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Highlights

We consider a nonisothermal model for two-component fluids being
thermodynamically consistent for a wide range of temperature values.

The model describes the behavior of the variables:
u (macroscopic velocity),
ϕ (order parameter),
µ (chemical potential),
θ (absolute temperature).

With Michela Eleuteri and Elisabetta Rocca we proved existence of
“weak” solutions in 3D and existence of “strong” solutions in 2D.

I will now describe additional results holding in the 2D case.
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The equations

ut + u · ∇u +∇p = ∆u − div (∇ϕ⊗∇ϕ) (mom)

ϕt + u · ∇ϕ = ∆µ (CH1)

µ = −∆ϕ+ F ′(ϕ)− θ (CH2)

θt + u · ∇θ + θ(ϕt + u · ∇ϕ)− div(κ(θ)∇θ) = |∇u|2 + |∇µ|2 (heat)

Heat conductivity: κ(θ) ∼ 1 + θq

Configuration potential: F (ϕ) of polynomial growth

Ω = [0,1]× [0,1]

Periodic boundary conditions
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Related mathematical models

The main feature (and also main difficulty) of the system is the
non-linearized nature of the internal energy balance, given by the
quadratic terms on the right hand side.

Non-isothermal systems with these characteristics have been studied in
connection with

phase transitions: [Luterotti, S., Stefanelli], [Miranville, S.], [Feireisl,
Petzeltová, Rocca], [Benzoni-Gavage, Chupin, Jamet, Vovelle]

hydrogen storage: Bonetti, Colli, Laurençot, Chiodaroli

thermal fluids (Navier-Stokes-Fourier system): Feireisl, Novotný, Pokorný,
[Bulíček, Feireisl, Málek] and many others

nematic liquid crystals: Feireisl, Frémond, Rocca, S., Zarnescu
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The physical principles

Starting from the system equations one can recover the energy
conservation (1st law):

d
dt
E = 0, E =

∫
Ω

(
1
2
|u|2 +

1
2
|∇ϕ|2 + F (ϕ) + θ

)
.

as well as the entropy production inequality (2st law):

d
dt

∫
Ω

− ln θ +

∫
Ω

1
θ

(
|∇u|2 + |∇µ|2

)
≤ 0.

Any (reasonably defined) solution should comply with these principles
(particularly from the point of view of regularity).
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Previous results

The main mathematical difficulty of the system are the quadratic terms in
(heat):

θt + u · ∇θ + θ(ϕt + u · ∇ϕ)− div(κ(θ)∇θ) = |∇u|2 + |∇µ|2. (heat)

Actually, weak solutions were studied in 3D under the sole regularity
assumptions on the finiteness of the initial energy and entropy.

On the other hand, in 2D one can obtain additional regularity estimates
and control the right hand side of (heat) in L2.

This corresponds to having stronger solutions, of course under additional
assumptions on the initial data.
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The result of ERS (Ann. Inst. Poincaré, 2016)

Theorem (Eleuteri, Rocca, S.)

Assume (all variables are Ω-periodic)

u0 ∈ H1(Ω), div u0 = 0,

ϕ0 ∈ H3(Ω),

θ0 ∈ H1(Ω), θ0 > 0 a.e., log θ0 ∈ L1(Ω).

Then there exists at least one “strong solution” such that

u ∈ H1(0,T ; L2(Ω)) ∩ L∞(0,T ; H1(Ω)) ∩ L2(0,T ; H2(Ω)),

ϕ ∈ H1(0,T ; H1(Ω)) ∩ L∞(0,T ; H2(Ω)) ∩ L2(0,T ; H3(Ω)),

θ ∈ H1(0,T ; (H1)∗(Ω)) ∩ L∞(0,T ; L2(Ω)) ∩ L2(0,T ; H1(Ω)).

Questions left open:

1) Uniqueness of strong solutions
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Why a regularity gap?

The regularity framework corresponds to
“Strong” solutions to Navier-Stokes
“Second energy estimate” for Cahn-Hilliard

But what about equation (heat)?

θt + u · ∇θ + θ(ϕt + u · ∇ϕ)− div(κ(θ)∇θ) = |∇u|2 + |∇µ|2 (heat)

This is much less flexible from the point of view of regularity. We have:
Initial datum θ0 ∈ H1(Ω) (not necessarily in L∞);
Right hand side exactly in L2;
Heat conductivity going as a power of θ.

Outcome: not clear whether we can get additional “parabolic estimates”
(like testing by κ(θ)θt ).
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Smoother solutions

The most critical term in (heat) is |∇u|2. To improve its regularity, we take
the initial velocity u0 ∈ H1+r (Ω) for some r > 0.

Once the right hand side of (heat) is better than L2, we can improve the
regularity of the temperature. There are probably several ways to do it.
We get directly a uniform in time H1-estimate (alternative method:
Moser-iterations). In any case the key point stands in the fact that the
power-like growth of κ(θ) is no longer an obstacle.

The uniform control of θ in H1(Ω) is also at the basis of the uniqueness
proof.
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Theorem: Well-posedness

Theorem (Eleuteri, Gatti, S., 2017)

Assume (all variables are Ω-periodic)

u0 ∈ H1+r (Ω), r ∈ (0,1/2], div u0 = 0,

ϕ0 ∈ H3(Ω),

K (θ0) ∈ H1(Ω), θ0 > 0 a.e., 1/θ0 ∈ L1(Ω).

Then there exists one and only one “stable solution” such that

u ∈ H1(0,T ; H r (Ω)) ∩ L∞(0,T ; H1+r (Ω)) ∩ L2(0,T ; H2+r (Ω)),

ϕ ∈ H1(0,T ; H1(Ω)) ∩ L∞(0,T ; H3(Ω)),

θ ∈ H1(0,T ; L2(Ω)) ∩ L∞(0,T ; H1(Ω)) ∩ L2(0,T ; H2(Ω)).

Moreover, stable solutions enjoy parabolic smoothing properties.



Long-time behavior

We would like to analyze the long-time behavior of trajectories in the
regularity class determined before (“stable solutions”).

In particular, we would like to characterize ω-limits of single trajectories
as well as the global attractor.

Notice:
The only source of nonconvexity is in equation (CH2) (the term F ′(ϕ));

We have conservation of mass, momentum, total energy. No external
source is present;

In particular, in view of periodic b.c., solutions asymptotically tend to rotate
around the flat torus with constant velocity m =

∫
Ω

u0.
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ω-limit sets

A quadruple (u∞, ϕ∞, µ∞, θ∞) lies in the ω-limit set of a “stable” solution
iff there exists tn ↗∞ such that

(u(tn), ϕ(tn), µ(tn), θ(tn))→ (u∞, ϕ∞, µ∞, θ∞) suitably.

By parabolic smoothing estimates, it is not difficult to prove that each
trajectory has a nonempty ω-limit set all of whose elements satisfy

div u∞ = 0,
u∞ · ∇u∞ +∇p∞ = ∆u∞ − div(∇ϕ∞ ⊗∇ϕ∞),

u∞ · ∇ϕ∞ = ∆µ∞,

µ∞ = −∆ϕ∞ + F ′(ϕ∞)− θ∞,
u∞ · ∇θ∞ + θ∞∆µ∞ − div(κ(θ∞)∇θ∞) = |∇u∞|2 + |∇µ∞|2.

Namely, ω-limits consist of stable states.
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Structure of ω-limit sets, m = 0

In view of conservation properties and occurrence of dissipation integrals:∫ ∞
0

(
‖∇u‖2

L2 + ‖∇θ‖2
L2 + ‖∇µ‖2

L2

)
<∞,

the structure of reachable stationary states simplifies a lot.

For m = 0, u(t)→ 0; moreover, µ∞, θ∞ are constants. The system
reduces to the single equation

−∆ϕ∞ + F ′(ϕ∞) = µ∞ + θ∞.

Due to nonconvexity of F , solutions ϕ∞ may be many.
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The constants µ∞, θ∞

Once initial data are assigned, the quantities

m :=

∫
Ω

u (here m = 0), m :=

∫
Ω

ϕ, M := E

are conserved.

There exists a constant C = C(m,m,M) such that

|µ∞|+ |θ∞|+ ‖ϕ∞‖H4(Ω) ≤ C(m,m,M).

On the other hand, different elements of the ω-limit of a single trajectory
may solve

−∆ϕ∞ + F ′(ϕ∞) = µ∞ + θ∞.

for different values of µ∞, θ∞.
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Structure of ω-limit sets, m 6= 0

If m 6= 0, u(t) converges to m =
∫

Ω
u0: asymptotically solutions tend to

“rotate” around the flat torus.

Setting
ζ̃(t , x) := ζ(t , x + tm), for ζ = u, ϕ, µ, θ,p,

the Cahn-Hilliard system (CH1)-(CH2) is transformed into

ϕ̃t + (ũ −m) · ∇ϕ̃ = ∆µ̃,

µ̃ = −∆ϕ̃+ F ′(ϕ̃)− θ̃.

The other equations are transformed analogously.

Then, ω-limit sets exist up to controlling “rotations”, namely if tn ↗∞,
then taking a subsequence nk such that tnk m→ x0, ϕ(tnk )→ ϕ∞ such
that

−∆ϕ∞(·+ x0) + F ′(ϕ∞(·+ x0)) = µ∞ + θ∞.
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The global attractor

To “stable” solutions is naturally associated a solution operator
(semigroup) S(t) : z0 7→ z(t).

Find a functional space X such that S(t) : X → X has “good properties”
(e.g., continuity).

Then, the global attractor for S(·) is a compact and completely invariant
subset A ⊂ X such that

lim
t↗∞

distX (S(t)B,A) = 0

for any bounded set B ⊂ X . Here distX is the Hausdorff semidistance
associated to the metric of X .
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Mathematical difficulties

Presence of constraints:
Some quantities (m,m,M) do not dissipate: we have to consider this in the
choice of X .
No way to construct a dissipative inequality directly. Absorbing sets must be
constructed as neighbourhood of the set of reachable stationary solutions.

Presence of rotations:
just consider the case m = 0.

Conditions on the initial entropy:
the phase space X will not be a linear space.
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the phase space X will not be a linear space.



Structure of the phase space

The conditions on initial data for “stable solutions” are

u0 ∈ H1+r (Ω), ϕ0 ∈ H3(Ω), K (θ0) ∈ H1(Ω), 1/θ0 ∈ L1(Ω).

Due to occurrence of 1/θ and K (θ), this gives rise to a metric space
(distance accounting, e.g., for ‖1/θ‖L1(Ω)).

Hence, we may use

X = X (0,m,M) =
{

(u, ϕ, θ) ∈ H1+r × H3 × H1 : K (θ) ∈ H1,

1/θ ∈ L1,

∫
Ω

u = 0,
∫

Ω

ϕ = m, E = M
}
.

We would like to construct a compact set A = A(0,m,M) uniformly
attracting any metric-bounded set B ⊂ X (0,m,M).
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A hidden difficulty

We have asymptotic compactness of trajectories, namely there exists a
metric space W ⊂⊂ X such that S(1)B is bounded in W for any bounded
B ⊂ X .

To construct a pointwise absorbing set we need to know that the family of
reachable stable states is bounded in X depending only on M,m.

But this requires to determine θ = θ(M,m) > 0 such that θ∞ ≥ θ for any
“reachable” θ∞.

We need to impose a (further) constraint on the initial entropy:

X R :=
{

(u, ϕ, θ) ∈ X (0,m,M) : −
∫

Ω

θ ≤ R
}
.

Under this condition, we can actually prove that θ∞ ≥ θ(M,m,R).
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Theorem: Long-time behavior

Theorem (Eleuteri, Gatti, S., 2017)

Take initial data in X R(0,M,m). Then, the semiflow associated with “stable
solutions” admits the global attractor AR = AR(0,M,m).

Moreover, there exists C = C(M,m,R) such that, for any (u, ϕ, θ) ∈ AR ,

‖u‖H2 + ‖ϕ‖H4 + ‖θ‖H2 + ‖1/θ‖H1 ≤ C.



Possible extensions – singular potentials

ut + u · ∇u +∇p = ∆u − div (∇ϕ⊗∇ϕ) (mom)

ϕt + u · ∇ϕ = ∆µ (CH1)

µ = −∆ϕ+ F ′(ϕ)− θ (CH2)

θt + u · ∇θ + θ(ϕt + u · ∇ϕ)− div(κ(θ)∇θ) = |∇u|2 + |∇µ|2 (heat)

F ′(ϕ) derivative (subdifferential) of
logarithmic potential: F (ϕ) ∼ (1 +ϕ) log(1 +ϕ) + (1−ϕ) log(1−ϕ)− λϕ2

Question: can we consider strong solutions to (mom)? Note that
regularity theory for (CH2) is worse.
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Possible extensions – Allen-Cahn

ut + u · ∇u +∇p = ∆u − div (∇ϕ⊗∇ϕ) (mom)

ϕt + u · ∇ϕ = −µ (AC1)

µ = −∆ϕ+ F ′(ϕ)− θ (AC2)

θt + u · ∇θ + θ(ϕt + u · ∇ϕ)− div(κ(θ)∇θ) = |∇u|2 + |µ|2 (heat)

(AC1) and (AC2) combine as

ϕt + u · ∇ϕ−∆ϕ+ F ′(ϕ) = θ (AC)

Problem: we have less regularity for ϕ from the energy estimate.
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Possible extensions – non-newtonian fluids

ut + u · ∇u +∇p = div(|∇u|p−2∇u)− div (∇ϕ⊗∇ϕ) (mom)

ϕt + u · ∇ϕ = −µ or ∆µ (AC1)

µ = −∆ϕ+ F ′(ϕ)− θ (AC2)

θt + u · ∇θ + θ(ϕt + u · ∇ϕ)− div(κ(θ)∇θ) = |∇u|2 + |(∇)µ|2 (heat)

The possibility to work with strong solutions of (mom) depends as usual
on the value of p ≥ 2 and on the space dimension.

Consider, however, that the regularity analysis for u and ϕ may not be
decoupled.



More difficult extensions

Other types (non-periodic) boundary conditions;

Presence of forcing terms (e.g., heat sources);

Temperature-dependent coefficients (e.g., viscosity) or
temperature-independent coefficients (choice of Fourier’s law)
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