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history of infinitesimal calculus
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Eudoxos, Archimedes (408-355 BC, 287-212 BC)
Zeno of Elea (490-430 BC): paradoxes
Descartes, Fermat, Pascal, Barrow (17th century)
Leibniz, Newton (1675, 1666): Calculus Infinitesimalis
indivisibles banned by jesuits (1632)
Berkeley (1734): famous critique
golden (non-rigorous!) era: Euler, Gauss, Riemann, . . .
Bolzano, Cauchy, . . . quest for foundations (vs. necessity to teach)
great triumvirate: Cantor, Dedekind, Weierstrass (end of 19th
century): ∀ε ∃δ

end of story? (a premature one)
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20th century: towards a true infinitesimal calculus

development of logic: syntax vs. semantics
Th. Skolem (1934): non-standard models of arithmetic
Lowenheim-Skolem theorem (1915-1920),
Gödel’s theorem (1931)
Abraham Robinson: NSA (1960)
Elias Zakon: superstructure construction
Edward Nelson (ca 1970): internal set theory
Petr Vopěnka (1970): alternative set theory
still many (famous) critiques:
Alain Connes, Paul Halmos, Errett Bishop
modern advocate of NSA: Mikhail Katz
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non-standard analysis
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Q: What is NSA ?
A: Some obscure theory to give you infinitesimals rigorously.
(Not worth the labour; we have ε and δ.)

Q: What is NSA, truly?

A: In fact, you not only have NS-A; you can have NS-{measure theory,
functional analysis, combinatorics, PDEs, ODEs . . . }

It works for any mathematical theory: the more advanced, the better.
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Language vs. universum

Two aspects of mathematical theory:

1© universum U : numbers, sets, functions, relations, functionals, . . .

2© language L: constants (∼ objects of U), logical symbols, quantifiers,
variables, . . .

NSA . . . works with two universa: standard U and enlarged U ′

and so-called elementary embedding

∗ : U → U ′

α 7→ ∗α
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∗-transform of a formula

On the side of language, one has ∗-transform of formula ϕ:
∗ϕ is obtained by replacing any constant c by ∗c,
leaving everything else (variables, logical symbols) in place

φ :
(
∀x

)(
∃y

)
. . . P(x , y , . . . , c1, . . . , cn)

∗φ :
(
∀x

)(
∃y

)
. . . P(x , y , . . . , ∗c1, . . . ,

∗cn)

Note. Examples of constants:
0, 1, π,
R, N, . . .
sin, +, ≤, . . .
C(R, R), L2(Ω)

(MFF UK) 9 / 25



Axioms of NSA

Axiom 1. [Transfer.]
A sentence ϕ holds true in U iff ∗ϕ holds in U ′

Axiom 2. [Enlargement.] For any infinite set A in U , one has

{∗a; a ∈ A} ( ∗A
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Transfer – examples
1© (

∀x , y ∈ R
)

x + y = y + x(
∀x , y ∈ ∗R

)
x ∗+y = y ∗+x

2© (
∀x ∈ R

)
| sin(x)| ≤ 1(

∀x ∈ ∗R
) ∗|∗sin(x)|∗≤ ∗1

Convention. We replace ∗1 by 1, ∗sin by sin , ∗≤ by ≤ etc.
Hence in particular R ⊂ ∗R, N ⊂ ∗N
So more suggestively though less rigorously, the transfered formulas
read: (

∀x , y ∈ ∗R
)

x + y = y + x

(
∀x ∈ ∗R

)
| sin(x)| ≤ 1
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Terminology

Pronounciation. ∗ reads as hyper, i.e.,
∗R . . . hyperreal numbers, ∗N . . . hypernatural numbers,
∗C(R, R) . . . hypercontinuous functions, etc.

Definition. An object β ∈ U ′ is called:
standard, if β = ∗α for some α ∈ U
internal, if β ∈ ∗α for some α ∈ U
external, if it is not internal
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Enlargement – consequences

1© there exist N ∈ ∗N \ N, necessarily infinitely large, i.e.
∀n ∈ N : n < N

2© there exist α ∈ ∗(0,+∞) \ (0,+∞), infinitely small, i.e.
α > 0 such that ∀x ∈ R, x > 0 : α < x

3© there exist f ∈ ∗C(R, R) \ C(R, R) ... (hyper)-continuous functions
with singular properties

4© Stone-Weierstrass theorem: f ∈ C([0, 1]; R) continuous can be
arbitrarily close approximated by p ∈ P[x ] . . . it can be infinitely close
approximated by p ∈ ∗P[x ] (“hyper-polynomial”, presumably of infinite
degree)
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Some concluding observations on NSA

NSA is conservative extension (no new truths about U)
makes no sense for finite universa
dark side: external objects (old paradoxes arise),
e.g. N ( ∗N „violates“ the induction axiom
NSA = to visit a foreign country
NSA results are hard to publish
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oscillators
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Standard oscillator

x ′′ + Fd + Fs = f (t)
x(0) = x0

x ′(0) = v0

Standard = explicit constitutive relations:

Fd = Fd(x , x ′) Fs = Fs(x , x ′)

=⇒ 2nd order ODE, well-understood theory (existence, uniqueness,
qualitative analysis, explicit integration for the linear case)

Q: What if Fd , Fs and x , x ′ cannot be related explicitely?
This is a more common situation than one would expect ...
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Non-standard (non-smooth) oscillator

x ′′ + Fd + Fs = f (t)
x(0) = x0

x ′(0) = v0

Assume: Fd and/or Fs cannot be written explicitely in terms of x , x ′.

In particular, we will consider two situations:

1 Coulomb friction
2 obstacle (bouncing problem, inextensible string)
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Coulomb friction

x ′′ + Fd + s(x) = f (t)
x(0) = x0

x ′(0) = v0

Fd


= φ0, x ′ > 0
= −φ0, x ′ < 0
∈ [−φ0, φ0], x ′ = 0

Can be treated classically, using:

differential inclusions
weak convergence
monotone graph theory

This is a lot of advanced functional analysis . . .
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Coulomb via NSA

IDEA: replace vertical segments of the graph by an infinitely steep
(linear) growth.

Hence: Fd = γ(x ′), where γ is ∗-Lipschitz function
=⇒ well-posedness by the usual ODE theory (modulo transfer)
a number of other tools are at our disposal . . .

PROBLEM: macroscopic stability, in other words:

Does infinitely small change of initial condition imply infinitely small
change of solution ??

In fact, easily solved here due to monotonicity of γ(·).
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obstacle bounce

x ′′ = f (t)
if x(t) < 0

if x(t1) = 0 with x ′(t1) = v1 > 0
then set x ′(t1) = −θv1, where θ ∈ [0, 1]

Can be solved classically (with some limitations) by „patching“ the
solutions together.

BUT: there are some issues, namely close to the wall.
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obstacle bounce via NSA

How can we model the bounce, using NSA?

IDEA: for x > 0, use classical linear oscillator

x ′′ + Dx ′ + Lx = 0

with D and/or L > 0 infinitely large (hyper-oscillator)
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obstacle bounce via NSA - equation

More precisely, we need to combine the equations

x ′′ = f (t) x ≤ 0
x ′′ + Dx ′ + Lx = f (t) x ≥ 0

use a simple trick: set z = x ′ + ∆(x), where

∆(x) =

{
Dx , x ≥ 0
0, x ≤ 0

σ(x) =

{
Lx , x ≥ 0
0, x ≤ 0

hence we obtain a system

x ′ = z −∆(x)

z ′ = −σ(x) + f (t)

This is a ∗-classical ODE for (x , z).
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Discussion: good news

1© global existence of (unique) solutions (transfer Picard theorem)

2© various types of „bounce“ can be modeled, namely:

D = 0, L ≈ ∞ . . . an elastic bounce
L ≈ D2 ≈ ∞ . . . bounce with partial/complete loss of energy
D ≈ ∞, L = 0 . . . stick to the wall
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Problem

Is the system „stable“, in the sense that infinitely small change of initial
condition only results in infinitely small change of solution?

This is not guaranteed by ∗-Picard theorem (infinitely large Lipschitz
constant!)

Some mathematical work has to be done (essentially an estimate
independent of infinitely large L, D).

Partial result.
D. Pražák, K. R. Rajagopal, J. Slavík:
A non-standard analysis approach to a constrained forced oscillator.
J. Log. Anal. 9 (2017), 1–22.
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thank you
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