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Introduction: the principle of conservation of energy

for classical solutions

Let us first focus our attention on the incompressible Euler system

Oru+div(iu® u) +Vp =0,
divu =0,

If uis a classical solution, then multiplying the balance equation by
u we obtain

1 1
§8t|u|2 + Su- V|u> +u-Vp=0.

Integrating the last equality over the space domain £2 yields

d [1 )
— | = t)|c dx = 0.
Gt L 3l 0 ax

Consequently, integrating over time in (0, t), gives

1 1
/\u(x, t)[2 dxz/ —|u(x,0)| dx.
Q2 Q2



Weak solutions

However, if u is a weak solution, then

1 1
/z\u(x, t)[2 dxz/ §|u(x,0)| dx.
Q Q

might not hold. Technically, the problem is that u might not be
regular enough to justify integration by parts in the above
derivation.

Motivated by the laws of turbulence Onsager postulated that there
is a critical regularity for a weak solution to be a conservative one:

Conjecture, 1949

Let u be a weak solution of incompressible Euler system
o If ue C* with a > % then the energy is conserved.

@ For any a < % there exists a weak solution u € C* which
does not conserve the energy.
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Onsager conjecture for incompressible Euler system

Weak solutions of the incompressible Euler equations which do not
conserve energy were constructed:

@ Scheffer '93, Shnirelman '97 constructed examples of weak
solutions in L2(R? x R) compactly supported in space and
time

@ De Lellis and Székelyhidi 2010 showed how to construct weak
solutions for given energy profile
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Still incompressible case

Onsager conjecture:

If weak solution v has C% (for v > 1) regularity then it conserves
energy. In the opposite case it may not conserve energy.

@ The first part of this assertion was proved in

o P. Constantin, W. E, and E. S. Titi. Onsager’s conjecture on
the energy conservation for solutions of Euler’s equation.
Comm. Math. Phys., 1994

o G. L. Eyink. Energy dissipation without viscosity in ideal
hydrodynamics. |. Fourier analysis and local energy transfer.
Phys. D, 1994

o A. Cheskidov, P. Constantin, S. Friedlander, and R. Shvydkoy.
Energy conservation and Onsager's conjecture for the Euler
equations. Nonlinearity, 2008

Agnieszka Swierczewska Energy/entropy conservation



Besov spaces

The elements of Besov space By ™(£2), where Q = (0, T) x T¢ or
Q = T are functions w for which the norm

[w(-+ &) — wllpana—e))
€]

W || po,o0 = ||W Q +Sup
Iwllgg==(q) = llwlle(e) g

is finite (here Q — ¢ = {x — & : x € Q}).
It is then easy to check that the definition of the Besov spaces
implies
[w® = wlr) < Ce[lwl|gaee(q)
and
VW) < Ce* Hwllgo(q)-
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Idea of the proof: P. Constantin, W. E, and E. S.
Titi. Onsager’s conjecture on the energy

conservation for solutions of Euler’'s equation.
Comm. Math. Phys., 1994

@ take as the test function doubly mollified solution (v€)¢
o problem: estimate term [, Tr(v ® v)© - Vvdx

@ use the identity:
(veV) =vi@Vvi+r(v,v)—(v—v)®(v—v) where
(v, L < Cv]ane
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Onsager’s conjecture for compressible Euler system J
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Compressible Euler system

We consider now the isentropic Euler equations,

O¢(pu) + div(pu ® u) + Vp(p) =0,
Otp + div(pu) = 0.

We will use the notation for the so-called pressure potential

defined as o (1)
p(r
P(p) :p/ —5-dr.
1 r
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Theorem (Feireisl, Gwiazda, S.-G., Wiedemann, ARMA 2017)

Let o, u be a solution of (1) in the sense of distributions. Assume
u € BY((0, T)x T, o, 0u € BY™((0, T)xT9),0< o< 0<7

for some constants 0,0, and 0 < «, B < 1 such that

ﬂ>max{1—2a;1;a}. (2)

Assume further that p € C?[o, 0], and, in addition
p'(0) = 0 as soon as ¢ = 0.

Then the energy is locally conserved in the sense of distributions
on (0, T) xQ, ie

00 (3elu + P(@)) + v | (Jelu +5(0) + P(2)) o] =0
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Sharpness of assumptions

Shocks provide examples that show that our assumptions are
sharp:

@ A shock solution dissipates energy, but p and u are in
BV N L*°, which embeds into B31/3’°o.

@ Hence such a solution satisfies (2) with equality but fails to
satisfy the conclusion.
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Time regularity

The hypothesis on temporal regularity can be relaxed provided

0>0

Indeed, in this case (Qg) can be used as a test function in the
momentum equation, cf.

T. M. Leslie and R. Shvydkoy. The energy balance relation for weak
solutions of the density-dependent Navier- Stokes equations. JDE, 2016. J
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General conservation laws

@ It is easy to notice similarities in the statements regarding
sufficient regularity conditions guaranteeing energy/entropy
conservation for various systems of equations of fluid
dynamics.

o Especially the differentiability exponent of % is a recurring
condition.

@ One might therefore anticipate that a general statement could
be made, which would cover all the above examples and more.
Indeed, consider a general conservation law of the form

divx(G(U(X))) = 0.
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We consider the conservation law of the form

divx (G(U(X))) = 0. (3)

Here U : X — O is an unknown and G : O — M™(d+1) js 3
given, where X is an open subset of Rt or T3 x R and the set O
is open in R". It is easy to see that any classical solution to (3)
satisfies also

divx (Q(U(X))) =0, (4)
where Q : © — Rs*(d+1) s 5 smooth function such that

DuQ;(U) = B(U)DuG;(U), forall U O, j€ 0, k, (5)

for some smooth function B : O — M**". The function Q is
called a companion of G and equation (4) is called a companion
law of the conservation law (3).
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How much regularity of a weak solution is required
so that it also satisfies the companion law?

Theorem

Let U € B§"™(X; O) be a weak solution of (3) with a > 3.
Assume that G € C?(O; M"*(4+1)) js endowed with a companion
law with flux Q € C(O; M**(9+1)) for which there exists

B € CHO; M**") related through identity (5) and the essential
image of U is compact in O.

Then U is a weak solution of the companion law (4) with the
flux Q.

@ P. Gwiazda, M. Michdlek and A. éwierczewska—vaiazda,

A note on weak solutions of conservation laws and energy/entropy
conservation. arxiv.1706.10154, 2017.
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o the generality of the above theorem is achieved at the expense
of optimality of the assumptions.

@ However given additional information on the structure of the
problem at hand one might be able to relax some of these
assumptions.

@ the theorem provides for instance a conservation of energy
result for the system of polyconvex elastodynamics,
compressible hydrodynamics et al.

) @ T. Debiec, P. Gwiazda, and A. éwierczewska—Gwiazda,

A tribute to conservation of energy for weak solutions
arXiv:1707.09794, 2017.
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Thank you for your attention
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