Weak solutions of conservation laws and energy/entropy conservation

Agnieszka Swierczewska-Gwiazda ´

joint works with Eduard Feireisl, Piotr Gwiazda, Martin Michálek and Emil Wiedemann

University of Warsaw

Roztoky, July 3rd, 2017

Introduction: the principle of conservation of energy for classical solutions

Let us first focus our attention on the incompressible Euler system

$$
\partial_t u + \operatorname{div}(u \otimes u) + \nabla p = 0,
$$

div $u = 0$,

If u is a classical solution, then multiplying the balance equation by u we obtain

$$
\frac{1}{2}\partial_t|u|^2+\frac{1}{2}u\cdot\nabla|u|^2+u\cdot\nabla p=0.
$$

Integrating the last equality over the space domain Ω yields

$$
\frac{\mathrm{d}}{\mathrm{d}t}\int_{\Omega}\frac{1}{2}|u(x,t)|^2\,\mathrm{d}x=0.
$$

Consequently, integrating over time in $(0, t)$, gives

$$
\int_{\Omega} \frac{1}{2} |u(x, t)|^2 dx = \int_{\Omega} \frac{1}{2} |u(x, 0)| dx.
$$

Weak solutions

However, if u is a weak solution, then

$$
\int_{\Omega} \frac{1}{2} |u(x, t)|^2 dx = \int_{\Omega} \frac{1}{2} |u(x, 0)| dx.
$$

might not hold. Technically, the problem is that u might not be regular enough to justify integration by parts in the above derivation.

Motivated by the laws of turbulence Onsager postulated that there is a critical regularity for a weak solution to be a conservative one:

Conjecture, 1949

Let u be a weak solution of incompressible Euler system

- If $u \in \mathbb{C}^{\alpha}$ with $\alpha > \frac{1}{3}$, then the energy is conserved.
- For any $\alpha < \frac{1}{3}$ there exists a weak solution $u \in C^{\alpha}$ which does not conserve the energy.

Weak solutions of the incompressible Euler equations which do not conserve energy were constructed:

- Scheffer '93, Shnirelman '97 constructed examples of weak solutions in $L^2(\mathbb{R}^2\times\mathbb{R})$ compactly supported in space and time
- De Lellis and Székelyhidi 2010 showed how to construct weak solutions for given energy profile

Onsager conjecture:

If weak solution v has $C^{0,\alpha}$ (for $\alpha > \frac{1}{3}$) regularity then it conserves energy. In the opposite case it may not conserve energy.

- The first part of this assertion was proved in
	- P. Constantin, W. E, and E. S. Titi. Onsager's conjecture on the energy conservation for solutions of Euler's equation. Comm. Math. Phys., 1994
	- G. L. Eyink. Energy dissipation without viscosity in ideal hydrodynamics. I. Fourier analysis and local energy transfer. Phys. D, 1994
	- A. Cheskidov, P. Constantin, S. Friedlander, and R. Shvydkoy. Energy conservation and Onsager's conjecture for the Euler equations. Nonlinearity, 2008

The elements of Besov space $B^{\alpha,\infty}_p(\Omega)$, where $\Omega=(0,\,T)\times\mathbb{T}^d$ or $\Omega=\mathbb{T}^d$ are functions w for which the norm

$$
\|w\|_{B^{\alpha,\infty}_{p}(\Omega)} := \|w\|_{L^{p}(\Omega)} + \sup_{\xi \in \Omega} \frac{\|w(\cdot+\xi) - w\|_{L^{p}(\Omega \cap (\Omega-\xi))}}{|\xi|^{\alpha}}
$$

is finite (here $\Omega - \xi = \{x - \xi : x \in \Omega\}$). It is then easy to check that the definition of the Besov spaces implies

$$
\|w^\epsilon - w\|_{L^p(\Omega)} \leq C\epsilon^\alpha \|w\|_{B^\alpha_p,^\infty(\Omega)}
$$

and

$$
\|\nabla w^\epsilon\|_{L^p(\Omega)}\leq C\epsilon^{\alpha-1}\|w\|_{B^{\alpha,\infty}_p(\Omega)}.
$$

Idea of the proof: P. Constantin, W. E, and E. S. Titi. Onsager's conjecture on the energy conservation for solutions of Euler's equation. Comm. Math. Phys., 1994

- take as the test function doubly mollified solution $(\nu^{\epsilon})^{\epsilon}$
- problem: estimate term $\int_{\mathbb{T}^d} \text{Tr} (\textbf{\textit{v}} \otimes \textbf{\textit{v}})^\epsilon \cdot \nabla \textbf{\textit{v}}^\epsilon d \textbf{\textit{x}}$
- o use the identity:

$$
(v \otimes v)^{\epsilon} = v^{\epsilon} \otimes v^{\epsilon} + r_{\epsilon}(v, v) - (v - v^{\epsilon}) \otimes (v - v^{\epsilon}) \text{ where}
$$

$$
||r_{\epsilon}(v, v)||_{L^{3/2}} \leq C\epsilon^{2\alpha} ||v||^{2}_{B^{\alpha, \infty}_{\rho}}
$$

Onsager's conjecture for compressible Euler system

We consider now the isentropic Euler equations,

$$
\partial_t(\rho u) + \operatorname{div}(\rho u \otimes u) + \nabla p(\rho) = 0, \n\partial_t \rho + \operatorname{div}(\rho u) = 0.
$$
\n(1)

We will use the notation for the so-called pressure potential defined as

$$
P(\rho) = \rho \int_1^{\rho} \frac{p(r)}{r^2} dr.
$$

Theorem (Feireisl, Gwiazda, S.-G., Wiedemann, ARMA 2017) ´

Let ϱ , u be a solution of [\(1\)](#page-8-0) in the sense of distributions. Assume $u \in B_3^{\alpha,\infty}$ $\mathcal{L}_3^{\alpha,\infty}((0, T) \times \mathbb{T}^d), \varrho, \varrho u \in \mathcal{B}_3^{\beta,\infty}$ $\mathbb{C}^{ \beta, \infty }_{ 3 } ((0,\,T) \! \times \mathbb{T}^{d}), 0 \leq \underline{\varrho} \leq \varrho \leq \overline{\varrho}$

for some constants ϱ , $\overline{\varrho}$, and $0 \leq \alpha, \beta \leq 1$ such that

$$
\beta > \max\left\{1 - 2\alpha; \frac{1 - \alpha}{2}\right\}.
$$
 (2)

Assume further that $p\in\mathcal{C}^2[\varrho,\overline{\varrho}]$, and, in addition

 $p'(0) = 0$ as soon as $\varrho = 0$.

Then the energy is locally conserved in the sense of distributions on $(0, T) \times \Omega$, i.e.

$$
\partial_t \left(\frac{1}{2} \varrho |u|^2 + P(\varrho) \right) + \text{div} \left[\left(\frac{1}{2} \varrho |u|^2 + p(\varrho) + P(\varrho) \right) u \right] = 0.
$$

Agnieszka Swierczewska | [Energy/entropy conservation](#page-0-0)

Shocks provide examples that show that our assumptions are sharp:

- A shock solution dissipates energy, but ρ and u are in $BV \cap L^{\infty}$, which embeds into $B_3^{1/3,\infty}$ $3^{1/3, \infty}$.
- Hence such a solution satisfies [\(2\)](#page-9-0) with equality but fails to satisfy the conclusion.

The hypothesis on temporal regularity can be relaxed provided

$$
\underline{\varrho}>0
$$

Indeed, in this case $\frac{(\varrho u)^{\epsilon}}{a^{\epsilon}}$ $\frac{\partial u_j}{\partial e^{\epsilon}}$ can be used as a test function in the momentum equation, cf.

T. M. Leslie and R. Shvydkoy. The energy balance relation for weak solutions of the density-dependent Navier- Stokes equations. JDE, 2016.

P. Constantin, W. E, and E. S. Titi.

Onsager's conjecture on the energy conservation for solutions of Euler's equation. Comm. Math. Phys., 1994.

G. L. Eyink.

Energy dissipation without viscosity in ideal hydrodynamics. I. Fourier analysis and local energy transfer. Phys. D, 1994.

螶

J. Duchon and R. Robert.

Inertial energy dissipation for weak solutions of incompressible Euler and Navier-Stokes equations. Nonlinearity, 2000.

A. Cheskidov, P. Constantin, S. Friedlander, and R. Shvydkoy.

Energy conservation and Onsager's conjecture for the Euler equations. Nonlinearity, 2008.

螶

R. E. Caflisch, I. Klapper, and G. Steele.

Remarks on singularities, dimension and energy dissipation for ideal hydrodynamics and MHD. Comm. Math. Phys., 1997.

E. Kang and J. Lee.

Remarks on the magnetic helicity and energy conservation for ideal magneto-hydrodynamics. Nonlinearity, 2007.

R. Shvydkoy.

On the energy of inviscid singular flows. J. Math. Anal. Appl., 2009.

R. Shvydkoy.

Lectures on the Onsager conjecture. Discrete Contin. Dyn. Syst. Ser. S, 2010.

E. Feireisl, P. Gwiazda, A. Świerczewska-Gwiazda, and E. Wiedemann.

Regularity and Energy Conservation for the Compressible Euler Equations. Arch. Rational Mech. Anal., 2017.

S.

J. Robinson, J. L. Rodrigo, J. W. D. Skipper.

Energy conservation in the 3D Euler equations on $\mathcal{T}^2\times\mathbb{R}_+$ arXiv:, (1611.00181), 2017

量 C. Yu.

Energy conservation for the weak solutions of the compressible Navier–Stokes equations. Arch. Rational Mech. Anal., 2017.

T. M. Leslie and R. Shvydkoy.

The energy balance relation for weak solutions of the density-dependent Navier-Stokes equations. J. Differential Equations, 2016.

T. D. Drivas and G. L. Eyink.

An Onsager singularity theorem for turbulent solutions of compressible Euler equations. to appear in Comm. in Math. Physics, 2017.

C. Bardos, E. Titi.

Onsager's Conjecture for the Incompressible Euler Equations in Bounded Domains. arXiv, (1707.03115), 2017.

- It is easy to notice similarities in the statements regarding sufficient regularity conditions guaranteeing energy/entropy conservation for various systems of equations of fluid dynamics.
- Especially the differentiability exponent of $\frac{1}{3}$ is a recurring condition.
- One might therefore anticipate that a general statement could be made, which would cover all the above examples and more. Indeed, consider a general conservation law of the form

 $div_X(G(U(X))) = 0.$

We consider the conservation law of the form

$$
\operatorname{div}_X(G(U(X)))=0. \hspace{1.5cm} (3)
$$

Here $U: \mathcal{X} \to \mathcal{O}$ is an unknown and $G: \mathcal{O} \to \mathbb{M}^{n \times (d+1)}$ is a given, where $\mathcal X$ is an open subset of $\mathbb R^{d+1}$ or $\mathbb T^3 \times \mathbb R$ and the set $\mathcal O$ is open in \mathbb{R}^n . It is easy to see that any classical solution to (3) satisfies also

$$
\text{div}_X(Q(U(X)))=0,\qquad \qquad (4)
$$

where $Q: \mathcal{O} \rightarrow \mathbb{R}^{s \times (d+1)}$ is a smooth function such that

$$
D_UQ_j(U)=\mathfrak{B}(U)D_UG_j(U), \text{ for all } U\in\mathcal{O}, j\in 0,\cdots,k, \quad (5)
$$

for some smooth function $\mathfrak{B}:\mathcal{O}\to \mathbb{M}^{s\times n}.$ The function Q is called a *companion* of G and equation (4) is called a *companion* law of the conservation law (3) .

How much regularity of a weak solution is required so that it also satisfies the companion law?

Theorem

Let $U \in B_3^{\alpha,\infty}$ $\frac{\partial \alpha}{\partial 3}(\mathcal{X};\mathcal{O})$ be a weak solution of [\(3\)](#page-15-0) with $\alpha>\frac{1}{3}$. Assume that $G \in \mathrm{C}^2(\mathcal{O};\mathbb{M}^{n\times (d+1)})$ is endowed with a companion law with flux $Q \in C(\mathcal{O}; \mathbb{M}^{s \times (d+1)})$ for which there exists $\mathfrak{B}\in \mathrm{C}^1(\mathcal{O};\mathbb{M}^{s\times n})$ related through identity (5) and the essential image of U is compact in \mathcal{O} . Then U is a weak solution of the companion law [\(4\)](#page-16-0) with the flux Q.

-
- P. Gwiazda, M. Michálek and A. Świerczewska-Gwiazda,

A note on weak solutions of conservation laws and energy/entropy conservation. arxiv.1706.10154, 2017.

- **•** the generality of the above theorem is achieved at the expense of optimality of the assumptions.
- However given additional information on the structure of the problem at hand one might be able to relax some of these assumptions.
- the theorem provides for instance a conservation of energy result for the system of polyconvex elastodynamics, compressible hydrodynamics et al.
- **O T**. Debiec, P. Gwiazda, and A. Świerczewska-Gwiazda, A tribute to conservation of energy for weak solutions arXiv:1707.09794, 2017.

Thank you for your attention