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Abstract We provide numerical simulations of

an incompressible pressure-thickening and shear-

thinning lubricant flowing in a plane slider bearing.

We study the influence of several parameters, namely

the ratio of the characteristic lengths e[ 0 (with e &
0 representing the Reynolds lubrication approxima-

tion); the coefficient of the exponential pressure–

viscosity relation a� � 0; the parameter G� � 0 related

to the Carreau–Yasuda shear-thinning model and the

modified Reynolds number Ree � 0. The finite ele-

ment approximations to the steady isothermal flows

are computed without resorting to the lubrication

approximation. We obtain the numerical solutions as

long as the variation of the viscous stress S ¼
2gðp; trD2ÞD with the pressure is limited, say

joS=opj � 1. We show conclusively that the existing

practice of avoiding the numerical difficulties by

cutting the viscosity off for large pressures leads to

results that depend sorely on the artificial cut-off

parameter. We observe that the piezoviscous rheology

generates pressure differences across the fluid film.

Keywords Finite element approximation �
Incompressible fluid � Pressure-thickening � Shear-
thinning � Thin-film flow � Channel flow � Fluid
mechanics

1 Introduction

Lubrication problems represent a set of important

engineering applications that have been a source of

inspiration for a great deal of research in fluid

dynamics. The plane slider flow described in the next

section embodies a classical prototype of hydrody-

namic lubrication. Two solid surfaces in relative

motion are separated by a thin layer of a liquid

lubricant, the fluid film being thick enough still to

separate the surfaces completely. Since the funda-

mental work by Reynolds [38], the lubrication

approximation approach, which considerably reduces

the system of equations governing the thin film flow,

proved to be a very useful and flexible tool.

Within the class of lubrication problems, one that

presents challenging issues is elastohydrodynamic

lubrication (EHL) wherein one encounters extremely

high peak pressures1 of the order of a GPa, very highM. Lanzendörfer (&) � J. Málek
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1 The terminology ‘‘pressure’’ has been used to define a variety

of disparate quantities and can be a source for a great deal of

confusion, especially when discussing lubricants since many

lubricants that are used are non-Newtonian fluids (see [35] for

a detailed discussion of the concept of ‘‘pressure’’). In this

study, ‘‘pressure’’ signifies the mean normal stress.
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shear rates, significant variations in temperature (see

[4, 5]), and deformation of the solid boundary (see

[40]). The competing effects of the increase of the

viscosity due to the high pressures, and the decrease

of the viscosity due to the shear thinning at high

shear rates as well as increases in temperature

present further challenges both with regard to

rigorous mathematical and numerical analysis, and

computation.

Alongside the Reynolds approximation approach,

which has served as the exclusive tool for engineering

predictions, the more general tools of computational

fluid dynamics (CFD) were brought to bear on

lubrication problems recently, e.g. [1–3, 9, 20, 26].

CFD simulations are expected to allow one to get

a more detailed and accurate understanding of the

flow involved in the lubrication problems, that cannot

be achieved within the context of the Reynolds

approximation, especially with regard to problems

involving starved lubrication, problems involving

rough and dimpled surfaces, cavitation, or more

complex rheology or geometry, see [31] for relevant

references. It is worth noting that the available

numerical results based on solving the full system of

equations governing the flow have not considered the

heavily loaded regimes so far.

The present paper focuses on a particular issue

pointed out already by Bair et al. [6], that the pressure-

thickening response itself eventually causes the vio-

lation of the lubrication assumptions. Namely, that

a gradient of pressure in the direction across the film is

generated in the flow. The same observation has lead

to the revision of Reynolds equation in the piezovis-

cous regime, see [7, 18, 36]. Yet another important

consequence of this rather specific feature of piezo-

viscous fluids is that the momentum equation describ-

ing the flow exhibits structural changes, once certain

threshold of the pressure and shear rate is reached.

This is well reflected in the results that are available

concerning the existence and uniqueness of weak

solutions, which are based on assumptions that allow

for the realistic pressure- and shear rate- viscosity

relations only up to that threshold, see the references in

Sect. 3.

Bearing this in mind, in contrast to the previous

studies based on the CFD approach referred above, we

restrict ourselves to a simpler setting. This allows us to

focus on some important issues, which we believe are

characteristic of more realistic models as well but

which have not been studied in the detail that they

deserve in the literature so far.

In Sect. 2 we recall the partial differential equations

governing the planar steady isothermal flow of a ho-

mogeneous incompressible viscous fluid and we

develop the dimensionless governing equations within

the context of the plane slider geometry. The boundary

conditions for the inflow and outflow boundaries of the

domain are discussed in Sect. 2.3 in detail. We

describe the pressure-thickening and shear-thinning

rheology provided by the Carreau–Yasuda relation

with the exponential pressure–viscosity law. Such

rheology is simple enough for the purpose of dis-

cussing how the dimensionless parameters affect the

flow. At the same time, it provides a realistic model

that is not altered to fit into any class of constitutive

relations accessible by the theoretical existence and

uniqueness results available.

In Sect. 3 we introduce the finite element approx-

imations to be used for carrying out the numerical

simulations. We recall the current limitations of both

the theoretical well-posedness results available and of

the numerical approach based on the Galerkin (finite

element) approximations. We discuss the constraint

with regard to the variation of the viscous stress with

the pressure, which is observed in numerical experi-

ments and is analogous to the assumptions needed to

establish existence results in the theoretical works. We

are able to carry out the numerical simulations only

within a certain range of pressure and shear rate where

the constraint is met.

Section 4 starts by demonstrating the basic features

of the flow in the case of Navier–Stokes fluid. Then we

incorporate the pressure–viscosity relation into the

problem and carry out a set of numerical simulations

with g ¼ g0e
ap, a[ 0. It is customary in numerical

computations to avoid numerical difficulties by cut-

ting the viscosity off above given threshold for the

pressure. We document by numerical calculations in

Sect. 4.2, that such a procedure may actually lead to

very different results for the problem under consider-

ation, depending on the cut-off parameter. Therefore,

there is no cut-off utilised in the subsequent results

presented in Sect. 4. We show that the response of

a piezoviscous fluid leads to variations of pressure

across the film in Sect. 4.3. Finally, we study the

consequences of the fluid being shear-thinning and we

also determine the effect of inertia on the character-

istics of the flow.

Meccanica

123



2 Setting of the mathematical problem

2.1 Governing equations

We consider a planar steady isothermal flow of

a homogeneous incompressible viscous fluid, gov-

erned by the system of equations

div v ¼ 0

div qv� vð Þ � divT ¼ f

�
in X � R2; ð1Þ

where the Cauchy stress tensor T is given by the

relation

T ¼ �p I þ 2g p; trD2
� �

D: ð2Þ

The unknowns are the velocity v and the pressure p,

while the given data are the density q, the body force f
and the relation g ¼ g p; trD2

� �
, which characterizes

the viscosity of a pressure-thickening and shear-thinning

lubricant. In the above equation D ¼ 1
2
ðrvþ ðrvÞTÞ

denotes the symmetric part of the velocity gradient.

Note that here p coincides with the mean value stress

m ¼ � 1
2
trT, by virtue of trD ¼ div v ¼ 0, cf. [34].

The assumption of the flow being isothermal is

made for the sake of simplicity. Similarly, we do not

allow for elastic deformation of the solid surfaces, so

that a flow in the fixed domainX is considered instead.

Note also that we implicitly assume that the resulting

pressure field would remain positive throughout the

domain, so that we need not discuss the possibility of

cavitation within the flow. Since we study the flow in

between converging surfaces, the latter assumption is

reasonable.

2.2 Plane slider geometry

The geometry of the plane slider is illustrated in

Fig. 1a. The rigid slider is fixed in the space above the

horizontal plane which is moving in the horizontal

direction steadily with the speed U. The lubricating

fluid is dragged by the moving plane and forced

through the converging gap. The two solid surfaces

define the natural boundaries Cplane, Cslider of the

domain X, while the two artificial boundaries Cin, Cout

are defined at the inlet and outlet. The length of the

domain is usually denoted by B, and h1, h2 denote the

height of the fluid film at the outlet and inlet,

respectively.

A crucial feature of the lubrication problem is that

h ¼ 1
2
ðh1 þ h2Þ is much smaller than B, that is

h ¼ eB; where e 	 1:

Ω

Γplane

Γin

Γslider

Γout

h2

h1

B

U

BB
(a)

Ω̂

Γ̂plane

Γ̂in
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Γ̂out

ŷ

0 1

Û = 1

00

ˆ̂yy

(b)

Fig. 1 Plane slider geometry, a model, b dimensionless
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We exploit this feature in the dimensionless formula-

tion of the governing equations in Sect. 2.4. Note that

apart from B, the geometry of the plane slider is

characterized by two dimensionless parameters, e and
the ratio h2=h1.

2.3 Boundary conditions

We assume no-slip conditions at the solid walls, i.e.

that the velocity of the fluid vanishes on the upper

surface, while on the lower plate it equals the given

tangential velocity

v ¼ 0 on Cslider and

v ¼ ð�U; 0Þ on Cplane; U[ 0:
ð3Þ

The inflow and outflow boundaries are artificial,

subject to a mass flux that is not known a priori.

Therefore, there is noobvious proper choice for boundary

conditions on Cin and Cout. A detailed discussion of

different possibilities is out of the scope of the present

study. For the moment, let us merely refer the reader

to [21], appending the following remarks related to the

particular situation in the plane slider.

When using the Reynolds approximation, one

arrives at a single equation for the pressure, the

velocity being dealt with implicitly within the context

of lubrication assumptions. It is then straightforward

to prescribe

p ¼ P0 2 R at both the inlet and outlet; ð4Þ

where most often, P0 ¼ 0 is chosen to represent the

ambient pressure (since that is presumably negligible

compared to the pressure generated within the flow). It

is worth mentioning that for higher values of Ree (the

modified Reynolds number as defined in Sect. 2.4) the

inlet and outlet conditions for the Reynolds approx-

imation should include the influence of the fluid inertia

as well, see e.g. [10].

In contrast, when the weak solution to (1) is

considered, the quantities naturally defined on the

boundary are the vectors of velocity v and traction

�Tn (n denotes the outer normal vector). Surpris-

ingly, the boundary conditions on artificial boundaries

seem to be an issue that has not yet been unequivo-

cally resolved in the literature. Moreover, we should

bear in mind two particular aspects of this study,

namely: (a) that it should be possible to relate the

problem setting to the Reynolds approximation

approach, and (b) that we are keen to relate the

variations of the pressure across the film to the

piezoviscous response of the fluid. To this end, we take

advantage of the boundary condition which (a) results

in the pressure values being equal or approximately

equal to the given constant P0 and (b) does not induce

cross flow and pressure variations in the vicinity of the

artificial boundary.

Therefore, we prescribe

� Tn ¼ bn þ bs on Cin [ Cout; where

bn ¼ P0 n and bs ¼ g rv� ðrvÞT
� �

n: ð5Þ

Note that bs � n ¼ 0. Denoting ½w
s ¼
def

w� ðw � nÞn,
one notices that ½bn
s ¼ 0. The notation bn and bs thus

corresponds to the decomposition of the prescribed

traction into its normal and tangential parts. We make

the following observations concerning the above two

terms.

First, the available theoretical results that guarantee

the existence (and for small data, in certain sense, the

uniqueness) of the weak solution to the system (1)

require, as one of the assumptions, that

� T n ¼ bðvÞ on Cin [ Cout;

where bðvÞ � v� � q
2
jvj2ðv � nÞ þ C

ð6Þ

is prescribed, whereC represents terms supposed to be of

lower order in v. If (6) is not ensured then one cannot

derive the standard energy estimates, and a weak

solution with bounded kinetic energy is not necessar-

ily found. In the case of constant viscosity (i.e. for

steady Navier–Stokes equations) this is well known,

see e.g. [8, 27, 33]; the case of viscosity depending on

pressure and shear rate is not different in this particular

regard, see [29]. Note in particular, that (6) does not

allow one to prescribe the normal component of the

traction independent of the velocity. Neither (5), nor

the condition prescribing the constant traction

�T n ¼ P0n; ð7Þ

nor, e.g. the boundary condition

pn� g
ov

on
¼ P0n; ð8Þ

are covered by (6). The latter is well known as the do-

nothing condition in the case that the viscosity is constant

and thatP0 ¼ 0. In fact, in the case of a radial flow, one

can observe both the trivial and a non-trivial solution
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for trivial boundary data, using any of the boundary

conditions2 (5), (7) or (8). Even in the case of flow in

straight channels or, importantly, the plane slider flow,

onemay indeed encounter complications in finding the

numerical solution (observing a numerical blow-up of

the kinetic energy in the approximate solution iter-

ates). However, such difficulties were not observed

within the range of parameters presented in this paper.

Note that in case of pure outflow, v � n� 0, the term

that is cubic in the velocity in (6) is negative and does

not represent a restriction on b. This is why (6) does

not restrain one to use (7) or (8) in practical

computations for outflow boundary conditions, as

long as no backward flow is expected. At the inflow,

the velocity profile is then usually given explicitly as

v ¼ vin:

We remark that the above specification is not

suitable for the plane slider problem and for most

lubrication problems, since vin would not be known

a priori (not even the flux
R
Cin

v � n ds).
Note also that based on (6) one could arrive at the

idea of prescribing, e.g.

bnðvÞ ¼ P0 �
q
2
jvj2

� �
n:

Such a choice would lead to significant variations of the

normal traction �Tn � n (and, consequently, of the

resulting pressure) across the film and to a concomitant

cross-flow in the vicinity of both artificial boundaries,

even in the case of the flow between parallel plates. In

contrast, (5) gives the normal traction �Tn � n ¼ bn �
n ¼ P0 which is constant across the film and is

satisfied by simple unidirectional flows.

Second, the particular relation for bs in (5) was also

chosen for the purpose of avoiding the pressure

variations along the artificial boundary. Indeed, the

condition bs ¼ 0 (7) is not satisfied by simple unidi-

rectional flows and it would result in the flow with the

streamlines distorted and with the sharp pressure

artifacts near the corners adjacent to the artificial

boundary, see the discussion and numerical examples

in [21]. In contrast, with bs from (5) one can infer

(formally, i.e. assuming that all the quantities are well

defined on the boundary) that

0 ¼ Tnþ bs½ 
s ¼ �p nþ g rvþ rvð ÞT
� �

n
�
þ g rv� ðrvÞT

� �
n
�
s
¼ 2g ðrvÞn½ 
s

implying, due to the viscosity being positive (while it

need not be a constant), that

ov

on

	 

s

¼ o½v
s
on

¼ 0:

This relation seems to have no physical interpretation

except that, notably, it is satisfied by unidirectional flows

perpendicular to the artificial boundary (i.e. when

½v
s � 0). In other words, (5) does not induce cross-

flow at the vicinity of inflow and outflow boundaries,

allowing thus for straight streamlines and the pressure

field with no local artifacts in the corners.

Note that (5) can be formally rewritten as

pn� 2g
ov

on
¼ P0n;

a form similar to (8). For Navier–Stokes equations,

due to the constraint of incompressibility divv ¼ 0 and

due to the viscosity being constant, the following

divT ¼ divð�pI þ gðrvÞÞ holds. If the weak formu-

lation is based on this form involving the full velocity

gradient, then the do-nothing boundary condition (8)

with P0 ¼ 0 corresponds to the trivial (zero) boundary

term in the weak formulation, see [21] for details. For

fluids with variable viscosity, however, to define the

weak solution based on the Cauchy stress tensor T and

to give the boundary data in terms of the traction �Tn

is more appropriate. In this sense and in view of the

previous paragraph, one can look on (5) as a gener-

alization of the do-nothing boundary condition in the

case of variable viscosity.

To our knowledge, there is no result concerning the

existence of weak solutions to (1) that would cover the

presence of bs defined in (5) in the boundary data. The

available theory is built upon uniform estimates for v

in the Sobolev space W1;rðXÞ, 1\r� 2, and does not

allow one to treat the gradients of velocity on the bound-

ary. Nevertheless, we did not encounter any complications

related to bs in our numerical computations.

2.4 The dimensionless formulation of (1)

Let us rewrite the governing equations using the

dimensionless variables (indicated by hat). Denote

x ¼ ðx; yÞ, v ¼ ðu; vÞ and x̂, v̂ analogously. For

2 To present such examples in detail would be out of the scope

of this study and is a subject of a work in preparation by J. Hron

and M. Lanzendörfer.
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simplicity, we neglect the body forces by assuming

that f ¼ 0 and make use of that the fluid is homoge-

neous and incompressible by taking q ¼ q� � const.

We define

x ¼ X�x̂;

y ¼ eX�ŷ;

u ¼ U�û;

v ¼ eU�v̂;
p ¼ P�p̂; g ¼ g�ĝ:

For the plane slider problem,we takeX� ¼ B andU� ¼
U for the characteristic length and velocity. As

illustrated in Fig. 1b, the plane slider geometry X

transforms into the dimensionless X̂ ¼ fðx̂; ŷÞ : x̂ 2
ð0; 1Þ; ŷ 2 ð0; ĥðx̂ÞÞg, where ĥðx̂Þ ¼ ĥ1 þ x̂ðĥ2 � ĥ1ÞÞ
and ĥ1 ¼ 2

1þðh2=h1Þ, ĥ2 ¼
2ðh2=h1Þ
1þðh2=h1Þ. For more details see,

e.g., [40].

We set g� to be the viscosity at negligible shear rates
and pressure and define the characteristic pressure P�

and the modified Reynolds number Ree (leaving Re for

the standard Reynolds number) as customary by

P� ¼ g�U�

e2X� and Ree ¼ eRe ¼ e2q�X�U�

g�
¼ q�U�2

P� :

Setting Ree ¼ 0 represents Stokes-type flow, where

the inertia of the fluid is neglected. One easily rewrites

(1) as

divx̂v̂ ¼ 0

Ree
v̂ � rx̂u

e2 v̂ � rx̂v

� �
� divx̂eT ¼ 0

9=
; in X̂; ð9Þ

where eT ¼ �p̂I þ 2ĝeDe and

eDe ¼
1

2

2e2ox̂û e2ox̂v̂þ oŷû

e4ox̂v̂þ e2oŷû 2e2oŷv̂

 !
: ð10Þ

Note that eT differs from T̂ defined by T ¼ P�T̂,

wherein T̂ ¼ �p̂I þ 2ĝeD̂e and

D̂e ¼
1

2

2eox̂û e2ox̂v̂þ oŷû

e2ox̂v̂þ oŷû 2eoŷv̂

 !
: ð11Þ

The no-slip boundary condition (3) takes the simple

form

v̂ ¼ 0 on Ĉslider and

v̂ ¼ ð�1; 0Þ on Ĉplane:
ð12Þ

Following (10), one can easily derive (here we take

the advantage of that the artificial boundary is

perpendicular to the x-axis, so that n ¼ �ð1; 0Þ ¼ n̂

holds) that (5) takes the dimensionless form

�eTn̂ ¼ b̂ ¼def
P̂0; b̂s
� �

on Ĉin;

� P̂0; b̂s
� �

on Ĉout;

(
ð13Þ

where P̂0 ¼ P0=P
� and b̂s ¼ ĝ e4ox̂v̂� e2oŷû

� �
. Note

in particular, that (5) reduces formally to (4) when the

lubrication assumptions are taken, namely when

o½v
s=on and oðv � nÞ=on can be neglected.

2.5 Viscosity

We are interested in lubrication problems wherein the

range of pressures involved is very large and in virtue

of which the viscosity of the fluid changes by several

orders of magnitude, in fact by as much as 106 or 108.

That this is indeed the case is borne out by experi-

ments. It is also well known that many lubricants

shear-thin and thus we employ the model wherein the

viscosity depends on both the pressure and the shear

rate (in the general three dimensional or planar flow on

the norm of the symmetric part of the velocity

gradient). Several correlations have been used to

describe the variation of the viscosity with pressure. In

this study we will follow the model suggested by Bair

[4] where the viscosity is related to the pressure and to

the Frobenius norm of the velocity gradient through

the Carreau–Yasuda relationship. We shall specifi-

cally assume that the viscosity is given by the

following relation, with g0 [ 0, 1\r\2,

g ¼ g0 aðpÞ 1þ bðpÞtrD2
� �r�2

2 ; ð14Þ

where að�Þ, bð�Þ are given functions3 of the pressure p.

In order to simplify the discussion of the numerical

3 The three reference lubricants presented by Bair [4] are

characterized as compressible, their viscous response depending

on the density and temperature,

g � gcom q; trD2; #
� �

:

In view of incompressibility and the assumption of isothermal

conditions, we consider the pressure and shear-rate dependent

viscosity only, i.e.

g ¼def g p; trD2
� �

¼ gcom qcom p; hð Þ; trD2; h
� �

;

where the material properties are considered at constant

temperature and where the density qcomðp; hÞ merely provides

the correct dependence of the viscosity on the pressure, the

actual density considered in the momentum conservation being

constant.
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results in the dimensionless formulation of the prob-

lem, we take the idealized exponential model for the

pressure–viscosity dependence a(p) and an analogous

simple relation for the shifting rule b(p), i.e. with

g0;G; a; b[ 0, 1\r\2,

g ¼ g0e
ap 1þ GebptrD2
� �r�2

2 : ð15Þ

Note that for small shear rates, (15) reduces to

g
 g0e
ap for trD2 	 e�bp=G

� �
;

while for large shear rates there is, with ~b ¼ a� 2�r
2
b,

g
 g0e
~bp

ffiffiffiffiffiffiffiffiffiffiffiffiffi
GtrD2

p r�2

for trD2 � e�bp=G
� �

:

Finally, it follows from the definition of D̂e from (11)

that4

trD2 ¼ D�2trD̂2
e ; where D� ¼ U�

eX� ;

whereby we obtain the following dimensionless form

of (15),

ĝ ¼ ea
�p̂ 1þ G�eb

�p̂ trD̂2
e

� �r�2
2

; ð16Þ

provided that

a� ¼ aP�; b� ¼ bP�; G� ¼ GD�2 and g� ¼ g0:

The numerical simulations presented in what follows

will be restricted, for the sake of simplicity, to r ¼ 3=2

and b=a ¼ b�=a� ¼ 2, leaving two remaining param-

eters: a� and G�.

3 Numerical solution

We approximate the problem described by (9), (10),

(12), (13) and (16) using the following Galerkin

formulation: Find ðv̂l; p̂lÞ 2 ðv̂0 þ XlÞ � Ql (the dis-

crete solution) such thatZ
X̂
ðdivx̂v̂lÞq dx̂ ¼ 0 8q 2 Ql; ð17Þ

Ree

Z
X̂

v̂l � rx̂ul

e2 v̂l � rx̂vl

� �
� w dx̂þ

Z
X̂

eT l � rx̂w dx̂

þ
Z
Ĉin[Ĉout

b̂l � w dŝ ¼ 0 8w 2 Xl;

ð18Þ

with eT l, b̂l given by (10), (13) and (16). The parameter

l[ 0 is related to the finite-dimensional function

spaces Ql, Xl,

Ql � L1ðX̂Þ and

Xl � w 2 W1;1ðX̂Þ2 ; w ¼ 0 on Ĉslider [ Ĉplane

n o

and v̂0 is a suitable extension of the Dirichlet data (12).

Naturally, Xl, Ql are to be chosen such that all the

integrals are well defined and finite.

The numerical simulations presented in this work

are based on the following finite element approach.

The domain X̂ is discretized by means of quadrilat-

erals (of diameter l at most) andXl,Ql are generated by

the second orderQ2=P�1 finite element pair described

in [17, 39] (the conforming biquadratic elements for

the velocity and the discontinuous piecewise linear

space for the pressure). The resulting system of

nonlinear algebraic equations is solved using the

damped Newton method with line search, with the

Jacobian matrix approximated by the central differ-

ences. The linear subproblems, sparse and unsymmet-

ric, are mostly solved by the direct sparse LU

factorization implemented in the UMFPACK pack-

age, see [14]. The presented numerical simulations are

performed on a regular mesh of 3 � 46 finite elements,

corresponding 136,194 degrees of freedom.

In an ideal situation, letting the discretization

parameter l & 0 and hence the dimension of the finite

element function spaces Xl,Ql to infinity, the error due

to discretization would vanish and the discrete solu-

tion ðvl; plÞ would eventually converge to a (weak)

solution ðv; pÞ. This desired behaviour has been

guaranteed rigorously in [22] after making additional

requirements which, however, do not cover realistic

viscosity (15) at large pressures. The result in [22]

stems from intensive research devoted to the notion

and existence of a weak solution for incompressible

fluids with pressure- and shear rate- dependent

viscosity, see [11, 12, 16, 28] (see also

[13, 24, 25, 37] and the references therein). One of4 Note thatD� represents the characteristic shear rate. Note also

that trD̂2
e 
 1

2
ðoŷûÞ2, as e & 0.
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the assumptions embodied in the theoretical frame-

work requires in particular that

oS

op

����
�����C� 1; where S ¼ T þ pI ¼ 2gD; ð19Þ

for certain constant C, see the concerned results for

details.5 Note that (15) with a[ 0 violates (19) both at

elevated pressures or high shear rates. For (15),

the notion of a solution such that the problem would

be well posed remain a challenging open problem, as

far as no a priori restrictions on the data size are

imposed.

On the basis of our numerical computations,

including those presented in the next section, (19)

seems to be both sufficient and necessary (with C ¼ 1,

or nearly so) for the presented numerical approach to

converge successfully. Once (19) is violated by the

approximate solution at hand, we were unable to

obtain any discrete solution. An analogous restriction

seems to apply for previously published results in

a more complex setting as well, cf. [1, 26].

For the sake of completeness we recall that there

are no theoretical well-posedness results allowing

for the boundary condition (5), as discussed already

in Sect. 2.3, cf. [29]. Note also that some lower

values of the parameter 1\r� 2 are excluded in the

well-posedness analysis, depending on the particular

setting of the problem (see the above mentioned

references).

4 Numerical results

4.1 Constant viscosity, Ree � 0

With a� ¼ 0 and G� ¼ 0 (or r ¼ 2) in (16), the model

reverts to that of an incompressible Navier–Stokes

fluid. The non-dimensional plane slider flow problem

is then described by the three parameters

h2=h1; e and Ree

and by the pressure drop (the difference of the

constants P̂0 in (13) on Cin and Cout). We prescribe

P̂0 ¼ 0 on the both boundaries throughout the paper;

this represents the ambient pressure, supposedly

negligible in comparison to the characteristic pressure

P�. It is for the sake of simplicity that we keep P̂0 ¼ 0

even for Ree [ 0, cf. [10].

The resulting flow has a rather simple structure, as

illustrated in Fig. 2 for h2=h1 ¼ 2, Ree ¼ 10 and

e ¼ 0:1. The velocity field is not far from being

unidirectional, its horizontal component û having

a parabolic profile across the film. A pressure peak is

generated in the center part of the domain. The

pressure differences across the film vanish for small

values of e, as shown in Fig. 2d for e ¼ 0:005.

The problem has been studied by Szeri and

Snyder [41], where the results obtained using the

Reynolds lubrication approximation and the numeri-

cal results for a quasi two-dimensional thin-film flow

model derived in the paper were compared to the finite

element solution to the full Navier–Stokes problem.

The pressure differences across the film, quantified for

convenience of the presentation by

dp̂ ¼
maxx̂2ð0;1Þ p̂ x̂; ĥ

� �
� p̂ x̂; 0ð Þ

�� ��
maxx̂2ð0;1Þ p̂ x̂; ĥ

� � ;

were computed for the Navier–Stokes solutions, for

a reasonable range of parameters, Ree up to 100 and e

5 One of the key steps when proving the existence of a weak

solution, to put it in a simple way, is to establish the uniqueness

of the pressure field p provided that the velocity field of the

solution u is given. Depending on the setting of the problem

(which includes a number of assumptions concerning the

domain geometry, the boundary conditions given, the param-

eters of the rheology, etc.) one should be able to obtain the

inequality of the following type

0\C\ inf
q2Q

sup
w2X

R
X q divw dx

jjqjj2 jjrwjj2
;

where the functional spaces (and the corresponding norms in the

above inequality) for the pressure and velocity, Q and X, and the
constant 0\C� 1 would depend on the particular setting. Here

let us say Q � L2ðXÞ and X � fw ; rw 2 L2ðXÞg.
With help of the above inequality and using the weak

momentum equation, one can estimate for two pressure fields p1,

p2 and the given velocity field u that the following

Cjjp1 � p2jj2 � sup
jjrwjj2¼1

Z
X
ðp1 � p2Þdivw dx

¼ sup
jjrwjj2¼1

Z
X
Sðp1;DÞ � Sðp2;DÞð Þ � rw dx

holds. One obtains the result by estimating the last term by

� � � � jjSðp1;DÞ � Sðp2;DÞjj2

� jp1 � p2j
Z p2

p1

oSðp1 þ sðp2 � p1Þ;DÞ
op

ds

����
����

����
����
2

\Cjjp1 � p2jj2;

provided that joS=opj\C.
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from 0.005 up to 1. It was observed that dp̂ does not

increase with Ree and that it remains small even for e
rather large. Similarly, the dimensionless pressure

peak, maxx̂2X̂ p̂ðx̂Þ, same as the dimensionless force

(lift) F̂y, where
6

F̂ ¼
 
F̂x

F̂y

!
¼
Z
Ĉslider

�eTn̂ dŝ and F ¼ P�X�

 
eF̂x

F̂y

!
;

was shown to vary strongly with Ree and not with e.
Our numerical experiments confirm these conclusions,

see Figs. 3a and 4. We, however, observe much

smaller values of the pressure differences dp̂ than

those reported in [41], as compared in Fig. 3b.

The explanation for the discrepancy is not clear, as

a detailed discussion of the Navier–Stokes problem

formulation and results is lacking7 in [41]. Both the

computed traction along the slider surface presented in

Fig. 4 and the resulting lift for various slopes h2=h1

presented in Table 1 show surprisingly small variation

with e. It is worth noting that the values of F̂y for

e ¼ 0:001 in Table 1 coincide within the presented

accuracy with the results obtained from the Reynolds

equation, cf. Table 1 in [41], while they provide

a surprisingly good approximation even to the prob-

lems with e ¼ 0:1.

4.2 Pressure-thickening, a� [ 0.

Inappropriateness of the viscosity cut-off

procedure and computational difficulties

In all the remaining examples, we take h2=h1 ¼ 2.

When a� [ 0, the fluid is pressure-thickening. For

clarity of exposition, we start with G� ¼ 0, reducing

(16) to the exponential pressure–viscosity mod-

el ĝ ¼ ea
�p̂. As a� increases, the other parameters

being fixed, the pressure peak generated within the

plane slider flow grows; the non-linear character of the

system is emphasized and the discrete problem is more

difficult to handle. Eventually, for a� large enough,

(19) is violated, bringing about a failure of the

numerical scheme. This observation seems in accor-

dance with what has been encountered by other

researchers, cf. [1, 26].

Fig. 2 Flow in a slider bearing (h2=h1 ¼ 2, Ree ¼ 10, a–c e ¼ 0:1, d e ¼ 0:005)

6 Note that ds ¼ X�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n̂2y þ e2n̂2x

q
dŝ.

7 We suspect that boundary conditions different from (5), (13)

could have been set on Cin and Cout in [41], which might have

caused cross flow and pressure gradients in the vicinity of both

the artificial boundaries.

Meccanica

123



10−1 100 101 102

10−5

10−4

10−3

10−2

10−1

Reε

d p̂

ε = 0.2
ε = 0.1
ε = 0.05
ε = 0.01
ε = 0.005
ε = 0.001

(a)

10−3 10−2 10−1 100

10−5

10−4

10−3

10−2

10−1

100

ε

d p̂

Szeri, Snyder (2006)
present paper

(b)

Fig. 3 Dimensionless pressure difference coefficient dp̂ (h2=h1 ¼ 2 and ĝ � 1), a for various values of e and Ree, b variation with e,
comparison to [41]
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Fig. 4 Dimensionless traction vector �eTn̂ along the slider surface Ĉslider (h2=h1 ¼ 2 and ĝ � 1), a vertical component, �eTn̂ � ey,
b horizontal component, �eTn̂ � ex
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In order to prevent the failure of the numerical

calculation, a technique practiced by some researchers

has been to cut off the viscosity by employing, e.g.,

ĝ�p ¼ ĝ minfp̂; �pg; trD̂2
� �

ð20Þ

instead of ĝ, or similarly by imposing a restriction on

the norm of stress by employing, e.g.,

ĝ�S ¼ min ĝð�; �ÞtrD̂2; �S
� �

=
ffiffiffiffiffiffiffiffiffi
trD̂2

p
:

To pick some examples wherein such a cut off has

been appealed to, we refer to [1, 15, 19, 26, 30]. Doing

so, one can ensure oS=op to remain bounded and, by

choosing suitable threshold parameter �p or �S, to keep

(19) fulfilled at least for bounded shear rates. In

particular, using (20) and considering for instance (16)

and given �D and C, one can find �p such that (19) holds

for any trD2 � �D. One should notice, however,

examining (16) with any a� [ 0 and G�; b� � 0, that

for any choice of �p, (19) is still violated for sufficiently
large shear rates.

Surprisingly, the possible sensitivity of the solution

and of the derived quantities of interest on the cut-off

parameter has not been investigated in the literature so

far, to the best of our knowledge. We provide the

following set of numerical experiments to document

that, once the cut-off takes effect, the results depend

sorely on the parameter �p.
For convenience, the comparison is presented for

e ¼ 0:005 and Ree ¼ 0, but we observed that the

Table 1 Dimensionless lift F̂y, for different h2=h1 and e
(ĝ � 1, Ree ¼ 0)

h2=h1 e ¼ 0:1 e ¼ 0:01 e ¼ 0:001

11.0 1.603 1.580 1.579

3.00 0.5965 0.5917 0.5917

2.25 0.4257 0.4229 0.4228

2.00 0.3597 0.3575 0.3575

1.50 0.2060 0.2050 0.2049

1.20 0.09181 0.09137 0.09136

1.10 0.04791 0.04769 0.04768

1.01 0.004999 0.004975 0.004975
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0

0.5

1

1.5

2

x̂

−˜ T
n̂·

e y

(a)

0 0.2 0.4 0.6 0.8 1
−70

−60

−50

−40

−30

−20

−10

0

x̂

−˜ T
n̂·

e x

no cut-off
p̄= 2.2
p̄= 2.0

(b)

Fig. 5 Dimensionless traction along Ĉslider, for a� ¼ 1:74 and different cut-off parameters (G� ¼ 0, e ¼ 0:005, Ree ¼ 0), a vertical

component, �eTn̂ � ey, b horizontal component, �eTn̂ � ex
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behaviour is qualitatively the same for higher values of

these parameters as well. The dimensionless traction

along the slider surface is presented in Fig. 5, where

the results for the unaltered viscosity and for two

different cut-off parameters are compared for

a� ¼ 1:74. Note that while the vertical component

(which corresponds almost exactly to the pressure

distribution and sums up to the resulting lift force)

does not vary considerably in this example, the

horizontal component (which determines the resulting

friction) is affected substantially. The differences are

even more pronounced in Fig. 6. For a� ¼ 1:85, we

were unable to find any solution with unaltered

viscosity, the condition (19) being eventually violated

while attempting to solve the discrete nonlinear

system. Therefore we only present the results for

three values of �p, showing a marked variation in both

components of the traction.

In terms of the resulting force as a function of a�,
the comparison is presented in Fig. 7. For a�\1:72,

the maximum of the resulting dimensionless pressure

does not reach the lowest cut-off threshold �p ¼ 2:0,

hence all the curves plotted in Fig. 7 coincide up to

that value. With the unaltered model, we were only

able to proceed up to a� ¼ 1:743, same as in the case

with �p ¼ 3:0. With �p ¼ 2:6, the computation fails for

a� � 1:86. Fig. 7 illustrates that once the viscosity cut-

off takes effect, the resulting force is altered signif-

icantly. We may conclude, that while the lower cut-off

parameters may seem to add to the robustness of the

computation, they actually entail strikingly different

results depending on the choice of �p, making such

solutions unreliable.

To enhance the illustration, we present the com-

parison of the solutions with unaltered viscosity and

with the cut-off defined by �p ¼ 2:0 in Fig. 8, for the

case a� ¼ 1:743. The dimensionless pressure peak in

the unaltered case reaches p̂ ¼ 2:7 (c), while with the

cut viscosity it is lowered to p̂ ¼ 2:3 (d). The

difference is more pronounced in the corresponding

maximal values of the viscosity, the peak value ĝ ¼
100 (a) is lowered to ĝ ¼ 33 (b), the viscosity now
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Fig. 6 Dimensionless traction along Ĉslider, for a� ¼ 1:85 and three cut-off parameters (no solution without cut-off available), a vertical

component, �eTn̂ � ey, b horizontal component, �eTn̂ � ex
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being constant in a substantial part of the domain

around the pressure peak. Moreover, while the differ-

ences in the horizontal component û of the dimen-

sionless velocity can not be distinguished visually

(e,f), there is a striking difference in its vertical

component v̂. While the unaltered case (g) results in

a distinct rib in v̂, related to the non-negligible

variation of the viscosity with pressure in the vicinity

of the pressure and viscosity peak, in the altered case

(h) the rib is replaced by two stronger artefacts

positioned where the artificial viscosity cut off takes

effect.

In all what follows, we use the unaltered viscosity

(16).

4.3 Pressure variations across the film induced

by pressure-thickening

Within a unidirectional flow, such as Couette flow or

plane Poiseuille flow, of a Navier–Stokes fluid or

a fluid with shear rate dependent viscosity, in the

absence of body forces, the pressure gradient is either

trivial or its direction is that of the flow. In the context

of lubrication flows, the almost unidirectional flow

within the thin film then corresponds to negligible

pressure variations across the film. The situation

differs significantly if the viscosity varies with the

pressure. This was well documented for the Couette

and Poiseuille plane flows, see e.g. [6, 23, 24]. In fact,

for the exponential pressure–viscosity relation g ¼ eap

no such unidirectional flow can be found (except,

interestingly enough, the case with a cross-flow pres-

sure gradient due to the gravitational force, see [32]).

It was pointed out in [36] that the cross-flow pressure

gradient induced within the lubrication flow in the

piezoviscous regime gives rise to an additional term in

the Reynolds approximation equation, see also [7, 18].

The results of numerical computations presented in

Fig. 9 reveal how the pressure differences appear with

increasing a�, for different values of e. Notice again

that each plotted curve ends at certain critical value of

a�, for which (and all the higher values) the condi-

tion (19) is violated and the numerical scheme fails.

An increase in the coefficient d�p by as much as two

orders of magnitude, when compared to the Navier–

Stokes fluid at given e, can be observed before such
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Fig. 7 Dimensionless force acting on the slider, for different cut-off parameters (Ree ¼ 0, G� ¼ 0, h2=h1 ¼ 2, e ¼ 0:005),

a dimensionless lift F̂y, b dimensionless drag F̂x
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critical a� is reached. Simultaneously, a rapid increase

of the maximal dimensionless pressure (not visu-

alised) and both components of the resulting force F̂

appear. Note how the critical values of a� differ with e,
say for e[ 0:01, as can be read from Fig. 9. We

observe that for a� [ 0 the resulting dimensionless

force is more sensitive to e than it was shown for

a Navier–Stokes lubricant, cf. Fig. 4.

4.4 The shear-thinning and inertial effects

We complete the presentation of the numerical

computations by including a sample of results with

shear-thinning, i.e. with G� [ 0, and the results for

Ree [ 0, in addition to pressure-thickening. The

observed coefficient d�p and the resulting dimension-

less force are again plotted in Figs. 10 and 11. For the

Fig. 8 Dimensionless viscosity ĝ, pressure p̂ and velocity û for a� ¼ 1:743, for unaltered viscosity (left) and using the cut off (right),

(G� ¼ 0:0, e ¼ 0:005, Ree ¼ 0)
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Fig. 9 Dimensionless force F̂ and pressure difference coefficient dp̂, variation with e and a� (h2=h1 ¼ 2, Ree ¼ 0, G� ¼ 0), a pressure

difference coefficient dp̂, b dimensionless lift F̂y, c dimensionless drag F̂x
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Fig. 10 Dimensionless force F̂ and pressure difference coefficient dp̂, for various Ree and a� (h2=h1 ¼ 2, G� ¼ 0, e ¼ 0:005), a

pressure difference coefficient dp̂, b dimensionless lift F̂y, c dimensionless drag F̂x
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Fig. 11 Dimensionless force F̂ and pressure difference coefficient dp̂, variation with G� and a� (h2=h1 ¼ 2, Ree ¼ 0, e ¼ 0:005 and

r ¼ 3=2, b=a ¼ 2), a pressure difference coefficient dp̂, b dimensionless lift F̂y, c dimensionless drag F̂x
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Fig. 12 Traction along the slider surface Ĉslider for selected a� and G� (h2=h1 ¼ 2, Ree ¼ 0, e ¼ 0:005, and r ¼ 3=2, b=a ¼ 2),

a vertical component, �eTn̂ � ey, b horizontal component, �eTn̂ � ex
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simplicity of presentation we keep r ¼ 3=2 and b=a ¼
2 and only present the results for e ¼ 0:005.

For a� [ 0 and small values of e, the numerical

simulations for positive Ree are more demanding in

comparison to the case a� ¼ 0. In contrast to the

results presented in Fig. 3a, we observed that the

discrete solutions for, let us say, a� [ 1:5 with Ree ¼
5 or higher remain mesh-dependent for regular mesh

refinements as fine as ĥ
 2�6 (corresponding to

136,194 degrees of freedom). The comparison of the

resulting d�p and F̂ for Ree ¼ 0 and 2.5 is plotted in

Fig. 10, illustrating how the increased modified

Reynolds number leads (by means of increasing the

generated pressure peak) to the increased dimension-

less force. The approximation obtained for Ree ¼ 5 is

included as the dotted line. Further study of the

combined effects of pressure-thickening and higher

Reynolds numbers would require some additional care

which we exclude from the current presentation.

With the shear-thinning taking effect, the growth of

the maximal pressure and viscosity with increasing a�

is postponed, thus increasing significantly the

observed critical value of a� for which (19) is violated
within the resulting flow. More detailed comparison is

provided in Fig. 12, where the distribution of the

dimensionless traction along the slider surface is

plotted for five combinations of a� and G�. All these
results are for Ree ¼ 0 and e ¼ 0:005.

For reference, the solid line is plotted in Fig. 12

representing a constant viscosity lubricant. The

dashed line then shows the pure piezoviscous regime

with a� ¼ 1:7, displaying the large sharp pressure

peak on the left plot and the increased friction

contributions due to the corresponding peak in the

viscosity, on the right-hand side plot. With the same a�

but with G� ¼ 0:5, as can be read from the dotted line,

the effect of piezoviscous response is largely counter-

acted by shear-thinning. For comparison, the case of

G� ¼ 0:5 but a� ¼ 0 is also included, showing much

lesser variation due to shear-thinning in the case of

a� ¼ 0, when compared to the piezoviscous regime for

a� ¼ 1:7.

Finally, we include the dashed-double-dotted plot

for the case a� ¼ 4:4 and G� ¼ 0:5, to emphasize the

difference in influence of these two parameters on the

two components of the resulting force: Note that for

a� ¼ 4:4, G� ¼ 0:5 the vertical traction (and so the

pressure peak) almost reaches the values for the pure

piezoviscous a� ¼ 1:7, G� ¼ 0:0, the peak being

slightly sharper and shifted towards the inlet. By

Fig. 13 Dimensionless viscosity ĝ for selected a� and G� (h2=h1, Ree ¼ 0, e ¼ 0:005, and r ¼ 3=2, b=a ¼ 2), a a� ¼ 1:7, G� ¼ 0:0, b
a� ¼ 1:7, G� ¼ 0:5, c a� ¼ 0:0, G� ¼ 0:5, d a� ¼ 4:4, G� ¼ 0:5
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contrast, significantly larger horizontal traction is

observed.

The distribution of the dimensionless viscosity in X̂
is presented by means of contour plots in Fig. 13, for

the same four cases: (a) the pure piezoviscous case

a� ¼ 1:7, G� ¼ 0, showing a sharp viscosity peak

reaching the maximum ĝ ¼ 24, (b) the case a� ¼ 1:7,

G� ¼ 0:5, where the viscosity peak is an order of

magnitude lower (which is also accompanied by the

significantly lower pressure peak), (c) the pure shear-

thinning case a� ¼ 0, G� ¼ 0:5, and finally (d) the

case a� ¼ 4:4, G� ¼ 0:5, showing the viscosity peak

reaching the maximum ĝ ¼ 60 as well as the variation

of the viscosity due to the velocity gradient in the

remaining parts of the domain.

5 Conclusion

Based on the numerical computations that have been

carried out, we conclude that the finite element

solution for the planar steady isothermal flow of

an incompressible fluid with pressure and shear rate

dependent viscosity can be obtained as long as the

condition (19) is satisfied. Note that the condition (19)

supplemented by certain additional assumptions also

guarantees the existence of solutions to the full

equations governing the flows of the fluids under

consideration. Once the condition is violated, i.e. if

the pressure or shear rate reach values larger than

some critical value, we were unable to obtain any

numerical solution.

As the parameters approach the critical case, the

rapid growth of the quantities tracked in the plane

slider simulations, such as the maximal values of the

pressure and viscosity and the force acted on the solid

surfaces, were observed.

In particular, we have documented the implications

of cutting the viscosity off above a given threshold of

pressure: the technique does not guarantee conver-

gence and, once the cut-off takes effect, the results

depend critically on the artificial threshold parameter.

The effect is particularly pronounced when the overall

friction (i.e. the tangential part of the traction

observed on the solid walls) is considered.

In the range of parameters where the unaltered

viscosity can be considered, we discussed the resulting

plane slider flow for a number of combinations of the

dimensionless parameters related to the pressure-

thickening, shear-thinning, inertia and geometry. In

particular, we tracked the force acting on the slider

surface as it varies with the dimensionless pressure–

viscosity coefficient a� for different parameters e,
where e & 0 would represent the lubrication approx-

imation limit, and with different parametersG� related
to the activation of the shear-thinning response.

In order to study the variations of pressure and other

quantities accross the film, the boundary conditions

taken on the artificial (inflow and outflow) boundaries

needed to be discussed. We have observed that the

condition (5), derived in Sect. 2.3 based on the do-

nothing condition used for Navier–Stokes fluid, is

appropriate for the problem under consideration. In

contrast to, e.g. constant traction being prescribed, we

observed smooth solutions without any artifacts in the

pressure or viscosity field in the vicinity of the

artificial boundaries.

We have displayed how the pressure variations

across the film appear within the flow due to pressure-

thickening. The results may imply that the lubrication

assumptions are violated by the piezoviscous lubri-

cant. This assertion has been made already by

researchers working with the Reynolds approxima-

tion, and it was our hope to provide a numerical

validation to the recently derived corrections of

Reynolds equation. Unfortunately, as the appearance

of pressure variations is in conjunction with the

change of the structure in the momentum equation, the

most important comparison would require one to find

a numerical solution to the problem in the case, where

the condition (19) is violated. This represents a chal-

lenging open problem in computational fluid dynam-

ics of incompressible fluids. To the best of our

knowledge, no numerical solutions have been reported

in the literature so far that would reach beyond (19).

Similarly, there are no theoretical results either,

concerning the existence of such a solution.
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