Gauss quadrature and Lanczos algorithm

Miroslav Pranić University of Banja Luka

joint work with Stefano Pozza and Zdeněk Strakoš

MORE Conference, Roztoky, July 31 - August 4, 2017

- Polynomials orthogonal with respect to a linear functional
- How to generalize Gauss quadrature?
- Gauss quadrature and Lanczos algorithm
- Jordan decomposition of complex Jacobi matrices

1. Polynomials orthogonal with respect to a linear functional

References:

T.S. Chihara, An Introduction to Orthogonal Polynomials, 1978

- \bullet \mathcal{P}_n the space of polynomials of degree up to n
- \bullet \mathcal{L} a linear functional on \mathcal{P}_n
- $\mathcal L$ is fully determined by its moments $m_j = \mathcal L(x^j), j = 0, 1, \ldots, n$.
- Any sequence of $n + 1$ complex numbers can be seen as a linear functional on \mathcal{P}_n .
- Hankel matrices of moments

$$
M_j = \left[\begin{array}{cccc} m_0 & m_1 & \dots & m_j \\ m_1 & m_2 & \dots & m_{j+1} \\ \vdots & \vdots & \ddots & \vdots \\ m_j & m_{j+1} & \dots & m_{2j} \end{array} \right]
$$

 $\Delta_i = det(M_i)$

• $\mathcal L$ is said to be positive definite on $\mathcal P_n$ if:

- \bullet m_0, \ldots, m_{2n} are real,
- $\Delta_0, \ldots, \Delta_n$ are positive.

• There exists a distribution function μ such that

$$
\mathcal{L}(p) = \int p(x) d\mu(x) \quad \text{for} \quad p \in \mathcal{P}_n.
$$

• Bilinear form $[p, q] = \mathcal{L}(p q)$ is an inner product on \mathcal{P}_n .

 \bullet $\mathcal L$ is said to be quasi-definite on $\mathcal P_n$ if $\Delta_0, \ldots, \Delta_n$ are different from zero.

- $\bullet \pi_0, \pi_1, \ldots$ is a sequence of orthogonal polynomials w.r. to $\mathcal L$ if: \bullet deg(π_j) = j (π_j is of degree j), \bullet $\mathcal{L}(\pi_i \pi_j) = 0, i < j,$ $\mathcal{L}(\pi_j^2) \neq 0.$
- Sequence π_0, \ldots, π_n of orthogonal polynomials w.r. to $\mathcal L$ exists if and only if $\mathcal L$ is quasi definite on $\mathcal P_n$.
- OPs are unique up to constant factor.
- OPs satisfy three-term recurrence relation

$$
xp_i(x) = \gamma_i p_{i-1}(x) + \alpha_i p_i(x) + \beta_{i+1} p_{i+1}(x)
$$

1 Three-term recurrence relation for orthogonal polynomials

 \bullet $\sqrt{ }$ $p_0(x)$ 1 $\sqrt{ }$ $p_0(x)$ 1 $\sqrt{ }$ θ 1 $p_1(x)$ $p_1(x)$ θ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ \boldsymbol{x} $=T_n$ $+ \beta_n$ $p_{n-1}(x)$ $p_{n-1}(x)$ $p_n(x)$ \bullet α_0 β_1 $\sqrt{ }$ 1 γ_1 α_1 β_2 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array} \end{array}$ $\gamma_2 \quad \alpha_2 \quad \cdots$ $T_n =$ \cdot . β_{n-1} γ_{n-1} α_{n-1}

 $\bullet \ \beta_i \neq 0, \ \gamma_i \neq 0, \quad \text{for} \ \ i = 1, \ldots, n$

 ϕ $\beta_i = \gamma_i$ if OPs are normalized $(T_n$ is complex Jacobi matrix)

2. How to generalize the Gauss quadrature?

References:

S. Pozza, M. P., Z. Strakoš, *Gauss quadrature for quasi-definite linear functionals*, IMA J. Numer. Anal. 37 (2017)

• $\mathcal L$ is positive definite on $\mathcal P_n$

 \bullet

$$
\mathcal{L}(f) \approx \sum_{k=1}^{n} \omega_k f(\lambda_k)
$$

- The nodes λ_k are zeros of the *n*th orthogonal polynomial.
- The weights are given by the formula for the interpolatory quadrature.
- Computations are done differently.
- G1: the n-node Gauss quadrature attains the maximal algebraic degree of exactness $2n-1$.
- G2: it is well-defined and it is unique. Moreover, Gauss quadratures with a smaller number of nodes also exist and they are unique.
- \bullet G3: the *n*-node Gauss quadrature of a function f can be written in the form

$$
m_0 \mathbf{e}_1^T f(J_n) \mathbf{e}_1,
$$

where J_n is the Jacobi matrix containing the coefficients from the three-term recurrence relation for orthonormal polynomials associated with \mathcal{L} ; $m_0 = \mathcal{L}(x^0).$ We do not have to use orthonormal polynomials.

2 Gauss quadrature for quasi definite \mathcal{L}

 \bullet

$$
\mathcal{L}(f) = \sum_{i=1}^{\ell} \sum_{h=0}^{s_i-1} A_{i,h} f^{(h)}(z_i) + R_n(f), \quad n = s_1 + \ldots + s_{\ell}
$$

• Its degree of exactness is at least $2n - 1$ if and only if:

- \bullet it is exact on \mathcal{P}_{n-1}
- **2** $(x-z_1)^{s_1}(x-z_2)^{s_2}\dots(x-z_\ell)^{s_\ell}$ is *n*th orthogonal polynomial with respect to $\mathcal L$
- quadrature $= \mathcal{L}(H_{n-1})$
- H_{n-1} the interpolating polynomial of f in the nodes z_i of multiplicities s_i
- Should we call it Gauss quadrature? (G1, G2 and G3)

Theorem

There exists the quadrature of form

$$
\mathcal{L}(f) = \sum_{i=1}^{\ell} \sum_{j=0}^{s_i-1} \omega_{i,j} f^{(j)}(\lambda_i) + R_n(f)
$$

satisfying all three properties G1, G2 and G3 if and only if

 $\mathcal L$ is quasi-definite on $\mathcal P_n$.

3. Gauss quadrature and Lanczos algorithm

References:

S. Pozza, M. P., Z. Strakoš, Lanczos algorithm and the complex Gauss quadrature, 2017, submitted

- \bullet Input: A , v , w
- $\tilde{\mathcal{L}}(f) = \mathbf{w}^* f(A) \mathbf{v}$
- \bullet After *n* steps of Lanczos we have computed:

$$
T_n, \quad \mathbf{v}_j = \phi_j(A) \mathbf{v}, \quad \mathbf{w}_j, \quad j = 0, \dots, n-1.
$$

 ϕ_j are orthogonal polynomials w.r. to $\tilde{\mathcal{L}} \Rightarrow$

 $m_0 \mathbf{e}_1^T f(T_n) \mathbf{e}_1$ is the Gauss quadrature for $\tilde{\mathcal{L}}$

- \bullet It is possible to perform *n* steps of Lanczos if and only if $\tilde{\mathcal{L}}$ is quasi-definite on \mathcal{P}_n .
- \bullet There is a breakdown in the step n if and only if

$$
\Delta_j \neq 0, \quad j = 0, \dots, n, \quad \Delta_{n+1} = 0.
$$

- If the quasi-definite linear functional on \mathcal{P}_n is given by $\tilde{\mathcal{L}}(f) = \mathbf{w}^* f(A)\mathbf{v}$, then the corresponding Gauss quadrature can be constructed by performing n steps of the Lanczos algorithm. For such functionals we can say that the Lanczos algorithm is a matrix formulation of the Gauss quadrature.
-

$$
\mathbf{w}^* A^k \mathbf{v} = m_k, \ \ k = 0, \dots, 2n - 1.
$$

- If the quasi-definite linear functional on \mathcal{P}_n is given by $\tilde{\mathcal{L}}(f) = \mathbf{w}^* f(A)\mathbf{v}$, then the corresponding Gauss quadrature can be constructed by performing n steps of the Lanczos algorithm. For such functionals we can say that the Lanczos algorithm is a matrix formulation of the Gauss quadrature.
- Can we say the same for any linear functional $\mathcal L$ quasi-definite on $\mathcal P_n$? In order to construct the *n*-weight Gauss quadrature for \mathcal{L} , one needs only the first 2n moments m_k of $\mathcal{L}, k = 0, \ldots, 2n - 1$.

In general, there always exist a square matrix A and vectors \bf{v} and \bf{w} such that

$$
\mathbf{w}^* A^k \mathbf{v} = m_k, \ \ k = 0, \dots, 2n - 1.
$$

- Let the moments m_0, \ldots, m_{2n-1} of quasi-definite $\mathcal L$ be real.
- \bullet f : R \longrightarrow R
- \bullet The nodes and weights in GQ for $\mathcal L$ can be complex numbers.
- Is it a problem?
- If the input A , v, w of Lanczos algorithm is real, then it is possible to avoid

- Let the moments m_0, \ldots, m_{2n-1} of quasi-definite $\mathcal L$ be real.
- \bullet f : R \longrightarrow R
- \bullet The nodes and weights in GQ for $\mathcal L$ can be complex numbers.
- Is it a problem?
- If the input A, v, w of Lanczos algorithm is real, then it is possible to avoid complex number computation, i.e., the number

$$
m_0 \mathbf{e}_1^T f(T_n) \mathbf{e}_1
$$

is real.

Theorem

Let $\mathcal L$ be a quasi-definite linear functional on $\mathcal P_n$ whose moments m_0, \ldots, m_{2n-1} are real, and let \mathcal{G}_n be associated Gauss quadrature

$$
\mathcal{G}_n(f) = \sum_{i=1}^{\ell} \sum_{j=0}^{s_i-1} \omega_{i,j} f^{(j)}(\lambda_i).
$$

Then the following holds:

- **1** For each $\lambda_i \notin \mathbb{R}$ with multiplicity s_i there is a node $\lambda_m = \overline{\lambda}_i$ with the same multiplicity.
- **2** For every $\lambda_i \in \mathbb{R}$ we have that $\omega_{i,j} \in \mathbb{R}$, for $j = 0, \ldots, s_i 1$. If $\lambda_i \notin \mathbb{R}$ and $\lambda_m = \overline{\lambda}_i$, then $\omega_{m,i} = \overline{\omega}_{i,j}$ for $j = 0, \ldots, s_i - 1$.
- **3** If $f: \mathbb{R} \longrightarrow \mathbb{R}$ is such that $f^{(j)}(\bar{\lambda}_i) = \overline{f^{(j)}(\lambda_i)}$ for $i = 1, \ldots, \ell$ and $j = 0, \ldots, s_i - 1$, then $\mathcal{G}_n(f)$ is a real number.

4. Jordan decomposition of complex Jacobi matrices

References:

S. Pozza, M. P., Z. Strakoš, Lanczos algorithm and the complex Gauss quadrature, 2017, submitted

The columns $\mathbf{w}_t, t = 1, \ldots, n$, of the matrix W and the rows \mathbf{v}_t of W^{-1} in the Jordan decomposition of the complex Jacobi matrix

$$
J_n = W \Lambda W^{-1}
$$

can be expressed in terms of nodes and weights in the Gauss quadrature and orthonormal polynomials p:

$$
\mathbf{w}_t = \mathbf{w}^{(i,j)} = \frac{1}{j!} \begin{bmatrix} \mathbf{0}_j \\ p_j^{(j)}(\lambda_i) \\ \vdots \\ p_{n-1}^{(j)}(\lambda_i) \end{bmatrix}, \quad \mathbf{v}_t = \mathbf{v}^{(i,j)} = \sum_{k=j}^{s_i-1} k! \omega_{i,k} \mathbf{w}^{(i,k-j)},
$$

where i is a unique integer between 1 and ℓ , and j is a unique integer between 0 and $s_i - 1$, such that $t = s_0 + s_1 + \cdots + s_{i-1} + j + 1$ with $s_0 = 0$.

- Gauss quadrature can be naturally generalized to approximate quasi-definite linear functionals, where the interconnections with orthogonal polynomials and Lanczos algorithm are analogous to those in the positive definite case.
- Lanczos algorithm is a matrix formulation for GQ.
- The loss with respect to the positive definite case:
	- **1** the nodes can be complex and multiple (real and simple)
	- ² the weights can be complex (positive)

Thank you very much for your attention!