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Problem: Functionals with Linear Growth

Problem

Minimize §(u) = / f (x, Vu(x))dx subject to Dirichlet data up.
Q

linear growth: ca|Vu| < f(-,Vu) < o|Vu|+ c3
continuity: [f(x, @) — f(y, Q) S w(lx = y[)(1 + Q).
quasi-convexity: linear functions are local minimizers.
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Singularities (line discontinuities) will develop!

Questions
Functions spaces: Compactness
Boundary values: Existence of traces
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Problem: Functionals with Linear Growth

Problem

Minimize F(u) = / f(x, (Au)(x)) dx subject to Dirichlet data ug.
Q

linear growth: ci|Au| < (-, Au) < o|Au| + ¢
continuity: [f(x, @) — f(y, Q) S w(lx = y[)(1 + Q).
quasi-convexity: linear functions are local minimizers.

Singularities (line discontinuities) will develop!

Questions
Functions spaces: Compactness
Boundary values: Existence of traces

Now, replace Vu by a first order differential operator A.
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Differential Operator — Main Examples

Let v : R" — RN and N(A) = {u : Au = 0 as distribution}.

Gradient
Au=Vu, N(V)={x~ b}. J
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Differential Operator — Main Examples

Let v : R" — RN and N(A) = {u : Au = 0 as distribution}.

Gradient
Au=Vu, N(V)={x~ b}.

Symmetric Gradient (n = N > 2)
A=Eu=1((Vu)+(Vu)T),
N(E)={x+— Ax+ b : A+ AT =0}.
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Differential Operator — Main Examples

Let v : R" — RN and N(A) = {u : Au = 0 as distribution}.

Gradient
Au=Vu, N(V)={x~ b}.

Symmetric Gradient (n = N > 2)
A=Eu=1((Vu)+(Vu)T),
N(E)={x+— Ax+ b : A+ AT =0}.

Trace Free Gradient (n = N > 2)
A=EPu=¢u-Ltiddivu.
n=2: N(EP)=holomorphic functions.
n>3:  N(EP)=N(E) @ {2(a-x)x — |x|*a}.

v
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The Function Spaces

Sobolev Space
WALQ) = {ue Ll u: Auec [}(Q)}.
lull wai(€2) := [lull gy + |Aul1(q)-
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The Function Spaces

Sobolev Space
WALQ) :={ue L} u: Aue 1))
lull wai(€2) := [lull gy + |Aul1(q)-

To obtain some weak compactness we need:
Space of Bounded Variation
BVA(Q) := {u € L} u : Auis a Radon measure},
lullgyagy = lull sy + 1Aul(9).
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The Function Spaces

Sobolev Space
WALQ) :={ue L} u: Aue 1))
lullwaa () = llull gy + [1Aull2q)-

To obtain some weak compactness we need:
Space of Bounded Variation
BVA(Q) := {u € L} u : Auis a Radon measure},
lullgyagy = lull sy + 1Aul(9).

Functions in BVA may jump:
Take indicator function yg of ball B, then x5 € BVVY(Q) and

Vxs = —l/Hn_lLag.

with v outer normal and Hausdorf measure H" 1.

=> www.uni-bielefeld.de
3/13



Korn’s Inequality

Korn's Inequality

If 1 < p < oo, then WLP(Q) = WEP(Q).

Ornstein's Non-Inequality

whi(Q) ¢ woH(Q).
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Korn's Inequality

Korn's Inequality

If 1 < p < oo, then WLP(Q) = WEP(Q).

Ornstein's Non-Inequality

whi(Q) ¢ woH(Q).

Additional properties:
Poincaré: lu=Nullpgy S rll€ull g,
Embedding: ||ju— I'IuHLﬁ(Br) S HSU”U(B,)-
Same for BV-version.
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Classical Traces

Classical Trace
There exists a trace operator tr : W1(Q) — L1(0Q, H"1). }

By density it suffices to show estimates for smooth w.

Estimate is based on fundamental theorem of calculus:
1
u(y) — u(x) = /0 (Vu)(x +t(y — X)) (y — x) dt.

Choose y € 9Q and x — oc.

=> www.uni-bielefeld.de
5/13



Classical Traces

Classical Trace
There exists a trace operator tr : W1(Q) — L1(0Q, H"1). }

By density it suffices to show estimates for smooth w.

Estimate is based on fundamental theorem of calculus:

uly) = o) = [ (Tu)(x+ tly =) - (v = x) .

Choose y € 9Q and x — oc.

Trace of Functions with Bounded Variation
There exists a trace operator tr : BVY(Q) — L1(0Q, H"1). J

Same argument. But we only get interior traces!
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Traces for Functions of Bounded Deformation

BV-Trace [Strang-Teman '81, Babadjian '13]
There exists a trace operator

tr - WEHQ) — LYo, 1Y),

BVE(Q) — LY(6Q, H" ).

Idea: For every direction a € R"
1
(u(x+a) —u(x)) -a= / (Vu)(x+ta) : (a®a)dt
0
1
- / (Eu)(x+ ) : (a a) .
0
Enough to recover u, with a = e, and then the other u;.
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A Counterexample

Consider A = EP for n = N = 2. Then with R2 = C

N(EP) = {u : u holomorphic}.
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A Counterexample

Consider A = EP for n = N = 2. Then with R2 = C

N(EP) = {u : u holomorphic}.
Let u(z) := %, then EPu=0€ D'(R?\ {0}).

Hence, u € WL (By(1)), but u ¢ L1(8By(1)).

= No trace operator!
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Ellipticity

N
For A=) Ayda with A, € L(RV; RK)
a=1

define the symbol mapping A[¢] : RN — RX by

Alflv:i=v®y €= ZgaAav.
a=1

Example: v®v é=v®E.

Definition

A is R-elliptic if A[¢] : RN — RK is injective for all £ # 0.
A is C-elliptic if A[¢] : CN — CK is injective for all £ # 0.

V, € and EP are R-elliptic.

They are also C-elliptic with the exception: EP for n = N = 2.

=> www.uni-bielefeld.de
8/13



A Simple Characterization

Recall N(A) = {u : Au =0 as distribution}.

Characterization

The following are equivalent
o A is C-elliptic.
e N(A) is finite dimensional.
e N(A) is a finite dimensional set of polynomials. )
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A Simple Characterization

Recall N(A) = {u : Au =0 as distribution}.
Characterization
The following are equivalent

o A is C-elliptic.

e N(A) is finite dimensional.

e N(A) is a finite dimensional set of polynomials.

For the variational part we also need that A is cancelling, i.e.

(N A[ERY) = {0}.
£#0

Lemma
If A is C-elliptic, then it is cancelling.

The reverse implication fails.
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Main Theorem

Trace Theorem [Breit, Diening, Gmeineder '17]
Let Q be bounded with 0Q Lipschitz and let A be C-elliptic.

Then there exists a trace operator BVA(Q) — L1(0Q, H"1).

It is continuous with respect to strict convergence, i.e. for
up — uin LY and [Au,|(Q) — |Au|(RQ).
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Main Theorem

Trace Theorem [Breit, Diening, Gmeineder '17]
Let Q be bounded with 0Q Lipschitz and let A be C-elliptic.

Then there exists a trace operator BVA(Q) — L1(0Q, H"1).

It is continuous with respect to strict convergence, i.e. for
up — uin LY and [Au,|(Q) — |Au|(RQ).

Necessity
If A is not C-elliptic, then there is no trace for BV*(B;(0)). J

Idea: Use the % example.
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Sketch of the Proof (Half Space)

Let u € BVA(Q) or u € WMA(Q).

o2
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Sketch of the Proof (Half Space)

Let u € BVA(Q) or u € WMA(Q).

For j € N cover 277-neighborhood of 9Q by B; 4

For every B;  choose reflected ball Bﬁk in €.
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Sketch of the Proof (Half Space)

Let u € BVA(Q) or u € WMA(Q).

For j € N cover 277-neighborhood of 9Q by B; 4

For every B;  choose reflected ball Bﬁk in €.
Project u on B}jk to Mj ,u € N(A) and

replace u on Bj by I; yu i.e.

TJ‘U = (1 — pj)u + ijnj,kﬂj7ku.
k
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Sketch of the Proof (Half Space)

Let u € BVA(Q) or u € WMA(Q).

For j € N cover 277-neighborhood of 9Q by B; 4

For every B;  choose reflected ball Bﬁk in €.

Project u on B}{k to Mj ,u € N(A) and
replace u on Bj by I; yu i.e.
Tju = (1 — pj)u + pj an,kﬂj7ku.
K
Then Tju — u in BVA(Q)
and tr(Tju) —: tr(u) in L2(0Q).

Based on inverse estimates for polyomials!
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Consequences

GauB-Green Fomula
For u € BVA(Q) and ¢ € C1(Q; RX) we have

/Au-gpdx:—/u‘A*godx—i—/ (tr(u) @4 v) - @ dH L.
Q Q o0

This allows gluing of u € BVA(Q) and v € BVA(U \ Q).
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Consequences

GauB-Green Fomula
For u € BVA(Q) and ¢ € C1(Q; RX) we have

/Au-gpdx:—/u‘A*godx—i—/ (tr(u) @4 v) - @ dH L.
Q Q o0

This allows gluing of u € BVA(Q) and v € BVA(U \ Q).

Functional with Linear Growth [Breit, Diening, Gmeineder '17]
The functional §(u) = / f(x, (Au)(x)) dx on WL (Q)

Q
can be extended to BV#4(Q)

There exists a minimzer on BVA(Q) and min §,, = inf 3.
BV4(Q) Wi (Q)

y
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Summary

Trace Theorem
There exists a trace operator BVA(Q) — L1(9Q, " 1)

if and only of A is C-elliptic.

Application
The A-variational problem with linear growth

and L!-boundary data has a solution in BVA4(Q).
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Summary

Trace Theorem
There exists a trace operator BVA(Q) — L1(9Q, " 1)

if and only of A is C-elliptic.

Application
The A-variational problem with linear growth

and L!-boundary data has a solution in BVA4(Q).

Thank you for your attention.
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Back to Variational Integrals

Problem: F(u) = / f(x, (Au)(x)) dx subject to Dirichlet data up.
Q

. . . f(x' tA
Recession function: foo(x, A) := lim¢_o0 x—x A/ A ¥

Existence [Breit, Diening, Gmeineder '17]
Define Fy, : BVA(Q) — R by

3'uo[u] / ( Z‘i:)dﬁn / foo (X’ m)ﬂASM
= /89 > (X, Voa Qa tr(u — Uo)) dnl

Then &,0 has a minimizer and m|n SUO = inf 5.
BVA(Q) o+ Wy ()
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