
Modeling and simulation of mechano-chemical
pattern formation processes

MORE 2017

Thomas Richter
University of Magdeburg

Institute for Analysis and Numerics

with Felix Brinkmann, University of Heidelberg

Moritz Mercker, University of Heidelberg
and Anna Marciniak-Czochra, University of Heidelberg

August 3, 2017



Overview

• Motivation

• Modeling

• Numerics & Results

Thomas Richter, University of Magdeburg



Motivation Pattern Formation 2 - 1
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Theories explaining pattern formation processes

1. A sequence of successive chemical patterns form. This would rule out spontaneous self-organized pro-
cesses, as they are observed in dissociated and re-aggregated cells.

2. Chemical patterns can form spontaneously by an interplay of mutual interaction of diffusing mor-
phogens by the Turing mechanism. While the Turing mechanism creates many relevant patterns,
experiments usually do not find morphogens with requires diffusion and reaction rates.

Turing: The chemical basis of morphogenesis, Phil. Trans. R. Soc. London, 1953
Meinhardt & Gierer: Pattern formation by local self-activation and lateral inhibition, Bioessays, 2000

• Both theories say, that mechanical patterns are blind end results of chemical pre-patterns. Recent
studies however show, that mechanical patterns play an active role.

Brouzes & Farge: Interplay of mechanical deformation and patterned gene expression in developing embryos,
Curr. Opin. Genet. Dev., 2004
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Models 3 - 1

Mechanics

−div
(
FΣ
)

= 0 in V,

assuming a St. Venant Kirchhoff material

Σ = 2µE + λ tr(E)I, E =
1

2
(FTF− I), F = I +∇u

With
u = 0 on ΓD, FΣn = g on ΓN

We assume, that growth is very slow compared to elastic dynamics such that the mechanical system is always
in a stationary limit

(Bio-)Chemistry
System of reaction diffusion equations (in Lagrangian coordinates)

J∂tci − div
(
JF−1DF−T∇ci

)
− JRi(c1, . . . , cn) = 0 in V for i = 1, . . . , n

with initial and boundary conditions

ci = c0i for t = 0 and JF−1DF−T∇cin = 0 on Γ
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Models Active Materials 3 - 2

• Intermediate configuration

V̂
T̂a−→ V̂a

T̂e−→ V

• Active deformation T̂a and elastic deformation T̂e

V̂
VV̂a

F̂ = I + ∇̂û = FeFa

F̂a = ∇T̂a F̂e = ∇T̂e

Elasticity takes place between Va and V

Σ = Σ(Fe) = Σ(FF−1a )

For the St. Venant Kirchhoff material

Σ = JaF
−1
a ΣeF

−T
a , Σe = 2µEe + λ tr(Ee)I, Ea =

1

2
(FT

e Fe − I) =
1

2
(F−Ta FTFF−1a − I).

Rodriguez, Hoger & McCulloch: Stress-depedent finite growth in soft elastic tissues, J. BioMech. 1994
Ambrosi & Mollica: On the mechanics of a growing tumor, IJ Eng. Science 2002
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Models Active (growth) Model - apical constriction 3 - 3

• Active deformation (here apical constriction) depends on one chemical concentration c

F̂a(x, y, z, c)
∣∣∣
M

=

1 + κcẑ 0 κcx̂
0 1 + κcẑ κcŷ
0 0 1

 ,

x̂ŷ
ẑ

 =

x− xMy − yM
z − zM

 rel. to midpoint of cell M

• (Simplified, as we first have to rotate every biological cell to a reference orientation)

Thomas Richter, University of Magdeburg Models



Models Mechano-bio/chemical feedback loops 3 - 4

• High morphogen level causes apical constriction Fa = Fa(c)

• Apical constriction causes elastic feedback with local compression Σe = Σ(FF−1a )

• Local compression triggers morphogen production (Michaelis-Menten kinetics)

R(c,F) = κ1
max{det F, 0}

κ3 + max{det F, 0} − κ2c, κ1, κ2, κ3 > 0
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Numerics & Results Setup of numerical experiments 4 - 1

• We consider a layer of biological cells. The (adaptive) finite element discretization is much finer

• Overall very large active and elastic deformation appears
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Numerical Tools 5 - 1

Monolithic Model
U = {u, c} ∈ X : A(U)(Φ) = 0 ∀Φ ∈ X

The variational formulation is given by

A(U)(Φ) =
(
FJaF

−1
a ΣeF

−T
a ,∇φ

)
+
(
J∂tc, ψ

)
+
(
JF−1DF−T∇c,∇ψ

)
−
(
JR(c,F), ψ

)
with

• Growth model

F̂a

∣∣∣
M

=

1 + κcẑ 0 κcx̂
0 1 + κcẑ κcŷ
0 0 1


• Reaction feedback

R(c,F) = κ1
max{det F, 0}

κ3 + max{det F, 0} − κ2c

• Stress model with growth-splitting

Σe = 2µEe + λ tr(Ee), Ee =
1

2
(F−Ta FTFF−1a − I),

F = I +∇u
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Numerical Tools Discretization 5 - 2

• Quadratic finite elements (3 deformation variables + 1 concentration)

Xh ⊂ X , Xh := {φ ∈ C(Ω̄)3+1, φ
∣∣
K
∈ Q2(K)4 ∀K ∈ Ωh}

• Adaptive Meshes to efficiently resolve biological cells (there
are jumps in the active growth model Fa at the biological
cell boundaries)

• Monolithic coupled approach

Find Uh = (uh, ch) ∈ Xh : A(Uh)(Φh) = 0 ∀Φh ∈ Xh

• Time stepping with the implicit Euler method. We found, that temporal accuracy is of lesser important
(compared to spatial accuracy and stability problems)

Nonlinear Solver

Linearization with Newton’s method

A′(U
(i)
h )(W

(i)
h ,Φh) = F (Φh)−A(U

(i)
h )(Φh) ∀Φh ∈ Xh, U

(i+1)
h = U

(i)
h + ωW

(i)
h

Analytic computation of the monolithic Jacobian
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Numerical Tools Solution 5 - 3

• Large and ill-structure linear system of equations (couplings to elasticity A to growth AG chemistry
transport M, diffusion Ad, reaction AR and mapping to Lagrangian coordinates AE(

A AG

AR + AE k−1M + Ad

)(
δu
δc

)
=

(
bu

bc

)
• Multigrid solver for the linear systems

Ax = b

• Parallelization of the multigrid solver by a domain decomposition smoother

• Highly complex simulations (nonlinearity and
ill-structured linear systems)

• Fine meshes are required

• About 20 seconds per time-step

• Total simulation time in 3d about 10 days
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Results Spontaneous pattern formation based on apical constriction 6 - 1

Feedback Mechanism:

• Apical constriction

• Morphogen production by compression

Results:

• The process is stable in the following sen-
se: different initial morphogen concentra-
tions give the same stationary mechanical
pattern

• Similar patterns are observed in Hydra de-
velopment
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Results Spontaneous pattern formation based on basal constriction 6 - 2

Feedback Mechanism:

• Basal constriction

• Morphogen production by compression

Results:

• Again, stable process

• Similar results are found in Nematostella
and Xenopus gastrulation.
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Further Steps

• Numerical Simulation
We identify possible feedback-loops and mechanisms

– What is the trigger for morphogen production?
Cell-size or shape F, elastic stress Σe, strain Ee or E?

– How does the biological cell react?
Compression, apical or basal constriction, shear, ...

• Biological verification
Currently, experimentalists run experiments that are based on our simulations:

– Can we trigger morphogen-production by a mechanical stimulus?

– Can we produce a mechanical reaction by a injecting morphogens?

• Mathematical Analysis
Is the coupled mechano-chemical system of partial differential equations well-posed?

– Stability estimates for the long-term simulations. Control of the chemical concentration and elastic
stresses

– Design of robust and efficient solvers
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Summary

• Novel numerical model that is able to show spontaneous pattern formation processes based on an
interplay of mechanics and bio-chemistry

• Robust high-performance framework for mechano-chemical coupled simulations

All computations done with Gascoigne 3D

Upcoming thesis:
Felix Brinkmann: Mathematical models and numerical simulati-
on of mechanochemical pattern formation in biological tissues,
Dissertation, University of Heidelberg, 2017

Y. Yang & T.R. & W. Jäger & M. Neuss-
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