Mixed sparse-dense linear least squares and preconditioned iterative methods

Miroslav Tůma

Faculty of Mathematics and Physics
Charles University
mirektuma@karlin.mff.cuni.cz

Joint work with **Jennifer Scott**, RAL and University of Reading

Based on a preprint submitted to SISC

More 2018, Roztoky, August 3, 2018

Outline

- Introduction
- 2 Mixed sparse-dense least squares
- 3 Approximate decompositions for the sparse-dense least squares
- 4 Iterative solver: CGLS1
- 5 Experiments

$$\min_{x} \|Ax - b\|_2, \ A \in R^{m,n}, \ m \ge n$$

$$\min_{x} \|Ax - b\|_{2}, A \in \mathbb{R}^{m,n}, m \ge n$$

- Small and dense full-rank problems
 - The solver choice often easier
 - Often points out to direct methods based on (complete) factorizations (Cholesky, QR etc. applied to A)

$$A^{T}Ax = A^{T}b \Rightarrow x = (A^{T}A)^{-1}A^{T}b, A = (Q_{1} Q_{2}) \begin{pmatrix} R_{1} \\ 0 \end{pmatrix} \Rightarrow x = R_{1}^{-1}Q_{1}^{T}b$$

$$\min_{x} \|Ax - b\|_{2}, \ A \in \mathbb{R}^{m,n}, \ m \ge n$$

- Small and dense full-rank problems
 - The solver choice often easier
 - Often points out to direct methods based on (complete) factorizations (Cholesky, QR etc. applied to A)

$$A^{T}Ax = A^{T}b \Rightarrow x = (A^{T}A)^{-1}A^{T}b, \ A = (Q_{1} Q_{2}) \begin{pmatrix} R_{1} \\ 0 \end{pmatrix} \Rightarrow x = R_{1}^{-1}Q_{1}^{T}b$$

- Large and sparse problems
 - There exist nice implementations of direct methods as LUSOL (Saunders, ver 7 - 2008), sparse QR factorization (SPQR in SuiteSparse)

Preconditioned iterative solvers: traps

- The least squares problems are often much less structured than believed.
- - This makes a problem for both complete factorizations of direct methods and preconditioners.
 - But the latter suffer more.
 - Incomplete factorizations for A^TA (the simplest idea) are often the ways to approximate factorization and get a preconditioner.

Preconditioned iterative solvers: traps

- The least squares problems are often much less structured than believed.
- ⇒ much harder to be solved by iterative approaches, much harder to find preconditioning
 - This makes a problem for both complete factorizations of direct methods and preconditioners.
 - But the latter suffer more.
 - Incomplete factorizations for A^TA (the simplest idea) are often the ways to approximate factorization and get a preconditioner.
- What if a sparse problem has a few additional dense rows?

Example of a mixed sparse-dense matrix

Original matrix

Example of a mixed sparse-dense matrix

Normal equations

$$\min_{x} \|Ax - b\|_{2}, \ A \in \mathbb{R}^{m,n}, \ m \ge n$$

• Iterative approaches + approximations may add more flexibility than the direct methods (based on decompositions):

$$\min_{x} \|Ax - b\|_{2}, \ A \in \mathbb{R}^{m,n}, \ m \ge n$$

- Iterative approaches + approximations may add more flexibility than the direct methods (based on decompositions):
- Hopefully also for treating the dense rows.

$$\min_{x} \|Ax - b\|_{2}, \ A \in \mathbb{R}^{m,n}, \ m \ge n$$

- Iterative approaches + approximations may add more flexibility than the direct methods (based on decompositions):
- Hopefully also for treating the dense rows.
 - Stretching dense rows (splitting them into a bunch of "shorter" rows)
 ⇒ interesting bunch o problems related to the matrix conditioning,
 scaling, sparsity patterns

$$\min_{x} \|Ax - b\|_{2}, \ A \in \mathbb{R}^{m,n}, \ m \ge n$$

- Iterative approaches + approximations may add more flexibility than the direct methods (based on decompositions):
- Hopefully also for treating the dense rows.
 - Stretching dense rows (splitting them into a bunch of "shorter" rows)
 ⇒ interesting bunch o problems related to the matrix conditioning,
 scaling, sparsity patterns
 - Canonical decomposition of the problem (Dulmage-Mendelsohn) into a block triangular form ⇒ embedding dense rows into the blocks, structural versus "graph-bsed" rank-deficiency

$$\min_{x} ||Ax - b||_2, \ A \in \mathbb{R}^{m,n}, \ m \ge n$$

- Iterative approaches + approximations may add more flexibility than the direct methods (based on decompositions):
- Hopefully also for treating the dense rows.
 - Stretching dense rows (splitting them into a bunch of "shorter" rows)
 ⇒ interesting bunch o problems related to the matrix conditioning,
 scaling, sparsity patterns
 - Canonical decomposition of the problem (Dulmage-Mendelsohn) into a block triangular form ⇒ embedding dense rows into the blocks, structural versus "graph-bsed" rank-deficiency

treated here - simple overdetermined case, full column rank

Example of a mixed sparse-dense matrix

 Trouble caused by the dense rows can be observed from more different angles

- Trouble caused by the dense rows can be observed from more different angles
 - ► The matrix to be factorized (completely/incompletely) is dense as we saw above

- Trouble caused by the dense rows can be observed from more different angles
 - The matrix to be factorized (completely/incompletely) is dense as we saw above
 - The outer-product of the dense rows makes from the useful information a noise

- Trouble caused by the dense rows can be observed from more different angles
 - The matrix to be factorized (completely/incompletely) is dense as we saw above
 - The outer-product of the dense rows makes from the useful information a noise
- Troublemakers to be treated in a special way may be not only dense rows.

- Trouble caused by the dense rows can be observed from more different angles
 - The matrix to be factorized (completely/incompletely) is dense as we saw above
 - ► The outer-product of the dense rows makes from the useful information a noise
- Troublemakers to be treated in a special way may be not only dense rows.
- "Bad" columns as?

$$A = \begin{pmatrix} \tilde{A} & a \end{pmatrix}, \ A^T A = \begin{pmatrix} \tilde{A}^T \tilde{A} & \tilde{A}^T a \\ a^T \tilde{A} & a^t a \end{pmatrix}$$

Outline

- Introduction
- Mixed sparse-dense least squares
- 3 Approximate decompositions for the sparse-dense least squares
- 4 Iterative solver: CGLS1
- Experiments

Terminology: split the system

$$A = \begin{pmatrix} A_s \\ A_d \end{pmatrix}, \ A_s \in R^{m_s \times n}, \ A_d \in R^{m_d \times n}, \ b = \begin{pmatrix} b_s \\ b_d \end{pmatrix}, \ b_s \in R^{m_s}, \ b_d \in R^{m_d}, \ (1)$$

with $m = m_s + m_d$, $m_s \ge n$, and $m_d \ge 1$ (in general, $m_s \gg m_d$).

$$\min_{x} \left\| \begin{pmatrix} A_s \\ A_d \end{pmatrix} x - \begin{pmatrix} b_s \\ b_d \end{pmatrix} \right\|_{2}. \tag{2}$$

Set $C = A^T A$, $C_s = A_s^T A_s$ (reduced normal matrix), $C_d = A_d^T A_d$ A lot of previous work on direct methods' approaches and related problems: Björck, Duff, 1980; Heath, 1982; Björck, 1984; George, Ng, 1984-1987; Adlers, Björck, 2000; Avron, Ng, Toledo, 2009 and many others ...

Direct solution of the sparse-dense least squares

 Woodbury formula (Guttman, 1946; Woodbury, 1949, 1950): Dense rows plugged in a posteriori

$$C^{-1} = (C_s + C_d)^{-1} = C_s^{-1} - C_s^{-1} A_d^T (I_{m_d} + A_d C_s^{-1} A_d^T)^{-1} A_d C_s^{-1}.$$

The least squares solution:

$$x = x_s + C_s^{-1} A_d^T (I_{m_d} + A_d C_s^{-1} A_d^T)^{-1} (b_d - A_d x_s) \text{ with } x_s = (A_s A_s^T)^{-1} A_s^T b_s$$

Direct solution of the sparse-dense least squares

 Woodbury formula (Guttman, 1946; Woodbury, 1949, 1950): Dense rows plugged in a posteriori

$$C^{-1} = (C_s + C_d)^{-1} = C_s^{-1} - C_s^{-1} A_d^T (I_{m_d} + A_d C_s^{-1} A_d^T)^{-1} A_d C_s^{-1}.$$

The least squares solution:

$$x = x_s + C_s^{-1} A_d^T (I_{m_d} + A_d C_s^{-1} A_d^T)^{-1} (b_d - A_d x_s)$$
 with $x_s = (A_s A_s^T)^{-1} A_s^T b_s$

• Sautter trick (Sautter, 1978; see Björck, 1996)

$$(C_s + C_d)^{-1} A_d^T = C_s^{-1} A_d^T (I_{m_d} + A_d C_s^{-1} A_d^T)^{-1}$$

Direct solution of the sparse-dense least squares

 Woodbury formula (Guttman, 1946; Woodbury, 1949, 1950): Dense rows plugged in a posteriori

$$C^{-1} = (C_s + C_d)^{-1} = C_s^{-1} - C_s^{-1} A_d^T (I_{m_d} + A_d C_s^{-1} A_d^T)^{-1} A_d C_s^{-1}.$$

The least squares solution:

$$x = x_s + C_s^{-1} A_d^T (I_{m_d} + A_d C_s^{-1} A_d^T)^{-1} (b_d - A_d x_s)$$
 with $x_s = (A_s A_s^T)^{-1} A_s^T b_s$

• Sautter trick (Sautter, 1978; see Björck, 1996)

$$(C_s + C_d)^{-1} A_d^T = C_s^{-1} A_d^T (I_{m_d} + A_d C_s^{-1} A_d^T)^{-1}$$

• This can be used to express direct solution more efficiently.

Outline

- Introduction
- 2 Mixed sparse-dense least squares
- 3 Approximate decompositions for the sparse-dense least squares
- 4 Iterative solver: CGLS1
- 5 Experiments

Approximate solution of the sparse-dense least squares

 What if the inverses are only approximate, e.g., from an incomplete factorization?

Approximate solution of the sparse-dense least squares

 What if the inverses are only approximate, e.g., from an incomplete factorization?

Theorem

Assume that ξ is an approximate solution to $\min_{x_s} \|A_s x_s - b_s\|_2$ (or whatever). Define $r_s = b_s - A_s \xi$ and $r_d = b_d - A_d \xi$. Then the exact least squares solution of the whole split problem is equal to $x = \xi + \Gamma$, where

$$\Gamma = C_s^{-1} A_s^T r_s + C_s^{-1} A_d^T (I_{m_d} + A_d C_s^{-1} A_d^T)^{-1} (r_d - A_d C_s^{-1} A_s^T r_s)$$
 (3)

Approximate solution of the sparse-dense least squares

• What if the inverses are only approximate, e.g., from an incomplete factorization?

Theorem

Assume that ξ is an approximate solution to $\min_{x_s} \|A_s x_s - b_s\|_2$ (or whatever). Define $r_s = b_s - A_s \xi$ and $r_d = b_d - A_d \xi$. Then the exact least squares solution of the whole split problem is equal to $x = \xi + \Gamma$, where

$$\Gamma = C_s^{-1} A_s^T r_s + C_s^{-1} A_d^T (I_{m_d} + A_d C_s^{-1} A_d^T)^{-1} (r_d - A_d C_s^{-1} A_s^T r_s)$$
 (3)

- We do not need to solve the sparse least squares exactly
- The formulation deals with residuals that represent a basic quantity inside iterative methods

Approximate solution and scaling transformation

• Computed factor can be applied as a scaling transformation similarly as in the direct sparse-dense solvers

Approximate solution and scaling transformation

- Computed factor can be applied as a scaling transformation similarly as in the direct sparse-dense solvers
- Also, the transformation is a crucial practical step. See, again, in Björck, 1996

$$C_s = L_s L_s^T \tag{4}$$

Approximate solution and scaling transformation

- Computed factor can be applied as a scaling transformation similarly as in the direct sparse-dense solvers
- Also, the transformation is a crucial practical step. See, again, in Björck, 1996

$$C_s = L_s L_s^T \tag{4}$$

Getting an equivalent problem

$$\min_{z} \left\| \begin{pmatrix} B_s \\ B_d \end{pmatrix} z - \begin{pmatrix} b_s \\ b_d \end{pmatrix} \right\|_{2}, \tag{5}$$

$$B_s = A_s L_s^{-T}, \quad B_d = A_d L_s^{-T}, \quad z = L_s^T x$$

Transformation + exact decomposition C_s = $L_sL_s^T$ leads to

Lemma

If C_s = $L_sL_s^T$ (exactly) the least squares solution of the transformed split problem can be written as $z=\xi_1+\Gamma_1$, where ξ_1 is an approximate solution to the scaled problem $\min_z \|B_sz-b_s\|_2$ (or whatever), $\rho_s=b_s-B_s\xi_1$ and $\rho_d=b_d-B_d\xi_1$ and

$$\Gamma_1 = B_s^T \rho_s + B_d^T (I_{m_d} + B_d B_d^T)^{-1} (\rho_d - B_d B_s^T \rho_s).$$
 (6)

Choice of ξ

ullet Approximate solution for A_s overdetermined

$$\min_{\xi} \|B_s \xi - b_s\|_2$$

٠

$$\xi_1 \approx (B_s^T B_s)^{-1} B_s^T b_s = L_s^{-1} A_s^T A_s L_s^{-T} L_s^{-1} A_s^T b_s = L_s^{-1} A_s^T b_s$$

Choice of ξ

ullet Approximate solution for A_s overdetermined

$$\min_{\xi} \|B_s \xi - b_s\|_2$$

٠

$$\xi_1 \approx (B_s^T B_s)^{-1} B_s^T b_s = L_s^{-1} A_s^T A_s L_s^{-T} L_s^{-1} A_s^T b_s = L_s^{-1} A_s^T b_s$$

• If B_d represents a significant part of the problem and its effect dominates:

$$\min_{\xi} \|B_d \xi - b_d\|_2$$

٠

$$\xi \approx B_d^{\dagger} b_d$$

Scaling + exact
$$C_s = L_s L_s^T$$
 + exact sparse subproblem

Lemma

If $C_s = L_s L_s^T$ (exactly), the least squares solution of problem (5) can be written as $z = \xi_1 + \Gamma_1$, where ξ_1 minimizes $\|B_s z - b_s\|_2$ (exactly), $\rho_s = b_s - B_s \xi_1$ and $\rho_d = b_d - B_d \xi_1$ and

$$\Gamma_1 = B_d^T (I_{m_d} + B_d B_d^T)^{-1} \rho_d. \tag{7}$$

Scaling + exact
$$C_s = L_s L_s^T$$
 + exact sparse subproblem

Lemma

If $C_s = L_s L_s^T$ (exactly), the least squares solution of problem (5) can be written as $z = \xi_1 + \Gamma_1$, where ξ_1 minimizes $\|B_s z - b_s\|_2$ (exactly), $\rho_s = b_s - B_s \xi_1$ and $\rho_d = b_d - B_d \xi_1$ and

$$\Gamma_1 = B_d^T (I_{m_d} + B_d B_d^T)^{-1} \rho_d. \tag{7}$$

Various ways to evaluate Γ_1

- Dense least squares minimum in norm
- Dense LQ factorization.

Outline

- Introduction
- 2 Mixed sparse-dense least squares
- 3 Approximate decompositions for the sparse-dense least squares
- 4 Iterative solver: CGLS1
- 5 Experiments

Algorithm

Preconditioned CGLS algorithm $(A_s, A_d, A_s^T A_s \approx \tilde{L}_s \tilde{L}_s^T; z = M^{-1}s))$

0.
$$r_s^{(0)} = b_s - A_s x^{(0)}$$
, $r_d^{(0)} = b_d - A_d x^{(0)}$, $w_s^{(0)} = A_s^T r_s^{(0)}$, $w_d^{(0)} = A_d^T r_d^{(0)}$, $z^{(0)} = M^{-1}(w_s^{(0)} + w_d^{(0)})$, $p^{(0)} = z^{(0)}$

- 1. for i = 1 : nmax do
- 2. $q_s^{(i-1)} = A_s p^{(i-1)}, \ q_d^{(i-1)} = A_d p^{(i-1)} \ \alpha = \frac{(w_s^{(i-1)} + w_d^{(i-1)}, z^{(i-1)})}{(q_s^{(i-1)}, q_s^{(i-1)}) + (q_d^{(i-1)}, q_d^{(i-1)})}$
- 3. $x^{(i)} = x^{(i-1)} + \alpha p^{(i-1)}$, $r_s^{(i)} = r_s^{(i-1)} \alpha q_s^{(i-1)}$, $r_d^{(i)} = r_d^{(i-1)} \alpha q_d^{(i-1)}$
- 4. $z^{(i)} = M^{-1}(A_s^T r_s^{(i)} + A_d^T r_d^{(i)}) \beta = \frac{(w_s^{(i)} + w_d^{(i)}, z^{(i)})}{(w_s^{(i-1)} + w_d^{(i-1)}, z^{(i-1)})}$
- 5. $p^{(i)} = z^{(i)} + \beta p^{(i-1)}$
- 6. end do

Algorithm

Preconditioning procedure $(r_s, r_d, w, C_s \approx \tilde{L}_s \tilde{L}_s^T, B_d = A_d^T \tilde{L}_s^{-T}$, chosen mode (Cholesky or LQ)) The Cholesky mode needs $I_{m_d} + B_d B_d^T \approx \tilde{L}_d \tilde{L}_d^T$ / the LQ mode needs $(B_d - I_{m_d}) \approx (\tilde{L}_d - 0_{m_d}) \tilde{Q}_d^T$.

- 1. Solve $\tilde{L}_s \xi_1 = w$ for ξ_1
- $2. \ \rho_d = r_d B_d \xi_1$
- 3. **if** mode == Cholesky **then**
- 4. $u = B_d^T (\tilde{L}_d \tilde{L}_d^T)^{-1} \rho_d$
- 5. else if mode == LQ then
- $6. \qquad \rho_s = r_s A_s \tilde{L}_s^{-T} \xi_1$
- 7. $u = \tilde{L}_s^{-1} A_s^T \rho_s + \tilde{Q}_d (1:n,1:m_d) * \tilde{L}_d^{-1} * (\rho_d B_d \tilde{L}_s^{-1} A_s^T \rho_s)$
- 8. end if
- 9. Solve $\tilde{L}_s^T z = (\xi_1 + u)$ for z
 - ullet Can avoid recomputing $A_s^T r_s$ inside the preconditioner

Outline

- Introduction
- 2 Mixed sparse-dense least squares
- 3 Approximate decompositions for the sparse-dense least squares
- 4 Iterative solver: CGLS1
- **5** Experiments

Experimental evaluation

Stopping criterion

C1: Stop if $||r||_2 < \delta_1$

C2: Stop if

$$\frac{\|A^Tr\|_2}{\|r\|_2} < \frac{\|A^Tr_0\|_2}{\|r_0\|_2} * \delta_2,$$

r residual, r_0 initial residual, δ_1 = 10^{-8} and δ_2 = 10^{-6} .

 Intel(R) Core(TM) i5-4590 CPU running at 3.30 GHz, 12 GB of internal memory. Visual Fortran Intel(R) 64 XE compiler (version 14.0.3.202)

Experimental evaluation: II

- Most of the matrices from the University of Florida Sparse Matrix Collection
- ullet A prescaled normalizing columns:
 - A replaced by by AD, where D is diagonal
 - $D_{ii}^2 = 1/\|Ae_i\|_2$
 - ightharpoonup \Rightarrow Entries of AD are all less than one in absolute value.
- ullet A row of A to be dense if the number of entries in the row either exceeds 100 times the average number of entries in a row or is more than 4 times greater than the number of entries in any row in the sparse part A_s .
- Removing dense rows can leave A_s rank deficient: modifying A by removing any columns of A that correspond to null columns of A_s .

Problem of null columns after removal of the dense part

$$A = \begin{pmatrix} A_1 & A_2 \end{pmatrix} \equiv \begin{pmatrix} A_{s_1} & A_{s_2} \\ A_{d_1} & A_{d_2} \end{pmatrix}, \tag{8}$$

- A_s has n_2 null columns with $n_2 \ll n$ (null A_{s2}).
- The solution can be expressed as a combination of partial solutions.

Theorem

Let $\xi \in R^{n_1}$ and $\Gamma \in R^{n_1 \times n_2}$ be the solutions to $\min_z \|A_1 z - b\|_2$ and $\min_W \|A_1 W - A_2\|_F$, respectively. Then the solution $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ of the original problem split conformally is given by $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} \xi - \Gamma x_2 \\ x_2 \end{pmatrix}$ with $(A_2^T A_2 - A_2^T A_1 \Gamma) x_2 = A_2^T b - A_2^T A_1 \xi$.

Table: Statistics: (density= $nnz(C)/n^2$)

Identifier	m	n	nnz(A)	nnz(C)	$nnz(C)/n^2$
aircraft	7,517	3,754	20,267	1.4×10^{6}	0.200
lp_fit2p	13,525	3,000	50,284	4.5×10^{6}	1.000
scrs8-2r	27,691	14,364	58,439	6.2×10^{6}	0.143
sctap1-2b	33,858	15,390	99,454	2.6×10^{6}	0.050
scsd8-2r	60,550	8,650	190,210	2.0×10^{6}	0.100
scagr7-2r	62,423	35,213	123,239	2.2×10^{7}	0.036
sc205-2r	62,423	35,213	123,239	6.5×10^{6}	0.010
sctap1-2r	63,426	28,830	186,366	9.1×10^{6}	0.050
scfxm1-2r	65,943	37,980	221,388	8.3×10^{5}	0.014
world	67,147	34,506	198,883	3.1×10^{5}	0.001
neos1	133,743	131,581	599,590	1.7×10^{8}	0.027
neos2	134,128	132,568	685,087	2.3×10^{8}	0.033
stormg2-125	172,431	66,185	433,256	1.0×10^{6}	0.002
PDE1	270,595	271,792	990,587	1.6×10^{10}	0.670
neos	515,905	479,119	1,526,794	5.3×10^{8}	0.034
stormg2_1000	1,377,306	528,185	3,459,881	4.2×10^{7}	0.002
cont1_l	1,921,596	1,918,399	7,031,999	8.2×10^{11}	0.667

	Dense rows not exploited				Dense rows exploited				
Identifier	$size_p$	T_p	Its	T_i	m_d	$size_ps$	T_p	Its	T_i
aircraft	22,509	0.09	44	0.02	17	3,750	0.01	1	0.01
lp_fit2p	17,985	0.26	‡	‡	25	4,940	0.09	1	0.01
scrs8-2r	86,169	0.94	380	0.50	22	36,385	0.01	1	0.02
sctap1-2b	92,325	0.39	639	0.69	34	68,644	0.01	1	0.01
scsd8-2r	51,885	0.25	90	0.11	50	51,855	0.05	7	0.02
scagr7-2r	197,067	3,34	244	0.53	7	152,977	0.06	1	0.01
sc205-2r	211,257	1.56	72	0.19	8	104,022	0.08	1	0.01
sctap1-2r	172,965	1.47	673	1.90	34	127,712	0.03	1	0.01
scfxm1-2r	227,835	0.59	187	0.51	58	227,823	0.14	33	0.23
neos1	789,471	†	†	†	74	789,471	5.27	132	3.71
neos2	†	†	†	†	90	795,323	5.46	157	4.84
stormg2-125	395,595	0.27	‡	‡	121	7,978,135	0.22	16	0.29
PDE1	†	†	†	†	1	1,623,531	12.7	696	1.28
neos	†	†	†	†	20	2,874,699	4.93	232	15.0
stormg2_1000	3,157,095	19.1	‡	‡	121	3,125,987	19.1	18	2.92
cont1_l	†	†	†	†	1	11,510,370	4.82	1	0.33

SCSD8-2r_a: size of C_s

Figure: $|C_s|$.

SCSD8-2r_a: iteration counts $+ size_p/size(A^TA)$

Figure: Problem Meszaros/scsd8 - 2r. Iteration counts (left), and ratio of the preconditioner size to the size of A^TA (right) as the number of dense rows that are removed from A is increased.

SCSD8-2r_a: timings

Figure: Problem Meszaros/scsd8-2r. Time to compute the preconditioner (left) and time for CGLS (right) as the number of dense rows that are removed from A is increased.

stormg2_1000: size of C_s

Figure: Problem $Mittelmann/stormg2_1000$. Size of $A_s^T A_s$.

stormg2_1000: large problem: iteration counts $+ size_p/size(A^TA)$

Figure: Problem $Mittelmann/stormg2_1000$. Iteration counts (left), Ratio of the preconditioner size to the size of A^TA (right) as the number of dense rows that are removed from A is increase.

stormg2_1000: large problem: timings

Figure: Problem $Mittelmann/stormg2_1000$. Time to compute the preconditioner (left), time for the preconditioned iterations (right).

Conclusions

ullet Solving linear least squares problems where A has a number of dense rows.

Conclusions

- ullet Solving linear least squares problems where A has a number of dense rows.
- A new approach that processes the dense rows separately within a conjugate gradient method

Conclusions

- ullet Solving linear least squares problems where A has a number of dense rows.
- A new approach that processes the dense rows separately within a conjugate gradient method
- Not all the formulas above work in practice !!!! In our case, the best has been the simplest one.

Conclusions

- ullet Solving linear least squares problems where A has a number of dense rows.
- A new approach that processes the dense rows separately within a conjugate gradient method
- Not all the formulas above work in practice !!!! In our case, the best has been the simplest one.
 - The dense rows must be treated separately
 - The dense rows must be considered (Avron, Ng and Toledo use an approach that takes them out from the consideration within a QR-based scheme - we faced significant troubles in our PCGLS based on Cholesky following this approach)

Last but not least

Thank you for your attention!