On a thermodynamically consistent model for two-phase fluids

Giulio Schimperna

Dipartimento di Matematica "F. Casorati"
Università di Pavia, Italy
giusch04@unipv.it
Implicitly constituted materials:
Modeling, Analysis and Computing
Roztoky, August 3, 2017

- We consider a nonisothermal model for two-component fluids being thermodynamically consistent for a wide range of temperature values.
- The model describes the behavior of the variables:
- u (macroscopic velocity),
- φ (order parameter),
- μ (chemical potential),
- θ (absolute temperature).
- I will now describe additional results holding

Highlights

- We consider a nonisothermal model for two-component fluids being thermodynamically consistent for a wide range of temperature values.
- The model describes the behavior of the variables:
- u (macroscopic velocity),
- φ (order parameter),
- μ (chemical potential),
- θ (absolute temperature).
- With Michela Eleuteri and Elisabetta Rocca we proved existence of "weak" solutions in 3D and existence of "strong" solutions in 2D.
- I will now describe additional results holding in the 2D case.

The equations

$$
\begin{aligned}
& \boldsymbol{u}_{t}+\boldsymbol{u} \cdot \nabla \boldsymbol{u}+\nabla p=\Delta \boldsymbol{u}-\operatorname{div}(\nabla \varphi \otimes \nabla \varphi) \\
& \varphi_{t}+\boldsymbol{u} \cdot \nabla \varphi=\Delta \mu \\
& \mu=-\Delta \varphi+F^{\prime}(\varphi)-\theta \\
& \theta_{t}+\boldsymbol{u} \cdot \nabla \theta+\theta\left(\varphi_{t}+\boldsymbol{u} \cdot \nabla \varphi\right)-\operatorname{div}(\kappa(\theta) \nabla \theta)=|\nabla \boldsymbol{u}|^{2}+|\nabla \mu|^{2}
\end{aligned}
$$

(mom)
(CH1)
(CH2)
(heat)

The equations

$$
\begin{align*}
& \boldsymbol{u}_{t}+\boldsymbol{u} \cdot \nabla \boldsymbol{u}+\nabla p=\Delta \boldsymbol{u}-\operatorname{div}(\nabla \varphi \otimes \nabla \varphi) \tag{mom}\\
& \varphi_{t}+\boldsymbol{u} \cdot \nabla \varphi=\Delta \mu \tag{CH1}\\
& \mu=-\Delta \varphi+F^{\prime}(\varphi)-\theta \tag{CH2}\\
& \theta_{t}+\boldsymbol{u} \cdot \nabla \theta+\theta\left(\varphi_{t}+\boldsymbol{u} \cdot \nabla \varphi\right)-\operatorname{div}(\kappa(\theta) \nabla \theta)=|\nabla \boldsymbol{u}|^{2}+|\nabla \mu|^{2} \tag{heat}
\end{align*}
$$

- Heat conductivity: $\kappa(\theta) \sim 1+\theta^{q}$
- Configuration potential: $F(\varphi)$ of polynomial growth

The equations

$$
\begin{align*}
& \boldsymbol{u}_{t}+\boldsymbol{u} \cdot \nabla \boldsymbol{u}+\nabla p=\Delta \boldsymbol{u}-\operatorname{div}(\nabla \varphi \otimes \nabla \varphi) \tag{mom}\\
& \varphi_{t}+\boldsymbol{u} \cdot \nabla \varphi=\Delta \mu \tag{CH1}\\
& \mu=-\Delta \varphi+F^{\prime}(\varphi)-\theta \tag{CH2}\\
& \theta_{t}+\boldsymbol{u} \cdot \nabla \theta+\theta\left(\varphi_{t}+\boldsymbol{u} \cdot \nabla \varphi\right)-\operatorname{div}(\kappa(\theta) \nabla \theta)=|\nabla \boldsymbol{u}|^{2}+|\nabla \mu|^{2} \tag{heat}
\end{align*}
$$

- Heat conductivity: $\kappa(\theta) \sim 1+\theta^{q}$
- Configuration potential: $F(\varphi)$ of polynomial growth
- $\Omega=[0,1] \times[0,1]$
- Periodic boundary conditions
- The main feature (and also main difficulty) of the system is the non-linearized nature of the internal energy balance, given by the quadratic terms on the right hand side.

Non-isothermal systems with these characteristics have been studied in connection with

Related mathematical models

- The main feature (and also main difficulty) of the system is the non-linearized nature of the internal energy balance, given by the quadratic terms on the right hand side.
- Non-isothermal systems with these characteristics have been studied in connection with
- phase transitions: [Luterotti, S., Stefanelli], [Miranville, S.], [Feireisl, Petzeltová, Rocca], [Benzoni-Gavage, Chupin, Jamet, Vovelle]
- hydrogen storage: Bonetti, Colli, Laurençot, Chiodaroli
- thermal fluids (Navier-Stokes-Fourier system): Feireisl, Novotný, Pokorný, [Bulíček, Feireisl, Málek] and many others
- nematic liquid crystals: Feireisl, Frémond, Rocca, S., Zarnescu

The physical principles

- Starting from the system equations one can recover the energy conservation (1st law):

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mathcal{E}=0, \quad \mathcal{E}=\int_{\Omega}\left(\frac{1}{2}|\boldsymbol{u}|^{2}+\frac{1}{2}|\nabla \varphi|^{2}+F(\varphi)+\theta\right) .
$$

- Any (reasonably defined) solution should comply with these principles (particularly from the point of view of regularity).

The physical principles

- Starting from the system equations one can recover the energy conservation (1st law):

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mathcal{E}=0, \quad \mathcal{E}=\int_{\Omega}\left(\frac{1}{2}|\boldsymbol{u}|^{2}+\frac{1}{2}|\nabla \varphi|^{2}+F(\varphi)+\theta\right) .
$$

- as well as the entropy production inequality (2st law):

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \int_{\Omega}-\ln \theta+\int_{\Omega} \frac{1}{\theta}\left(|\nabla \boldsymbol{u}|^{2}+|\nabla \mu|^{2}\right) \leq 0 .
$$

- Any (reasonably defined) solution should comply with these principles (particularly from the point of view of regularity).

The physical principles

- Starting from the system equations one can recover the energy conservation (1st law):

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mathcal{E}=0, \quad \mathcal{E}=\int_{\Omega}\left(\frac{1}{2}|\boldsymbol{u}|^{2}+\frac{1}{2}|\nabla \varphi|^{2}+F(\varphi)+\theta\right) .
$$

- as well as the entropy production inequality (2st law):

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \int_{\Omega}-\ln \theta+\int_{\Omega} \frac{1}{\theta}\left(|\nabla \boldsymbol{u}|^{2}+|\nabla \mu|^{2}\right) \leq 0 .
$$

- Any (reasonably defined) solution should comply with these principles (particularly from the point of view of regularity).

Previous results

- The main mathematical difficulty of the system are the quadratic terms in (heat):

$$
\begin{equation*}
\theta_{t}+\boldsymbol{u} \cdot \nabla \theta+\theta\left(\varphi_{t}+\boldsymbol{u} \cdot \nabla \varphi\right)-\operatorname{div}(\kappa(\theta) \nabla \theta)=|\nabla \boldsymbol{u}|^{2}+|\nabla \mu|^{2} . \tag{heat}
\end{equation*}
$$

Actually, weak solutions were studied in 3D under the sole regularity assumptions on the finiteness of the initial energy and entropy.

On the other hand, and control the right hand side of (heat) it

This corresponds to having stronger solutions, of course under additional assumptions on the i

Previous results

- The main mathematical difficulty of the system are the quadratic terms in (heat):

$$
\begin{equation*}
\theta_{t}+\boldsymbol{u} \cdot \nabla \theta+\theta\left(\varphi_{t}+\boldsymbol{u} \cdot \nabla \varphi\right)-\operatorname{div}(\kappa(\theta) \nabla \theta)=|\nabla \boldsymbol{u}|^{2}+|\nabla \mu|^{2} . \tag{heat}
\end{equation*}
$$

Actually, weak solutions were studied in 3D under the sole regularity assumptions on the finiteness of the initial energy and entropy.

- On the other hand, in 2D one can obtain additional regularity estimates and control the right hand side of (heat) in L^{2}.
- This corresponds to having stronger solutions, of course under additional assumptions on the initial data.

The result of ERS (Ann. Inst. Poincaré, 2016)

Theorem (Eleuteri, Rocca, S.)
Assume (all variables are Ω-periodic)

$$
\begin{aligned}
& \boldsymbol{u}_{0} \in H^{1}(\Omega), \operatorname{div} \boldsymbol{u}_{0}=0, \\
& \varphi_{0} \in H^{3}(\Omega), \\
& \theta_{0} \in H^{1}(\Omega), \quad \theta_{0}>0 \text { a.e., } \log \theta_{0} \in L^{1}(\Omega) .
\end{aligned}
$$

Then there exists at least one "strong solution" such that

$$
\begin{aligned}
& \boldsymbol{u} \in H^{1}\left(0, T ; L^{2}(\Omega)\right) \cap L^{\infty}\left(0, T ; H^{1}(\Omega)\right) \cap L^{2}\left(0, T ; H^{2}(\Omega)\right), \\
& \varphi \in H^{1}\left(0, T ; H^{1}(\Omega)\right) \cap L^{\infty}\left(0, T ; H^{2}(\Omega)\right) \cap L^{2}\left(0, T ; H^{3}(\Omega)\right), \\
& \theta \in H^{1}\left(0, T ;\left(H^{1}\right)^{*}(\Omega)\right) \cap L^{\infty}\left(0, T ; L^{2}(\Omega)\right) \cap L^{2}\left(0, T ; H^{1}(\Omega)\right) .
\end{aligned}
$$

The result of ERS (Ann. Inst. Poincaré, 2016)

Theorem (Eleuteri, Rocca, S.)
Assume (all variables are Ω-periodic)

$$
\begin{aligned}
& \boldsymbol{u}_{0} \in H^{1}(\Omega), \operatorname{div} \boldsymbol{u}_{0}=0 \\
& \varphi_{0} \in H^{3}(\Omega), \\
& \theta_{0} \in H^{1}(\Omega), \quad \theta_{0}>0 \text { a.e., } \log \theta_{0} \in L^{1}(\Omega) .
\end{aligned}
$$

Then there exists at least one "strong solution" such that

$$
\begin{aligned}
& \boldsymbol{u} \in H^{1}\left(0, T ; L^{2}(\Omega)\right) \cap L^{\infty}\left(0, T ; H^{1}(\Omega)\right) \cap L^{2}\left(0, T ; H^{2}(\Omega)\right), \\
& \varphi \in H^{1}\left(0, T ; H^{1}(\Omega)\right) \cap L^{\infty}\left(0, T ; H^{2}(\Omega)\right) \cap L^{2}\left(0, T ; H^{3}(\Omega)\right), \\
& \theta \in H^{1}\left(0, T ;\left(H^{1}\right)^{*}(\Omega)\right) \cap L^{\infty}\left(0, T ; L^{2}(\Omega)\right) \cap L^{2}\left(0, T ; H^{1}(\Omega)\right) .
\end{aligned}
$$

Questions left open:

1) Uniqueness of strong solutions

The result of ERS (Ann. Inst. Poincaré, 2016)

Theorem (Eleuteri, Rocca, S.)
Assume (all variables are Ω-periodic)

$$
\begin{aligned}
& \boldsymbol{u}_{0} \in H^{1}(\Omega), \operatorname{div} \boldsymbol{u}_{0}=0, \\
& \varphi_{0} \in H^{3}(\Omega), \\
& \theta_{0} \in H^{1}(\Omega), \quad \theta_{0}>0 \text { a.e., } \log \theta_{0} \in L^{1}(\Omega) .
\end{aligned}
$$

Then there exists at least one "strong solution" such that

$$
\begin{aligned}
& \boldsymbol{u} \in H^{1}\left(0, T ; L^{2}(\Omega)\right) \cap L^{\infty}\left(0, T ; H^{1}(\Omega)\right) \cap L^{2}\left(0, T ; H^{2}(\Omega)\right), \\
& \varphi \in H^{1}\left(0, T ; H^{1}(\Omega)\right) \cap L^{\infty}\left(0, T ; H^{2}(\Omega)\right) \cap L^{2}\left(0, T ; H^{3}(\Omega)\right), \\
& \theta \in H^{1}\left(0, T ;\left(H^{1}\right)^{*}(\Omega)\right) \cap L^{\infty}\left(0, T ; L^{2}(\Omega)\right) \cap L^{2}\left(0, T ; H^{1}(\Omega)\right) .
\end{aligned}
$$

Questions left open:

2) Regularity gap

The result of ERS (Ann. Inst. Poincaré, 2016)

Theorem (Eleuteri, Rocca, S.)
Assume (all variables are Ω-periodic)

$$
\begin{aligned}
& \boldsymbol{u}_{0} \in H^{1}(\Omega), \operatorname{div} \boldsymbol{u}_{0}=0, \\
& \varphi_{0} \in H^{3}(\Omega), \\
& \theta_{0} \in H^{1}(\Omega), \quad \theta_{0}>0 \text { a.e., } \log \theta_{0} \in L^{1}(\Omega) .
\end{aligned}
$$

Then there exists at least one "strong solution" such that

$$
\begin{aligned}
& \boldsymbol{u} \in H^{1}\left(0, T ; L^{2}(\Omega)\right) \cap L^{\infty}\left(0, T ; H^{1}(\Omega)\right) \cap L^{2}\left(0, T ; H^{2}(\Omega)\right), \\
& \varphi \in H^{1}\left(0, T ; H^{1}(\Omega)\right) \cap L^{\infty}\left(0, T ; H^{2}(\Omega)\right) \cap L^{2}\left(0, T ; H^{3}(\Omega)\right), \\
& \theta \in H^{1}\left(0, T ;\left(H^{1}\right)^{*}(\Omega)\right) \cap L^{\infty}\left(0, T ; L^{2}(\Omega)\right) \cap L^{2}\left(0, T ; H^{1}(\Omega)\right) .
\end{aligned}
$$

Questions left open:

3) Smoothing properties and long-time behavior (attractors...)

Why a regularity gap?

- The regularity framework corresponds to
- "Strong" solutions to Navier-Stokes
- "Second energy estimate" for Cahn-Hilliard
- But what about equation (heat)?

This is much less flexible from the point of view of regularity. We have:

- Initial datum
- Right hand side exactly in L^{2}
- Heat conductivity going as a power of θ

Outcome: not clear whether we can get additional "parabolic estimates"
(like testing by

Why a regularity gap?

- The regularity framework corresponds to
- "Strong" solutions to Navier-Stokes
- "Second energy estimate" for Cahn-Hilliard
- But what about equation (heat)?

$$
\begin{equation*}
\theta_{t}+\boldsymbol{u} \cdot \nabla \theta+\theta\left(\varphi_{t}+\boldsymbol{u} \cdot \nabla \varphi\right)-\operatorname{div}(\kappa(\theta) \nabla \theta)=|\nabla \boldsymbol{u}|^{2}+|\nabla \mu|^{2} \tag{heat}
\end{equation*}
$$

This is much less flexible from the point of view of regularity. We have:

- Initial datum $\theta_{0} \in H^{1}(\Omega)$ (not necessarily in L^{∞});
- Right hand side exactly in L^{2};
- Heat conductivity going as a power of θ.

Why a regularity gap?

- The regularity framework corresponds to
- "Strong" solutions to Navier-Stokes
- "Second energy estimate" for Cahn-Hilliard
- But what about equation (heat)?

$$
\begin{equation*}
\theta_{t}+\boldsymbol{u} \cdot \nabla \theta+\theta\left(\varphi_{t}+\boldsymbol{u} \cdot \nabla \varphi\right)-\operatorname{div}(\kappa(\theta) \nabla \theta)=|\nabla \boldsymbol{u}|^{2}+|\nabla \mu|^{2} \tag{heat}
\end{equation*}
$$

This is much less flexible from the point of view of regularity. We have:

- Initial datum $\theta_{0} \in H^{1}(\Omega)$ (not necessarily in L^{∞});
- Right hand side exactly in L^{2};
- Heat conductivity going as a power of θ.
- Outcome: not clear whether we can get additional "parabolic estimates" (like testing by $\kappa(\theta) \theta_{t}$).

Smoother solutions

- The most critical term in (heat) is $|\nabla u|^{2}$. To improve its regularity, we take the initial velocity $u_{0} \in H^{1+r}(\Omega)$ for some $r>0$.

Once the right hand side of (heat) is better than L^{2}, we can improve the regularity of the temperature. There are probably several ways to do it. We get directly a uniform in time H^{1}-estimate (alternative method Moser-iterations). In any case the key point stands in the fact that the power-like growth of $\kappa(\theta)$ is no longer an obstacle.

- The most critical term in (heat) is $|\nabla \boldsymbol{u}|^{2}$. To improve its regularity, we take the initial velocity $u_{0} \in H^{1+r}(\Omega)$ for some $r>0$.
- Once the right hand side of (heat) is better than L^{2}, we can improve the regularity of the temperature. There are probably several ways to do it. We get directly a uniform in time H^{1}-estimate (alternative method: Moser-iterations). In any case the key point stands in the fact that the power-like growth of $\kappa(\theta)$ is no longer an obstacle.
- The most critical term in (heat) is $|\nabla \boldsymbol{u}|^{2}$. To improve its regularity, we take the initial velocity $u_{0} \in H^{1+r}(\Omega)$ for some $r>0$.
- Once the right hand side of (heat) is better than L^{2}, we can improve the regularity of the temperature. There are probably several ways to do it. We get directly a uniform in time H^{1}-estimate (alternative method: Moser-iterations). In any case the key point stands in the fact that the power-like growth of $\kappa(\theta)$ is no longer an obstacle.
- The uniform control of θ in $H^{1}(\Omega)$ is also at the basis of the uniqueness proof.

Theorem: Well-posedness

Theorem (Eleuteri, Gatti, S., 2017)
Assume (all variables are Ω-periodic)

$$
\begin{aligned}
& \boldsymbol{u}_{0} \in H^{1+r}(\Omega), \quad r \in(0,1 / 2], \quad \operatorname{div} \boldsymbol{u}_{0}=0, \\
& \varphi_{0} \in H^{3}(\Omega), \\
& K\left(\theta_{0}\right) \in H^{1}(\Omega), \quad \theta_{0}>0 \text { a.e., } \quad 1 / \theta_{0} \in L^{1}(\Omega) .
\end{aligned}
$$

Then there exists one and only one "stable solution" such that

$$
\begin{aligned}
& \boldsymbol{u} \in H^{1}\left(0, T ; H^{r}(\Omega)\right) \cap L^{\infty}\left(0, T ; H^{1+r}(\Omega)\right) \cap L^{2}\left(0, T ; H^{2+r}(\Omega)\right), \\
& \varphi \in H^{1}\left(0, T ; H^{1}(\Omega)\right) \cap L^{\infty}\left(0, T ; H^{3}(\Omega)\right), \\
& \theta \in H^{1}\left(0, T ; L^{2}(\Omega)\right) \cap L^{\infty}\left(0, T ; H^{1}(\Omega)\right) \cap L^{2}\left(0, T ; H^{2}(\Omega)\right) .
\end{aligned}
$$

Moreover, stable solutions enjoy parabolic smoothing properties.

Long-time behavior

- We would like to analyze the long-time behavior of trajectories in the regularity class determined before ("stable solutions").
- In particular, we would like to characterize ω-limits of single trajectories as well as the global attractor.

Long-time behavior

- We would like to analyze the long-time behavior of trajectories in the regularity class determined before ("stable solutions").
- In particular, we would like to characterize ω-limits of single trajectories as well as the global attractor.
- Notice:
- The only source of nonconvexity is in equation (CH2) (the term $F^{\prime}(\varphi)$);
source is present;
- In particular. in view of periodic b.c., solutions asymptotically tend to rotate around the flat torus with constant velocity m

Long-time behavior

- We would like to analyze the long-time behavior of trajectories in the regularity class determined before ("stable solutions").
- In particular, we would like to characterize ω-limits of single trajectories as well as the global attractor.
- Notice:
- The only source of nonconvexity is in equation (CH2) (the term $F^{\prime}(\varphi)$);
- We have conservation of mass, momentum, total energy. No external source is present;

Long-time behavior

- We would like to analyze the long-time behavior of trajectories in the regularity class determined before ("stable solutions").
- In particular, we would like to characterize ω-limits of single trajectories as well as the global attractor.
- Notice:
- The only source of nonconvexity is in equation (CH2) (the term $F^{\prime}(\varphi)$);
- We have conservation of mass, momentum, total energy. No external source is present;
- In particular, in view of periodic b.c., solutions asymptotically tend to rotate around the flat torus with constant velocity $\boldsymbol{m}=\int_{\Omega} \boldsymbol{u}_{0}$.
- A quadruple $\left(\boldsymbol{u}_{\infty}, \varphi_{\infty}, \mu_{\infty}, \theta_{\infty}\right)$ lies in the ω-limit set of a "stable" solution iff there exists $t_{n} \nearrow \infty$ such that

$$
\left(\boldsymbol{u}\left(t_{n}\right), \varphi\left(t_{n}\right), \mu\left(t_{n}\right), \theta\left(t_{n}\right)\right) \rightarrow\left(\boldsymbol{u}_{\infty}, \varphi_{\infty}, \mu_{\infty}, \theta_{\infty}\right) \text { suitably. }
$$

- A quadruple $\left(\boldsymbol{u}_{\infty}, \varphi_{\infty}, \mu_{\infty}, \theta_{\infty}\right)$ lies in the ω-limit set of a "stable" solution iff there exists $t_{n} \nearrow \infty$ such that

$$
\left(\boldsymbol{u}\left(t_{n}\right), \varphi\left(t_{n}\right), \mu\left(t_{n}\right), \theta\left(t_{n}\right)\right) \rightarrow\left(\boldsymbol{u}_{\infty}, \varphi_{\infty}, \mu_{\infty}, \theta_{\infty}\right) \text { suitably. }
$$

- By parabolic smoothing estimates, it is not difficult to prove that each trajectory has a nonempty ω-limit set all of whose elements satisfy

$$
\operatorname{div} \boldsymbol{u}_{\infty}=0
$$

$$
\begin{aligned}
& \boldsymbol{u}_{\infty} \cdot \nabla \boldsymbol{u}_{\infty}+\nabla p_{\infty}=\Delta \boldsymbol{u}_{\infty}-\operatorname{div}\left(\nabla \varphi_{\infty} \otimes \nabla \varphi_{\infty}\right), \\
& \boldsymbol{u}_{\infty} \cdot \nabla \varphi_{\infty}=\Delta \mu_{\infty}, \\
& \mu_{\infty}=-\Delta \varphi_{\infty}+F^{\prime}\left(\varphi_{\infty}\right)-\theta_{\infty}, \\
& \boldsymbol{u}_{\infty} \cdot \nabla \theta_{\infty}+\theta_{\infty} \Delta \mu_{\infty}-\operatorname{div}\left(\kappa\left(\theta_{\infty}\right) \nabla \theta_{\infty}\right)=\left|\nabla \boldsymbol{u}_{\infty}\right|^{2}+\left|\nabla \mu_{\infty}\right|^{2} .
\end{aligned}
$$

- A quadruple $\left(\boldsymbol{u}_{\infty}, \varphi_{\infty}, \mu_{\infty}, \theta_{\infty}\right)$ lies in the ω-limit set of a "stable" solution iff there exists $t_{n} \nearrow \infty$ such that

$$
\left(\boldsymbol{u}\left(t_{n}\right), \varphi\left(t_{n}\right), \mu\left(t_{n}\right), \theta\left(t_{n}\right)\right) \rightarrow\left(\boldsymbol{u}_{\infty}, \varphi_{\infty}, \mu_{\infty}, \theta_{\infty}\right) \text { suitably. }
$$

- By parabolic smoothing estimates, it is not difficult to prove that each trajectory has a nonempty ω-limit set all of whose elements satisfy

$$
\operatorname{div} \boldsymbol{u}_{\infty}=0
$$

$$
\begin{aligned}
& \boldsymbol{u}_{\infty} \cdot \nabla \boldsymbol{u}_{\infty}+\nabla p_{\infty}=\Delta \boldsymbol{u}_{\infty}-\operatorname{div}\left(\nabla \varphi_{\infty} \otimes \nabla \varphi_{\infty}\right), \\
& \boldsymbol{u}_{\infty} \cdot \nabla \varphi_{\infty}=\Delta \mu_{\infty} \\
& \mu_{\infty}=-\Delta \varphi_{\infty}+F^{\prime}\left(\varphi_{\infty}\right)-\theta_{\infty}, \\
& \boldsymbol{u}_{\infty} \cdot \nabla \theta_{\infty}+\theta_{\infty} \Delta \mu_{\infty}-\operatorname{div}\left(\kappa\left(\theta_{\infty}\right) \nabla \theta_{\infty}\right)=\left|\nabla \boldsymbol{u}_{\infty}\right|^{2}+\left|\nabla \mu_{\infty}\right|^{2} .
\end{aligned}
$$

- Namely, ω-limits consist of stable states.

Structure of ω－limit sets， $\boldsymbol{m}=\mathbf{0}$

－In view of conservation properties and occurrence of dissipation integrals：

$$
\int_{0}^{\infty}\left(\|\nabla \boldsymbol{u}\|_{L^{2}}^{2}+\|\nabla \theta\|_{L^{2}}^{2}+\|\nabla \mu\|_{L^{2}}^{2}\right)<\infty
$$

the structure of reachable stationary states simplifies a lot．
For $m=0, u(t) \rightarrow 0$ ；moreover，$\mu_{\infty}, \theta_{\infty}$ are constants．The system reduces to the single equation

- In view of conservation properties and occurrence of dissipation integrals:

$$
\int_{0}^{\infty}\left(\|\nabla \boldsymbol{u}\|_{L^{2}}^{2}+\|\nabla \theta\|_{L^{2}}^{2}+\|\nabla \mu\|_{L^{2}}^{2}\right)<\infty
$$

the structure of reachable stationary states simplifies a lot.

- For $\boldsymbol{m}=\mathbf{0}, \boldsymbol{u}(t) \rightarrow \mathbf{0}$; moreover, $\mu_{\infty}, \theta_{\infty}$ are constants. The system reduces to the single equation

$$
-\Delta \varphi_{\infty}+F^{\prime}\left(\varphi_{\infty}\right)=\mu_{\infty}+\theta_{\infty}
$$

- Due to nonconvexity of F, solutions φ_{∞} may be many.

The constants $\mu_{\infty}, \theta_{\infty}$

- Once initial data are assigned, the quantities

$$
m:=\int_{\Omega} u(\text { here } m=0), \quad m:=\int_{\Omega} \varphi, \quad M:=\mathcal{E}
$$

are conserved.

On the other hand, different elements of the ω-limit of a single trajectory may solve
for different values of

The constants $\mu_{\infty}, \theta_{\infty}$

- Once initial data are assigned, the quantities

$$
m:=\int_{\Omega} u(\text { here } m=0), \quad m:=\int_{\Omega} \varphi, \quad M:=\mathcal{E}
$$

are conserved.

- There exists a constant $C=C(\boldsymbol{m}, m, M)$ such that

$$
\left|\mu_{\infty}\right|+\left|\theta_{\infty}\right|+\left\|\varphi_{\infty}\right\|_{H^{4}(\Omega)} \leq C(\boldsymbol{m}, m, M) .
$$

for different values of

The constants $\mu_{\infty}, \theta_{\infty}$

- Once initial data are assigned, the quantities

$$
m:=\int_{\Omega} u(\text { here } m=0), \quad m:=\int_{\Omega} \varphi, \quad M:=\mathcal{E}
$$

are conserved.

- There exists a constant $C=C(\boldsymbol{m}, m, M)$ such that

$$
\left|\mu_{\infty}\right|+\left|\theta_{\infty}\right|+\left\|\varphi_{\infty}\right\|_{H^{4}(\Omega)} \leq C(\boldsymbol{m}, m, M) .
$$

- On the other hand, different elements of the ω-limit of a single trajectory may solve

$$
-\Delta \varphi_{\infty}+F^{\prime}\left(\varphi_{\infty}\right)=\mu_{\infty}+\theta_{\infty}
$$

for different values of $\mu_{\infty}, \theta_{\infty}$.

Structure of ω-limit sets, $\boldsymbol{m} \neq \mathbf{0}$

- If $\boldsymbol{m} \neq \mathbf{0}, \boldsymbol{u}(t)$ converges to $\boldsymbol{m}=\int_{\Omega} \boldsymbol{u}_{0}$: asymptotically solutions tend to "rotate" around the flat torus.

The other equations are transformed analogously.
Then, w-imit sets exist up to controling "rotations", namely if t_{n}
then taking a subsequence n_{k} such that $t_{n_{k}} m \rightarrow x_{0}, \varphi\left(t_{n_{k}}\right) \rightarrow \varphi_{\infty}$ such
that

Structure of ω-limit sets, $\boldsymbol{m} \neq \mathbf{0}$

- If $\boldsymbol{m} \neq \mathbf{0}, \boldsymbol{u}(t)$ converges to $\boldsymbol{m}=\int_{\Omega} \boldsymbol{u}_{0}$: asymptotically solutions tend to "rotate" around the flat torus.
- Setting

$$
\tilde{\zeta}(t, x):=\zeta(t, x+t \boldsymbol{m}), \quad \text { for } \zeta=\boldsymbol{u}, \varphi, \mu, \theta, \boldsymbol{p}
$$

the Cahn-Hilliard system (CH 1)-(CH 2) is transformed into

$$
\begin{aligned}
& \tilde{\varphi}_{t}+(\tilde{\boldsymbol{u}}-\boldsymbol{m}) \cdot \nabla \tilde{\varphi}=\Delta \tilde{\mu}, \\
& \tilde{\mu}=-\Delta \tilde{\varphi}+F^{\prime}(\tilde{\varphi})-\tilde{\theta} .
\end{aligned}
$$

The other equations are transformed analogously.

- Then, ω-limit sets exist up to controlling "rotations", namely if $t_{n} \nearrow \infty$, then taking a subsequence n_{k} such that $t_{n_{k}} \boldsymbol{m} \rightarrow x_{0}, \varphi\left(t_{n_{k}}\right) \rightarrow \varphi_{\infty}$ such that

$$
-\Delta \varphi_{\infty}\left(\cdot+x_{0}\right)+F^{\prime}\left(\varphi_{\infty}\left(\cdot+x_{0}\right)\right)=\mu_{\infty}+\theta_{\infty}
$$

The global attractor

- To "stable" solutions is naturally associated a solution operator (semigroup) $S(t): z_{0} \mapsto z(t)$.
- Find a functional space X such that $S(t): X \rightarrow X$ has "good properties" (e.g., continuity).
for any bounded set B associated to the metric o X

The global attractor

- To "stable" solutions is naturally associated a solution operator (semigroup) $S(t): z_{0} \mapsto z(t)$.
- Find a functional space X such that $S(t): X \rightarrow X$ has "good properties" (e.g., continuity).
- Then, the global attractor for $S(\cdot)$ is a compact and completely invariant subset $\mathcal{A} \subset X$ such that

$$
\lim _{t \nearrow \infty} \operatorname{dist}_{X}(S(t) B, \mathcal{A})=0
$$

for any bounded set $B \subset X$. Here dist X is the Hausdorff semidistance associated to the metric of X.

Mathematical difficulties

- Presence of constraints:
- Some quantities (m, m, M) do not dissipate: we have to consider this in the choice of X.
- No way to construct a dissipative inequality directly. Absorbing sets must be constructed as neighbourhood of the set of reachable stationary solutions.
- Presence of rotations:
- Conditions on the initial entropy:

Mathematical difficulties

- Presence of constraints:
- Some quantities (m, m, M) do not dissipate: we have to consider this in the choice of X.
- No way to construct a dissipative inequality directly. Absorbing sets must be constructed as neighbourhood of the set of reachable stationary solutions.
- Presence of rotations:
- just consider the case $\boldsymbol{m}=\mathbf{0}$.
- Conditions on the initial entropy:

Mathematical difficulties

- Presence of constraints:
- Some quantities (m, m, M) do not dissipate: we have to consider this in the choice of X.
- No way to construct a dissipative inequality directly. Absorbing sets must be constructed as neighbourhood of the set of reachable stationary solutions.
- Presence of rotations:
- just consider the case $\boldsymbol{m}=\mathbf{0}$.
- Conditions on the initial entropy:
- the phase space X will not be a linear space.

Structure of the phase space

- The conditions on initial data for "stable solutions" are

$$
\boldsymbol{u}_{0} \in H^{1+r}(\Omega), \quad \varphi_{0} \in H^{3}(\Omega), \quad K\left(\theta_{0}\right) \in H^{1}(\Omega), \quad 1 / \theta_{0} \in L^{1}(\Omega) .
$$

Structure of the phase space

- The conditions on initial data for "stable solutions" are

$$
\boldsymbol{u}_{0} \in H^{1+r}(\Omega), \quad \varphi_{0} \in H^{3}(\Omega), \quad K\left(\theta_{0}\right) \in H^{1}(\Omega), \quad 1 / \theta_{0} \in L^{1}(\Omega) .
$$

- Due to occurrence of $1 / \theta$ and $K(\theta)$, this gives rise to a metric space (distance accounting, e.g., for $\left.\|1 / \theta\|_{L^{1}(\Omega)}\right)$.

We would like to construct a compact set attracting any metric-bounded set B

Structure of the phase space

- The conditions on initial data for "stable solutions" are

$$
\boldsymbol{u}_{0} \in H^{1+r}(\Omega), \quad \varphi_{0} \in H^{3}(\Omega), \quad K\left(\theta_{0}\right) \in H^{1}(\Omega), \quad 1 / \theta_{0} \in L^{1}(\Omega)
$$

- Due to occurrence of $1 / \theta$ and $K(\theta)$, this gives rise to a metric space (distance accounting, e.g., for $\left.\|1 / \theta\|_{L^{1}(\Omega)}\right)$.
- Hence, we may use

$$
\begin{aligned}
& X= X(\mathbf{0}, m, M)=\left\{(\boldsymbol{u}, \varphi, \theta) \in H^{1+r} \times H^{3} \times H^{1}: K(\theta) \in H^{1},\right. \\
&\left.1 / \theta \in L^{1}, \int_{\Omega} \boldsymbol{u}=\mathbf{0}, \int_{\Omega} \varphi=m, \mathcal{E}=M\right\} .
\end{aligned}
$$

- We would like to construct a compact set $\mathcal{A}=\mathcal{A}(\mathbf{0}, m, M)$ uniformly attracting any metric-bounded set $B \subset X(0, m, M)$.

A hidden difficulty

- We have asymptotic compactness of trajectories, namely there exists a metric space $W \subset \subset X$ such that $S(1) B$ is bounded in W for any bounded $B \subset X$.

But this requires to determine
"reachable" θ
We need to impose a (further) constraint on the initial entropy:

Under this condition, we can actually prove that

A hidden difficulty

- We have asymptotic compactness of trajectories, namely there exists a metric space $W \subset \subset X$ such that $S(1) B$ is bounded in W for any bounded $B \subset X$.
- To construct a pointwise absorbing set we need to know that the family of reachable stable states is bounded in X depending only on M, m.
- But this requires to determine $\underline{\theta}=\underline{\theta}(M, m)>0$ such that $\theta_{\infty} \geq \underline{\theta}$ for any "reachable" θ_{∞}.

Under this condition, we can actually prove that

A hidden difficulty

- We have asymptotic compactness of trajectories, namely there exists a metric space $W \subset \subset X$ such that $S(1) B$ is bounded in W for any bounded $B \subset X$.
- To construct a pointwise absorbing set we need to know that the family of reachable stable states is bounded in X depending only on M, m.
- But this requires to determine $\underline{\theta}=\underline{\theta}(M, m)>0$ such that $\theta_{\infty} \geq \underline{\theta}$ for any "reachable" θ_{∞}.
- We need to impose a (further) constraint on the initial entropy:

$$
X^{R}:=\left\{(\boldsymbol{u}, \varphi, \theta) \in X(\mathbf{0}, m, M):-\int_{\Omega} \theta \leq R\right\} .
$$

Under this condition, we can actually prove that $\theta_{\infty} \geq \underline{\theta}(M, m, R)$.

Theorem: Long-time behavior

Theorem (Eleuteri, Gatti, S., 2017)

Take initial data in $X^{R}(0, M, m)$. Then, the semiflow associated with "stable solutions" admits the global attractor $\mathcal{A}^{R}=\mathcal{A}^{R}(\mathbf{0}, M, m)$.
Moreover, there exists $C=C(M, m, R)$ such that, for any $(\boldsymbol{u}, \varphi, \theta) \in \mathcal{A}^{R}$,

$$
\|\boldsymbol{u}\|_{H^{2}}+\|\varphi\|_{H^{4}}+\|\theta\|_{H^{2}}+\|1 / \theta\|_{H^{1}} \leq C .
$$

Possible extensions - singular potentials

$$
\begin{align*}
& \boldsymbol{u}_{t}+\boldsymbol{u} \cdot \nabla \boldsymbol{u}+\nabla p=\Delta \boldsymbol{u}-\operatorname{div}(\nabla \varphi \otimes \nabla \varphi) \tag{mom}\\
& \varphi_{t}+\boldsymbol{u} \cdot \nabla \varphi=\Delta \mu \tag{CH1}\\
& \mu=-\Delta \varphi+F^{\prime}(\varphi)-\theta \tag{CH2}\\
& \theta_{t}+\boldsymbol{u} \cdot \nabla \theta+\theta\left(\varphi_{t}+\boldsymbol{u} \cdot \nabla \varphi\right)-\operatorname{div}(\kappa(\theta) \nabla \theta)=|\nabla \boldsymbol{u}|^{2}+|\nabla \mu|^{2} \tag{heat}
\end{align*}
$$

- $F^{\prime}(\varphi)$ derivative (subdifferential) of
- logarithmic potential: $F(\varphi) \sim(1+\varphi) \log (1+\varphi)+(1-\varphi) \log (1-\varphi)-\lambda \varphi^{2}$

Possible extensions - singular potentials

$$
\begin{align*}
& \boldsymbol{u}_{t}+\boldsymbol{u} \cdot \nabla \boldsymbol{u}+\nabla p=\Delta \boldsymbol{u}-\operatorname{div}(\nabla \varphi \otimes \nabla \varphi) \tag{mom}\\
& \varphi_{t}+\boldsymbol{u} \cdot \nabla \varphi=\Delta \mu \tag{CH1}\\
& \mu=-\Delta \varphi+F^{\prime}(\varphi)-\theta \tag{CH2}\\
& \theta_{t}+\boldsymbol{u} \cdot \nabla \theta+\theta\left(\varphi_{t}+\boldsymbol{u} \cdot \nabla \varphi\right)-\operatorname{div}(\kappa(\theta) \nabla \theta)=|\nabla \boldsymbol{u}|^{2}+|\nabla \mu|^{2} \tag{heat}
\end{align*}
$$

- $F^{\prime}(\varphi)$ derivative (subdifferential) of
- logarithmic potential: $F(\varphi) \sim(1+\varphi) \log (1+\varphi)+(1-\varphi) \log (1-\varphi)-\lambda \varphi^{2}$
- Question: can we consider strong solutions to (mom)? Note that regularity theory for $(\mathrm{CH} 2)$ is worse.

Possible extensions - Allen-Cahn

$$
\begin{align*}
& \boldsymbol{u}_{t}+\boldsymbol{u} \cdot \nabla \boldsymbol{u}+\nabla p=\Delta \boldsymbol{u}-\operatorname{div}(\nabla \varphi \otimes \nabla \varphi) \tag{mom}\\
& \varphi_{t}+\boldsymbol{u} \cdot \nabla \varphi=-\mu \tag{AC1}\\
& \mu=-\Delta \varphi+F^{\prime}(\varphi)-\theta \tag{AC2}\\
& \theta_{t}+\boldsymbol{u} \cdot \nabla \theta+\theta\left(\varphi_{t}+\boldsymbol{u} \cdot \nabla \varphi\right)-\operatorname{div}(\kappa(\theta) \nabla \theta)=|\nabla \boldsymbol{u}|^{2}+|\mu|^{2} \tag{heat}
\end{align*}
$$

- (AC1) and (AC2) combine as

$$
\begin{equation*}
\varphi_{t}+\boldsymbol{u} \cdot \nabla \varphi-\Delta \varphi+F^{\prime}(\varphi)=\theta \tag{AC}
\end{equation*}
$$

Possible extensions - Allen-Cahn

$$
\begin{align*}
& \boldsymbol{u}_{t}+\boldsymbol{u} \cdot \nabla \boldsymbol{u}+\nabla p=\Delta \boldsymbol{u}-\operatorname{div}(\nabla \varphi \otimes \nabla \varphi) \tag{mom}\\
& \varphi_{t}+\boldsymbol{u} \cdot \nabla \varphi=-\mu \tag{AC1}\\
& \mu=-\Delta \varphi+F^{\prime}(\varphi)-\theta \tag{AC2}\\
& \theta_{t}+\boldsymbol{u} \cdot \nabla \theta+\theta\left(\varphi_{t}+\boldsymbol{u} \cdot \nabla \varphi\right)-\operatorname{div}(\kappa(\theta) \nabla \theta)=|\nabla \boldsymbol{u}|^{2}+|\mu|^{2} \tag{heat}
\end{align*}
$$

- (AC1) and (AC2) combine as

$$
\begin{equation*}
\varphi_{t}+\boldsymbol{u} \cdot \nabla \varphi-\Delta \varphi+F^{\prime}(\varphi)=\theta \tag{AC}
\end{equation*}
$$

- Problem: we have less regularity for φ from the energy estimate.

Possible extensions - non-newtonian fluids

$$
\begin{align*}
& \boldsymbol{u}_{t}+\boldsymbol{u} \cdot \nabla \boldsymbol{u}+\nabla p=\operatorname{div}\left(|\nabla \boldsymbol{u}|^{p-2} \nabla \boldsymbol{u}\right)-\operatorname{div}(\nabla \varphi \otimes \nabla \varphi) \tag{mom}\\
& \varphi_{t}+\boldsymbol{u} \cdot \nabla \varphi=-\mu \text { or } \Delta \mu \tag{AC1}\\
& \mu=-\Delta \varphi+F^{\prime}(\varphi)-\theta \tag{AC2}\\
& \theta_{t}+\boldsymbol{u} \cdot \nabla \theta+\theta\left(\varphi_{t}+\boldsymbol{u} \cdot \nabla \varphi\right)-\operatorname{div}(\kappa(\theta) \nabla \theta)=|\nabla \boldsymbol{u}|^{2}+|(\nabla) \mu|^{2} \tag{heat}
\end{align*}
$$

- The possibility to work with strong solutions of (mom) depends as usual on the value of $p \geq 2$ and on the space dimension.
- Consider, however, that the regularity analysis for \boldsymbol{u} and φ may not be decoupled.

More difficult extensions

- Other types (non-periodic) boundary conditions;
- Presence of forcing terms (e.g., heat sources); Temperature-dependent coefficients (e.g., viscosity) or temperature-independent coefficients (choice of Fourier's law)

More difficult extensions

- Other types (non-periodic) boundary conditions;
- Presence of forcing terms (e.g., heat sources);

Temperature-dependent coefficients (e.g., viscosity) or
temperature-independent coefficients (choice of Fourier's law)

More difficult extensions

- Other types (non-periodic) boundary conditions;
- Presence of forcing terms (e.g., heat sources);
- Temperature-dependent coefficients (e.g., viscosity) or temperature-independent coefficients (choice of Fourier's law)

References

M. Eleuteri, S. Gatti, G.S., Regularity and long-time behavior for a thermodynamically consistent model for complex fluids in two space dimensions, available tomorrow on arXiv.

See also:

M. Eleuteri, E. Rocca, G.S., On a non-isothermal diffuse interface model for two-phase flows of incompressible fluids, Discrete Contin. Dyn. Syst., 35 (2015), 2497-2522.
M. Eleuteri, E. Rocca, G.S., Existence of solutions to a two-dimensional model for nonisothermal two-phase flows of incompressible fluids, Ann. Inst. H. Poincaré Anal. Nonlinéaire, 33 (2016), 1431-1454.

References

M. Eleuteri, S. Gatti, G.S., Regularity and long-time behavior for a thermodynamically consistent model for complex fluids in two space dimensions, available tomorrow on arXiv.

See also:

M. Eleuteri, E. Rocca, G.S., On a non-isothermal diffuse interface model for two-phase flows of incompressible fluids, Discrete Contin. Dyn. Syst., 35 (2015), 2497-2522.
M. Eleuteri, E. Rocca, G.S., Existence of solutions to a two-dimensional model for nonisothermal two-phase flows of incompressible fluids, Ann. Inst. H. Poincaré Anal. Nonlinéaire, 33 (2016), 1431-1454.

Thanks for your attention!

