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1. Polynomials orthogonal with respect to a linear
functional

References:

T.S. Chihara, An Introduction to Orthogonal Polynomials, 1978
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1 Linear functionals on polynomials

Pn - the space of polynomials of degree up to n

L - a linear functional on Pn

L is fully determined by its moments mj = L(xj), j = 0, 1, . . . , n.

Any sequence of n+ 1 complex numbers can be seen as a linear functional on
Pn.

Hankel matrices of moments

Mj =


m0 m1 . . . mj

m1 m2 . . . mj+1

...
...

. . .
...

mj mj+1 . . . m2j


∆j = det(Mj)
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1 Definitness of a linear functional

L is said to be positive definite on Pn if:

1 m0, . . . ,m2n are real,
2 ∆0, . . . ,∆n are positive.

There exists a distribution function µ such that

L(p) =

∫
p(x)dµ(x) for p ∈ Pn.

Bilinear form [p, q] = L(p q) is an inner product on Pn.

L is said to be quasi-definite on Pn if ∆0, . . . ,∆n are different from zero.
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1 Orthogonal polynomials w.r. to quasi definite L

π0, π1, . . . is a sequence of orthogonal polynomials w.r. to L if:

1 deg(πj) = j (πj is of degree j),
2 L(πi πj) = 0, i < j,
3 L(π2

j ) 6= 0.

Sequence π0, . . . , πn of orthogonal polynomials w.r. to L exists if and only if
L is quasi definite on Pn.

OPs are unique up to constant factor.

OPs satisfy three-term recurrence relation

xpi(x) = γipi−1(x) + αipi(x) + βi+1pi+1(x)
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1 Three-term recurrence relation for orthogonal polynomials

x


p0(x)
p1(x)

...
pn−1(x)

 = Tn


p0(x)
p1(x)

...
pn−1(x)

 + βn


0
0
...

pn(x)



Tn =



α0 β1
γ1 α1 β2

γ2 α2

. . .

. . .
. . . βn−1

γn−1 αn−1


βi 6= 0, γi 6= 0, for i = 1, . . . , n

βi = γi if OPs are normalized (Tn is complex Jacobi matrix)

7 / 21



2. How to generalize the Gauss quadrature?

References:

S. Pozza, M. P., Z. Strakoš, Gauss quadrature for quasi-definite linear functionals,
IMA J. Numer. Anal. 37 (2017)
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2 Classical Gauss quadrature

L is positive definite on Pn

L(f) ≈
n∑

k=1

ωk f(λk)

The nodes λk are zeros of the nth orthogonal polynomial.

The weights are given by the formula for the interpolatory quadrature.

Computations are done differently.
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2 Properties of the (classical) Gauss quadrature

G1: the n-node Gauss quadrature attains the maximal algebraic degree of
exactness 2n− 1.

G2: it is well-defined and it is unique. Moreover, Gauss quadratures with a
smaller number of nodes also exist and they are unique.

G3: the n-node Gauss quadrature of a function f can be written in the form

m0 e
T
1 f(Jn)e1,

where Jn is the Jacobi matrix containing the coefficients from the three-term
recurrence relation for orthonormal polynomials associated with L;
m0 = L(x0).
We do not have to use orthonormal polynomials.
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2 Gauss quadrature for quasi definite L

L(f) =
∑̀
i=1

si−1∑
h=0

Ai,h f
(h)(zi) +Rn(f), n = s1 + . . .+ s`

Its degree of exactness is at least 2n− 1 if and only if:

1 it is exact on Pn−1

2 (x− z1)s1(x− z2)s2 . . . (x− z`)s` is nth orthogonal polynomial with
respect to L

quadrature = L(Hn−1)

Hn−1 - the interpolating polynomial of f in the nodes zi of multiplicities si

Should we call it Gauss quadrature? (G1, G2 and G3)
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Theorem

There exists the quadrature of form

L(f) =
∑̀
i=1

si−1∑
j=0

ωi,j f
(j)(λi) +Rn(f)

satisfying all three properties G1, G2 and G3

if and only if

L is quasi-definite on Pn.
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3. Gauss quadrature and Lanczos algorithm

References:

S. Pozza, M. P., Z. Strakoš, Lanczos algorithm and the complex Gauss quadrature,
2017, submitted
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Lancos algorithm

Input: A,v,w

L̃(f) = w∗f(A)v

After n steps of Lanczos we have computed:

Tn, vj = φj(A)v, wj , j = 0, . . . , n− 1.

φj are orthogonal polynomials w.r. to L̃ ⇒

m0 e
T
1 f(Tn)e1 is the Gauss quadrature for L̃

It is possible to perform n steps of Lanczos if and only if
L̃ is quasi-definite on Pn.

There is a breakdown in the step n if and only if

∆j 6= 0, j = 0, . . . , n, ∆n+1 = 0.
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3 Any Gauss quadrature can be obtained by Lanczos algorithm

If the quasi-definite linear functional on Pn is given by L̃(f) = w∗f(A)v, then
the corresponding Gauss quadrature can be constructed by performing n steps
of the Lanczos algorithm. For such functionals we can say that the Lanczos
algorithm is a matrix formulation of the Gauss quadrature.

Can we say the same for any linear functional L quasi-definite on Pn?
In order to construct the n-weight Gauss quadrature for L, one needs only the
first 2n moments mk of L, k = 0, . . . , 2n− 1.

In general, there always exist a square matrix A and vectors v and w such that

w∗Akv = mk, k = 0, . . . , 2n− 1.
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3 Linear functionals with real moments

Let the moments m0, . . . ,m2n−1 of quasi-definite L be real.

f : R −→ R

The nodes and weights in GQ for L can be complex numbers.

Is it a problem?

If the input A,v,w of Lanczos algorithm is real, then it is possible to avoid
complex number computation, i.e., the number

m0 e
T
1 f(Tn)e1

is real.
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3 GQ for quasi definite L with real moments

Theorem

Let L be a quasi-definite linear functional on Pn whose moments m0, . . . ,m2n−1 are
real, and let Gn be associated Gauss quadrature

Gn(f) =
∑̀
i=1

si−1∑
j=0

ωi,j f
(j)(λi).

Then the following holds:

1 For each λi /∈ R with multiplicity si there is a node λm = λi with the same
multiplicity.

2 For every λi ∈ R we have that ωi,j ∈ R, for j = 0, . . . , si − 1. If λi /∈ R and
λm = λi, then ωm,j = ωi,j for j = 0, . . . , si − 1.

3 If f : R −→ R is such that f (j)(λ̄i) = f (j)(λi) for i = 1, . . . , ` and
j = 0, . . . , si − 1, then Gn(f) is a real number.
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4. Jordan decomposition of complex Jacobi matrices

References:

S. Pozza, M. P., Z. Strakoš, Lanczos algorithm and the complex Gauss quadrature,
2017, submitted
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4 Jordan decomposition of Jacobi matrices

The columns wt, t = 1, . . . , n, of the matrix W and the rows vt of W−1 in the
Jordan decomposition of the complex Jacobi matrix

Jn = W ΛW−1

can be expressed in terms of nodes and weights in the Gauss quadrature and
orthonormal polynomials p:

wt = w(i,j) =
1

j!


0j

p
(j)
j (λi)

...

p
(j)
n−1(λi)

 , vt = v(i,j) =

si−1∑
k=j

k!ωi,k w
(i,k−j),

where i is a unique integer between 1 and `, and j is a unique integer between 0 and
si − 1, such that t = s0 + s1 + · · ·+ si−1 + j + 1 with s0 = 0.
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Concluding remarks

Gauss quadrature can be naturally generalized to approximate quasi-definite
linear functionals, where the interconnections with orthogonal polynomials and
Lanczos algorithm are analogous to those in the positive definite case.

Lanczos algorithm is a matrix formulation for GQ.

The loss with respect to the positive definite case:

1 the nodes can be complex and multiple (real and simple)
2 the weights can be complex (positive)
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Thank you very much for your attention!
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