipative terms on the left-hand side are nonnegative!

$$\frac{1}{\alpha} \int_{\Omega} \theta^{\alpha}(t) \, \mathrm{d}x \ + \iint_{\Omega \times (0,t)} \left(g + \mathbf{a}(c,z) \varepsilon(\mathbf{u}_t) : \mathbb{V}\varepsilon(\mathbf{u}_t) + |z_t|^2 + |c_t|^2 + m(c,z) |\nabla \mu|^2 \right) \theta^{\alpha-1} \, \mathrm{d}x \mathrm{d}s$$

$$- \iint_{\Omega \times (0,t)} \mathsf{K}(\theta) \nabla \theta \nabla(\theta^{\alpha-1}) \, \mathrm{d}x \mathrm{d}s \ = \ \underbrace{\iint_{\Omega \times (0,t)} \left(c_t + z_t + \rho \operatorname{div}(\mathbf{u}_t) \right) \theta^{\alpha} \, \mathrm{d}x \mathrm{d}s}_{\Omega \times (0,t)} \ + \mathsf{OK} \ \operatorname{terms}$$

$$\sim \iint_{\Omega \times (0,t)} |\nabla \theta^{(\kappa+\alpha)/2}|^2 dx ds$$

estimate by l.h.s. via Young and Gagliardo-Nirenberg

$$\iint_{\Omega \times (0,t)} (c_t + z_t + \rho \operatorname{div}(\boldsymbol{u}_t)) \, \theta^{\alpha} \, \mathrm{d}x \mathrm{d}s \leq \frac{1}{2} \iint_{\Omega \times (0,t)} (|c_t|^2 + |z_t|^2 + |\varepsilon(\boldsymbol{u}_t)|^2) \theta^{\alpha-1} \, \mathrm{d}x \mathrm{d}s \\
+ C \iint_{\Omega \times (0,t)} \theta^{\alpha+1} \, \mathrm{d}x \mathrm{d}s$$

- .. a trick from [Feireisl-Petzeltovà-R. 2009] (a Dafermos type estimate)
 - $\theta \in L^2(0,T;H^1(\Omega))$ derives from the test of the θ -equation by $\theta^{\alpha-1}$ ($\alpha \in (0,1)$)

$$\begin{aligned} \theta_t + g + |c_t|^2 + |z_t|^2 + a(c, z)\epsilon(\mathbf{u}_t) : \mathbb{V}\epsilon(\mathbf{u}_t) + m(c, z)|\nabla \mu|^2 \\ - \operatorname{div}(\mathsf{K}(\theta)\nabla \theta) &= c_t\theta + z_t\theta + \rho\theta\operatorname{div}(\mathbf{u}_t) \end{aligned}$$

The quadratic dissipative terms on the left-hand side are nonnegative!

$$\frac{1}{\alpha} \int_{\Omega} \theta^{\alpha}(t) \, \mathrm{d}x \ + \iint_{\Omega \times (0,t)} \left(g + \mathsf{a}(c,z) \varepsilon(\mathbf{u}_t) : \mathbb{V}\varepsilon(\mathbf{u}_t) + |z_t|^2 + |c_t|^2 + m(c,z) |\nabla \mu|^2 \right) \theta^{\alpha-1} \, \mathrm{d}x \mathrm{d}s$$

$$- \iint_{\Omega \times (0,t)} \mathsf{K}(\theta) \nabla \theta \nabla(\theta^{\alpha-1}) \, \mathrm{d}x \mathrm{d}s = \underbrace{\iint_{\Omega \times (0,t)} \left(c_t + z_t + \rho \operatorname{div}(\mathbf{u}_t) \right) \theta^{\alpha} \, \mathrm{d}x \mathrm{d}s}_{} + \mathsf{OK \ terms}$$

$$\sim \iint_{\Omega \times (0,t)} |\nabla \theta^{(\kappa+\alpha)/2}|^2 dx ds$$

estimate by I.h.s. via Young and Gagliardo-Nirenberg

$$\iint_{\Omega \times (0,t)} (c_t + z_t + \rho \operatorname{div}(\boldsymbol{u}_t)) \, \theta^{\alpha} \, \mathrm{d}x \mathrm{d}s \leq \frac{1}{2} \iint_{\Omega \times (0,t)} (|c_t|^2 + |z_t|^2 + |\varepsilon(\boldsymbol{u}_t)|^2) \theta^{\alpha-1} \, \mathrm{d}x \mathrm{d}s \\
+ C \iint_{\Omega \times (0,t)} \theta^{\alpha+1} \, \mathrm{d}x \mathrm{d}s$$

• Get $\iint_{\Omega \times (0,t)} |\nabla \theta^{(\kappa+\alpha)/2}|^2 \, \mathrm{d}x \mathrm{d}s \le C$, hence $\iint_{\Omega \times (0,t)} |\nabla \theta|^2 \, \mathrm{d}x \mathrm{d}s \le C$

Enhanced regularity for u

• $u \in H^1(0,T;H^2_0(\Omega;\mathbb{R}^d)) \cap W^{1,\infty}(0,T;H^1_0(\Omega;\mathbb{R}^d))$ derives from

$$\iint \left(\textbf{\textit{u}}_{tt} - \text{div} \left(a(c,z) \mathbb{V} \epsilon(\textbf{\textit{u}}_t) + b(c,z) \mathbb{C}(\epsilon(\textbf{\textit{u}}) - \epsilon^*(c)) - \rho \theta \mathbf{1} \right) = \textbf{\textit{f}} \right) \times \left(-\operatorname{div}(\varepsilon(\textbf{\textit{u}}_t)) \right)$$

where

in
$$\iint \operatorname{div} \left(a(c,z) \mathbb{V} \epsilon(\mathbf{\textit{u}}_t) \right) \operatorname{div}(\varepsilon(\mathbf{\textit{u}}_t))$$
 we calculate $\operatorname{div}(a(c,z) \mathbb{V} \varepsilon(\mathbf{\textit{u}}_t))$ \leadsto need for ∇c and ∇z bdd in $L^p(\Omega), \ p > d$

 $\text{in } \iint \operatorname{div}(-\rho\theta 1)\operatorname{div}(\varepsilon(\textbf{\textit{u}}_{\mathsf{t}})) \quad \rightsquigarrow \text{ need for } \theta \text{ bdd in } H^1(\Omega)$

Enhanced regularity for u

• $\pmb{u} \in H^1(0,T;H^2_0(\Omega;\mathbb{R}^d)) \cap W^{1,\infty}(0,T;H^1_0(\Omega;\mathbb{R}^d))$ derives from

$$\iint \left(\boldsymbol{u}_{tt} - \operatorname{div} \left(a(c, z) \mathbb{V} \epsilon(\boldsymbol{u}_t) + b(c, z) \mathbb{C}(\epsilon(\boldsymbol{u}) - \epsilon^*(c)) - \rho \theta \mathbf{1} \right) = \boldsymbol{f} \right) \times \left(-\operatorname{div}(\varepsilon(\boldsymbol{u}_t)) \right)$$

where

in
$$\iint \operatorname{div} \left(a(c,z) \mathbb{V} \epsilon(\mathbf{\textit{u}}_t) \right) \operatorname{div}(\varepsilon(\mathbf{\textit{u}}_t))$$
 we calculate $\operatorname{div}(a(c,z) \mathbb{V} \varepsilon(\mathbf{\textit{u}}_t))$ \leadsto need for ∇c and ∇z bdd in $L^p(\Omega), \ p > d$ in $\iint \operatorname{div}(-\rho\theta 1) \operatorname{div}(\varepsilon(\mathbf{\textit{u}}_t))$ \leadsto need for θ bdd in $H^1(\Omega)$

• Still, the right-hand side of

$$\begin{aligned} \theta_t + c_t \theta + z_t \theta + \rho \theta \operatorname{div}(\boldsymbol{u}_t) - \operatorname{div}(\mathsf{K}(\theta) \nabla \theta) &= g + |c_t|^2 + |z_t|^2 \\ &+ a(c, z) \epsilon(\boldsymbol{u}_t) : \mathbb{V} \epsilon(\boldsymbol{u}_t) + m(c, z) |\nabla \mu|^2 \end{aligned}$$

is only L^1 , because $|z_t|^2 \in L^1 \implies$ "entropic" formulation still needed

Rigorous proof

- All the estimates can be made rigorous via time-discretization
- Time-discrete scheme carefully tailored to nonlinear estimates of heat equation
 - ► fully implicit \leadsto essential for strict positivity
 - ▶ eqns. tightly coupled ⇒ existence via fixed point theorem
 - ▶ discrete versions of total energy inequality & entropy inequality hold → estimates & passage to the limit ⇒ conclusion of existence proof
- Compactness
- ullet Limit passage via lower semicontinuity + maximal monotone operator techniques
- Note that the fact that the inqualities can be proved at a discrete level could be useful for numerics

Outline

Mathematical problems arising from Thermomechanics

- 2 Liquid Crystals flows
- Damage phenomena

Further perspectives

• Future perspectives for the damage case:

• Future perspectives for the damage case:

- uniqueness of solutions, at least for the isothermal case
- ▶ the global-in-time existence analysis for the complete damage (degenerating) case, in which the coefficient *a* in the momentum balance is allowed to vanish in some parts of the domain (cf. [R.-Rossi, SIMA 2015] for the case without phase separation and [Heinemann-Kraus, NORWA 2015] for the isothermal case)
- Weak-strong uniqueness for this model

- Future perspectives for the damage case:
 - uniqueness of solutions, at least for the isothermal case
 - the global-in-time existence analysis for the complete damage (degenerating) case, in which the coefficient a in the momentum balance is allowed to vanish in some parts of the domain (cf. [R.-Rossi, SIMA 2015] for the case without phase separation and [Heinemann-Kraus, NORWA 2015] for the isothermal case)
 - Weak-strong uniqueness for this model
- Motivated by Thermodynamics and promising in other contexts:

• Future perspectives for the damage case:

- uniqueness of solutions, at least for the isothermal case
- ▶ the global-in-time existence analysis for the complete damage (degenerating) case, in which the coefficient *a* in the momentum balance is allowed to vanish in some parts of the domain (cf. [R.-Rossi, SIMA 2015] for the case without phase separation and [Heinemann-Kraus, NORWA 2015] for the isothermal case)
- Weak-strong uniqueness for this model
- Motivated by Thermodynamics and promising in other contexts:
 - it is possible to make a strongly nonlinear system mathematically tractable by means just of the use of the standard principles of Thermodynamics

• Future perspectives for the damage case:

- uniqueness of solutions, at least for the isothermal case
- the global-in-time existence analysis for the complete damage (degenerating) case, in which the coefficient a in the momentum balance is allowed to vanish in some parts of the domain (cf. [R.-Rossi, SIMA 2015] for the case without phase separation and [Heinemann-Kraus, NORWA 2015] for the isothermal case)
- Weak-strong uniqueness for this model

Motivated by Thermodynamics and promising in other contexts:

- it is possible to make a strongly nonlinear system mathematically tractable by means just of the use of the standard principles of Thermodynamics
- the regularity of solutions and initial data is just the one suggested by the energy and entropy estimates. Hence we respect the physical conditions

• Future perspectives for the damage case:

- uniqueness of solutions, at least for the isothermal case
- ▶ the global-in-time existence analysis for the complete damage (degenerating) case, in which the coefficient *a* in the momentum balance is allowed to vanish in some parts of the domain (cf. [R.-Rossi, SIMA 2015] for the case without phase separation and [Heinemann-Kraus, NORWA 2015] for the isothermal case)
- Weak-strong uniqueness for this model

Motivated by Thermodynamics and promising in other contexts:

- it is possible to make a strongly nonlinear system mathematically tractable by means just of the use of the standard principles of Thermodynamics
- the regularity of solutions and initial data is just the one suggested by the energy and entropy estimates. Hence we respect the physical conditions
- it can be applied in different contexts: damage, liquid crystals [Feireisl-R.-Schimperna-Zarnescu], two phase fluids [Eleuteri-R.-Schimperna] (Giulio will talk about that on Thursday!), porous media with hysteresis [Detmann-Krejci-R.] etc.

The team cooperating on these problems

• The damage phenomena:

The team cooperating on these problems

• The damage phenomena:

• The LC flows:

The team cooperating on these problems

• The damage phenomena:

The LC flows:

• The two-fluids mixtures:

Many thanks to all of you for the attention!

http://matematica.unipv.it/rocca/

Many thanks to all of you for the attention!

http://matematica.unipv.it/rocca/

BUT LET ME CONCLUDE WITH ...

• the interesting lectures and stimulating discussions

• the interesting lectures and stimulating discussions

• his help in organizing schools/workshops

The second secon

• the interesting lectures and stimulating discussions

• his help in organizing schools/workshops

• his way of attracting young PhD students