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@ Small and dense full-rank problems

» The solver choice often easier
» Often points out to direct methods based on (complete)
factorizations (Cholesky, QR etc. applied to A)

ATAz = ATb = 2= (ATA)1ATh, A=(Q1 Q) (}31) =z=R'QTp

@ Large and sparse problems

» There exist nice implementations of direct methods as LUSOL
(Saunders, ver 7 - 2008), sparse QR factorization (SPQR in
SuiteSparse)



Introduction: the Problem

Preconditioned iterative solvers: traps

@ The least squares problems are often much less structured than
believed.
© = much harder to be solved by iterative approaches, much harder to
find preconditioning
» This makes a problem for both complete factorizations of direct
methods and preconditioners.
» But the latter suffer more.
» Incomplete factorizations for AT A (the simplest idea) are often
the ways to approximate factorization and get a preconditioner.
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Preconditioned iterative solvers: traps

@ The least squares problems are often much less structured than
believed.
© = much harder to be solved by iterative approaches, much harder to
find preconditioning
» This makes a problem for both complete factorizations of direct
methods and preconditioners.
» But the latter suffer more.
» Incomplete factorizations for AT A (the simplest idea) are often
the ways to approximate factorization and get a preconditioner.

© What if a sparse problem has a few additional dense rows?
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Example of a mixed sparse-dense matrix

@ Original matrix
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Introduction: the Problem

Example of a mixed sparse-dense matrix

@ Normal equations

1
nz = 8110306 x10"
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min |Az —b|s, Ae R™", m2>n
x

@ lterative approaches + approximations may add more flexibility than
the direct methods (based on decompositions):
@ Hopefully also for treating the dense rows.

» Stretching dense rows (splitting them into a bunch of “shorter” rows)
= interesting bunch o problems related to the matrix conditioning,
scaling, sparsity patterns

» Canonical decomposition of the problem (Dulmage-Mendelsohn) into a
block triangular form = embedding dense rows into the blocks,
structural versus “graph-bsed” rank-deficiency

treated here — simple overdetermined case, full column rank
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Example of a mixed sparse-dense matrix

@ Trouble caused by the dense rows can be observed from more
different angles

» The matrix to be factorized (completely/incompletely) is dense
as we saw above

» The outer-product of the dense rows makes from the useful
information a noise

@ Troublemakers to be treated in a special way may be not only dense
rows.

@ “Bad” columns as?



© Mixed sparse-dense least squares



Mixed sparse-dense least squares

Terminology: split the system

A= A , Age R Ay e R™" b= bs , bse R™ bge R™ (1)
Aqg ba

with m =mg + mg, ms >n, and mg > 1 (in general, ms > my).

()~ ()

Set C = AT A, Cs = AT A, (reduced normal matrix), Cy = AT A4

A lot of previous work on direct methods' approaches and related problems:
Bjorck, Duff, 1980; Heath, 1982; Bjorck, 1984; George, Ng, 1984-1987;
Adlers, Bjorck, 2000; Avron, Ng, Toledo, 2009 and many others ...

min
T

()

2
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Mixed sparse-dense least squares

Direct solution of the sparse-dense least squares

@ Woodbury formula (Guttman, 1946; Woodbury, 1949, 1950): Dense
rows plugged in a posteriori

oG+ O = -t AT (I, + AgCTT AT AR

The least squares solution:

z = 2+C; AT (L + AgCT ALY (bg-Agzs) with 2, = (A,AT) AT,
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Mixed sparse-dense least squares

Direct solution of the sparse-dense least squares

@ Woodbury formula (Guttman, 1946; Woodbury, 1949, 1950): Dense
rows plugged in a posteriori

oG+ O = -t AT (I, + AgCTT AT AR

The least squares solution:

z = 2+C; AT (L + AgCT ALY (bg-Agzs) with 2, = (A,AT) AT,
@ Sautter trick (Sautter, 1978; see Bjorck, 1996)
(Cs +Cq) t AL = CJL AL (I, + AgC1 ALY !
@ This can be used to express direct solution more efficiently.
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Mixed sparse-dense least squares

Approximate solution of the sparse-dense least squares

@ What if the inverses are only approximate, e.g., from an incomplete
factorization?
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@ What if the inverses are only approximate, e.g., from an incomplete
factorization?

Theorem

Assume that & is an approximate solution to min,, || Aszs — bs|2 (or
whatever). Define rs = bs — As& and rq = by — Ag€. Then the exact least
squares solution of the whole split problem is equal to x = £ + ", where

I'=C; ATrs + L AT (I, + AaCT ATY (rg — AgC AT ) (3)
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Mixed sparse-dense least squares

Approximate solution of the sparse-dense least squares

@ What if the inverses are only approximate, e.g., from an incomplete
factorization?

Theorem

Assume that & is an approximate solution to min,, || Aszs — bs|2 (or
whatever). Define rs = bs — As& and rq = by — Ag€. Then the exact least
squares solution of the whole split problem is equal to x = £ + ", where

T=C'ATr + CJ1AY (I, + AgCTr ALY (rg - AgC AT, (3)

@ We do not need to solve the sparse least squares exactly

@ The formulation deals with residuals that represent a basic quantity
inside iterative methods

13 /34



Mixed sparse-dense least squares

Approximate solution and scaling transformation

@ Computed factor can be applied as a scaling transformation similarly
as in the direct sparse-dense solvers
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@ Computed factor can be applied as a scaling transformation similarly
as in the direct sparse-dense solvers

@ Also, the transformation is a crucial practical step. See, again, in
Bjorck, 1996

O = i (4)
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Mixed sparse-dense least squares

Approximate solution and scaling transformation

@ Computed factor can be applied as a scaling transformation similarly
as in the direct sparse-dense solvers

@ Also, the transformation is a crucial practical step. See, again, in
Bjorck, 1996

O = i (4)

@ Getting an equivalent problem

(5:)=- G,

By=AL;T, By=AqL;T, z=LTx

min
z

(5)
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Mixed sparse-dense least squares

Transformation + exact decomposition (' = LSLST leads to

Lemma

If Cs = LyLT (exactly) the least squares solution of the transformed split
problem can be written as z = & + 'y, where & is an approximate solution
to the scaled problem min, |Bsz - bs|y (or whatever), ps = bs — Bs&1 and
pd =bq — Ba&1 and

T'1 = By ps + By (I + BaB3 )™ (pa = BaB3 ps)- (6)

v
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Solving the Least Squares

Choice of &

@ Approximate solution for A, overdetermined

min | Bo£ - bsl2

&~ (BIB)'B b, = L AT ALV L ATh, = LM AT D,
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Solving the Least Squares

Choice of &

@ Approximate solution for A, overdetermined

min | Bo£ - bsl2

&~ (BIB)'B b, = L AT ALV L ATh, = LM AT D,

o If By represents a significant part of the problem and its effect
dominates:
min | Bag - ball2

€ ~ Blbg

16 /34



Solving the Least Squares

Scaling + exact C = LSLST + exact sparse subproblem
Lemma

If Cy = LyLT (exactly), the least squares solution of problem (5) can be
written as z = £ + I'1, where & minimizes |Bsz — bs|2 (exactly),
ps = bs — Bs&1 and pg = bg — Bg&1 and

Ty = BY (In, + BaB3) ™ pa. (7)

v
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Solving the Least Squares

Scaling + exact C = LSLST + exact sparse subproblem
Lemma

If Cy = LyLT (exactly), the least squares solution of problem (5) can be
written as z = £ + I'1, where & minimizes |Bsz — bs|2 (exactly),
ps = bs — Bs&1 and pg = bg — Bg&1 and

Ty = BY (In, + BaB3) ™ pa. (7)

v

Various ways to evaluate I';

@ Dense least squares minimum in norm

@ Dense LQ factorization.
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@ Iterative solver: CGLS1
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Solving the Least Squares

Algorithm

Preconditioned CGLS algorithm (A,, Ay, ATA,~ L, LT; 2= Ms))

0. rgo) = by — Agz(®, rgo) =bg - Agz(®), wgo) = AsTrgo), wc(lo) = AdTrglO),
2(0) = M’l(wgo) + w((io)), pl® = 20

1. for i =1:nmax do

(wgifl) " w((lifl)’ Z(i_l))

(@5 ,q5 )+ (a8, ¢85

3 2(® = 01 4 ap(i’l), rgi) = rgifl) - aqgifl), ry) = rc(;fl) - aqg*l)

2 qgi—n :Asp(iq)' qy_l) :Adp(i—l) a =

(ws? +w, 2@)

(wgi—l) 4 w((ii—l) , Z(iil))

4. 2 = M’l(AsTrgi) + Agry)) 8=

5 p(i) = () 4 5p(i—1)
6. end do

Note the difference between CGLS1, CGLS2
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Solving the Least Squares

Algorithm

Preconditioning procedure(rs, 74, w, Cs » LyLT, By = AYL.T, chosen mode

s 7

(Cholesky or LQ)) The Cholesky mode needs I, + ByBy =~ LyLY /the LQ
mode needs (Ba  Im,)~(La Om,) Q7.

1. Solve Lj&1 = w for &

2. pa=714-Bi&

3. if mode == Cholesky then

4 w=BI(Lall)pa

5. else if mode == LQ then

6. ps=rs-AL;TE

7. u = E;lASTpS + Qd(l in,1:mg) * I:ng * (pg — BdiglAsTps)
8. end if

9.

Solve LTz = (& +u) for z

@ Can avoid recomputing ATr, inside the preconditioner
20/34
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Solving the Least Squares

Experimental evaluation
@ Stopping criterion
C1: Stop if 7|2 < 1
C2: Stop if
|ATrl2 _ [ATrola

Iz Iroll2

)

r residual, o initial residual, 6; = 1078 and §, = 1076.

@ Intel(R) Core(TM) i5-4590 CPU running at 3.30 GHz, 12 GB of
internal memory. Visual Fortran Intel(R) 64 XE compiler (version
14.0.3.202)
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Solving the Least Squares

Experimental evaluation: I

@ Most of the matrices from the University of Florida Sparse Matrix
Collection

@ A prescaled normalizing columns:
» A replaced by by AD, where D is diagonal
» D7, = 1/] Aei2
» = Entries of AD are all less than one in absolute value.

@ A row of A to be dense if the number of entries in the row either
exceeds 100 times the average number of entries in a row or is more
than 4 times greater than the number of entries in any row in the
sparse part Ag.

@ Removing dense rows can leave A; rank deficient: modifying A by
removing any columns of A that correspond to null columns of A,.

23 /34



Solving the Least Squares

Problem of null columns after removal of the dense part

As, A
A = (A1 A2) =] (Adi Adz), (8)

@ A, has ng null columns with ny < n (null Asz).
@ The solution can be expressed as a combination of partial solutions.
Theorem

Let £ € R™ and T e R™*™ be the solutions to min, | Az - b||, and

miny | AW - Ag|

. . 0
. respectively. Then the solution x = (3:1 of the
2

original problem split conformally is given by (il) = (5 —xfxg) with
2 2
(AgAQ - AgA1P)$2 = Agb - AgAlf

24 /34



Solving the Least Squares

Table: Statistics: (density= nnz(C)/n?)

Identifier m n nnz(A) | nnz(C) nnz(C)/n’
aircraft 7,517 3,754 20,267 | 1.4 x10° 0.200
Ip_fit2p 13,525 3,000 50,284 | 4.5x 10° 1.000
scrs8-2r 27,691 14,364 58,439 | 6.2 x 10° 0.143
sctapl-2b 33,858 15,390 99,454 | 2.6 x 10° 0.050
scsd8-2r 60,550 8,650 190,210 | 2.0 x 10° 0.100
scagr7-2r 62,423 35,213 123,239 | 2.2 x 107 0.036
sc205-2r 62,423 35,213 123,239 | 6.5 x 10° 0.010
sctapl-2r 63,426 28,830 186,366 | 9.1 x 10° 0.050
scfxm1-2r 65,943 37,980 221,388 | 8.3 x10° 0.014
world 67,147 34,506 198,883 | 3.1 x 10° 0.001
neosl 133,743 131,581 599,590 | 1.7 x 10® 0.027
neos2 134,128 132,568 685,087 | 2.3 x 10° 0.033
stormg2-125 172,431 66,185 433,256 | 1.0 x 10° 0.002
PDE1 270,595 271,792 990,587 | 1.6 x 10*° 0.670
neos 515,905 479,119 | 1,526,794 | 5.3 x 108 0.034
stormg2_1000 | 1,377,306 528,185 | 3,459,881 | 4.2 x 107 0.002
contl_| 1,921,596 | 1,918,399 | 7,031,999 | 8.2 x 10" 0.667
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Solving the Least Squares

Dense rows not exploited Dense rows exploited
Identifier size_p | T_p | Its| T_i || mqg size_ps |T_p | Its| T 1
aircraft 22,509 | 0.09 | 44 |0.02| 17 3,750 | 0.01 1]0.01
Ip_fit2p 17,985 | 0.26 i il 25 4,940 | 0.09 1]0.01
scrs8-2r 86,169 | 0.94 | 380 | 0.50 || 22 36,385 | 0.01 10.02
sctapl-2b 92,325 | 0.39 | 639 | 0.69 || 34 68,644 | 0.01 1]0.01
scsd8-2r 51,885 | 0.25 | 90| 0.11| 50 51,855 | 0.05 710.02
scagr7-2r 197,067 | 3,34 | 244 | 0.53 7 152,977 | 0.06 1]0.01
sc205-2r 211,257 | 1.56 | 72| 0.19 8 104,022 | 0.08 1]0.01
sctapl-2r 172,965 | 1.47 | 673 | 1.90 || 34 127,712 | 0.03 1]0.01
scfxm1-2r 227,835 | 0.59 | 187 | 0.51 || 58 227,823 | 0.14| 33|0.23
neosl 789,471 T T Tl 74 789,471 | 5.27 | 132 | 3.71
neos2 1 1 1 i1 90 795,323 | 5.46 | 157 | 4.84
stormg2-125 395,595 | 0.27 i P 121| 7,978,135 | 0.22 | 16 | 0.29
PDE1 1 1 1 T 1| 1,623,631 | 12.7 | 696 | 1.28
neos 1 1 1 1 20| 2,874,699 | 4.93 | 232 | 15.0
stormg2_1000 | 3,157,095 | 19.1 i 11121 | 3,125,987 | 19.1 | 18 |2.92
contl_| 1 1 1 T 111,510,370 | 4.82 1]0.33




Solving the Least Squares

SCSD8-2r_a: size of (|

x10°
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Solving the Least Squares

SCSD8-2r_a: iteration counts + size_p/size( AT A)
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Figure: Problem Meszaros/scsd8 — 2r. Iteration counts (left), and ratio of the
preconditioner size to the size of AT A (right) as the number of dense rows that
are removed from A is increased.
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Solving the Least Squares

SCSD8-2r_a: timings
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Figure: Problem Meszaros/scsd8 —2r. Time to compute the preconditioner
(left) and time for CGLS (right) as the number of dense rows that are removed
from A is increased.
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Solving the Least Squares

stormg2_1000: size of C

x10"
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Figure: Problem Mittelmann/stormg2_1000. Size of AT A,.
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Solving the Least Squares

stormg2_1000: large problem: iteration counts + size_p/size( AT A)

= = = ratio preconditioner size / normal equations size

iteration count

ratio preconditioner size / normal equations size

Figure: Problem Mittelmann/stormg2_1000. Iteration counts (left), Ratio of
the preconditioner size to the size of AT A (right) as the number of dense rows
that are removed from A is increase.
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Solving the Least Squares

stormg2_1000: large problem: timings
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Figure: Problem Mittelmann/stormg2_1000. Time to compute the
preconditioner (left), time for the preconditioned iterations (right).
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Solving the Least Squares

Conclusions

@ Solving linear least squares problems where A has a number of dense
rOWs.
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Solving the Least Squares

Conclusions

@ Solving linear least squares problems where A has a number of dense
rOWs.

@ A new approach that processes the dense rows separately within a
conjugate gradient method

@ Not all the formulas above work in practice !!!l In our case, the best
has been the simplest one.

» The dense rows must be treated separately

» The dense rows must be considered (Avron, Ng and Toledo use
an approach that takes them out from the consideration within a
QR-based scheme - we faced significant troubles in our PCGLS
based on Cholesky following this approach)
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Last but not least

Thank you for your attention!
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