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Fluid structure interaction

In this talk we will consider a compressible fluid which is floating in a body
that is flexible.

The fluid forces are interacting with a membrane that is assumed to
be a part of the boundary.

The geometry changes in time.

Examples:

Blood vessels: Gas balloon:

Airplane wing:
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The Setting

Ω ∈ R3 is the initial geometry and the reference geometry

∂Ω = Γ ∪M, Γ is the fixed part of the boundary

M is the flexible part of the boundary–hence the domain of
definition for the time-changing domain

The displacement of the boundary is prescribed via a two dimensional
surface representing a Kirchhoff-Love plate.

It is a model reduction assuming small strains and plane stresses
parallel to the middle surface.

η : I ×M → R3 defines the change of the domain.

Ωη(t) defines the changed domain: ∂Ωη(t) = Γ ∪ η(t,M).

Inside the domain we assume a compressible fluid. Its motion is
characterized by its velocity: u : I × Ωη(t) → R3 and density:
% : I × Ωη(t) → R+.
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The PDE in the interior

The Fluid:

∂t%+ div(%u) = 0, in I × Ωη,

∂t(%u) + div(%u ⊗ u) = µ∆u + (λ+ µ)∇ div u−∇%γ + f in I × Ωη,

The Shell:
It is driven by the Koiter-Energy

K (η) =
1

2
ε0

ˆ
M

C : σ(η)⊗ σ(η) dH2 +
1

6
ε3

0

ˆ
M

C : θ(η)⊗ θ(η) dH2.

The corresponding momentum equation is

ε0%S∂
2
t η + K ′(η) = g,

K ′ is the L2-gradient of K , %S is the density of the shell, ε0 the thickness.
Assuming that η(t, x) ≡ η(t, x)ν(x) is moving in the fixed direction ν, the
normal of ∂Ω one deduces

ε0%S∂
2
t η + ∆2η + Bη = g .
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The continuity equation

We assume η : I ×M → R
∂Ωη(t) = Γ ∪ {x + η(t, x)ν(x) : x ∈ M}.
And a coordinate map Ψη : Ω→ Ωη.
Reynolds transport theorem:

d

dt

ˆ
Ωη(t)

g dx =

ˆ
Ωη(t)

∂tg dx +

ˆ
∂Ωη(t)

∂tη ◦Ψ−1
η ν · νηg dH,

The weak continuity equation: Partial integration implies for
ψ ∈ C∞(I × Ω)

ˆ
I

d

dt

ˆ
Ωη

%ψ dx dt −
ˆ
I

ˆ
Ωη

(
%∂tψ + %u · ∇ψ

)
dx dt = 0,

if u ◦Ψη = ∂tην on ∂Ωη(t). Testing with ψ ≡ 1 implies mass conservation.
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The coupled system:

∂t%+ div(%u) = 0, in I × Ωη,

∂t(%u) + div(%u ⊗ u) = µ∆u + (λ+ µ)∇ div u−∇%γ + f in I × Ωη,

u(t, x + η(x)ν(x)) = ∂tη(t, x)ν(x) on I ×M,

u = 0 on I × Γ,

ε0%S∂
2
t η + K ′(η) = g + ν ·

(
− τνη

)
◦Ψη(t)| detDΨη(t)| on I ×M,

τ := −µ∇u− (λ+ µ) div u I + %γI.
η(t, x) = 0 on ∂M

%(0) = %0, (%u)(0) = q0 in Ω

η(0, x) = 0, ∂tη(0, x) = η1(x) in M

Here g : [0,T ]×M → R and f : I × R3 → R3 are given forces.
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Weak formulation

We assume that %Sε0 = 1.
”The momentum equation”: For (b,ϕ) ∈ C∞

0 (M)× C∞(I × R3) with trηϕ = bν

ˆ
I

(
d

dt

ˆ
Ωη

%u ·ϕdx −
ˆ

Ωη

%u · ∂tϕ + %u⊗ u : ∇ϕdx

)
dt

+

ˆ
I

ˆ
Ωη

(
µ∇u : ∇ϕ + (λ+ µ) div u divϕ dx dt − a%γ divϕ

)
dx dt

+

ˆ
I

d

dt

ˆ
M

∂tηb dH −
ˆ
M

∂tη ∂tb dH +

ˆ
M

K ′(η) b dHdt

=

ˆ
I

ˆ
Ωη

%f ·ϕ dx dt +

ˆ
I

ˆ
M

g b dHdt.

”The renormalized continuity equation”: For ψ ∈ C∞(I ×Ω) and θ ∈ C 1(R+) positive

0 =

ˆ
I

d

dt

ˆ
Ωη

θ(%)ψ dx dt −
ˆ
I

ˆ
Ωη

(
θ(%)∂tψ + θ(%)u · ∇ψ

)
dx dt

+

ˆ
I

ˆ
Ωη

(%θ′(%)− θ(%))div uψ dx dt.
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Main theorem

Theorem

Let γ > 12
7 (γ > 1 in two dimensions). There is a weak solution (η,u, %).

The interval of existence is restricted only in case Ωη(s) approaches a self
intersection with s → T∗.
The solution satisfies the energy estimate

sup
t∈I

ˆ
Ωη

%|u|2dx + sup
t∈I

ˆ
Ωη

%γdx +

ˆ
I

ˆ
Ωη

|∇u|2 dx dt

+ sup
t∈I

ˆ
M
|∂tη|2 dH2 + sup

t∈I

ˆ
M

∣∣∇2η
∣∣2 ≤ c(q0, ρ0, f, g , η1)

provided that η1, %0,q0, f and g are regular enough to give sense to the
right-hand side.

The incompressible analogue was shown by Lengeler & Růžička, (ARMA,
2014). For non-Newtonian fluids of p-growth by Lengeler (SIMA, 2014).
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Problems of the proof

The system is highly coupled; a fixpoint argument is needed.

The system is highly non-linear, compactness is needed.

The regularity of the variable domain is not Lipschitz.

To be able to construct a solution we introduce a four layer
approximation.
Once the fixpoint is established, we get a weakly converging subsequence
by uniform a-priori estimates:

(%k ,uk , ηk) ⇀ (%,u, η).

Further, we need:

Pass to the limit with K ′(ηk).

Pass to the limit with the convective terms.

Pass to the limit with the pressure: ργk .
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Reconstruction of the pressure

The reconstruction of the pressure is (as usual in compressible problems)
the major difficulty.

It splits up in three parts

%γkχΩηk
⇀ p in L1(I × R3), namely excluding concentrations.

The effective viscous flux, i.e. exploiting some crucial structure of the
momentum equation.

Use the above to show that % is a renormalized solution.

This can then be used to show the strong convergence by using the strictly
convex quantity % log % satisfies a weak equation.
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Outlook:

Open problems for (2-D,3-D, incompressible (Stokes),
compressible):

Allowing deformation in all directions η : M → R3.

Strong solutions (short time, 2-D).

The non-flexible case: K depends on the 1. Fundamental form only.
Open problem: Long time weak solutions

Regularity of the membrane. In particular: Exclude self intersections.

The full Navier Stokes Fourier system.

The low Mach number limit.

Numerics. In particular constructive schemes. (Some work has been
done by Mucha et all).
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