Mixed sparse-dense linear least squares and preconditioned iterative methods

Miroslav Tůma

Faculty of Mathematics and Physics Charles University mirektuma@karlin.mff.cuni.cz

Joint work with **Jennifer Scott**, RAL and University of Reading

Based on a preprint submitted to SISC

More 2018, Roztoky, August 3, 2018

[Introduction](#page-1-0)

- [Mixed sparse-dense least squares](#page-19-0)
- [Approximate decompositions for the sparse-dense least squares](#page-24-0)
- [Iterative solver: CGLS1](#page-36-0)

[Experiments](#page-39-0)

$$
\min_x \|Ax - b\|_2, \ A \in R^{m,n}, \ m \ge n
$$

$$
\min_x \|Ax - b\|_2, \ A \in R^{m,n}, \ m \ge n
$$

- Small and dense full-rank problems
	- ▸ The solver choice often easier
	- ▸ Often points out to direct methods based on (complete) factorizations (Cholesky, QR etc. applied to *A*)

$$
A^T A x = A^T b \Rightarrow x = (A^T A)^{-1} A^T b, \quad A = (Q_1 Q_2) \begin{pmatrix} R_1 \\ 0 \end{pmatrix} \Rightarrow x = R_1^{-1} Q_1^T b
$$

$$
\min_x \|Ax - b\|_2, \ A \in R^{m,n}, \ m \ge n
$$

- Small and dense full-rank problems
	- ▸ The solver choice often easier
	- ▸ Often points out to direct methods based on (complete) factorizations (Cholesky, QR etc. applied to *A*)

$$
A^T A x = A^T b \Rightarrow x = (A^T A)^{-1} A^T b, \quad A = (Q_1 Q_2) \begin{pmatrix} R_1 \\ 0 \end{pmatrix} \Rightarrow x = R_1^{-1} Q_1^T b
$$

- Large and sparse problems
	- ▸ There exist nice implementations of direct methods as LUSOL (Saunders, ver 7 - 2008), sparse QR factorization (SPQR in SuiteSparse)

Preconditioned iterative solvers: traps

- **1** The least squares problems are often much less structured than believed.
- $\odot \Rightarrow$ much harder to be solved by iterative approaches, much harder to find preconditioning
	- ▸ This makes a problem for both complete factorizations of direct methods and preconditioners.
	- ▸ But the latter suffer more.
	- \blacktriangleright Incomplete factorizations for A^TA (the simplest idea) are often the ways to approximate factorization and get a preconditioner.

Preconditioned iterative solvers: traps

- **1** The least squares problems are often much less structured than believed.
- $\odot \Rightarrow$ much harder to be solved by iterative approaches, much harder to find preconditioning
	- ▸ This makes a problem for both complete factorizations of direct methods and preconditioners.
	- ▸ But the latter suffer more.
	- \blacktriangleright Incomplete factorizations for A^TA (the simplest idea) are often the ways to approximate factorization and get a preconditioner.
- ³ What if a sparse problem has a few additional dense rows?

Example of a mixed sparse-dense matrix

Original matrix

Example of a mixed sparse-dense matrix

Normal equations

$$
\min_x \|Ax - b\|_2, \ A \in R^{m,n}, \ m \ge n
$$

 \bullet Iterative approaches $+$ approximations may add more flexibility than the direct methods (based on decompositions):

$$
\min_x \|Ax - b\|_2, \ A \in R^{m,n}, \ m \ge n
$$

- \bullet Iterative approaches $+$ approximations may add more flexibility than the direct methods (based on decompositions):
- Hopefully also for treating the dense rows.

$$
\min_{x} \|Ax - b\|_2, \ A \in R^{m,n}, \ m \ge n
$$

- \bullet Iterative approaches $+$ approximations may add more flexibility than the direct methods (based on decompositions):
- Hopefully also for treating the dense rows.
	- ▸ Stretching dense rows (splitting them into a bunch of "shorter" rows) \Rightarrow interesting bunch o problems related to the matrix conditioning, scaling, sparsity patterns

$$
\min_{x} \|Ax - b\|_2, \ A \in R^{m,n}, \ m \ge n
$$

- \bullet Iterative approaches $+$ approximations may add more flexibility than the direct methods (based on decompositions):
- Hopefully also for treating the dense rows.
	- ▸ Stretching dense rows (splitting them into a bunch of "shorter" rows) \Rightarrow interesting bunch o problems related to the matrix conditioning, scaling, sparsity patterns
	- ▸ Canonical decomposition of the problem (Dulmage-Mendelsohn) into a block triangular form \Rightarrow embedding dense rows into the blocks, structural versus "graph-bsed" rank-deficiency

$$
\min_{x} \|Ax - b\|_2, \ A \in R^{m,n}, \ m \ge n
$$

- \bullet Iterative approaches $+$ approximations may add more flexibility than the direct methods (based on decompositions):
- Hopefully also for treating the dense rows.
	- ▸ Stretching dense rows (splitting them into a bunch of "shorter" rows) \Rightarrow interesting bunch o problems related to the matrix conditioning, scaling, sparsity patterns
	- ▸ Canonical decomposition of the problem (Dulmage-Mendelsohn) into a block triangular form \Rightarrow embedding dense rows into the blocks, structural versus "graph-bsed" rank-deficiency

treated here – simple overdetermined case, full column rank

• Trouble caused by the dense rows can be observed from more different angles

- Trouble caused by the dense rows can be observed from more different angles
	- \cdot The matrix to be factorized (completely/incompletely) is dense as we saw above

- Trouble caused by the dense rows can be observed from more different angles
	- \cdot The matrix to be factorized (completely/incompletely) is dense as we saw above
	- ▸ The outer-product of the dense rows makes from the useful information a noise

- Trouble caused by the dense rows can be observed from more different angles
	- ▸ The matrix to be factorized (completely/incompletely) is dense as we saw above
	- ▸ The outer-product of the dense rows makes from the useful information a noise
- Troublemakers to be treated in a special way may be not only dense rows.

- Trouble caused by the dense rows can be observed from more different angles
	- \cdot The matrix to be factorized (completely/incompletely) is dense as we saw above
	- ▸ The outer-product of the dense rows makes from the useful information a noise
- Troublemakers to be treated in a special way may be not only dense rows.
- \bullet "Bad" columns as?

$$
A = \begin{pmatrix} \tilde{A} & a \end{pmatrix}, A^T A = \begin{pmatrix} \tilde{A}^T \tilde{A} & \tilde{A}^T a \\ a^T \tilde{A} & a^t a \end{pmatrix}
$$

[Introduction](#page-1-0)

[Approximate decompositions for the sparse-dense least squares](#page-24-0)

[Iterative solver: CGLS1](#page-36-0)

[Experiments](#page-39-0)

Terminology: split the system

$$
A = \begin{pmatrix} A_s \\ A_d \end{pmatrix}, A_s \in R^{m_s \times n}, A_d \in R^{m_d \times n}, b = \begin{pmatrix} b_s \\ b_d \end{pmatrix}, b_s \in R^{m_s}, b_d \in R^{m_d}, (1)
$$

with $m = m_s + m_d$, $m_s \geq n$, and $m_d \geq 1$ (in general, $m_s \gg m_d$).

$$
\min_{x} \left\| \begin{pmatrix} A_s \\ A_d \end{pmatrix} x - \begin{pmatrix} b_s \\ b_d \end{pmatrix} \right\|_2.
$$
 (2)

Set $C = A^T A$, $C_s = A_s^T A_s$ (reduced normal matrix), $C_d = A_d^T A_d$ A lot of previous work on direct methods' approaches and related problems: Björck, Duff, 1980; Heath, 1982; Björck, 1984; George, Ng, 1984-1987; Adlers, Björck, 2000; Avron, Ng, Toledo, 2009 and many others ...

Direct solution of the sparse-dense least squares

Woodbury formula (Guttman, 1946; Woodbury, 1949, 1950): Dense rows plugged in a posteriori

$$
C^{-1} = (C_s + C_d)^{-1} = C_s^{-1} - C_s^{-1} A_d^T (I_{m_d} + A_d C_s^{-1} A_d^T)^{-1} A_d C_s^{-1}.
$$

The least squares solution:

$$
x = x_s + C_s^{-1} A_d^T (I_{m_d} + A_d C_s^{-1} A_d^T)^{-1} (b_d - A_d x_s) \text{ with } x_s = (A_s A_s^T)^{-1} A_s^T b_s
$$

Direct solution of the sparse-dense least squares

Woodbury formula (Guttman, 1946; Woodbury, 1949, 1950): Dense rows plugged in a posteriori

$$
C^{-1} = (C_s + C_d)^{-1} = C_s^{-1} - C_s^{-1} A_d^T (I_{m_d} + A_d C_s^{-1} A_d^T)^{-1} A_d C_s^{-1}.
$$

The least squares solution:

$$
x = x_s + C_s^{-1} A_d^T (I_{m_d} + A_d C_s^{-1} A_d^T)^{-1} (b_d - A_d x_s) \text{ with } x_s = (A_s A_s^T)^{-1} A_s^T b_s
$$

Sautter trick (Sautter, 1978; see Björck, 1996)

$$
\big(C_s+C_d\big)^{-1}A_d^T=C_s^{-1}A_d^T\big(I_{m_d}+A_dC_s^{-1}A_d^T\big)^{-1}
$$

Direct solution of the sparse-dense least squares

Woodbury formula (Guttman, 1946; Woodbury, 1949, 1950): Dense rows plugged in a posteriori

$$
C^{-1} = (C_s + C_d)^{-1} = C_s^{-1} - C_s^{-1} A_d^T (I_{m_d} + A_d C_s^{-1} A_d^T)^{-1} A_d C_s^{-1}.
$$

The least squares solution:

$$
x = x_s + C_s^{-1} A_d^T (I_{m_d} + A_d C_s^{-1} A_d^T)^{-1} (b_d - A_d x_s) \text{ with } x_s = (A_s A_s^T)^{-1} A_s^T b_s
$$

Sautter trick (Sautter, 1978; see Björck, 1996)

$$
\big(C_s+C_d\big)^{-1}A_d^T=C_s^{-1}A_d^T\big(I_{m_d}+A_dC_s^{-1}A_d^T\big)^{-1}
$$

This can be used to express direct solution more efficiently.

[Introduction](#page-1-0)

[Mixed sparse-dense least squares](#page-19-0)

3 [Approximate decompositions for the sparse-dense least squares](#page-24-0)

[Iterative solver: CGLS1](#page-36-0)

[Experiments](#page-39-0)

Approximate solution of the sparse-dense least squares

What if the inverses are only approximate, e.g., from an incomplete factorization?

Approximate solution of the sparse-dense least squares

• What if the inverses are only approximate, e.g., from an incomplete factorization?

Theorem

Assume that *ξ* is an approximate solution to min*x^s* ∥*Asx^s* − *bs*∥² (or whatever). Define $r_s = b_s - A_s \xi$ and $r_d = b_d - A_d \xi$. Then the exact least squares solution of the whole split problem is equal to $x = \xi + \Gamma$, where

$$
\Gamma = C_s^{-1} A_s^T r_s + C_s^{-1} A_d^T (I_{m_d} + A_d C_s^{-1} A_d^T)^{-1} (r_d - A_d C_s^{-1} A_s^T r_s)
$$
 (3)

Approximate solution of the sparse-dense least squares

• What if the inverses are only approximate, e.g., from an incomplete factorization?

Theorem

Assume that *ξ* is an approximate solution to min*x^s* ∥*Asx^s* − *bs*∥² (or whatever). Define $r_s = b_s - A_s \xi$ and $r_d = b_d - A_d \xi$. Then the exact least squares solution of the whole split problem is equal to $x = \xi + \Gamma$, where

$$
\Gamma = C_s^{-1} A_s^T r_s + C_s^{-1} A_d^T (I_{m_d} + A_d C_s^{-1} A_d^T)^{-1} (r_d - A_d C_s^{-1} A_s^T r_s)
$$
 (3)

- We do not need to solve the sparse least squares exactly
- The formulation deals with residuals that represent a basic quantity inside iterative methods

Approximate solution and scaling transformation

• Computed factor can be applied as a scaling transformation similarly as in the direct sparse-dense solvers

Approximate solution and scaling transformation

- Computed factor can be applied as a scaling transformation similarly as in the direct sparse-dense solvers
- Also, the transformation is a crucial practical step. See, again, in Björck, 1996

$$
C_s = L_s L_s^T \tag{4}
$$

Approximate solution and scaling transformation

- Computed factor can be applied as a scaling transformation similarly as in the direct sparse-dense solvers
- Also, the transformation is a crucial practical step. See, again, in Björck, 1996

$$
C_s = L_s L_s^T \tag{4}
$$

• Getting an equivalent problem

$$
\min_{z} \left\| \begin{pmatrix} B_s \\ B_d \end{pmatrix} z - \begin{pmatrix} b_s \\ b_d \end{pmatrix} \right\|_2, \tag{5}
$$
\n
$$
B_s = A_s L_s^{-T}, \quad B_d = A_d L_s^{-T}, \quad z = L_s^T x
$$

Transformation + exact decomposition $C_s = L_s L_s^T$ leads to

Lemma

If $C_s = L_s L_s^T$ (exactly) the least squares solution of the transformed split problem can be written as $z = \mathcal{E}_1 + \Gamma_1$, where \mathcal{E}_1 is an approximate solution to the scaled problem $\min_z \|B_s z - b_s\|_2$ (or whatever), $\rho_s = b_s - B_s \xi_1$ and $\rho_d = b_d - B_d \xi_1$ and

$$
\Gamma_1 = B_s^T \rho_s + B_d^T (I_{m_d} + B_d B_d^T)^{-1} (\rho_d - B_d B_s^T \rho_s).
$$
 (6)

▸

Choice of *ξ*

Approximate solution for *A^s* overdetermined

min *ξ* ∥*Bsξ* − *bs*∥²

$$
\xi_1 \approx \big(B_s^T B_s\big)^{-1} B_s^T b_s = L_s^{-1} A_s^T A_s L_s^{-T} L_s^{-1} A_s^T b_s = L_s^{-1} A_s^T b_s
$$

▸

▸

Choice of *ξ*

Approximate solution for *A^s* overdetermined

min *ξ* ∥*Bsξ* − *bs*∥²

$$
\xi_1 \approx \big(B_s^T B_s\big)^{-1} B_s^T b_s = L_s^{-1} A_s^T A_s L_s^{-T} L_s^{-1} A_s^T b_s = L_s^{-1} A_s^T b_s
$$

 \bullet If B_d represents a significant part of the problem and its effect dominates:

$$
\min_{\xi} \|B_d \xi - b_d\|_2
$$

 $ξ ≈ B_d^{\dagger}b_d$

Scaling + exact $C_s = L_s L_s^T$ + exact sparse subproblem

Lemma

If $C_s = L_s L_s^T$ (exactly), the least squares solution of problem (5) can be written as $z = \xi_1 + \Gamma_1$, where ξ_1 minimizes $||B_s z - b_s||_2$ (exactly), $\rho_s = b_s - B_s \xi_1$ and $\rho_d = b_d - B_d \xi_1$ and

$$
\Gamma_1 = B_d^T (I_{m_d} + B_d B_d^T)^{-1} \rho_d.
$$
 (7)

Scaling + exact $C_s = L_s L_s^T$ + exact sparse subproblem

Lemma

If $C_s = L_s L_s^T$ (exactly), the least squares solution of problem (5) can be written as $z = \xi_1 + \Gamma_1$, where ξ_1 minimizes $||B_s z - b_s||_2$ (exactly), $\rho_s = b_s - B_s \xi_1$ and $\rho_d = b_d - B_d \xi_1$ and

$$
\Gamma_1 = B_d^T (I_{m_d} + B_d B_d^T)^{-1} \rho_d. \tag{7}
$$

Various ways to evaluate Γ_1

- Dense least squares minimum in norm
- Dense LQ factorization.

[Introduction](#page-1-0)

[Mixed sparse-dense least squares](#page-19-0)

[Approximate decompositions for the sparse-dense least squares](#page-24-0)

4 [Iterative solver: CGLS1](#page-36-0)

[Experiments](#page-39-0)

Algorithm

Preconditioned CGLS algorithm $(A_s, A_d, A_s^T A_s \approx \tilde{L}_s \tilde{L}_s^T$; $z = M^{-1}s$)) 0. $r_s^{(0)} = b_s - A_s x^{(0)}$, $r_d^{(0)} = b_d - A_d x^{(0)}$, $w_s^{(0)} = A_s^T r_s^{(0)}$, $w_d^{(0)} = A_d^T r_d^{(0)}$, $z^{(0)} = M^{-1}(w_s^{(0)} + w_d^{(0)}), p^{(0)} = z^{(0)}$ 1. **for** *i* = 1 ∶ *nmax* **do** 2. $q_s^{(i-1)} = A_s p^{(i-1)}$, $q_d^{(i-1)} = A_d p^{(i-1)}$ $\alpha = \frac{(w_s^{(i-1)} + w_d^{(i-1)}, z^{(i-1)})}{(i-1) \cdot (i-1) \cdot (i-1) \cdot (i-1) \cdot (i-1)}$ $(q_s^{(i-1)}, q_s^{(i-1)}) + (q_d^{(i-1)}, q_d^{(i-1)})$ 3. $x^{(i)} = x^{(i-1)} + \alpha p^{(i-1)}$, $r_s^{(i)} = r_s^{(i-1)} - \alpha q_s^{(i-1)}$, $r_d^{(i)} = r_d^{(i-1)} - \alpha q_d^{(i-1)}$ 4. $z^{(i)} = M^{-1}(A_s^T r_s^{(i)} + A_d^T r_d^{(i)}) \beta = \frac{(w_s^{(i)} + w_d^{(i)}, z^{(i)})}{(i-1) - (i-1) - (i-1)}$ $(w_s^{(i-1)} + w_d^{(i-1)}, z^{(i-1)})$ 5. $p^{(i)} = z^{(i)} + \beta p^{(i-1)}$

6. **end do**

Note the difference between CGLS1, CGLS2

Algorithm

Preconditioning procedure $(r_s, r_d, w, C_s \approx \tilde{L}_s \tilde{L}_s^T, B_d = A_d^T \tilde{L}_s^{-T}$, chosen mode (*Cholesky* or LQ)) The Cholesky mode needs $I_{m_d}^s + B_d B_d^T \approx \tilde{L}_d \tilde{L}_d^T$ / the LQ $\text{mode needs} \left(B_d \mid I_{m_d} \right) \approx \left(\tilde{L}_d \mid 0_{m_d} \right) \tilde{Q}_d^T.$

- 1. Solve $\tilde{L}_s \xi_1 = w$ for ξ_1
- 2. $\rho_d = r_d B_d \xi_1$
- 3. **if** mode == Cholesky **then**
- 4. $u = B_d^T (\tilde{L}_d \tilde{L}_d^T)^{-1} \rho_d$
- 5. **else if** mode == LQ **then**
- 6. $\rho_s = r_s A_s \tilde{L}_s^{-T} \xi_1$

7.
$$
u = \tilde{L}_s^{-1} A_s^T \rho_s + \tilde{Q}_d (1:n, 1:m_d) * \tilde{L}_d^{-1} * (\rho_d - B_d \tilde{L}_s^{-1} A_s^T \rho_s)
$$

- 8. **end if**
- 9. Solve $\tilde{L}_s^T z = (\xi_1 + u)$ for z
	- Can avoid recomputing $A_s^T r_s$ inside the preconditioner

[Introduction](#page-1-0)

- [Mixed sparse-dense least squares](#page-19-0)
- [Approximate decompositions for the sparse-dense least squares](#page-24-0)
- [Iterative solver: CGLS1](#page-36-0)

Experimental evaluation

• Stopping criterion

C1: Stop if $||r||_2 < \delta_1$ C2: Stop if

$$
\frac{\|A^Tr\|_2}{\|r\|_2} < \frac{\|A^Tr_0\|_2}{\|r_0\|_2} * \delta_2,
$$

 r residual, r_0 initial residual, $\delta_1 = 10^{-8}$ and $\delta_2 = 10^{-6}$.

• Intel(R) Core(TM) i5-4590 CPU running at 3.30 GHz, 12 GB of internal memory. Visual Fortran Intel(R) 64 XE compiler (version 14.0.3.202)

Experimental evaluation: II

- Most of the matrices from the University of Florida Sparse Matrix Collection
- A prescaled normalizing columns:
	- \rightarrow *A* replaced by by AD , where *D* is diagonal
	- \cdot *D*²_{*ii*} = 1/∥*Ae*_{*i*}∥₂
	- \rightarrow \Rightarrow Entries of *AD* are all less than one in absolute value.
- A row of *A* to be dense if the number of entries in the row either exceeds 100 times the average number of entries in a row or is more than 4 times greater than the number of entries in any row in the sparse part *As*.
- Removing dense rows can leave *A^s* rank deficient: modifying *A* by removing any columns of *A* that correspond to null columns of *As*.

Problem of null columns after removal of the dense part

$$
A = \begin{pmatrix} A_1 & A_2 \end{pmatrix} \equiv \begin{pmatrix} A_{s_1} & A_{s_2} \\ A_{d_1} & A_{d_2} \end{pmatrix},
$$
 (8)

• A_s has n_2 null columns with $n_2 \ll n$ (null A_{s2}).

The solution can be expressed as a combination of partial solutions.

Theorem

Let $\xi \in R^{n_1}$ and $\Gamma \in R^{n_1 \times n_2}$ be the solutions to $\min_z \|A_1z - b\|_2$ and $\min_{W}\|A_1W-A_2\|_F$, respectively. Then the solution $x=\begin{pmatrix}x_1\cr x_2\end{pmatrix}$ of the original problem split conformally is given by $\begin{pmatrix} x_1 \ x_2 \end{pmatrix}$ $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} \xi - \Gamma x_2 \\ x_2 \end{pmatrix}$ with $(A_2^T A_2 - A_2^T A_1 \Gamma) x_2 = A_2^T b - A_2^T A_1 \xi.$

Identifier	m	\boldsymbol{n}	nnz(A)	nnz(C)	$nnz(C)/n^2$
aircraft	7,517	3,754	20,267	1.4×10^{6}	0.200
lp_fit2p	13,525	3,000	50,284	4.5×10^{6}	1.000
scrs8-2r	27,691	14,364	58,439	6.2×10^{6}	0.143
sctap1-2b	33,858	15,390	99,454	2.6×10^{6}	0.050
$scsd8-2r$	60,550	8,650	190,210	2.0×10^{6}	0.100
scagr7-2r	62,423	35,213	123,239	2.2×10^7	0.036
$sc205-2r$	62,423	35,213	123,239	6.5×10^{6}	0.010
$sctap1-2r$	63,426	28,830	186,366	9.1×10^{6}	0.050
scf x m $1-2r$	65,943	37,980	221,388	8.3×10^{5}	0.014
world	67,147	34,506	198,883	3.1×10^{5}	0.001
n cos 1	133,743	131,581	599,590	1.7×10^{8}	0.027
neos ₂	134,128	132,568	685,087	2.3×10^{8}	0.033
stormg $2-125$	172,431	66,185	433,256	1.0×10^{6}	0.002
PDE ₁	270,595	271,792	990,587	1.6×10^{10}	0.670
neos	515,905	479,119	1,526,794	5.3×10^8	0.034
stormg2 1000	1,377,306	528,185	3,459,881	4.2×10^7	0.002
cont1	1,921,596	1,918,399	7.031.999	8.2×10^{11}	0.667

Table: Statistics: (density= *nnz*(*C*)/*n* 2)

SCSD8-2r_a: size of *C^s*

Figure: ∣*Cs*∣.

SCSD8-2r_a: iteration counts + $size_p / size(A^T A)$

Figure: Problem *Meszaros*/*scsd*8 − 2*r*. Iteration counts (left), and ratio of the preconditioner size to the size of *A ^T A* (right) as the number of dense rows that are removed from *A* is increased.

SCSD8-2r_a: timings

Figure: Problem *Meszaros*/*scsd*8 − 2*r*. Time to compute the preconditioner (left) and time for CGLS (right) as the number of dense rows that are removed from *A* is increased.

stormg2_1000: size of *C^s*

Figure: Problem $Mittelmann/stormg2_1000$. Size of $A_s^T A_s$.

stormg2_1000: large problem: iteration counts + *size*_*p*/*size*(A^TA)

Figure: Problem $Mittelmann/stormg2_1000$. Iteration counts (left), Ratio of the preconditioner size to the size of $\overline{A^T A}$ (right) as the number of dense rows that are removed from *A* is increase.

stormg2_1000: large problem: timings

Figure: Problem $Mittelmann/stormg2_1000$. Time to compute the preconditioner (left), time for the preconditioned iterations (right).

• Solving linear least squares problems where *A* has a number of dense rows.

- **•** Solving linear least squares problems where A has a number of dense rows.
- A new approach that processes the dense rows separately within a conjugate gradient method

- \bullet Solving linear least squares problems where A has a number of dense rows.
- A new approach that processes the dense rows separately within a conjugate gradient method
- Not all the formulas above work in practice !!!! In our case, the best has been the simplest one.

- \bullet Solving linear least squares problems where A has a number of dense rows.
- A new approach that processes the dense rows separately within a conjugate gradient method
- Not all the formulas above work in practice !!!! In our case, the best has been the simplest one.
	- ▸ The dense rows must be treated separately
	- ▸ The dense rows must be considered (Avron, Ng and Toledo use an approach that takes them out from the consideration within a QR-based scheme - we faced significant troubles in our PCGLS based on Cholesky following this approach)

Thank you for your attention!