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Setup – Variational integrals with linear growth

Functionals: we consider variational integrals

F [w] :=

∫
Ω

f(|∇w|) dx

for functions w : Rn ⊃ Ω → RN , a bounded Lipschitz domain Ω, and a C1-
integrand f with f ′(0) = 0 which is strictly convex and of linear growth, i. e.

t ≤ f(t) ≤ L(1 + t) for t ∈ R .

Notice:
I These functionals are well-defined in the Sobolev space W1,1(Ω,RN ).
I Simple model integrands are

fp(t) = (1 + tp)1/p or fp(t) =

∫ t

0

(1 + sp)−1/psds

for t ∈ R+
0 and p ∈ (1,∞), which both for p = 2 give the area integrand.

(All derivatives exhibit the same growth in t ≥ 1, but the second integrand is of class C2 also
for p < 2, which avoids the need of regularization later on.)



Setup – Dirichlet and Neumann problem

Dirichlet problem: for fixed boundary values u0 ∈W1,1(Ω,RN ) we study the
minimization problem

inf

{∫
Ω

f(|∇w|) dx : w ∈W1,1
u0

(Ω,RN )

}
.

For f2(t) = (1+t2)1/2 andN = 1 this is the classical
non-parametric least area problem.

(The parametric least area problem instead refers to
minimizing the area among surfaces which are not
necessarily given by graphs of functions)



Setup – Dirichlet and Neumann problem

Dirichlet problem: for fixed boundary values u0 ∈W1,1(Ω,RN ) we study the
minimization problem

inf

{∫
Ω

f(|∇w|) dx : w ∈W1,1
u0

(Ω,RN )

}
.

Notice:
I If a minimizer exists in W1,1

u0
(Ω,RN ), then it is unique.

I For u0 ≡ 0 we have only the trivial minimizer u ≡ 0.
I Finding this minimizer is equivalent to finding the unique weak solution
u ∈W1,1

u0
(Ω,RN ) to the Euler–Lagrange system∫
Ω

f ′(|∇u|)∇u
|∇u| · ∇ϕ dx = 0 for all ϕ ∈W1,1

0 (Ω,RN ) ,

i.e.

div
(f ′(|∇u|)∇u

|∇u|

)
= 0 in Ω .



Setup – Dirichlet and Neumann problem

Neumann problem: for fixed T0 ∈ W1,∞(Ω,RNn) we study the minimization
problem

inf

{∫
Ω

f(|∇w|)− T0 · ∇w dx : w ∈W1,1(Ω,RN )

}
.

Notice:
I If a minimizer in W1,1(Ω,RN ) exists, it is unique up to additive constants.
I For T0 ≡ 0 we have the trivial minimizer u ≡ 0.
I Finding a minimizer is equivalent to finding a function u ∈ W1,1(Ω,RN )

satisfying∫
Ω

f ′(|∇u|)∇u
|∇u| · ∇ϕ dx =

∫
Ω

T0 · ∇ϕdx for all ϕ ∈W1,1(Ω,RN ) ,

which implies that the validity of the Euler–Lagrange system

div
(f ′(|∇u|)∇u

|∇u|

)
= div T0 in Ω .

and, under sufficient regularity, a Neumann-type constraint

f ′(|∇u|)∇u
|∇u| · ν∂Ω = T0 · ν∂Ω on ∂Ω .



Part I:
Existence of BV-minimizers



Direct method in W1,1(Ω)?

The direct method of the calculus of variations is a tool to find a minimizer
of a functional F over a vector space X, which traces back to Hilbert, Lebes-
gue, Tonelli, . . . and consists in

I choosing a topology such that we have compactness (allows to select a
convergent subsequence from a minimizing sequence) and lower semi-
continuity of F (which guarantees that the limit is a minimizer),

First attempt: with the topology of weak convergence in W1,1(Ω).

I largest space on which the functionals are well-defined;
I lower semicontinuity via convexity of the integrands;
I lack of compactness: bounded sequences (wk)k∈N in W1,1(Ω) may have

no weakly convergent subsequence.

Example: Take w(x) := sgn(x),
wk(x) := tanh(kx) for k ∈ N:
• wk → w in L1((−1, 1));

• ‖wk‖W1,1 ≤ 4 for k ∈ N;

• wk ⇀/ w in W 1,1((−1, 1)).



Non-existence of minimizers of the Dirichlet problem in W1,1
u0 (Ω)

Example of Finn (1965)

Let Ω = B2 \ B1, take f ∈ C2 strictly
convex of linear growth, and look for mi-
nimizers of F with prescribed boundary
values

u0 :=

{
−M on ∂B1 ,

M on ∂B2 .

I If a solution exists, it is rotationally symmetric, i.e. u(x) = ū(|x|), and ū is
increasing;

I The Euler–Lagrange equation reduces to the ODE(
f ′(ū′(r))rn−1)′ = 0 for r ∈ (1, 2)

I Thus, after integration of ū′(r) = (f ′)−1(cr1−n) for some integration con-
stant c, one obtains that the solution ū is bounded independently of the
choice of M – a contradiction to ū(2) = M – under the assumption∫ ∞

0

tf ′′(t) dt <∞ .



Criterion for solvability of the Dirichlet problem

Remarks:
I The solvability of the Dirichlet problem depends on Ω and u0 (which is

ultimately linked to the lack of weak compactness properties of W1,1(Ω)).
I Necessary and sufficient criterion for its solvability (for all regular Ω and u0)

for the scalar, rotational symmetric case is essentially∫ ∞
0

tf ′′(t) dt =∞

[see Bernstein (1912), Leray (1939), Serrin (1969) ...
B.–Bulíček–Maringová (2016)].

I For the model integrand with f ′p(t) = (1 + tp)−1/pt we have f ′′p (t) =

(1 + tp)−1/p−1 (cancellation effect!), thus∫ ∞
0

tf ′′p (t) dt <∞ for all p ≥ 1

and no minimizer in W1,1
u0

(Ω) exists for this specific example (for suitable
choices of M > 0).



Extension of the functionals to BV(Ω)

Many minimization problems of linear growth are in general not solvable in
the original formulation, in particular not the Dirichlet problem for the area
functional and the vectorial case!

The direct method of the calculus of variations (II) to find a minimizer of a
functional F over a vector space X consists in

I choosing a space Y ⊃ X and a topology such that we have compact-
ness and lower semicontinuity of F , which guarantees the existence of a
minimizer of F in Y,

I showing that the minimizer belongs to X.



Extension of the functionals to BV(Ω)

Many minimization problems of linear growth are in general not solvable in
the original formulation, in particular not the Dirichlet problem for the area
functional and the vectorial case!

The direct method of the calculus of variations (II) to find a minimizer of a
functional F over a vector space X consists in

I choosing a space Y ⊃ X and a topology such that we have compact-
ness and lower semicontinuity of F , which guarantees the existence of a
minimizer of F in Y,

I showing that the minimizer belongs to X.

F is not defined on Y ?

Extension by lower semicontinuity (Lebesgue–Serrin):
We define the relaxed functional (in y ∈ Y ) as

F [y] := inf
{

lim inf
k→∞

F [xk] : xk ∈ X and xk “ ⇀ ” y in Y
}



Extension of the functionals to BV(Ω)

Extension by lower semicontinuity (Lebesgue–Serrin) to the space BV(Ω)
leads in the model cases to the following relaxed functionals (evaluated in
w ∈ BV(Ω)):

I for the Dirichlet problem

Fu0
p [w] =

∫
Ω

fp(|∇w|) dx+ |Dsw|(Ω) +

∫
∂Ω

|w − u0|dHn−1

I for the Neumann problem

FT0
p [w] =

∫
Ω

fp(|∇w|) dx+ |Dsw|(Ω)−
∫

Ω

T0 · dDw

(integral representation by Goffman–Serrin 1964, Giaquinta–Modica–Souček
1979).

Recall the space of functions of bounded variation

BV(Ω) :=
{
w ∈ L

1
(Ω) : the weak derivative Dw = D

s
w +∇wLn

exists as finite Radon measure
}

) W
1,1

(Ω) .



Extension of the functionals to BV(Ω)

Extension by lower semicontinuity (Lebesgue–Serrin) to the space BV(Ω)
leads in the model cases to the following relaxed functionals (evaluated in
w ∈ BV(Ω)):

I for the Dirichlet problem

Fu0
p [w] =

∫
Ω

fp(|∇w|) dx+ |Dsw|(Ω) +

∫
∂Ω

|w − u0|dHn−1

I for the Neumann problem

FT0
p [w] =

∫
Ω

fp(|∇w|) dx+ |Dsw|(Ω)−
∫

Ω

T0 · dDw

Note: These functionals are lower semicontinuous in (BV(Ω), weak-∗) and
have the same infimum as for the original problems (Reshetnyak 1968).

I This leads to the concept of BV- or generalized minimizers as minimizers
of the relaxed functionals in BV(Ω) (or equivalently, as weak-∗-limit of a
minimizing sequence of the original minimization problem);

I Existence of such BV-minimizers follows from the direct method applied
in BV(Ω) ...



Necessary condition on T0 for the Neumann problem

Existence of such BV-minimizers for the Neumann problem follows only under
the assumption T0 ∈W1,∞(Ω,RNn) such that

‖T0‖L∞(Ω) < lim
t→∞

fp(t)/t = 1 .

I This condition guarantees coerciveness, i.e. we have

‖∇w‖L1(Ω) ≤ C(1 + FT0
p [w]) for all w ∈W1,1(Ω,RN ) .

I Non-existence of (BV-)minimizers for T0 ≡ 1: for Ω = (−1, 1) we have

0 = inf
W1,1(Ω)

FT0
p ≤ FT0

p [kx]
k→∞−→ 0

but the integrand is strictly positive!
I Unboundedness from below already for FT0

p in W1,1(Ω) for T0 ≡ c > 1.



Part II:

Regularity of BV-minimizers
or

Existence of W1,1-minimizers



W1,1-regularity of BV-minimizers?



W1,1-regularity of BV-minimizers?

The typical strategy is via the proof of higher integrability of ∇u, by using
suitable test functions ϕ ∈W1,1

0 (Ω,RN ) in the Euler–Lagrange system∫
Ω

f ′(|∇u|)∇u
|∇u| · ∇ϕ dx = 0 .

The analytic difficulty for proving estimates is the non-uniform ellipticity condi-
tion of the system, arising from

t−1−p . f ′′(t) . t−1

(cp. functionals under p-q-growth condition)

which limits the following strategy to p ∈ (1, 2]:

1 local boundedness of u;
2 weighted W2,2

loc -estimates (with weights (1 + |∇u|)−1−p);
3 local superlinear integrability of ∇u.



Regularity results up to the critical case p=2

Theorem (Bildhauer 2002, B.–Schmidt 2013-2015)
If u is a BV-minimizer of the Dirichlet problem for Fp with p ∈ (1, 2], then

(i) u ∈W1,1(Ω,RN ) with |∇u| log(1 + |∇u|) ∈ L1
loc(Ω) if p = 2;

(ii) u ∈ C1(Ω,RN ) if p ∈ (1, 2).



Regularity results up to the critical case p=2

Theorem (Bildhauer 2002, B.–Schmidt 2013-2015)
If u is a BV-minimizer of the Dirichlet problem for Fp with p ∈ (1, 2], then

(i) u ∈W1,1(Ω,RN ) with |∇u| log(1 + |∇u|) ∈ L1
loc(Ω) if p = 2;

(ii) u ∈ C1(Ω,RN ) if p ∈ (1, 2).

Remarks:
I Uniform regularity estimates are established for a suitable minimizing se-

quence (uk)k∈N (via a vanishing viscosity approach), the result on mini-
mizers then “follows” from compactness

a priori: uk
∗
⇀ u in BV(Ω,RN )

now: uk ⇀ u in W1,1(Ω,RN ) ;

I p=2, N=1: (minimal graphs) all BV-minimizers are of class C∞(Ω)
(GMT-arguments, by Bombieri, De Giorgi, Giusti, Miranda ... ∼ 1969);

I p=2, N>1: higher regularity (such as W1,q for some q > 1) is open;
I The result transfers directly to the Neumann problem (local estimates!)

for regular T0.



... and what about p > 2 for the Dirichlet problem?

Autonomous case:

I Every BV-minimizer u is partially C∞-regular, i.e. outside of a set of Ln-
measure zero.

(Anzellotti–Giaquinta 1988, Schmidt 2014)

Notice: We always have Ln(supp(Dsu)) = 0, so we

cannot exclude u ∈ BV \W1,1(Ω,RN )!



... and what about p > 2 for the Dirichlet problem?

Non-autonomous case: We study the minimization of

F̃p[w] :=

∫
Ω

(1 + a(x)|∇w|p)1/p dx in W1,1
u0

(Ω,RN ) .

I Smooth x-dependence does not chance the positive theory for p ∈ (1, 2].
(Bildhauer 2003)

I Let n = 1, p > 2, Ω = (−1, 1) and a(x) = 1 + |x|2. For u0(±1) = ±M
for M sufficiently large, the BV-minimizer

attains the boundary values,

M

−M

x

M

−M

x



... and what about p > 2 for the Dirichlet problem?

Non-autonomous case: We study the minimization of

F̃p[w] :=

∫
Ω

(1 + a(x)|∇w|p)1/p dx in W1,1
u0

(Ω,RN ) .

I Smooth x-dependence does not chance the positive theory for p ∈ (1, 2].
(Bildhauer 2003)

I Let n = 1, p > 2, Ω = (−1, 1) and a(x) = 1 + |x|2. For u0(±1) = ±M
for M sufficiently large, the BV-minimizer

attains the boundary values,
has a jump singularity at {0}, i.e. is in BV \W1,1(Ω)!

Jumps are cheaper in the interior of Ω, where a(x) is small!
(Giaquinta–Modica–Souček 1979)



... and what about p > 2 for the Dirichlet problem?

Non-autonomous case: We study the minimization of

F̃p[w] :=

∫
Ω

(1 + a(x)|∇w|p)1/p dx in W1,1
u0

(Ω,RN ) .

I Smooth x-dependence does not chance the positive theory for p ∈ (1, 2].
(Bildhauer 2003)

I Let n = 1, p > 2, Ω = (−1, 1) and a(x) = 1 + |x|2. For u0(±1) = ±M
for M sufficiently large, the BV-minimizer

attains the boundary values,

Jumps are cheaper in the interior of Ω, where a(x) is small!
(Giaquinta–Modica–Souček 1979)

I Extension to n > 1 in rotational symmetric setting: for Ω = B2 \ B1,
a(x) = 1 + (|x| − 3

2
)2 and u0(∂B2) = M , u0(∂B1) = −M , one can show

that the BV-minimizer
is rotationally symmetric
attains the boundary values,
is in BV \W1,1(Ω)!

(Bildhauer 2003)



A general existence result for W1,1-minimizers for the Neumann problem

Surprisingly, we find W1,1-minimizers for the Neumann problem for the whole
range p ∈ (1,∞) in the following situation:

Theorem (B.–Bulíček–Gmeineder 2017)
Consider a bounded, simply connected Lipschitz domain Ω, a strictly con-
vex C2-integrand f of linear growth with f ′(0) = 0 and a function T0 ∈
W2,∞(Ω,RNn) satisfying

‖T0‖L∞(Ω) < lim
t→∞

f(t)/t .

Then there exists a (unique) solution u ∈W1,1(Ω,RN ) (with fixed average) of
the Neumann problem

inf

{∫
Ω

f(|∇w|)− T0 · ∇w dx : w ∈W1,1(Ω,RN )

}
.

Open: Is the construction of a BV-minimizer u /∈W1,1(Ω,RN ) for a non-simply
connected domain (like the annulus) possible?



Strategy of proof

We work with solutions uk ∈ W1,2(Ω,RN ) to the approximate Neumann pro-
blems

to minimize w 7→ FT0
p [w]+(2k)−1‖∇w‖2L2(Ω) in W1,1(Ω,RN )

and show:

1 Boundedness of (uk)k∈N in W1,1(Ω,RN ), and (up to subsequences)

uk
∗
⇀ u in BV(Ω,RN ) and ∇uk

b
⇀ E in L1(Ω,RNn) ;

2 (uk)k∈N is a minimizing sequence;
3 Uniform weighted W2,2

loc estimates;

— so far as for the Dirichlet problem —

4 Pointwise convergence ∇uk → E a.e. in Ω
(relying on arguments used before in [B.–Bulíček–Málek–Süli, 2017]);

5 Gradient structure E = ∇v for some function v ∈W1,1(Ω,RN )
(via curlE = 0 and a Sobolev-type version of Poincaré’s Lemma);

6 Minimization property of v by (by pointwise convergence ∇uk → ∇v,
Step 2 and Fatou).



Thank you for your attention!

References:
I L. B., T. Schmidt: On the Dirichlet problem for variational integrals in BV, J. Reine Angew.

Math. 2013
I L. B., T. Schmidt: Interior gradient regularity for BV minimizers of singular variational problems,

Nonlinear Anal. 2015
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