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factorizations (Cholesky, QR etc. applied to A)

AT Ax = AT b⇒ x = (AT A)−1AT b, A = (Q1 Q2)(R1

0
) ⇒ x = R−1

1
QT

1
b

Large and sparse problems
▸ There exist nice implementations of direct methods as LUSOL

(Saunders, ver 7 - 2008), sparse QR factorization (SPQR in
SuiteSparse)
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Introduction: the Problem

Preconditioned iterative solvers: traps

1 The least squares problems are often much less structured than
believed.

2 ⇒ much harder to be solved by iterative approaches, much harder to
find preconditioning

▸ This makes a problem for both complete factorizations of direct
methods and preconditioners.

▸ But the latter suffer more.
▸ Incomplete factorizations for AT A (the simplest idea) are often

the ways to approximate factorization and get a preconditioner.
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▸ This makes a problem for both complete factorizations of direct
methods and preconditioners.

▸ But the latter suffer more.
▸ Incomplete factorizations for AT A (the simplest idea) are often

the ways to approximate factorization and get a preconditioner.

3 What if a sparse problem has a few additional dense rows?
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Introduction: the Problem

Example of a mixed sparse-dense matrix
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Introduction: the Problem

Example of a mixed sparse-dense matrix

Normal equations
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Iterative approaches + approximations may add more flexibility than
the direct methods (based on decompositions):

Hopefully also for treating the dense rows.
▸ Stretching dense rows (splitting them into a bunch of “shorter” rows)⇒ interesting bunch o problems related to the matrix conditioning,

scaling, sparsity patterns
▸ Canonical decomposition of the problem (Dulmage-Mendelsohn) into a

block triangular form ⇒ embedding dense rows into the blocks,
structural versus “graph-bsed” rank-deficiency

treated here – simple overdetermined case, full column rank
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Introduction: the Problem

Example of a mixed sparse-dense matrix

Trouble caused by the dense rows can be observed from more
different angles

▸ The matrix to be factorized (completely/incompletely) is dense
as we saw above

▸ The outer-product of the dense rows makes from the useful
information a noise

Troublemakers to be treated in a special way may be not only dense
rows.

“Bad” columns as?

A = (Ã a) , AT A = (ÃT Ã ÃT a

aT Ã ata
)
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Mixed sparse-dense least squares

Terminology: split the system

A = (As

Ad
) , As ∈ Rms×n, Ad ∈ Rmd×n, b = (bs

bd
) , bs ∈ Rms , bd ∈ Rmd , (1)

with m =ms +md, ms ≥ n, and md ≥ 1 (in general, ms ≫md).

min
x
∥(As

Ad
)x − (bs

bd
)∥

2

. (2)

Set C = AT A, Cs = AT
s As (reduced normal matrix), Cd = AT

d Ad

A lot of previous work on direct methods’ approaches and related problems:
Björck, Duff, 1980; Heath, 1982; Björck, 1984; George, Ng, 1984-1987;
Adlers, Björck, 2000; Avron, Ng, Toledo, 2009 and many others ...
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Mixed sparse-dense least squares

Direct solution of the sparse-dense least squares

Woodbury formula (Guttman, 1946; Woodbury, 1949, 1950): Dense
rows plugged in a posteriori

C−1 = (Cs +Cd)−1 = C−1

s −C−1

s AT
d (Imd

+AdC−1

s AT
d )−1AdC−1

s .

The least squares solution:

x = xs+C−1

s AT
d (Imd

+AdC−1

s AT
d )−1(bd−Adxs) with xs = (AsAT

s )−1AT
s bs.
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x = xs+C−1

s AT
d (Imd

+AdC−1

s AT
d )−1(bd−Adxs) with xs = (AsAT

s )−1AT
s bs.

Sautter trick (Sautter, 1978; see Björck, 1996)

(Cs +Cd)−1AT
d = C−1

s AT
d (Imd

+AdC−1

s AT
d )−1

This can be used to express direct solution more efficiently.
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What if the inverses are only approximate, e.g., from an incomplete
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What if the inverses are only approximate, e.g., from an incomplete
factorization?

Theorem

Assume that ξ is an approximate solution to minxs
∥Asxs − bs∥2 (or

whatever). Define rs = bs −Asξ and rd = bd −Adξ. Then the exact least
squares solution of the whole split problem is equal to x = ξ + Γ, where

Γ = C−1

s AT
s rs +C−1

s AT
d (Imd

+AdC−1

s AT
d )−1(rd −AdC−1

s AT
s rs) (3)
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What if the inverses are only approximate, e.g., from an incomplete
factorization?

Theorem

Assume that ξ is an approximate solution to minxs
∥Asxs − bs∥2 (or

whatever). Define rs = bs −Asξ and rd = bd −Adξ. Then the exact least
squares solution of the whole split problem is equal to x = ξ + Γ, where

Γ = C−1

s AT
s rs +C−1

s AT
d (Imd

+AdC−1

s AT
d )−1(rd −AdC−1

s AT
s rs) (3)

We do not need to solve the sparse least squares exactly

The formulation deals with residuals that represent a basic quantity
inside iterative methods

13 / 34



Mixed sparse-dense least squares

Approximate solution and scaling transformation

Computed factor can be applied as a scaling transformation similarly
as in the direct sparse-dense solvers
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Mixed sparse-dense least squares

Approximate solution and scaling transformation

Computed factor can be applied as a scaling transformation similarly
as in the direct sparse-dense solvers

Also, the transformation is a crucial practical step. See, again, in
Björck, 1996

Cs = LsLT
s (4)

Getting an equivalent problem

min
z
∥(Bs

Bd
) z − (bs

bd
)∥

2

, (5)

Bs = AsL−T
s , Bd = AdL−T

s , z = LT
s x
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Mixed sparse-dense least squares

Transformation + exact decomposition Cs = LsLT
s leads to

Lemma

If Cs = LsL
T
s (exactly) the least squares solution of the transformed split

problem can be written as z = ξ1 + Γ1, where ξ1 is an approximate solution
to the scaled problem minz ∥Bsz − bs∥2 (or whatever), ρs = bs −Bsξ1 and
ρd = bd −Bdξ1 and

Γ1 = BT
s ρs +BT

d (Imd
+BdBT

d )−1(ρd −BdBT
s ρs). (6)

15 / 34



Solving the Least Squares

Choice of ξ

Approximate solution for As overdetermined

min
ξ
∥Bsξ − bs∥2

▸

ξ1 ≈ (BT

s Bs)−1BT

s bs = L−1

s AT

s AsL−T

s L−1

s AT

s bs = L−1

s AT

s bs
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Solving the Least Squares

Choice of ξ

Approximate solution for As overdetermined

min
ξ
∥Bsξ − bs∥2

▸

ξ1 ≈ (BT

s Bs)−1BT

s bs = L−1

s AT

s AsL−T

s L−1

s AT

s bs = L−1

s AT

s bs

If Bd represents a significant part of the problem and its effect
dominates:

min
ξ
∥Bdξ − bd∥2

▸

ξ ≈ B
†
d
bd
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Solving the Least Squares

Scaling + exact Cs = LsLT
s + exact sparse subproblem

Lemma

If Cs = LsL
T
s (exactly), the least squares solution of problem (5) can be

written as z = ξ1 + Γ1, where ξ1 minimizes ∥Bsz − bs∥2 (exactly),
ρs = bs −Bsξ1 and ρd = bd −Bdξ1 and

Γ1 = BT
d (Imd

+BdBT
d )−1ρd. (7)
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Solving the Least Squares

Scaling + exact Cs = LsLT
s + exact sparse subproblem

Lemma

If Cs = LsL
T
s (exactly), the least squares solution of problem (5) can be

written as z = ξ1 + Γ1, where ξ1 minimizes ∥Bsz − bs∥2 (exactly),
ρs = bs −Bsξ1 and ρd = bd −Bdξ1 and

Γ1 = BT
d (Imd

+BdBT
d )−1ρd. (7)

Various ways to evaluate Γ1

Dense least squares minimum in norm

Dense LQ factorization.
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Solving the Least Squares

Algorithm

Preconditioned CGLS algorithm (As, Ad, AT

s
As ≈ L̃sL̃T

s
; z =M−1s))

0. r
(0)
s = bs −Asx(0), r

(0)
d
= bd −Adx(0), w

(0)
s = AT

s
r
(0)
s , w

(0)
d
= AT

d
r
(0)
d

,

z(0) =M−1(w(0)s +w
(0)
d
), p(0) = z(0)

1. for i = 1 ∶ nmax do

2. q
(i−1)
s = Asp(i−1), q

(i−1)
d

= Adp(i−1) α = (w(i−1)
s +w

(i−1)
d

, z(i−1))
(q(i−1)

s , q
(i−1)
s ) + (q(i−1)

d
, q
(i−1)
d
)

3. x(i) = x(i−1) + αp(i−1), r
(i)
s = r

(i−1)
s − αq

(i−1)
s , r

(i)
d
= r
(i−1)
d

−αq
(i−1)
d

4. z(i) =M−1(AT

s
r
(i)
s +AT

d
r
(i)
d
) β = (w(i)s +w

(i)
d

, z(i))
(w(i−1)

s +w
(i−1)
d

, z(i−1))
5. p(i) = z(i) + βp(i−1)

6. end do

Note the difference between CGLS1, CGLS2
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Solving the Least Squares

Algorithm

Preconditioning procedure(rs, rd, w, Cs ≈ L̃sL̃T

s
, Bd = AT

d
L̃−T

s
, chosen mode

(Cholesky or LQ)) The Cholesky mode needs Imd
+BdBT

d
≈ L̃dL̃T

d
/ the LQ

mode needs (Bd Imd
) ≈ (L̃d 0md

) Q̃T

d
.

1. Solve L̃sξ1 = w for ξ1

2. ρd = rd −Bdξ1

3. if mode == Cholesky then

4. u = BT

d
(L̃dL̃T

d
)−1ρd

5. else if mode == LQ then

6. ρs = rs −AsL̃−T

s
ξ1

7. u = L̃−1

s
AT

s
ρs + Q̃d(1 ∶ n, 1 ∶md) ∗ L̃−1

d
∗ (ρd −BdL̃−1

s
AT

s
ρs)

8. end if

9. Solve L̃T

s
z = (ξ1 + u) for z

Can avoid recomputing AT
s rs inside the preconditioner
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Solving the Least Squares

Experimental evaluation

Stopping criterion

C1: Stop if ∥r∥2 < δ1

C2: Stop if

∥AT r∥2∥r∥2 < ∥AT r0∥2∥r0∥2 ∗ δ2,

r residual, r0 initial residual, δ1 = 10
−8 and δ2 = 10

−6.

Intel(R) Core(TM) i5-4590 CPU running at 3.30 GHz, 12 GB of
internal memory. Visual Fortran Intel(R) 64 XE compiler (version
14.0.3.202)
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Solving the Least Squares

Experimental evaluation: II

Most of the matrices from the University of Florida Sparse Matrix
Collection

A prescaled normalizing columns:

▸ A replaced by by AD, where D is diagonal
▸ D2

ii
= 1/∥Aei∥2

▸ ⇒ Entries of AD are all less than one in absolute value.

A row of A to be dense if the number of entries in the row either
exceeds 100 times the average number of entries in a row or is more
than 4 times greater than the number of entries in any row in the
sparse part As.

Removing dense rows can leave As rank deficient: modifying A by
removing any columns of A that correspond to null columns of As.
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Solving the Least Squares

Problem of null columns after removal of the dense part

A = (A1 A2) ≡ (As1
As2

Ad1
Ad2

) , (8)

As has n2 null columns with n2 ≪ n (null As2).

The solution can be expressed as a combination of partial solutions.

Theorem

Let ξ ∈ Rn1 and Γ ∈ Rn1×n2 be the solutions to minz ∥A1z − b∥
2

and

minW ∥A1W −A2∥F , respectively. Then the solution x = (x1

x2

) of the

original problem split conformally is given by (x1

x2

) = (ξ − Γx2

x2

) with

(AT
2

A2 −AT
2

A1Γ)x2 = AT
2

b −AT
2

A1ξ.
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Solving the Least Squares

Table: Statistics: (density= nnz(C)/n2)

Identifier m n nnz(A) nnz(C) nnz(C)/n2

aircraft 7,517 3,754 20,267 1.4 × 10
6 0.200

lp_fit2p 13,525 3,000 50,284 4.5 × 10
6 1.000

scrs8-2r 27,691 14,364 58,439 6.2 × 10
6 0.143

sctap1-2b 33,858 15,390 99,454 2.6 × 10
6 0.050

scsd8-2r 60,550 8,650 190,210 2.0 × 10
6 0.100

scagr7-2r 62,423 35,213 123,239 2.2 × 10
7 0.036

sc205-2r 62,423 35,213 123,239 6.5 × 10
6 0.010

sctap1-2r 63,426 28,830 186,366 9.1 × 10
6 0.050

scfxm1-2r 65,943 37,980 221,388 8.3 × 10
5 0.014

world 67,147 34,506 198,883 3.1 × 10
5 0.001

neos1 133,743 131,581 599,590 1.7 × 10
8 0.027

neos2 134,128 132,568 685,087 2.3 × 10
8 0.033

stormg2-125 172,431 66,185 433,256 1.0 × 10
6 0.002

PDE1 270,595 271,792 990,587 1.6 × 10
10 0.670

neos 515,905 479,119 1,526,794 5.3 × 10
8 0.034

stormg2_1000 1,377,306 528,185 3,459,881 4.2 × 10
7 0.002

cont1_l 1,921,596 1,918,399 7,031,999 8.2 × 10
11 0.667
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Solving the Least Squares

Dense rows not exploited Dense rows exploited

Identifier size_p T _p Its T _i md size_ps T _p Its T _i

aircraft 22,509 0.09 44 0.02 17 3,750 0.01 1 0.01

lp_fit2p 17,985 0.26 ‡ ‡ 25 4,940 0.09 1 0.01

scrs8-2r 86,169 0.94 380 0.50 22 36,385 0.01 1 0.02

sctap1-2b 92,325 0.39 639 0.69 34 68,644 0.01 1 0.01

scsd8-2r 51,885 0.25 90 0.11 50 51,855 0.05 7 0.02

scagr7-2r 197,067 3,34 244 0.53 7 152,977 0.06 1 0.01

sc205-2r 211,257 1.56 72 0.19 8 104,022 0.08 1 0.01

sctap1-2r 172,965 1.47 673 1.90 34 127,712 0.03 1 0.01

scfxm1-2r 227,835 0.59 187 0.51 58 227,823 0.14 33 0.23

neos1 789,471 † † † 74 789,471 5.27 132 3.71

neos2 † † † † 90 795,323 5.46 157 4.84

stormg2-125 395,595 0.27 ‡ ‡ 121 7,978,135 0.22 16 0.29

PDE1 † † † † 1 1,623,531 12.7 696 1.28

neos † † † † 20 2,874,699 4.93 232 15.0

stormg2_1000 3,157,095 19.1 ‡ ‡ 121 3,125,987 19.1 18 2.92

cont1_l † † † † 1 11,510,370 4.82 1 0.33
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Solving the Least Squares

SCSD8-2r_a: size of Cs
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Figure: ∣Cs∣.
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Solving the Least Squares

SCSD8-2r_a: iteration counts + size_p/size(AT A)
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Figure: Problem Meszaros/scsd8− 2r. Iteration counts (left), and ratio of the
preconditioner size to the size of AT A (right) as the number of dense rows that
are removed from A is increased.
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Solving the Least Squares

SCSD8-2r_a: timings
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Figure: Problem Meszaros/scsd8− 2r. Time to compute the preconditioner
(left) and time for CGLS (right) as the number of dense rows that are removed
from A is increased.
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Solving the Least Squares

stormg2_1000: size of Cs
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Figure: Problem Mittelmann/stormg2_1000. Size of AT

s As.

30 / 34



Solving the Least Squares

stormg2_1000: large problem: iteration counts + size_p/size(AT A)
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Figure: Problem Mittelmann/stormg2_1000. Iteration counts (left), Ratio of
the preconditioner size to the size of AT A (right) as the number of dense rows
that are removed from A is increase.
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Solving the Least Squares

stormg2_1000: large problem: timings
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Figure: Problem Mittelmann/stormg2_1000. Time to compute the
preconditioner (left), time for the preconditioned iterations (right).
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Solving the Least Squares

Conclusions

Solving linear least squares problems where A has a number of dense
rows.

A new approach that processes the dense rows separately within a
conjugate gradient method

Not all the formulas above work in practice !!!! In our case, the best
has been the simplest one.

▸ The dense rows must be treated separately
▸ The dense rows must be considered (Avron, Ng and Toledo use

an approach that takes them out from the consideration within a
QR-based scheme - we faced significant troubles in our PCGLS
based on Cholesky following this approach)
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Last but not least

Thank you for your attention!
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