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@ Polynomials orthogonal with respect to a linear functional
@ How to generalize Gauss quadrature?
©® Gauss quadrature and Lanczos algorithm

@ Jordan decomposition of complex Jacobi matrices
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1. Polynomials orthogonal with respect to a linear
functional
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1 Linear functionals on polynomials

@ P, - the space of polynomials of degree up to n
o L - a linear functional on P,

L is fully determined by its moments m; = £(z?), j =0,1,...,n.

o Any sequence of n + 1 complex numbers can be seen as a linear functional on

Pn.

e Hankel matrices of moments

mo mi my

mi ma mj+1
M, = ,

mj  Mj+1 m2;

(] A]' = det(Mj)



o L is said to be positive definite on P, if:

@ mo,...,may, are real,
Q Ao,...,A, are positive.

o There exists a distribution function p such that

L(p) = / p@)du(z) for pe P

e Bilinear form [p,q] = L(p¢) is an inner product on Py.

o L is said to be quasi-definite on Py, if Ag,...,A,, are different from zero.



1 Orthogonal polynomials w.r. to quasi definite £

@ Ty, 1, ... is a sequence of orthogonal polynomials w.r. to £ if:
@ deg(m;) = j (m; is of degree j),
(2] [,(TFiﬂj) =0,i<jy,
@ L(r}) #0.

@ Sequence 7o, ..., T, of orthogonal polynomials w.r. to £ exists if and only if
L is quasi definite on P,,.

@ OPs are unique up to constant factor.

o OPs satisfy three-term recurrence relation

pi(z) = vipi—1(x) + aspi(x) + Bit1pit1(x)



1 Three-term recurrence relation for orthogonal polynomials
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@ 8; #0,v #0, for i=1,...,n

e Bi =~ if OPs are normalized (T, is complex Jacobi matrix)



2. How to generalize the Gauss quadrature?
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al Gauss quadrature

e L is positive definite on P,

L(f)~ D wi FOw)

o The nodes A\ are zeros of the nth orthogonal polynomial.
e The weights are given by the formula for the interpolatory quadrature.

o Computations are done differently.



2 Properties of the (cl

o G1: the n-node Gauss quadrature attains the maximal algebraic degree of
exactness 2n — 1.

o G2: it is well-defined and it is unique. Moreover, Gauss quadratures with a
smaller number of nodes also exist and they are unique.

o G3: the n-node Gauss quadrature of a function f can be written in the form
mo e’_lrf(l]n)ela

where J,, is the Jacobi matrix containing the coefficients from the three-term
recurrence relation for orthonormal polynomials associated with £;

mo = L(z%).

We do not have to use orthonormal polynomials.



2 Gauss quadrature for quasi definite £

£ s;—1
L= "3 AinfP @)+ Ba(f), n=sit...+s
i=1 h=0
o Its degree of exactness is at least 2n — 1 if and only if:

Q it is exact on Pp_1
O (r—21)" (x — 22)°% ... (z — 2¢)° is nth orthogonal polynomial with
respect to L
o quadrature = L(Hp—1)

e H,_1 - the interpolating polynomial of f in the nodes z; of multiplicities s;

Should we call it Gauss quadrature? (G1, G2 and G3)



Theorem

There exists the quadrature of form

2 s;—1

L) =D D> wis Y0 + Ra(f)
=1 j=0
satisfying all three properties G1, G2 and G3
if and only if

L is quasi-definite on P,,.



3. Gauss quadrature and Lanczos algorithm
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Lancos algorithm

Input: A, v, w

L(f) =w"f(A)v

o After n steps of Lanczos we have computed:

Tn7 Vj:¢j(A)V, Wi, .72077”71

¢; are orthogonal polynomials w.r. to L=

mo elT f(Tn)er is the Gauss quadrature for L

It is possible to perform n steps of Lanczos if and only if
L is quasi-definite on P,,.

@ There is a breakdown in the step n if and only if

Aj#0, j=0,...,n, App1=0.

14 / 21



gorithm

o If the quasi-definite linear functional on P, is given by f,( f)=w*f(A)v, then
the corresponding Gauss quadrature can be constructed by performing n steps
of the Lanczos algorithm. For such functionals we can say that the Lanczos
algorithm is a matrix formulation of the Gauss quadrature.
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o If the quasi-definite linear functional on P, is given by £(f) = w* f(A)v, then
the corresponding Gauss quadrature can be constructed by performing n steps
of the Lanczos algorithm. For such functionals we can say that the Lanczos
algorithm is a matrix formulation of the Gauss quadrature.

o Can we say the same for any linear functional L quasi-definite on Py, ?
In order to construct the n-weight Gauss quadrature for £, one needs only the
first 2n moments my of £, k=0,...,2n — 1.

In general, there always exist a square matrix A and vectors v and w such that

w AV =my, k=0,...,2n— 1.



3 Linear functionals with real moments

@ Let the moments mo, ..., man—1 of quasi-definite £ be real.
o f:R— R
@ The nodes and weights in GQ for £ can be complex numbers.

o Is it a problem?
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3 Linear functionals with real moments

@ Let the moments mo, ..., man—1 of quasi-definite £ be real.

o f:R— R

@ The nodes and weights in GQ for £ can be complex numbers.
o Is it a problem?

o If the input A, v,w of Lanczos algorithm is real, then it is possible to avoid
complex number computation, i.e., the number

moei f(Tn)e

is real.
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3 GQ for quasi definite £ with real moments

Theorem

Let £ be a quasi-definite linear functional on P,, whose moments myo, ..., may_1 are
real, and let G,, be associated Gauss quadrature

£ s;—1

Gn(f) = Z Z wi; FI ().

i=1 j=0
Then the following holds:

@ For each A; ¢ R with multiplicity s; there is a node A\, = \; with the same
multiplicity.

@ For every A\; € R we have that w;; €R, for j =0,...,8 — 1. If A; ¢ R and
Am = A, then wy, j =w;; for j =0,...,s — 1.

@ If f: R — R is such that fO)(X;) = fG)(\;) fori =1,...,¢ and
j=0,...,8 — 1, then G,(f) is a real number.



4. Jordan decomposition of complex Jacobi matrices
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n decomposition of Jacobi

The columns wy, t = 1,...,n, of the matrix W and the rows v, of W~! in the
Jordan decomposition of the complex Jacobi matrix

Jo=WAW™!

can be expressed in terms of nodes and weights in the Gauss quadrature and
orthonormal polynomials p:

0,
(4) ) s;—1
. 1 P ()\z) L. L o
we = witd) = = J vy = v = E : Kl w; e w9,
N Pt
()

where 7 is a unique integer between 1 and ¢, and j is a unique integer between 0 and
si—1,such that t =so+s1+ -+ si—1 +j+ 1 with so =0.
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uding remz

o Gauss quadrature can be naturally generalized to approximate quasi-definite
linear functionals, where the interconnections with orthogonal polynomials and
Lanczos algorithm are analogous to those in the positive definite case.

o Lanczos algorithm is a matrix formulation for GQ.

@ The loss with respect to the positive definite case:

@ the nodes can be complex and multiple (real and simple)
@ the weights can be complex (positive)



Thank you very much for your attention!



