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@ Motivation
@ Diffuse interface models in a unified framework
€ Computer simulations
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Target application

Float glass process ( ngton proces

e standard industrial scale process for making flat glass

FLOAT GLASS PROCESS
sehemate dagran]

[l Molten glass from the melting furnace is
poured onto a bath of molten tin.

H Molten glass is floated and drawn.
Formed glass is slowly cooled.
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Multiphase flows: General concepts

Simultaneous flow of materials with different

® states or phases (gas, liquid or solid)

e chemical properties but in the same state or phase (oil and water)

N

Source: photographyblogger.net/18-interesting-pictures-of-oil-in-water/

Occurrence

Industrial applications including
® production of glass, oil or gas
e food processing

e disposal of nuclear waste
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Multiphase flows: Specific setting

Target

Several immiscible (incompressible) fluids in a fixed domain

272
Qs
Fluid 2

Source: Junseok Kim. Phase-field models for multi-component fluid flows.
Commun. Comput. Phys., 12(3):613-661, 2012

Modelling approaches

@ Sharp interface (SI) approach:
intuitive derivation vs. explicit interface tracking

@ Diffuse interface (DI) approach:
implicit interface tracking vs. computational demands (HPC)

5
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Theoretical issues accompanying DI approach

Variants of DI models

® matching material densities {Mode/ -H v

P. C. Hohenberg and B. |. Halperin. Theory of dynamic critical phenomena.
Rev. Mod. Phys., 49:435-479, Jul 1977
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Theoretical issues accompanying DI approach

Variants of DI models

® matching material densities {Mode/ -H v

Model — J

Model — U

o different material densities Model =N
Model — G

Model — L

Model — E

P. C. Hohenberg and B. I. Halperin. Theory of dynamic critical phenomena.
Rev. Mod. Phys., 49:435-479, Jul 1977
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Practical issues accompanying DI approach

@ Simulations with real parameter values

t =2.00 s

0g ~ 10° ot ~ 10° 02 ~ 10°

2 —4 -5
vg ~ 10 vy ~ 10 Vs~ 10
/31
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Practi

cal issues accompanying DI approach

o
(2]

Simulations with real parameter values
Development of efficient numerical algorithms
David Kay and Richard Welford. Efficient numerical solution of Cahn-Hilliard-Navier-Stokes fluids

in 2D.
SIAM J. Sci. Comput., 29(6):2241-2257 (electronic), 2007

8
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Practical issues accompanying DI approach

@ Simulations with real parameter values

@ Development of efficient numerical algorithms
David Kay and Richard Welford. Efficient numerical solution of Cahn-Hilliard-Navier-Stokes fluids
in 2D.
SIAM J. Sci. Comput., 29(6):2241-2257 (electronic), 2007

© Development of multiphase do-nothing boundary condition, etc.

v (magnitude)

e NN Ji‘iiilii

nitrogen
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@ Diffuse interface models in a unified framework

® /31
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Description of the physical system

Candidates for phase field variables

® Mass fractions ¢; ~ ’;—/’AL € [0, 1] assuming that M = My + ... + My
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Description of the physical system

Candidates for phase field variables

® Mass fractions ¢; ~ ’;—/’AL € [0, 1] assuming that M = My + ... + My

e Volume fractions ¢; ~ TV/L € [0,1] assuming that V = Vi +... 4+ Wy

?/31

Charles University Martin Rehor Diffuse interface models y



Description of the physical system

Candidates for phase field variables

® Mass fractions ¢; ~ ’;—/’AL € [0, 1] assuming that M = My + ... + My

e Volume fractions ¢; ~ TV/L € [0, 1] assuming that V = Vi + ...+ Vy

o Partial densities o; = oc; = 0i¢p;, where p; are constants
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Description of the physical system

Candidates for phase field variables

® Mass fractions ¢; ~ %,L € [0, 1] assuming that M = My + ... + My

e Volume fractions ¢; ~ TV/L € [0, 1] assuming that V = Vi + ...+ Vy

o Partial densities o; = oc; = 0i¢p;, where p; are constants

Assumption of co-occupancy

R3

current

= K7(p2) =...= K7 ()
configuration

9
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Balance equations: Individual mass balance

e Balance of mass for the i-th constituent reads

69,-
ot

+div (givi) =0 (1)

/31
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Balance equations: Individual mass balance

e Balance of mass for the i-th constituent reads

0oi . N
ot +div(oivi) =0 (1)

® |let v is an averaged velocity for the mixture as a whole, then

89,-
ot

where 3; = pi(vi — v) denotes the diffusive mass flux.

+div (giv) = —divy;, (2)
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Balance equations: Individual mass balance

e Balance of mass for the i-th constituent reads

doi | .o\
ot +div(givi) =0 (1)

® |let v is an averaged velocity for the mixture as a whole, then

dg,-
dt

+ oidivvy = —divy,, (2)

where 3, = gi(vi — v) denotes the diffusive mass flux.
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Balance equations: Individual mass balance

e Balance of mass for the i-th constituent reads

0oi Lo
ot +div(givi) =0 (1)

® |let v is an averaged velocity for the mixture as a whole, then

dg,-
dt

+ oidivvy = —divy,, (2)

where 3, = gi(vi — v) denotes the diffusive mass flux.

® The same equation in terms of mass/volume fractions read

dc; dQ . _
og; +ci (a + odiv v) = —divy,, 3)
doi — .~
1t + ¢idivvy = —divy,, (4)

where 3, = 3,/ i is the diffusive volume flux.
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Balance equations: Total mass balance

e Balance of mass for the mixture as a whole reads

N
do T _
E—i—gdlvv——dle J—;Jf (5)

N
divv:—divj, 7223,- (6)
i=1

Y3
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Balance equations: Total mass balance

e Balance of mass for the mixture as a whole reads

N
do T _
E-I-QdIVV— div J, J—iz:;], (5)
_ N
divv = —div J, J=>73 (6)
i=1

e Mass averaged velocity
N
el
v dé — Z oiVi
2=

leads to J = 0, but generally J #0.

Y3
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Balance equations: Total mass balance

e Balance of mass for the mixture as a whole reads

de
dt

N
+ odivv = —div J, J:Z], (5)
i=1
B N
divv = —div J, J=>73 (6)
i=1
e Mass averaged velocity

Pl

de

= D e
e i=1

leads to J = 0, but generally J #0.

® Volume averaged velocity

N

v def

v = E ¢,’V,’
i=1

leads to J = 0, but generally J # 0.
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Balance equations

/31
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Other balance equations [v = v"]

Linear dmy™ —
momentum e EPE divT™ + ob
Angular m T
momentum T = (T™)
Total damEe™ . T m -
energy T T div ((T ) VN —-4q )
+ov™ b+ 39" b+ eq
i=1
N
Internal d™me™ .
energy Tar =T7 D" —divel + 35" (b — b) + 0q
i=1
dm
Entropy oS — div AP os+e
dt
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Other balance equations [v = v']

Linear
momentum

Angular
momentum

Total
energy

Internal
energy

Entropy

dvvY

dt

davEeY
dt

dvVeY

dt

av
4
d

=divT + b — [(divv") 14+ Vv ] J¥

(T’

avJy
dt

1
div <(’]1‘V)Tvv -3 WYRgY - qV) + EVdivyY

N
+Z,7,‘-’-b,-+gq+vv~(gbf (divv¥) JV) —

i=1

dt

T 1 (DY + Vaym (0747)) + ¥ div ¥ — dival + eg

N
+> 037 (b —b)+ oY
i=1

ndivJY —divgy +es+¢

([(div v T+ VvvY]JY +

d(vY - JY)

avJyy

dt

)
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Thermodynamic considerations

How to ensure separation of phases?

With suitable choice of constitutive assumption for the free energy

order parometer order paramefer
05 05

000100 100400 000400 100400

J. W. Cahn and J. E. Hilliard. Free Energy of a Nonuniform System. |. Interfacial Free Energy.
J. Chem. Phys., 28(2):258-267, 1958
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Thermodynamic considerations

Naive scenario

Assumption of co-occupancy

+ balance equations (mass, momenta, energy) for all individual phases
+ interaction terms (tricky modeling business)
+ free energy constitutive assumption

— “complete description”

/31
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Thermodynamic considerations

Naive scenario

Assumption of co-occupancy
+ balance equations (mass, momenta, energy) for all individual phases
+ interaction terms (tricky modeling business)
+ free energy constitutive assumption

— “complete description”

Q: “Do we need a sledgehammer to crack a nut?”
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Thermodynamic considerations

Naive scenario

Assumption of co-occupancy
+ balance equations (mass, momenta, energy) for all individual phases
+ interaction terms (tricky modeling business)
+ free energy constitutive assumption

— “complete description”

Q: “Do we need a sledgehammer to crack a nut?”

Model reduction

e Neglect ‘“less important” interactions (may be difficult to decide)
® Reduce the number of governing equations

e balance of mass for individual components
e other balance equations for the mixture as a whole

/31
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Thermodynamic considerations

Martin Heida, Josef Malek, and K. R. Rajagopal. On the development and generalizations of
Cahn-Hilliard equations within a thermodynamic framework.
Z. Angew. Math. Phys., 63(1):145-169, 2012

Two options:
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Thermodynamic considerations

Martin Heida, Josef Malek, and K. R. Rajagopal. On the development and generalizations of
Cahn-Hilliard equations within a thermodynamic framework.
Z. Angew. Math. Phys., 63(1):145-169, 2012

Two options:
@ | will bother you with the identification of the entropy production ...
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Thermodynamic considerations

Martin Heida, Josef Malek, and K. R. Rajagopal. On the development and generalizations of
Cahn-Hilliard equations within a thermodynamic framework.
Z. Angew. Math. Phys., 63(1):145-169, 2012

Two options:
@ | will bother you with the identification of the entropy production ...

(2]

or we will quickly rotate the handle (several turns) ...

Diffuse interface models
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Governing equations

...and voilda — system of PDEs for unknowns ¢, v and p
(as we have used the grinder in the isothermal setting)

p Incompressible CHNS model N\

a .
;’ +div(gp;v) =div(Mo Vx;), i=1,...,N—1,
t
N—1
b OF as
Xi== > i~ =A¢, i=1,... ,N-1,
¢ i3 09; 2
divv =0,

v . ae N=1 .
o@) 5, + (V) (e(e)v + (VX)) = — Vp +div (20(¢)D) — — > Njdiv(Ve; ® Vi) + o(¢)b,

ij=1

Helmut Abels, Harald Garcke, and Giinther Griin. Thermodynamically consistent, frame indifferent
diffuse interface models for incompressible two-phase flows with different densities.
Math. Models Methods Appl. Sci., 22(3):1150013, 40, 2012

Franck Boyer and Céline Lapuerta. Study of a three component Cahn-Hilliard flow model.
ESAIM: Mathematical Modelling and Numerical Analysis, 40:653—-687, 7 2006
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Governing equations

...and voild — system of PDEs for unknowns ¢, v and p
(as we have used the grinder in the isothermal setting)

p Quasi-incompressible CHNS model N

99;

3 +div(¢;v) =div(Mo V), i=1,...,N—1,
t
N—1
b OF ae
Xizfzea-f——A¢,-+T(p), i=1,...,N—1,
£ ia 99; 2
divv # 0,

v ae N1
g(¢)% + (V) (e(@)v + (VX)) = = Vp + div (2v($)D) — — S Njdiv(Ve; ® Vér) + o(¢)b,
ij=1

J. Lowengrub and L. Truskinovsky. Quasi-incompressible Cahn-Hilliard fluids and topological transitions.
R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 454(1978):2617—2654, 1998

Martin Heida, Josef Malek, and K. R. Rajagopal. On the development and generalizations of
Cahn-Hilliard equations within a thermodynamic framework.
Z. Angew. Math. Phys., 63(1):145-169, 2012
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Extension of existing models

How about using the grinder in non-isothermal setting?

/31
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Extension of existing models

How about using the grinder in non-isothermal setting?
— appropriate modification of the free energy brings us to the following

Temperature equation
a9

e@eu(@) (D2 +v - V9) = 20(@)0 5D+ div ((#) V9) + [

Martin Rehof. Diffuse interface models in theory of interacting continua.
PhD thesis, Mathematical Institute of Charles University, Czech Republic, in prep. 2017
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Extension of existing models

How about using the grinder in non-isothermal setting?
— appropriate modification of the free energy brings us to the following

Temperature equation

o(d)ey (&) (—ﬂ v v«s) = 20(¢)D : D + div (5(¢p) VI) + [.. ]

Martin Rehof. Diffuse interface models in theory of interacting continua.
PhD thesis, Mathematical Institute of Charles University, Czech Republic, in prep. 2017

Cold plate

%‘%

Fluid 2

Hot plate /\\
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€ Computer simulations

¥ /31
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Discretization schemes

Space discretization using FEM

® Py 1/Px to aproximate v and p
® equal order elements to approximate ¢ and , typically P, with m = k

r Monolithic scheme \
d"'1+1 - 47 +6  n+6 +1
B i n+o,n = di fg i= —
e + div (d)l v ) div (Mo VX; ), i=1,...,N—1,
pN=2 ae
X[t == S gpdf (0" ") — ;Aqs?“’, i=1,...,N—1,
e i3
divv™t? = 0,
Qn+1vn+1 _ ann
At
+div (vn+9 ® (Qn+9vn+9 + Jn+9)) — vpn-%—e + div (2U"+9D"+9) + fg;{-e + Qn+9bn+9.
. 7

g™ =g(t")0g(t") + (1 — )g(t"™)
20
Charles University



Discretization schemes

Different levels of decoupling

Semi-decoupled scheme

: :

";;4”' +div(¢;v) = div(Mo Vi), i=1,...,N—1,
t
pN=2 BF  a
i= - Lij— — —A¢;, i=1,...,N—1,
=g J:Zl Yog; 2 Al
. 7
p NS part N
divv =0,
ov . ae N1 i
e(¢) 57 +(VV) (e@)v +J) = — Vp + div (2v(9)D)—— > Njdiv (Ve ® Vi) + o(#)b,
ij=1
. 7

Sebastian Minjeaud. An unconditionally stable uncoupled scheme for a triphasic
Cahn-Hilliard/Navier-Stokes model.
Numerical Methods for Partial Differential Equations, 29(2):584-618, 2013
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Discretization schemes

Different levels of decoupling

Semi-decoupled scheme vs. Fully-decoupled scheme

: :

"?" +div(¢;v) = div(Mo Vi), i=1,...,N—1,
t
pN=2 oF  a
i= - Lij— — —A¢;, i=1,...,N—1,
=g J:Zl Yog; 2 Al
. 7
p NS part N
divv =0,
v . ae N=1 .
e(¢) 57 +(VV) (e@)v + J) = — Vp +div (2v(@)D)—— > Njdiv (Ve ® Vi) + o(#)b,
ij=1
. 7

Sebastian Minjeaud. An unconditionally stable uncoupled scheme for a triphasic
Cahn-Hilliard/Navier-Stokes model.
Numerical Methods for Partial Differential Equations, 29(2):584—618, 2013

S. Dong. Wall-bounded multiphase flows of n immiscible incompressible fluids: Consistency and
contact-angle boundary condition.
Journal of Computational Physics, 338:21 — 67, 2017
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Software tools

e Extensive testing of various models and discretization schemes is required
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Software tools

e Extensive testing of various models and discretization schemes is required

e Appropriate tool is needed
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Software tools

e Extensive testing of various models and discretization schemes is required
e Appropriate tool is needed
® FEniCS project <fenicsproject.org>

e FEM-based solution environment for solving PDEs
e offers automated code generation — fast prototyping

FENICS
&% NroUeECs
2 /31
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Software tools

e Extensive testing of various models and discretization schemes is required

e Appropriate tool is needed

FEniCS project <fenicsproject.org>

e FEM-based solution environment for solving PDEs
e offers automated code generation — fast prototyping

MUFLON: MUItiphase FLow simulatioN

e software package build on top of FEniCS
e developed as part of the thesis

FENICS
&% NroJUeECs
2 /31
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Convergence tests

Exact (manufactured) solution for N = 4 in 2D:
vi = Ag sin(ax) cos(my) sin(wot),
va = —% cos(ax) sin(my) sin(wot),
p = Aogsin(ax) sin(my) cos(wot),
o1 = % [1 + A1 cos(a1x) cos(bry)sin(wit)],
¢ = % [1 + Az cos(az2x) cos(bzy) sin(wa2t)],

3 = % [1 4 As cos(azx) cos(bzy) sin(wst)] .

S. Dong. Wall-bounded multiphase flows of n immiscible incompressible fluids: Consistency and
contact-angle boundary condition.
Journal of Computational Physics, 338:21 — 67, 2017

2/
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Convergence tests

Results for fully-decoupled scheme

-
10 —+ e
10 + 4
- Sy
10 -
1072 U
—+
1072 — ret2
0 107 i
2 g
5 5 10
% 10° o
10-5 10-°
10 10°°
1 2 3 4 5 6 7 1072 107

Element order time step At
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Convergence tests

Results for monolithic scheme (with 6 = %)

107
1072
107
107

10°

L2 errors

10°°
1077
107°

107

6 7 102 107t

a
Element order time step At
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Convergence tests

Results for semi-decoupled scheme

L2 errors

3 4 5 6 7 102 107

Element order time step At

~
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Rising bubble benchmark

0.25

e
S

0.20 9

0.151

rise velocity

0.104

0.05 4

0.00 q o

0.0 0.5 1.0 1.5 2.0 25 3.0
time t

=== dt0.008_k_1_h_min_0.0625 case 1
h_min_0.03125 _case_1
1_min_0.015625_case_1

i B

L3

=
e
-0

et
25

S. Aland and A. Voigt. Benchmark computations of diffuse interface models for two-dimensional bubble
dynamics.

International Journal for Numerical Methods in Fluids, 69(3):747-761, 2012
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Rising bubble benchmark

1.1
1.0 v =v,=0

0.94

0.8 1
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0.7 1
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h_min_0.03125_case_1
1_min_0.015625_case_1

0 05 1 15 2 25 3 @ 05 1 15 2 25 § 0 05 1 15 2 25
Time Time Time

S. Aland and A. Voigt. Benchmark computations of diffuse interface models for two-dimensional bubble

dynamics.

International Jg
Charles University
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PCD preconditioning

INFLOW ——=

OUTFLOW — >

[side view]

velocity
=

°
S
&

pressure

o
o
°

°
T
mjlmlrm!mmlrm

(RNRRRRARE)

o
3

FENaPack: FEniCS Navier-Stokes preconditioning package
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MUFLON + FENaPack

e Coefficients p and v are both spatially and time dependent.

® At each time step:
e Cahn—Hilliard is resolved using MUMPS
e Oseen type problem is resolved using GMRES with PCD
preconditioning

# of GMRES iterations per time step

5 10 15 20 25 0
time.

e Modelling challenges:

e Outflow boundary condition for variable density flow.

29
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Spurious velocities

Stationary Stokes equations with variable coefficients

—div(2v(¢)D) = — Vp + o(#)b,

divv = 0.

/3
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Spurious velocities

Stationary Stokes equations with variable coefficients

—div(2v(#)D) = — Vp + o(¢)b,

divv = 0.

1

® ¢ is a given function of r = y — 5, namely
0, re (sl
$r) =913 —t—asin(3), ref-53],
L rel-5o9).

o(¢) = (01 — 02)¢ + 02 with 01 = 10°, 02 = 1
v(¢) = (v1 — v2)¢ + v2 with vy = 1073, 9o ~ 107>

b=1[0,—g,]" is gravitational acceleration with g, ~ 10

analytic solution: v =10, p = —g, foy ooy’ — 3))dy’
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Spurious velocities

Stationary Stokes equations with variable coefficients

—div(2v(¢)D) = — Vp + o(#)b,

divv = 0.

wOMagniude

30
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