On compressible fluids interacting with an elastic shell

Sebastian Schwarzacher

Charles University, Prague

in collaboration with Dominic Breit

Implicitly constituted materials: Modeling, Analysis and Computing

August 4, 2017

Happy birthday to the chairmen, Eduard and Zdeněk!

Fluid structure interaction

In this talk we will consider a compressible fluid which is floating in a body that is flexible.

- The fluid forces are interacting with a membrane that is assumed to be a part of the boundary.
- The geometry changes in time.

Examples:

The Setting

- \bullet $\Omega \in \mathbb{R}^3$ is the initial geometry and the reference geometry
- $\partial\Omega = \Gamma \cup M$, Γ is the fixed part of the boundary
- M is the flexible part of the boundary-hence the domain of definition for the time-changing domain
- The displacement of the boundary is prescribed via a two dimensional surface representing a Kirchhoff-Love plate.
- It is a model reduction assuming small strains and plane stresses parallel to the middle surface.
- $\eta: I \times M \to \mathbb{R}^3$ defines the change of the domain.
- $\Omega_{\eta(t)}$ defines the changed domain: $\partial \Omega_{\eta(t)} = \Gamma \cup \eta(t, M)$.
- Inside the domain we assume a **compressible** fluid. Its motion is characterized by its **velocity**: $\mathbf{u}: I \times \Omega_{\eta(t)} \to \mathbb{R}^3$ and **density**: $\varrho: I \times \Omega_{\eta(t)} \to \mathbb{R}^+$.

The Setting

- \bullet $\Omega \in \mathbb{R}^3$ is the initial geometry and the reference geometry
- $\partial\Omega = \Gamma \cup M$, Γ is the fixed part of the boundary
- M is the flexible part of the boundary-hence the domain of definition for the time-changing domain
- The displacement of the boundary is prescribed via a two dimensional surface representing a Kirchhoff-Love plate.
- It is a model reduction assuming small strains and plane stresses parallel to the middle surface.
- $\eta: I \times M \to \mathbb{R}^3$ defines the change of the domain.
- $\Omega_{\eta(t)}$ defines the changed domain: $\partial\Omega_{\eta(t)} = \Gamma \cup \eta(t, M)$.
- Inside the domain we assume a **compressible** fluid. Its motion is characterized by its **velocity**: $\mathbf{u}:I\times\Omega_{\eta(t)}\to\mathbb{R}^3$ and **density**: $\varrho:I\times\Omega_{\eta(t)}\to\mathbb{R}^+$.

The PDE in the interior

The Fluid:

$$\begin{split} \partial_t \varrho + \operatorname{div}(\varrho \mathbf{u}) &= 0, & \text{in } I \times \Omega_{\eta}, \\ \partial_t (\varrho \mathbf{u}) + \operatorname{div}(\varrho \mathbf{u} \otimes \mathbf{u}) &= \mu \Delta \mathbf{u} + (\lambda + \mu) \nabla \operatorname{div} \mathbf{u} - \nabla \varrho^{\gamma} + \mathbf{f} & \text{in } I \times \Omega_{\eta}, \end{split}$$

The Shell:

It is driven by the Koiter-Energy

$$K(\boldsymbol{\eta}) = \frac{1}{2}\varepsilon_0 \int_M \mathbf{C} : \boldsymbol{\sigma}(\boldsymbol{\eta}) \otimes \boldsymbol{\sigma}(\boldsymbol{\eta}) dH^2 + \frac{1}{6}\varepsilon_0^3 \int_M \mathbf{C} : \boldsymbol{\theta}(\boldsymbol{\eta}) \otimes \boldsymbol{\theta}(\boldsymbol{\eta}) dH^2.$$

The corresponding momentum equation is

$$\varepsilon_0 \varrho_S \partial_t^2 \eta + K'(\eta) = \mathbf{g},$$

K' is the L^2 -gradient of K, ϱ_S is the density of the shell, ε_0 the thickness. Assuming that $\eta(t,x)\equiv \eta(t,x)\nu(x)$ is moving in the fixed direction ν , the

$$\epsilon_0 \varrho_S \partial_t^2 \eta + \Delta^2 \eta + B \eta = g.$$

The PDE in the interior

The Fluid:

$$\begin{split} \partial_t \varrho + \operatorname{div}(\varrho \boldsymbol{u}) &= 0, & \text{in } I \times \Omega_\eta, \\ \partial_t (\varrho \boldsymbol{u}) + \operatorname{div}(\varrho \boldsymbol{u} \otimes \boldsymbol{u}) &= \mu \Delta \boldsymbol{u} + (\lambda + \mu) \nabla \operatorname{div} \boldsymbol{u} - \nabla \varrho^\gamma + \boldsymbol{f} & \text{in } I \times \Omega_\eta, \end{split}$$

The Shell:

It is driven by the Koiter-Energy

$$K(\boldsymbol{\eta}) = \frac{1}{2}\varepsilon_0 \int_M \mathbf{C} : \boldsymbol{\sigma}(\boldsymbol{\eta}) \otimes \boldsymbol{\sigma}(\boldsymbol{\eta}) dH^2 + \frac{1}{6}\varepsilon_0^3 \int_M \mathbf{C} : \boldsymbol{\theta}(\boldsymbol{\eta}) \otimes \boldsymbol{\theta}(\boldsymbol{\eta}) dH^2.$$

The corresponding momentum equation is

$$\varepsilon_0 \varrho_S \partial_t^2 \eta + K'(\eta) = \mathbf{g},$$

K' is the L^2 -gradient of K, ϱ_S is the density of the shell, ε_0 the thickness. Assuming that $\eta(t,x) \equiv \eta(t,x)\nu(x)$ is moving in the fixed direction ν , the normal of $\partial\Omega$ one deduces

$$\varepsilon_0 \varrho_S \partial_t^2 \eta + \Delta^2 \eta + B \eta = g.$$

The continuity equation

We assume $\eta:I\times M\to\mathbb{R}$

$$\partial\Omega_{\eta(t)} = \Gamma \cup \{x + \eta(t, x)\nu(x) : x \in M\}.$$

And a coordinate map $\Psi_{\eta}: \Omega \to \Omega_{\eta}$.

Reynolds transport theorem:

$$\frac{d}{dt} \int_{\Omega_{\eta(t)}} g \, dx = \int_{\Omega_{\eta(t)}} \partial_t g \, dx + \int_{\partial\Omega_{\eta(t)}} \partial_t \eta \circ \Psi_{\eta}^{-1} \nu \cdot \nu_{\eta} g \, dH,$$

The weak continuity equation: Partial integration implies for $\psi \in C^{\infty}(I \times \overline{\Omega})$

$$\int_{I} \frac{d}{dt} \int_{\Omega_{n}} \varrho \psi \, dx \, dt - \int_{I} \int_{\Omega_{n}} \left(\varrho \partial_{t} \psi + \varrho \mathbf{u} \cdot \nabla \psi \right) \, dx \, dt = 0,$$

if $\mathbf{u} \circ \mathbf{\Psi}_{\eta} = \partial_t \eta \nu$ on $\partial \Omega_{\eta(t)}$. Testing with $\psi \equiv 1$ implies mass conservation.

The continuity equation

We assume $\eta:I\times M\to\mathbb{R}$

$$\partial\Omega_{\eta(t)} = \Gamma \cup \{x + \eta(t, x)\nu(x) : x \in M\}.$$

And a coordinate map $\Psi_{\eta}: \Omega \to \Omega_{\eta}$.

Reynolds transport theorem:

$$\frac{d}{dt} \int_{\Omega_{\eta(t)}} g \, dx = \int_{\Omega_{\eta(t)}} \partial_t g \, dx + \int_{\partial\Omega_{\eta(t)}} \partial_t \eta \circ \Psi_{\eta}^{-1} \nu \cdot \nu_{\eta} g \, dH,$$

The weak continuity equation: Partial integration implies for $\psi \in C^{\infty}(I \times \overline{\Omega})$

$$\int_I \frac{d}{dt} \int_{\Omega_\eta} \varrho \psi \, dx \, dt - \int_I \int_{\Omega_\eta} \left(\varrho \partial_t \psi + \varrho \mathbf{u} \cdot \nabla \psi \right) dx \, dt = 0,$$

if $\mathbf{u} \circ \mathbf{\Psi}_{\eta} = \partial_t \eta \nu$ on $\partial \Omega_{\eta(t)}$. Testing with $\psi \equiv 1$ implies mass conservation.

The continuity equation

We assume $\eta:I\times M\to\mathbb{R}$

$$\partial\Omega_{\eta(t)} = \Gamma \cup \{x + \eta(t, x)\nu(x) : x \in M\}.$$

And a coordinate map $\Psi_{\eta}: \Omega \to \Omega_{\eta}$.

Reynolds transport theorem:

$$\frac{d}{dt} \int_{\Omega_{\eta(t)}} g \, dx = \int_{\Omega_{\eta(t)}} \partial_t g \, dx + \int_{\partial \Omega_{\eta(t)}} \partial_t \eta \circ \Psi_{\eta}^{-1} \nu \cdot \nu_{\eta} g \, dH,$$

The weak continuity equation: Partial integration implies for $\psi \in C^{\infty}(I \times \overline{\Omega})$

$$\int_{I} \frac{d}{dt} \int_{\Omega_{n}} \varrho \psi \, dx \, dt - \int_{I} \int_{\Omega_{n}} \left(\varrho \partial_{t} \psi + \varrho \mathbf{u} \cdot \nabla \psi \right) dx \, dt = 0,$$

if $\mathbf{u} \circ \mathbf{\Psi}_{\eta} = \partial_t \eta \nu$ on $\partial \Omega_{\eta(t)}$. Testing with $\psi \equiv 1$ implies mass conservation.

The coupled system:

$$\partial_{t}\varrho + \operatorname{div}(\varrho \mathbf{u}) = 0, \qquad \text{in } I \times \Omega_{\eta},$$

$$\partial_{t}(\varrho \mathbf{u}) + \operatorname{div}(\varrho \mathbf{u} \otimes \mathbf{u}) = \mu \Delta \mathbf{u} + (\lambda + \mu) \nabla \operatorname{div} \mathbf{u} - \nabla \varrho^{\gamma} + \mathbf{f} \qquad \text{in } I \times \Omega_{\eta},$$

$$\mathbf{u}(t, x + \eta(x)\nu(x)) = \partial_{t}\eta(t, x)\nu(x) \qquad \text{on } I \times M,$$

$$\mathbf{u} = 0 \qquad \text{on } I \times \Gamma,$$

$$\varepsilon_{0}\varrho_{S}\partial_{t}^{2}\eta + K'(\eta) = g + \nu \cdot (-\tau \nu_{\eta}) \circ \Psi_{\eta(t)} | \det D\Psi_{\eta(t)} | \qquad \text{on } I \times M,$$

$$\tau := -\mu \nabla \mathbf{u} - (\lambda + \mu) \operatorname{div} \mathbf{u} \mathcal{I} + \varrho^{\gamma} \mathcal{I}.$$

$$\eta(t, x) = 0 \qquad \text{on } \partial M$$

$$\varrho(0) = \varrho_{0}, \quad (\varrho \mathbf{u})(0) = \mathbf{q}_{0} \qquad \text{in } \Omega$$

$$\eta(0, x) = 0, \quad \partial_{t}\eta(0, x) = \eta_{1}(x) \qquad \text{in } M$$

Here $g:[0,T]\times M\to\mathbb{R}$ and $\mathbf{f}:I\times\mathbb{R}^3\to\mathbb{R}^3$ are given forces.

Weak formulation

We assume that $\varrho_S \varepsilon_0 = 1$.

"The momentum equation": For $(b, \varphi) \in C_0^\infty(M) imes C^\infty(ar I imes \mathbb R^3)$ with $\mathrm{tr}_\eta \varphi = b
u$

$$\begin{split} & \int_{I} \left(\frac{d}{dt} \int_{\Omega_{\eta}} \varrho \mathbf{u} \cdot \boldsymbol{\varphi} \mathrm{d}x - \int_{\Omega_{\eta}} \varrho \mathbf{u} \cdot \partial_{t} \boldsymbol{\varphi} + \varrho \mathbf{u} \otimes \mathbf{u} : \nabla \boldsymbol{\varphi} \mathrm{d}x \right) dt \\ & + \int_{I} \int_{\Omega_{\eta}} \left(\mu \nabla \mathbf{u} : \nabla \boldsymbol{\varphi} + (\lambda + \mu) \operatorname{div} \mathbf{u} \operatorname{div} \boldsymbol{\varphi} \, dx \, dt - a \varrho^{\gamma} \operatorname{div} \boldsymbol{\varphi} \right) dx \, dt \\ & + \int_{I} \frac{d}{dt} \int_{M} \partial_{t} \eta \, b \, dH - \int_{M} \partial_{t} \eta \, \partial_{t} b \, dH + \int_{M} K'(\eta) \, b \, dH \mathrm{d}t \\ & = \int_{I} \int_{\Omega_{\eta}} \varrho \mathbf{f} \cdot \boldsymbol{\varphi} \, dx \, dt + \int_{I} \int_{M} g \, b \, dH \mathrm{d}t. \end{split}$$

'The renormalized continuity equation": For $\psi\in C^\infty(I imes\overline\Omega)$ and $\theta\in C^1(\mathbb R^+)$ positive

$$0 = \int_{I} \frac{d}{dt} \int_{\Omega_{\eta}} \theta(\varrho) \, \psi \, dx \, dt - \int_{I} \int_{\Omega_{\eta}} \left(\theta(\varrho) \partial_{t} \psi + \theta(\varrho) \mathbf{u} \cdot \nabla \psi \right) \, dx$$
$$+ \int_{I} \int_{\Omega_{\eta}} (\varrho \theta'(\varrho) - \theta(\varrho)) \, \mathrm{div} \, \mathbf{u} \, \psi \, dx \, dt.$$

Weak formulation

We assume that $\varrho_S \varepsilon_0 = 1$.

"The momentum equation": For $(b,\varphi)\in C_0^\infty(M)\times C^\infty(\bar I\times\mathbb R^3)$ with $\mathrm{tr}_\eta \varphi=b \nu$

$$\begin{split} &\int_{I} \left(\frac{d}{dt} \int_{\Omega_{\eta}} \varrho \mathbf{u} \cdot \boldsymbol{\varphi} \mathrm{d}x - \int_{\Omega_{\eta}} \varrho \mathbf{u} \cdot \partial_{t} \boldsymbol{\varphi} + \varrho \mathbf{u} \otimes \mathbf{u} : \nabla \boldsymbol{\varphi} \mathrm{d}x \right) dt \\ &+ \int_{I} \int_{\Omega_{\eta}} \left(\mu \nabla \mathbf{u} : \nabla \boldsymbol{\varphi} + (\lambda + \mu) \operatorname{div} \mathbf{u} \operatorname{div} \boldsymbol{\varphi} \, dx \, dt - a \varrho^{\gamma} \operatorname{div} \boldsymbol{\varphi} \right) dx \, dt \\ &+ \int_{I} \frac{d}{dt} \int_{M} \partial_{t} \eta \, b \, dH - \int_{M} \partial_{t} \eta \, \partial_{t} b \, dH + \int_{M} K'(\eta) \, b \, dH \mathrm{d}t \\ &= \int_{I} \int_{\Omega_{\eta}} \varrho \mathbf{f} \cdot \boldsymbol{\varphi} \, dx \, dt + \int_{I} \int_{M} g \, b \, dH \mathrm{d}t. \end{split}$$

"The renormalized continuity equation": For $\psi \in C^{\infty}(I \times \overline{\Omega})$ and $\theta \in C^{1}(\mathbb{R}^{+})$ positive

$$0 = \int_{I} \frac{d}{dt} \int_{\Omega_{\eta}} \theta(\varrho) \, \psi \, dx \, dt - \int_{I} \int_{\Omega_{\eta}} \left(\theta(\varrho) \partial_{t} \psi + \theta(\varrho) \mathbf{u} \cdot \nabla \psi \right) \, dx \, dt$$
$$+ \int_{I} \int_{\Omega_{\eta}} (\varrho \theta'(\varrho) - \theta(\varrho)) \, \mathrm{div} \, \mathbf{u} \, \psi \, dx \, dt.$$

Main theorem

Theorem

Let $\gamma>\frac{12}{7}$ ($\gamma>1$ in two dimensions). There is a weak solution $(\eta,\mathbf{u},\varrho)$. The interval of existence is restricted only in case $\Omega_{\eta}(s)$ approaches a self intersection with $s\to T_*$.

The solution satisfies the energy estimate

$$\begin{split} &\sup_{t\in I} \int_{\Omega_{\eta}} \varrho |\mathbf{u}|^2 \mathrm{d}x + \sup_{t\in I} \int_{\Omega_{\eta}} \varrho^{\gamma} \mathrm{d}x + \int_{I} \int_{\Omega_{\eta}} |\nabla \mathbf{u}|^2 \, dx \, dt \\ &+ \sup_{t\in I} \int_{M} |\partial_t \eta|^2 \, \, d\mathcal{H}^2 + \sup_{t\in I} \int_{M} \left|\nabla^2 \eta\right|^2 \leq \, c(\mathbf{q}_0, \rho_0, \mathbf{f}, g, \eta_1) \end{split}$$

provided that $\eta_1, \varrho_0, \mathbf{q}_0, \mathbf{f}$ and g are regular enough to give sense to the right-hand side.

The incompressible analogue was shown by Lengeler & Růžička, (ARMA, 2014). For non-Newtonian fluids of p-growth by Lengeler (SIMA, 2014).

Problems of the proof

- The system is highly coupled; a fixpoint argument is needed.
- The system is highly non-linear, compactness is needed.
- The regularity of the variable domain is not Lipschitz.

To be able to construct a solution we introduce a **four layer approximation**.

Once the fixpoint is established, we get a weakly converging subsequence **by uniform a-priori estimates**:

$$(\varrho_k, \mathbf{u}_k, \eta_k) \rightharpoonup (\varrho, \mathbf{u}, \eta).$$

Further, we need:

- Pass to the limit with $K'(\eta_k)$.
- Pass to the limit with the convective terms.
- Pass to the limit with the pressure: ρ_k^{γ} .

Problems of the proof

- The system is highly coupled; a fixpoint argument is needed.
- The system is highly non-linear, compactness is needed.
- The regularity of the variable domain is not Lipschitz.

To be able to construct a solution we introduce a **four layer approximation**.

Once the fixpoint is established, we get a weakly converging subsequence **by uniform a-priori estimates**:

$$(\varrho_k, \mathbf{u}_k, \eta_k) \rightharpoonup (\varrho, \mathbf{u}, \eta).$$

Further, we need:

- Pass to the limit with $K'(\eta_k)$.
- Pass to the limit with the convective terms.
- \bullet Pass to the limit with the pressure: $\rho_{\mathbf{k}}^{\gamma}.$

Reconstruction of the pressure

The reconstruction of the pressure is (as usual in compressible problems) the major difficulty.

It splits up in three parts

- $\varrho_k^{\gamma}\chi_{\Omega_{\eta_k}} \rightharpoonup \overline{p}$ in $L^1(I \times \mathbb{R}^3)$, namely excluding concentrations.
- The effective viscous flux, i.e. exploiting some crucial structure of the momentum equation.
- ullet Use the above to show that arrho is a renormalized solution.

This can then be used to show the strong convergence by using the strictly convex quantity $\varrho \log \varrho$ satisfies a weak equation.

Outlook:

Open problems for (2-D,3-D, incompressible (Stokes), compressible):

- Allowing deformation in all directions $\eta: M \to \mathbb{R}^3$.
- Strong solutions (short time, 2-D).
- The non-flexible case: K depends on the 1. Fundamental form only.
 Open problem: Long time weak solutions
- Regularity of the membrane. In particular: Exclude self intersections.
- The full Navier Stokes Fourier system.
- The low Mach number limit.
- Numerics. In particular constructive schemes. (Some work has been done by Mucha et all).

Acknowledgments

Thank you all for your attention.

Many thanks to the organizers for this wonderful workshop!

Thanks to all co-members of the MORE project, for their support and the good and interesting times we shared together!

Acknowledgments

Thank you all for your attention.

Many thanks to the organizers for this wonderful workshop!

Thanks to all co-members of the MORE project, for their support and the good and interesting times we shared together!

Acknowledgments

Thank you all for your attention.

Many thanks to the organizers for this wonderful workshop!

Thanks to all co-members of the MORE project, for their support and the good and interesting times we shared together!