Gauss quadrature and Lanczos algorithm

Miroslav Pranić University of Banja Luka

joint work with Stefano Pozza and Zdeněk Strakoš

MORE Conference, Roztoky, July 31 - August 4, 2017

Outline

- Openius Polynomials orthogonal with respect to a linear functional
- 2 How to generalize Gauss quadrature?
- 3 Gauss quadrature and Lanczos algorithm
- 4 Jordan decomposition of complex Jacobi matrices

1. Polynomials orthogonal with respect to a linear functional

References:

T.S. Chihara, An Introduction to Orthogonal Polynomials, 1978

1 Linear functionals on polynomials

- \mathcal{P}_n the space of polynomials of degree up to n
- \mathcal{L} a linear functional on \mathcal{P}_n
- \mathcal{L} is fully determined by its moments $m_j = \mathcal{L}(x^j), j = 0, 1, \dots, n$.
- Any sequence of n+1 complex numbers can be seen as a linear functional on \mathcal{P}_n .
- Hankel matrices of moments

$$M_{j} = \begin{bmatrix} m_{0} & m_{1} & \dots & m_{j} \\ m_{1} & m_{2} & \dots & m_{j+1} \\ \vdots & \vdots & \ddots & \vdots \\ m_{j} & m_{j+1} & \dots & m_{2j} \end{bmatrix}$$

• $\Delta_j = det(M_j)$

1 Definitness of a linear functional

- \mathcal{L} is said to be positive definite on \mathcal{P}_n if:
 - $\mathbf{0}$ m_0,\ldots,m_{2n} are real,
 - extstyle ext
- There exists a distribution function μ such that

$$\mathcal{L}(p) = \int p(x)d\mu(x)$$
 for $p \in \mathcal{P}_n$.

- Bilinear form $[p,q] = \mathcal{L}(pq)$ is an inner product on \mathcal{P}_n .
- \mathcal{L} is said to be quasi-definite on \mathcal{P}_n if $\Delta_0, \ldots, \Delta_n$ are different from zero.

1 Orthogonal polynomials w.r. to quasi definite \mathcal{L}

- π_0, π_1, \ldots is a sequence of orthogonal polynomials w.r. to \mathcal{L} if:
 - \bullet deg $(\pi_j) = j \ (\pi_j \text{ is of degree } j),$
 - $2 \mathcal{L}(\pi_i \pi_j) = 0, i < j,$
 - **3** $\mathcal{L}(\pi_j^2) \neq 0$.
- Sequence π_0, \ldots, π_n of orthogonal polynomials w.r. to \mathcal{L} exists if and only if \mathcal{L} is quasi definite on \mathcal{P}_n .
- OPs are unique up to constant factor.
- OPs satisfy three-term recurrence relation

$$xp_i(x) = \gamma_i p_{i-1}(x) + \alpha_i p_i(x) + \beta_{i+1} p_{i+1}(x)$$

1 Three-term recurrence relation for orthogonal polynomials

•

$$x \begin{bmatrix} p_0(x) \\ p_1(x) \\ \vdots \\ p_{n-1}(x) \end{bmatrix} = T_n \begin{bmatrix} p_0(x) \\ p_1(x) \\ \vdots \\ p_{n-1}(x) \end{bmatrix} + \beta_n \begin{bmatrix} 0 \\ 0 \\ \vdots \\ p_n(x) \end{bmatrix}$$

•

$$T_{n} = \begin{bmatrix} \alpha_{0} & \beta_{1} & & & & & \\ \gamma_{1} & \alpha_{1} & \beta_{2} & & & & & \\ & \gamma_{2} & \alpha_{2} & \ddots & & & & \\ & & \ddots & \ddots & \beta_{n-1} & \\ & & & \gamma_{n-1} & \alpha_{n-1} \end{bmatrix}$$

- $\beta_i \neq 0, \gamma_i \neq 0,$ for $i = 1, \dots, n$
- $\beta_i = \gamma_i$ if OPs are normalized $(T_n \text{ is complex Jacobi matrix})$

2. How to generalize the Gauss quadrature?

References:

S. Pozza, M. P., Z. Strakoš, Gauss quadrature for quasi-definite linear functionals, IMA J. Numer. Anal. $37\ (2017)$

2 Classical Gauss quadrature

• \mathcal{L} is positive definite on \mathcal{P}_n

•

$$\mathcal{L}(f) \approx \sum_{k=1}^{n} \omega_k f(\lambda_k)$$

- The nodes λ_k are zeros of the nth orthogonal polynomial.
- The weights are given by the formula for the interpolatory quadrature.
- Computations are done differently.

2 Properties of the (classical) Gauss quadrature

- G1: the *n*-node Gauss quadrature attains the maximal algebraic degree of exactness 2n-1.
- G2: it is well-defined and it is unique. Moreover, Gauss quadratures with a smaller number of nodes also exist and they are unique.
- G3: the n-node Gauss quadrature of a function f can be written in the form

$$m_0 \mathbf{e}_1^T f(J_n) \mathbf{e}_1,$$

where J_n is the Jacobi matrix containing the coefficients from the three-term recurrence relation for orthonormal polynomials associated with \mathcal{L} ; $m_0 = \mathcal{L}(x^0)$.

We do not have to use orthonormal polynomials.

2 Gauss quadrature for quasi definite \mathcal{L}

 $\mathcal{L}(f) = \sum_{i=1}^{\ell} \sum_{h=0}^{s_i-1} A_{i,h} f^{(h)}(z_i) + R_n(f), \quad n = s_1 + \ldots + s_{\ell}$

- Its degree of exactness is at least 2n-1 if and only if:
 - \bullet it is exact on \mathcal{P}_{n-1}
 - ② $(x-z_1)^{s_1}(x-z_2)^{s_2}\dots(x-z_\ell)^{s_\ell}$ is nth orthogonal polynomial with respect to $\mathcal L$
- quadrature = $\mathcal{L}(H_{n-1})$

•

- \bullet H_{n-1} the interpolating polynomial of f in the nodes z_i of multiplicities s_i
- Should we call it Gauss quadrature? (G1, G2 and G3)

Theorem

There exists the quadrature of form

$$\mathcal{L}(f) = \sum_{i=1}^{\ell} \sum_{j=0}^{s_i - 1} \omega_{i,j} f^{(j)}(\lambda_i) + R_n(f)$$

satisfying all three properties G1, G2 and G3 if and only if

 \mathcal{L} is quasi-definite on \mathcal{P}_n .

3. Gauss quadrature and Lanczos algorithm

References:

S. Pozza, M. P., Z. Strakoš, Lanczos algorithm and the complex Gauss quadrature, 2017, submitted

Lancos algorithm

- Input: $A, \mathbf{v}, \mathbf{w}$
- $\tilde{\mathcal{L}}(f) = \mathbf{w}^* f(A) \mathbf{v}$
- \bullet After n steps of Lanczos we have computed:

$$T_n$$
, $\mathbf{v}_j = \phi_j(A) \mathbf{v}$, \mathbf{w}_j , $j = 0, \dots, n-1$.

• ϕ_j are orthogonal polynomials w.r. to $\tilde{\mathcal{L}} \Rightarrow$

$$m_0 \mathbf{e}_1^T f(T_n) \mathbf{e}_1$$
 is the Gauss quadrature for $\tilde{\mathcal{L}}$

- It is possible to perform n steps of Lanczos if and only if $\tilde{\mathcal{L}}$ is quasi-definite on \mathcal{P}_n .
- \bullet There is a breakdown in the step n if and only if

$$\Delta_j \neq 0, \quad j = 0, \dots, n, \quad \Delta_{n+1} = 0.$$

3 Any Gauss quadrature can be obtained by Lanczos algorithm

- If the quasi-definite linear functional on \mathcal{P}_n is given by $\tilde{\mathcal{L}}(f) = \mathbf{w}^* f(A) \mathbf{v}$, then the corresponding Gauss quadrature can be constructed by performing n steps of the Lanczos algorithm. For such functionals we can say that the Lanczos algorithm is a matrix formulation of the Gauss quadrature.
- Can we say the same for any linear functional \mathcal{L} quasi-definite on \mathcal{P}_n ? In order to construct the *n*-weight Gauss quadrature for \mathcal{L} , one needs only the first 2n moments m_k of \mathcal{L} , $k = 0, \ldots, 2n - 1$.

In general, there always exist a square matrix A and vectors \mathbf{v} and \mathbf{w} such that

$$\mathbf{w}^* A^k \mathbf{v} = m_k, \ k = 0, \dots, 2n - 1.$$

3 Any Gauss quadrature can be obtained by Lanczos algorithm

- If the quasi-definite linear functional on \mathcal{P}_n is given by $\tilde{\mathcal{L}}(f) = \mathbf{w}^* f(A) \mathbf{v}$, then the corresponding Gauss quadrature can be constructed by performing n steps of the Lanczos algorithm. For such functionals we can say that the Lanczos algorithm is a matrix formulation of the Gauss quadrature.
- Can we say the same for any linear functional \mathcal{L} quasi-definite on \mathcal{P}_n ? In order to construct the *n*-weight Gauss quadrature for \mathcal{L} , one needs only the first 2n moments m_k of \mathcal{L} , $k = 0, \ldots, 2n - 1$.

In general, there always exist a square matrix A and vectors \mathbf{v} and \mathbf{w} such that

$$\mathbf{w}^* A^k \mathbf{v} = m_k, \ k = 0, \dots, 2n - 1.$$

3 Linear functionals with real moments

- Let the moments m_0, \ldots, m_{2n-1} of quasi-definite \mathcal{L} be real.
- $f: \mathbb{R} \longrightarrow \mathbb{R}$
- The nodes and weights in GQ for \mathcal{L} can be complex numbers.
- Is it a problem?
- If the input $A, \mathbf{v}, \mathbf{w}$ of Lanczos algorithm is real, then it is possible to avoid complex number computation, i.e., the number

$$m_0 \operatorname{e}_1^T f(T_n) \operatorname{e}_1$$

is real.

3 Linear functionals with real moments

- Let the moments m_0, \ldots, m_{2n-1} of quasi-definite \mathcal{L} be real.
- $f: \mathbb{R} \longrightarrow \mathbb{R}$
- The nodes and weights in GQ for \mathcal{L} can be complex numbers.
- Is it a problem?
- If the input $A, \mathbf{v}, \mathbf{w}$ of Lanczos algorithm is real, then it is possible to avoid complex number computation, i.e., the number

$$m_0 \mathbf{e}_1^T f(T_n) \mathbf{e}_1$$

is real.

3 GQ for quasi definite \mathcal{L} with real moments

Theorem

Let \mathcal{L} be a quasi-definite linear functional on \mathcal{P}_n whose moments m_0, \ldots, m_{2n-1} are real, and let \mathcal{G}_n be associated Gauss quadrature

$$G_n(f) = \sum_{i=1}^{\ell} \sum_{j=0}^{s_i-1} \omega_{i,j} f^{(j)}(\lambda_i).$$

Then the following holds:

- For each $\lambda_i \notin \mathbb{R}$ with multiplicity s_i there is a node $\lambda_m = \overline{\lambda}_i$ with the same multiplicity.
- ② For every $\lambda_i \in \mathbb{R}$ we have that $\omega_{i,j} \in \mathbb{R}$, for $j = 0, \ldots, s_i 1$. If $\lambda_i \notin \mathbb{R}$ and $\lambda_m = \overline{\lambda}_i$, then $\omega_{m,j} = \overline{\omega}_{i,j}$ for $j = 0, \ldots, s_i 1$.
- **3** If $f: \mathbb{R} \longrightarrow \mathbb{R}$ is such that $f^{(j)}(\bar{\lambda}_i) = \overline{f^{(j)}(\lambda_i)}$ for $i = 1, ..., \ell$ and $j = 0, ..., s_i 1$, then $\mathcal{G}_n(f)$ is a real number.

4. Jordan decomposition of complex Jacobi matrices

References:

S. Pozza, M. P., Z. Strakoš, Lanczos algorithm and the complex Gauss quadrature, 2017, submitted

4 Jordan decomposition of Jacobi matrices

The columns \mathbf{w}_t , t = 1, ..., n, of the matrix W and the rows \mathbf{v}_t of W^{-1} in the Jordan decomposition of the complex Jacobi matrix

$$J_n = W \Lambda W^{-1}$$

can be expressed in terms of nodes and weights in the Gauss quadrature and orthonormal polynomials p:

$$\mathbf{w}_t = \mathbf{w}^{(i,j)} = \frac{1}{j!} \begin{bmatrix} \mathbf{0}_j \\ p_j^{(j)}(\lambda_i) \\ \vdots \\ p_{n-1}^{(j)}(\lambda_i) \end{bmatrix}, \quad \mathbf{v}_t = \mathbf{v}^{(i,j)} = \sum_{k=j}^{s_i-1} k! \, \omega_{i,k} \, \mathbf{w}^{(i,k-j)},$$

where i is a unique integer between 1 and ℓ , and j is a unique integer between 0 and $s_i - 1$, such that $t = s_0 + s_1 + \cdots + s_{i-1} + j + 1$ with $s_0 = 0$.

Concluding remarks

- Gauss quadrature can be naturally generalized to approximate quasi-definite linear functionals, where the interconnections with orthogonal polynomials and Lanczos algorithm are analogous to those in the positive definite case.
- Lanczos algorithm is a matrix formulation for GQ.
- The loss with respect to the positive definite case:
 - the nodes can be complex and multiple (real and simple)
 - 2 the weights can be complex (positive)

Thank you very much for your attention!