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Michálek and Emil Wiedemann

University of Warsaw

Roztoky, July 3rd, 2017
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Introduction: the principle of conservation of energy
for classical solutions

Let us first focus our attention on the incompressible Euler system

∂tu + div(u ⊗ u) +∇p = 0,

div u = 0,

If u is a classical solution, then multiplying the balance equation by
u we obtain

1

2
∂t |u|2 +

1

2
u · ∇|u|2 + u · ∇p = 0.

Integrating the last equality over the space domain Ω yields

d

dt

∫
Ω

1

2
|u(x , t)|2 dx = 0.

Consequently, integrating over time in (0, t), gives∫
Ω

1

2
|u(x , t)|2 dx =

∫
Ω

1

2
|u(x , 0)| dx .
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Weak solutions

However, if u is a weak solution, then∫
Ω

1

2
|u(x , t)|2 dx =

∫
Ω

1

2
|u(x , 0)| dx .

might not hold. Technically, the problem is that u might not be
regular enough to justify integration by parts in the above
derivation.
Motivated by the laws of turbulence Onsager postulated that there
is a critical regularity for a weak solution to be a conservative one:

Conjecture, 1949

Let u be a weak solution of incompressible Euler system

If u ∈ Cα with α > 1
3 , then the energy is conserved.

For any α < 1
3 there exists a weak solution u ∈ Cα which

does not conserve the energy.
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Onsager conjecture for incompressible Euler system

Weak solutions of the incompressible Euler equations which do not
conserve energy were constructed:

Scheffer ’93, Shnirelman ’97 constructed examples of weak
solutions in L2(R2 × R) compactly supported in space and
time

De Lellis and Székelyhidi 2010 showed how to construct weak
solutions for given energy profile
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Still incompressible case

Onsager conjecture:

If weak solution v has C 0,α (for α > 1
3 ) regularity then it conserves

energy. In the opposite case it may not conserve energy.

The first part of this assertion was proved in

P. Constantin, W. E, and E. S. Titi. Onsager’s conjecture on
the energy conservation for solutions of Euler’s equation.
Comm. Math. Phys., 1994
G. L. Eyink. Energy dissipation without viscosity in ideal
hydrodynamics. I. Fourier analysis and local energy transfer.
Phys. D, 1994
A. Cheskidov, P. Constantin, S. Friedlander, and R. Shvydkoy.
Energy conservation and Onsager’s conjecture for the Euler
equations. Nonlinearity, 2008
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Besov spaces

The elements of Besov space Bα,∞p (Ω), where Ω = (0,T )× Td or
Ω = Td are functions w for which the norm

‖w‖Bα,∞p (Ω) := ‖w‖Lp(Ω) + sup
ξ∈Ω

‖w(·+ ξ)− w‖Lp(Ω∩(Ω−ξ))

|ξ|α

is finite (here Ω− ξ = {x − ξ : x ∈ Ω}).
It is then easy to check that the definition of the Besov spaces
implies

‖w ε − w‖Lp(Ω) ≤ Cεα‖w‖Bα,∞p (Ω)

and
‖∇w ε‖Lp(Ω) ≤ Cεα−1‖w‖Bα,∞p (Ω).
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Idea of the proof: P. Constantin, W. E, and E. S.
Titi. Onsager’s conjecture on the energy
conservation for solutions of Euler’s equation.
Comm. Math. Phys., 1994

take as the test function doubly mollified solution (v ε)ε

problem: estimate term
∫
Td Tr(v ⊗ v)ε · ∇v εdx

use the identity:
(v ⊗ v)ε = v ε ⊗ v ε + rε(v , v)− (v − v ε)⊗ (v − v ε) where
‖rε(v , v)‖L3/2 ≤ Cε2α‖v‖2

Bα,∞p
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Onsager’s conjecture for compressible Euler system
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Compressible Euler system

We consider now the isentropic Euler equations,

∂t(ρu) + div(ρu ⊗ u) +∇p(ρ) = 0,

∂tρ+ div(ρu) = 0.
(1)

We will use the notation for the so-called pressure potential
defined as

P(ρ) = ρ

∫ ρ

1

p(r)

r2
dr .

Agnieszka Świerczewska Energy/entropy conservation



Theorem (Feireisl, Gwiazda, Ś.-G., Wiedemann, ARMA 2017)

Let %, u be a solution of (1) in the sense of distributions. Assume

u ∈ Bα,∞3 ((0,T )×Td), %, %u ∈ Bβ,∞3 ((0,T )×Td), 0 ≤ % ≤ % ≤ %

for some constants %, %, and 0 ≤ α, β ≤ 1 such that

β > max

{
1− 2α;

1− α
2

}
. (2)

Assume further that p ∈ C 2[%, %], and, in addition

p′(0) = 0 as soon as % = 0.

Then the energy is locally conserved in the sense of distributions
on (0,T )× Ω, i.e.

∂t

(
1

2
%|u|2 + P(%)

)
+ div

[(
1

2
%|u|2 + p(%) + P(%)

)
u

]
= 0.
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Sharpness of assumptions

Shocks provide examples that show that our assumptions are
sharp:

A shock solution dissipates energy, but ρ and u are in

BV ∩ L∞, which embeds into B
1/3,∞
3 .

Hence such a solution satisfies (2) with equality but fails to
satisfy the conclusion.
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Time regularity

The hypothesis on temporal regularity can be relaxed provided

% > 0

Indeed, in this case (%u)ε

%ε can be used as a test function in the
momentum equation, cf.

T. M. Leslie and R. Shvydkoy. The energy balance relation for weak

solutions of the density-dependent Navier- Stokes equations. JDE, 2016.
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Agnieszka Świerczewska Energy/entropy conservation



General conservation laws

It is easy to notice similarities in the statements regarding
sufficient regularity conditions guaranteeing energy/entropy
conservation for various systems of equations of fluid
dynamics.

Especially the differentiability exponent of 1
3 is a recurring

condition.

One might therefore anticipate that a general statement could
be made, which would cover all the above examples and more.
Indeed, consider a general conservation law of the form

divX (G (U(X ))) = 0.
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We consider the conservation law of the form

divX (G (U(X ))) = 0. (3)

Here U : X → O is an unknown and G : O →Mn×(d+1) is a
given, where X is an open subset of Rd+1 or T3 ×R and the set O
is open in Rn. It is easy to see that any classical solution to (3)
satisfies also

divX (Q(U(X ))) = 0, (4)

where Q : O → Rs×(d+1) is a smooth function such that

DUQj(U) = B(U)DUGj(U), for all U ∈ O, j ∈ 0, · · · , k, (5)

for some smooth function B : O →Ms×n. The function Q is
called a companion of G and equation (4) is called a companion
law of the conservation law (3).
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How much regularity of a weak solution is required
so that it also satisfies the companion law?

Theorem

Let U ∈ Bα,∞3 (X ;O) be a weak solution of (3) with α > 1
3 .

Assume that G ∈ C2(O;Mn×(d+1)) is endowed with a companion
law with flux Q ∈ C(O;Ms×(d+1)) for which there exists
B ∈ C1(O;Ms×n) related through identity (5) and the essential
image of U is compact in O.
Then U is a weak solution of the companion law (4) with the
flux Q.

P. Gwiazda, M. Michálek and A. Świerczewska-Gwiazda,
A note on weak solutions of conservation laws and energy/entropy
conservation. arxiv.1706.10154, 2017.
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Remarks

the generality of the above theorem is achieved at the expense
of optimality of the assumptions.

However given additional information on the structure of the
problem at hand one might be able to relax some of these
assumptions.

the theorem provides for instance a conservation of energy
result for the system of polyconvex elastodynamics,
compressible hydrodynamics et al.

T. Debiec, P. Gwiazda, and A. Świerczewska-Gwiazda,
A tribute to conservation of energy for weak solutions
arXiv:1707.09794, 2017.
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Thank you for your attention
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