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Abstract. We propose thermodynamically consistent models for viscoelastic fluids with a stress diffusion term. In particular,

we derive variants of compressible/incompressible Maxwell/Oldroyd-B models with a stress diffusion term in the evolution

equation for the extra stress tensor. It is shown that the stress diffusion term can be interpreted either as a consequence of a
nonlocal energy storage mechanism or as a consequence of a nonlocal entropy production mechanism. Different interpretations

of the stress diffusion mechanism lead to different evolution equations for the temperature. The derived models open up the

possibility to study fully coupled thermomechanical problems involving viscoelastic rate type fluids with stress diffusion.
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1. Introduction

Standard models for viscoelastic fluids such as the Oldroyd-B model, see Oldroyd (1950), or the Johnson–Segalman
model, see Johnson and Segalman (1977), are frequently modified by the addition of a term, including second-order spatial
derivatives of the extra stress tensor S, to the evolution equation for the extra stress tensor S. Such a term usually takes
the form ∆S, where ∆ denotes the Laplace operator, and is referred to as the stress diffusion term.

The presence of the stress diffusion term in the governing equations is important for various reasons. First, its improves, to
a certain extent, qualitative mathematical properties of the governing equations, see for example El-Kareh and Leal (1989),
Barrett and Boyaval (2011) or Chupin and Martin (2015). Second, the presence of the diffusive term has a significant impact
on the dynamical behaviour predicted by the given system of governing equations. This is, for example, exploited in the
modelling of the shear banding phenomenon, see the reviews by Cates and Fielding (2006), Fielding (2007), Dhont and
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Briels (2008), Olmsted (2008), Subbotin et al. (2011), Fardin et al. (2012), Fardin et al. (2015) and Divoux et al. (2016), to
name a few.

The presence of the diffusive term can be justified by appealing to a kinetic-theory-based approach to the rheology of
dilute polymer solutions. If the classical kinetic-theory-based approach is employed, and if the inhomogeneities of the velocity
and stress fields are carefully taken into the account, then the diffusive term naturally appears in the evolution equation for
the extra stress tensor S, see for example El-Kareh and Leal (1989) and Bhave et al. (1991). The weakness of the existing
kinetic-theory-based approaches is that they do not provide a full set of mutually consistent governing equations for the
fluid of interest. Indeed, the focus is solely on the governing equations for the mechanical quantities, while the evolution
equation for the temperature is not formulated, or even thought of.

The first drawback of the focus on mechanical aspects is that the thermodynamical consistency of the models is not
justified. In particular, the consistency of the model with the second law of thermodynamics remains questionable. Clearly,
the consistency with the second law of thermodynamics can not be analysed without the complete characterisation of the
energy transfers in the fluid. Since the energy of a viscoelastic fluid can take the form of the kinetic energy, the thermal
energy and the energy accumulated in the “elastic” part of the fluid, the appropriate description of the energy transfer
mechanisms is conceptually a difficult task. In the case of viscoelastic rate-type fluids with stress diffusion, the energy
transfer mechanisms are anticipated to be even more complex due to the presence of the stress diffusion term. However, the
impact of the stress diffusion term on the energy transfer mechanisms has not yet been analysed.

The second drawback of the prevailing focus on mechanical aspects is the inability to deal with viscoelastic rate-type fluids
with temperature-dependent material coefficients. This is a serious drawback, since the response of most viscoelastic rate-
type fluids is strongly temperature-dependent. In particular, the stress diffusion coefficient can depend on the temperature,
see for example Mohammadigoushki and Muller (2016). If the material coefficients in the mechanical part of the system
depend on temperature, then the correct prediction of the values of the mechanical quantities requires one to formulate an
evolution equation for the temperature. Since the interplay between the thermal energy and other forms of the energy in
a fluid is rather complex, the temperature evolution equation is expected to be markedly different from the standard heat
equation used in the case of a compressible/incompressible Navier–Stokes–Fourier fluid. However, the correct temperature
evolution equation has not yet been formulated for viscoelastic rate-type fluids with stress diffusion.

In what follows we propose a phenomenological thermodynamical framework for Maxwell/Oldroyd-B type viscoelastic mod-
els with a stress diffusion term in the evolution equation for the extra stress tensor. Both compressible and incompressible
variants of the models are considered, and the stress diffusion coefficient is considered to be a temperature-dependent quan-
tity. Using this thermodynamical framework, we derive a complete set of governing equations in the full thermomechanical
setting. In particular, we formulate the corresponding temperature evolution equation, and we show that it is compatible
with the constitutive relations for the mechanical quantities. Further the whole system of governing equations is shown to
be compatible with the second law of thermodynamics.

The stress diffusion term is interpreted in two ways: either as a consequence of a nonlocal energy storage mechanism, or as
a consequence of a nonlocal entropy production mechanism. These different interpretations of the stress diffusion mechanism
lead to different evolution equations for the temperature. The derived models open up the possibility to study fully coupled
thermomechanical problems involving viscoelastic rate-type fluids with stress diffusion terms.

2. Phenomenological approach to rate-type viscoelastic models

Phenomenological non-equilibrium thermodynamics offers plenty of approaches for the derivation of thermodynamically
consistent rate-type viscoelastic models, see for example Leonov (1976), Grmela and Carreau (1987), Mattos (1998), Wap-
perom and Hulsen (1998) or Dressler et al. (1999), to name a few. The approach that is used below conceptually follows the
approach that was introduced by Rajagopal and Srinivasa (2000) and Rajagopal and Srinivasa (2004), and was later fruit-
fully followed in other works, see for example Rao and Rajagopal (2002), Kannan et al. (2002) and Málek et al. (2015a). The
advantages of this approach are that it transparently handles the incompressibility constraint and that it works exclusively
on the phenomenological level.

The approach is based on the idea that a material is fully characterised by the way it stores the energy and produces
the entropy, which is an idea that was, in a similar form1, articulated even earlier, see Ziegler and Wehrli (1987). The first
advantage of such an approach is that the energy storage and production mechanisms are specified in terms of two scalar
quantities, the specific Helmholtz free energy ψ and the entropy production ξ, say. The complex relations between the
tensorial quantities such as the Cauchy stress tensor T and the symmetric part of the velocity gradient D then follow from
the choice of the formula for the energy and entropy production.

The other ingredient of the approach by Rajagopal and Srinivasa (2000) is the concept of evolving natural configuration.
In the case of viscoelastic fluids this concept in fact reflects the interpretation of the viscoelastic response as a composition
of a viscous (dissipative) and an elastic (nondissipative) response. In a sense, this concept can be seen as an extensive
generalisation of the well known one-dimensional spring-dashpot analogues, see for example Wineman and Rajagopal (2000),
to a fully nonlinear three-dimensional setting.

The approach by Rajagopal and Srinivasa (2000) has been successfully used in the derivation of the classical Maxwell and
Oldroyd-B viscoelastic models, as well as in the derivation of advanced rate-type viscoelastic models for complex substances
such as asphalt, see for example Krishnan and Rajagopal (2004) or Málek et al. (2015b). In what follows we deviate from
the approach by Rajagopal and Srinivasa (2000) in two ways.

1See Rajagopal and Srinivasa (2004) and Rajagopal and Srinivasa (2008) for comments on the relation of the current procedure to that
suggested by Ziegler and Wehrli (1987).
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First, the procedure used by Rajagopal and Srinivasa (2000) in the isothermal setting is extended to the non-isothermal
setting. In particular, the evolution equation for the entropy

ρ
dη

dt
+ div jη = ξ, (2.1)

see Section 5 for details, is exploited not only in the derivation of the thermodynamically compatible constitutive relations,
but also in the formulation of the evolution equation for the temperature. Indeed, once the entropy production ξ is known,
the evolution equation for the temperature is easy to obtain. It suffices to realise that the entropy can be obtained by the
differentiation of the free energy with respect to the temperature, and use the explicit formula for the free energy. The
application of the chain rule then in fact converts (2.1) into an evolution equation for the temperature. This modification
of the original procedure by Rajagopal and Srinivasa (2000) basically follows the subsequent works by Rao and Rajagopal
(2002), Kannan et al. (2002), Kannan and Rajagopal (2004), Pr̊uša and Rajagopal (2013) and especially Hron et al. (2016).

Second, the Helmholtz free energy ψ that characterises the energy storage mechanisms may in our case include a higher
order gradient of the tensor Bκp(t) . (The tensor Bκp(t) is the left Cauchy–Green tensor Bκp(t) associated with the elastic part

of the total mechanical response of the fluid. See Section 3 for the definition of Bκp(t) .) The inclusion of a higher gradient

into the Helmholtz free energy is a common practice in the theory of elasticity, see for example Eringen (2002) and the newer
contributions by Fried and Gurtin (2006), Polizzotto (2012), Javili et al. (2013), Borino and Polizzotto (2014) and Šilhavý
(2016), and references therein. Note, however, that the approach reported below avoids the usage of additional concepts
such as hyperstress, which is an important notion in higher-order gradient theories of elasticity.

3. Kinematics of the evolving natural configuration

Let us apply the proposed phenomenological approach in the case of Maxwell/Oldroyd-B type models. In order to do
so, we need to investigate the underlying kinematics2 that is motivated by a one-dimensional spring-dashpot model for the
behaviour of a Maxwell type viscoelastic fluid, see for example Wineman and Rajagopal (2000). The deformation from the
initial configuration to the current configuration is virtually split into the deformation of the natural configuration and the
instantaneous elastic deformation from the natural configuration to the current configuration, see Figure 1. The evolution
of the natural configuration is understood as an entropy producing process, while the energy storage ability is attributed to
the elastic deformation from the natural configuration to the current configuration, see Rajagopal and Srinivasa (2000) and
also Pr̊uša and Rajagopal (2013) and Málek and Pr̊uša (2017) for details.

current configuration

reference configuration

dissipative
response

elastic
response

natural configuration

κ0(B)

κt(B)

F

Fκp(t)

G

κp(t)(B)

Figure 1. Viscoelastic fluid – kinematics.

If the total deformation is seen as a composition of the two deformations, then the total deformation gradient F can be
written as

F = Fκp(t)G, (3.1)

where Fκp(t) and G are the deformation gradients of the deformation from the reference to the natural configuration and the

deformation from the natural configuration to the current configuration. The standard relation dF
dt

= LF between the spatial
velocity gradient L =def ∇v and the deformation gradient F, then motivates the introduction of new tensorial quantities Lκp(t)
and Dκp(t) defined as

Lκp(t) =def
dG
dt

G−1, Dκp(t) =def
1

2
(Lκp(t) + L⊺κp(t)) . (3.2)

Using (3.1) and the definition of Lκp(t) , the material time derivative of Fκp(t) can be expressed as

dFκp(t)
dt

= LFκp(t) − Fκp(t)Lκp(t) . (3.3)

Further, the material time derivative of the left Cauchy–Green tensor Bκp(t) =def Fκp(t)F⊺κp(t) associated with the instantaneous

elastic (non-dissipative) response then reads

dBκp(t)
dt

= LBκp(t) + Bκp(t)L⊺ − 2Fκp(t)Dκp(t)F⊺κp(t) . (3.4)

2Most of the calculations and algebraic manipulations used in this section are the same as in Málek et al. (2015a) and Hron et al. (2016) where

the isothermal and non-isothermal Maxwell/Oldroyd-B models were analysed, respectively. Consequently, we comment in depth only on the

results that are specific to the case of models with stress diffusion. The reader interested in the results for standard Maxwell/Oldroyd-B models

is referred to Málek et al. (2015a) and Hron et al. (2016). In what follows the symbol d
dt

denotes the material time derivative, d
dt

=def ∂
∂t
+ v ●∇,

where v is the Eulerian velocity field.
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Note that the last formula reduces, using the definition of the upper convected derivative,
▽
A =def

dA
dt
− LA − AL⊺, to the

formula ▽
Bκp(t) = −2Fκp(t)Dκp(t)F⊺κp(t) . (3.5)

Further, using the formula for the time derivative of Bκp(t) , one can show that

d

dt
Tr Bκp(t) = 2Bκp(t) ∶D − 2Cκp(t) ∶Dκp(t) , (3.6a)

d

dt
(ln [det Bκp(t)]) = 2I ∶D − 2I ∶Dκp(t) , (3.6b)

where A ∶ B =def Tr (AB⊺) denotes the standard scalar product on the space of matrices. The symbol Cκp(t) =def F⊺κp(t)Fκp(t)
denotes the right Cauchy–Green tensor associated with the non-dissipative response. Further, we see that the material time
derivative of the gradient term ∣∇Tr Bκp(t) ∣ reads

d

dt
∣∇Tr Bκp(t) ∣2 = 2 div [[∇ (Tr Bκp(t))] d

dt
(Tr Bκp(t))] − 2 [∆ (Tr Bκp(t))] d

dt
(Tr Bκp(t))
− 2 [∇ (Tr Bκp(t))⊗∇ (Tr Bκp(t))] ∶D. (3.6c)

The reason for writing the time derivative in the form shown in (3.6c) will become clear later on, see Section 5.
In principle, the aim is to use the identity ∇φ ● ∇ψ = div [(∇φ)ψ] − (∆φ)ψ and move all the gradients to one of

the quantities ψ and φ at the expense of adding a flux term. The manipulation is loosely motivated by an analogous
manipulation used by Heida and Málek (2010) in the thermodynamics-based derivation of the constitutive relations for
compressible Korteweg type fluids.

4. Helmholtz free energy

Let us now make the first step in the thermodynamical procedure by specifying the Helmholtz free energy of the material
of interest. Naturally, the non-dissipative (elastic) part of the response should somehow enter into the formula for the
Helmholtz free energy. The quantity that characterises the non-dissipative response is Bκp(t) . The reason is that the energy

storage ability is in finite elasticity theory described in terms of the left Cauchy–Green tensor B =def FF⊺. In our case,
however, only a part of the total deformation gradient F is attributed to a non-dissipative/elastic response. Consequently,
only Bκp(t) =def Fκp(t)F⊺κp(t) , rather than B, plays the role of an additional variable in the formula for the Helmholtz free
energy.

If one deals with a compressible/incompressible viscoelastic fluid, the following ansatz for the Helmholtz free energy ψ,

ψ =def ψ̃ (θ, ρ) + µ

2ρ
(Tr Bκp(t) − 3 − ln det Bκp(t)) , (4.1)

where µ is a constant and θ denotes the temperature, is known to generate variants of the compressible/incompressible
Maxwell/Oldroyd-B type models, see for example Málek et al. (2015a). (In the incompressible case the density ρ is a
constant.) The deviation from the standard thermodynamical procedure that leads to the Maxwell/Oldroyd-B viscoelastic
model is the possibility of the presence of the gradient of Bκp(t) in the ansatz for the Helmholtz free energy. As we have
already noted, the inclusion of the higher deformation gradient is motivated by the same idea as in the theory of finite
elasticity.

Consequently, we consider two variants of the ansatz for the Helmholtz free energy, namely

ψ =def ψ̃ (θ, ρ) + µ

2ρ
(Tr Bκp(t) − 3 − ln det Bκp(t)) + µ̃(θ)2ρ

∣∇Tr Bκp(t) ∣2 , (A)

ψ =def ψ̃ (θ, ρ) + µ

2ρ
(Tr Bκp(t) − 3 − ln det Bκp(t)) , (B)

where µ is a constant and µ̃ is a function of the temperature θ. The material parameter µ̃ is referred to as the stress diffusion
coefficient. Note that, in both cases, the ansatz for the free energy has the form

ψ = ψ̃ (θ, ρ) + 1

ρ
̃̃
ψ (θ,Bκp(t) ,∇Bκp(t)) . (4.3)

As we shall see later, variant (A) indeed leads to a viscoelastic rate-type model with a stress diffusion term, see Section 7.
In this case the stress diffusion term in the evolution equation for the extra stress tensor is a consequence of the presence of

the additional term ∣∇Tr Bκp(t) ∣2 in the Helmholtz free energy ansatz. In this sense, the stress diffusion term is interpreted
as a consequence of a non-standard energy storage mechanism in the fluid of interest.

On the other hand variant (B) is identical to the Helmholtz free energy ansatz for the standard Maxwell/Oldroyd-B fluid.
In this case the stress diffusion term in the evolution equation for the extra stress tensor is a consequence of the presence of
an additional term in the entropy production, see Section 8. In this sense, the stress diffusion term is not interpreted as a
consequence of a non-standard energy storage mechanism but rather as a consequence of a non-standard entropy production
mechanism.

Naturally, the coefficient µ can also be taken to be temperature-dependent, but we will, for the sake of simplicity of the
presentation, consider it to be a constant. The reader interested in the impact of a temperature-dependent coefficient µ on
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THERMODYNAMICS OF VISCOELASTIC RATE-TYPE FLUIDS WITH STRESS DIFFUSION 5

the dynamics of viscoelastic fluids without stress diffusion is referred to Hron et al. (2016). The methods presented in Hron
et al. (2016) can be, if necessary, applied even in the case of fluids with stress diffusion.

5. Generic evolution equation for the entropy

The generic evolution equation for the specific internal energy e in a single continuous medium reads

ρ
de

dt
= T ∶ L − div je. (5.1)

This equation can be exploited in the derivation of the evolution equation for the entropy. Indeed, if the energetic equation
of state is given in the form

e = e(η, y1, . . . , yn), (5.2)

where η denotes the entropy and the symbols {yi}ni=1 denote other variables such as the density, then the definition of the

temperature θ =def
∂e
∂η

(η, y1, . . . , yn), (5.1), and the chain rule immediately lead to the evolution equation for the entropy.

However, we do not follow this path. The energetic equation of state (5.2) is inconvenient from the practical point of view,
since it includes the entropy as a variable.

From the practical point of view one prefers to work with the specific Helmholtz free energy ψ instead of the specific
internal energy e. The reason is that the specific Helmholtz free energy ψ is a function of the temperature θ and other
variables. The Helmholtz free energy is defined, see Callen (1985), as the Legendre transform of internal energy with respect
to the entropy

ψ(θ, y1, . . . , yn) = e(η(θ, y1, . . . , yn), y1, . . . , yn) − θη(θ, y1, . . . , yn), (5.3)

where η(θ, y1, . . . , yn) is a function obtained by solving the equation θ = ∂e
∂η

(η, y1, . . . , yn) for the entropy. (Recall that (5.3)

implies the standard thermodynamical identity ∂ψ
∂θ

(θ, y1, . . . , yn) = −η(θ, y1, . . . , yn).) Taking the time derivative of (5.3) and
using the chain rule then yields a formula for the time derivative of the internal energy e in terms of the partial derivatives
of the Helmholtz free energy ψ and the time derivative of the entropy η and other variables

de

dt
= θdη

dt
+ ∂ψ

∂y1

dy1

dt
+ ⋅ ⋅ ⋅ + ∂ψ

∂yn

dyn
dt

. (5.4)

Using this formula on the left-hand side of (5.1) leads to the evolution equation for the entropy η. In particular, if the

Helmholtz free energy is given as ψ = ψ (θ, ρ,Tr Bκp(t) , ln det Bκp(t) , ∣∇Tr Bκp(t) ∣2), then one gets

ρθ
dη

dt
= −ρ∂ψ

∂ρ

dρ

dt
− ρ ∂ψ

∂Tr Bκp(t)
dTr Bκp(t)

dt
− ρ ∂ψ

∂ln [det Bκp(t)]
d

dt
(ln [det Bκp(t)]) − ρ ∂ψ

∂∣∇Tr Bκp(t) ∣2
d

dt
∣∇Tr Bκp(t) ∣2
+ T ∶ L − div je, (5.5)

Now we are in a position to exploit the evolution equations for ρ and Bκp(t) . The balance of mass equation,

dρ

dt
+ ρdivv = 0, (5.6)

allows us to substitute for dρ
dt

. Concerning the time derivatives of the left Cauchy–Green tensor Bκp(t) the kinematical

considerations imply fomulae (3.6), which allow us to substitute for the remaining time derivatives on the right-hand side
of (5.5). The first term on the right-hand side of (5.5) can be, thanks to (5.6), rewritten as

− ρ∂ψ
∂ρ

dρ

dt
= ρ2 ∂ψ

∂ρ
divv, (5.7)

which upon denoting

pNSE
th =def ρ

2 ∂ψ̃

∂ρ
, (5.8a)

pdM
th =def ρ

2 ∂ψ

∂ρ
, (5.8b)

yields pdM
th = pNSE

th − ̃̃
ψ and

− ρ∂ψ
∂ρ

dρ

dt
= pdM

th divv. (5.9)

Apparently, the definition (5.8) mimics/generalises the classical formula for the relation between the free energy ψ and the

thermodynamic pressure pth, pth = ρ2 ∂ψ
∂ρ

, see for example Callen (1985).

The thermodynamical pressure pdM
th has two contributions. The first contribution is pNSE

th , and it comes from the part of
the free energy that is independent of Bκp(t) . This contribution is tantamount to the classical contribution known from a

compressible Navier–Stokes fluid. The second contribution to the thermodynamical pressure pdM
th is the term − ̃̃

ψ, which is
a contribution due to the “elastic” part of the fluid.

Substituting for all time derivatives into (5.5) yields, after some manipulation, the explicit evolution equation for the
entropy. This equation can be used in the derivation of the constitutive relations for T and je from the knowledge of the
entropy production ξ.
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6 JOSEF MÁLEK, VÍT PRŮŠA, TOMÁŠ SKŘIVAN, AND ENDRE SÜLI

6. Entropy production

Following Rajagopal and Srinivasa (2000) and Rajagopal and Srinivasa (2004) we are now in a position to specify how
the material produces the entropy. In our case, we use for compressible fluids the entropy production ξ ansatz in the form

ξ̃ = 1

θ
(2ν + 3λ

3
(divv)2 + 2νDδ ∶Dδ + ν1

2
Tr( ▽

Bκp(t)B−1
κp(t)

▽
Bκp(t)) + κ ∣∇θ∣2

θ
) , (C)

ξ̃ = 1

θ
(2ν + 3λ

3
(divv)2 + 2νDδ ∶Dδ + µ2

2ν1
(Tr Bκp(t) +Tr B−1

κp(t) − 6) + µµ̃(θ)
2ν1

∇Bκp(t) ⋮∇Bκp(t) + κ ∣∇θ∣2
θ

) . (D)

The entropy production ansatz (C) is used for a fluid specified by the Helmholtz free energy ansatz (A), while the entropy
production ansatz (D) in used for a fluid specified by the Helmholtz free energy ansatz (B). See Section 7 and Section 8 for
the rationale behind these formulae.

Having the formulae for the entropy production ξ, the derived entropy evolution equation (5.5) can be compared with a
generic evolution equation for the entropy that takes the form

ρ
dη

dt
+ div jη = ξ, (6.2)

where jη denotes the entropy flux. The “comparison” of the two equations in principle allows one to identify the sought
constitutive relations for T and je. Details are given for each case separately; see Section 7 for the Helmholtz free energy
ansatz (A) and Section 8 for the Helmholtz free energy ansatz (B).

7. Derivation of constitutive relations – stress diffusion as a consequence of a nonstandard energy
storage mechanism

In this section we derive a model for viscoelastic fluids in which the stress diffusion term is attributed to a nonstandard
energy storage mechanism. The nonstandard energy storage mechanism is characterised by the presence of a gradient
(nonlocal) term in the ansatz for Helmholtz free energy (A).

7.1. Evolution equation for the entropy. If the Helmholtz free energy ansatz takes the specific form (A), then the
evolution equation for the entropy (5.5) reads

ρθ
dη

dt
= {m + pdM,A

th − µ
3

Tr Bκp(t) + µ + µ̃3 Tr [(∇Tr Bκp(t))⊗ (∇Tr Bκp(t))] + 2

3
µ̃Tr Bκp(t) (∆ Tr Bκp(t))}divv

+ {Tδ − µ(Bκp(t))δ + µ̃[(∇Tr Bκp(t))⊗ (∇Tr Bκp(t))]δ + 2µ̃ (∆ Tr Bκp(t)) [Bκp(t)]δ} ∶Dδ
+ {µ (Cκp(t) − I) − 2µ̃ (∆ Tr Bκp(t))Cκp(t)} ∶Dκp(t) − div je − µ̃div [(∇Tr Bκp(t)) d

dt
(Tr Bκp(t))] , (7.1)

where the time derivatives in (5.5) have been evaluated using the explicit formulae (3.6). The thermodynamic pressure
defined via (5.8b) reads

pdM,Tr
th = ρ2 ∂ψ̃

∂ρ
− µ

2
(Tr Bκp(t) − 3 − ln det Bκp(t)) − µ̃2 ∣∇Tr Bκp(t) ∣2 . (7.2)

The superscript A in pdM,Tr
th indicates that the thermodynamic pressure depends on the choice of the Helmholtz free energy,

and that we work with the Helmholtz free energy in the form (A). Further, in (7.1) we have split the corresponding tensor
fields into their spherical and traceless parts,

Tδ =def T − 1

3
(Tr T) I, [Bκp(t)]δ =def Bκp(t) − 1

3
(Tr Bκp(t)) I, Dδ =def D − 1

3
(divv) I, (7.3)

and we have introduced the notation

m =def
1

3
Tr T (7.4)

for the mean normal stress. The splitting allows one to identify the entropy production mechanisms that are associated with
different stimuli. The entropy production due to volume changes is captured by the first term on the right-hand side of (7.1).
The entropy production due to other mechanisms, such as shearing, is captured by the second term on the right-hand side
of (7.1).

The first three terms on the right-hand side of (7.1) have the desired form of the product of thermodynamic affinities
and fluxes. It remains to manipulate the last two terms in (7.1). We see that

1

θ
{div je + µ̃div [(∇Tr Bκp(t)) d

dt
(Tr Bκp(t))]} = div

⎧⎪⎪⎨⎪⎪⎩
je + µ̃ (∇Tr Bκp(t)) ∶ d

dt
(Tr Bκp(t))

θ

⎫⎪⎪⎬⎪⎪⎭
+ 1

θ2
{je + [µ̃ − θdµ̃

dθ
] (∇Tr Bκp(t)) d

dt
(Tr Bκp(t))} ● ∇θ, (7.5)
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THERMODYNAMICS OF VISCOELASTIC RATE-TYPE FLUIDS WITH STRESS DIFFUSION 7

which allows us to rewrite the entropy evolution equation (7.1) in the form

ρ
dη

dt
+ div

⎧⎪⎪⎨⎪⎪⎩
je + µ̃ (∇Tr Bκp(t)) ∶ d

dt
(Tr Bκp(t))

θ

⎫⎪⎪⎬⎪⎪⎭ =
1

θ
{pdM,A

th − µ
3

Tr Bκp(t) + µ +m + µ̃
3

Tr [(∇Tr Bκp(t))⊗ (∇Tr Bκp(t))] + 2

3
µ̃Tr Bκp(t) (∆ Tr Bκp(t))}divv

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
A

+ 1

θ
{Tδ − µ(Bκp(t))δ + µ̃[(∇Tr Bκp(t))⊗ (∇Tr Bκp(t))]δ + 2µ̃ (∆ Tr Bκp(t)) [Bκp(t)]δ} ∶Dδ´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

B

+ 1

θ
{µ (Cκp(t) − I) − 2µ̃ (∆ Tr Bκp(t))Cκp(t)} ∶Dκp(t)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

C

− 1

θ2
{je + [µ̃ − θdµ̃

dθ
] (∇Tr Bκp(t)) d

dt
(Tr Bκp(t))} ● ∇θ´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

D

. (7.6)

Note that once we have evaluated the time derivative d
dt

Tr Bκp(t) , then the last term D can be interpreted in several ways.
First, we recall the formula for the time derivative of Tr Bκp(t) ,

d

dt
Tr Bκp(t) = 2Bκp(t) ∶D − 2Cκp(t) ∶Dκp(t) = 2[Bκp(t)]δ ∶Dδ + 2

3
(Tr Bκp(t))divv − 2Cκp(t) ∶Dκp(t) , (7.7)

see (3.6a) and (7.3). Substituting (7.7) into {je + [µ̃ − θ dµ̃
dθ

] (∇Tr Bκp(t)) d
dt

(Tr Bκp(t))} ● ∇θ yields

{je + [µ̃ − θdµ̃

dθ
] (∇Tr Bκp(t)) d

dt
(Tr Bκp(t))} ● ∇θ

= je ● ∇θ + 2µ̃([Bκp(t)]δ ∶Dδ + 1

3
(Tr Bκp(t))divv −Cκp(t) ∶Dκp(t))(∇Tr Bκp(t)) ● ∇θ

− 2θ
dµ̃

dθ
([Bκp(t)]δ ∶Dδ + 1

3
(Tr Bκp(t))divv −Cκp(t) ∶Dκp(t))(∇Tr Bκp(t)) ● ∇θ. (7.8)

The penultimate term in (7.8) can be read as

2µ̃([Bκp(t)]δ ∶Dδ + 1

3
(Tr Bκp(t))divv −Cκp(t) ∶Dκp(t))(∇Tr Bκp(t)) ● ∇θ

=
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

[2µ̃ ([Bκp(t)]δ ∶Dδ + 1
3
(Tr Bκp(t))divv −Cκp(t) ∶Dκp(t)) (∇Tr Bκp(t)) ] ● ∇θ,

2µ̃[ (∇Tr Bκp(t)) ● ∇θ][[Bκp(t)]δ ∶Dδ + 1
3

Tr Bκp(t) divv −Cκp(t) ∶Dκp(t)].
(7.9)

The first option in (7.9) suggests that the term

2µ̃([Bκp(t)]δ ∶Dδ + 1

3
(Tr Bκp(t))divv −Cκp(t) ∶Dκp(t))(∇Tr Bκp(t)) ● ∇θ (7.10)

should be interpreted as a flux associated with the affinity ∇θ, and consequently it should stay as a factor in the term D.
On the other hand, the second option in (7.9) suggests that the term should be split as

2µ̃[ (∇Tr Bκp(t)) ● ∇θ][[Bκp(t)]δ ∶Dδ + 1

3
Tr Bκp(t) divv −Cκp(t) ∶Dκp(t)], (7.11)

and interpreted as a sum of fluxes associated with the affinities Dδ, divv and Dκp(t) , and hence grouped with the terms A,

B and C in (7.6). Similarly, the last term in (7.8) can be read as

2θ
dµ̃

dθ
([Bκp(t)]δ ∶Dδ + 1

3
(Tr Bκp(t))divv −Cκp(t) ∶Dκp(t))(∇Tr Bκp(t)) ● ∇θ

=
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

[2θ dµ̃
dθ

([Bκp(t)]δ ∶Dδ + 1
3
(Tr Bκp(t))divv −Cκp(t) ∶Dκp(t)) (∇Tr Bκp(t)) ] ● ∇θ,

2θ dµ̃
dθ

[ (∇Tr Bκp(t)) ● ∇θ][[Bκp(t)]δ ∶Dδ + 1
3

Tr Bκp(t) divv −Cκp(t) ∶Dκp(t)].
(7.12)

The first option in (7.12) again suggests that the corresponding term should be interpreted as a flux associated with the
affinity ∇θ, and consequently it should stay as a factor in the term D. On the other hand, the second option in (7.12) suggests
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8 JOSEF MÁLEK, VÍT PRŮŠA, TOMÁŠ SKŘIVAN, AND ENDRE SÜLI

that the corresponding term should be interpreted as a sum of fluxes associated with the affinities Dδ, divv and Dκp(t) , and

hence grouped with the terms A, B and C in (7.6).
Let us now leave the question of suitable splitting open, and let us formally split both terms using weights α,β ∈ [0,1],

that is

{je + [µ̃ − θdµ̃

dθ
] (∇Tr Bκp(t)) d

dt
(Tr Bκp(t))} ● ∇θ
= {je + [αµ̃ − βθdµ̃

dθ
] (∇Tr Bκp(t)) d

dt
(Tr Bκp(t))} ● ∇θ

+ 2 [(1 − α)µ̃ − (1 − β)θdµ̃

dθ
] [ (∇Tr Bκp(t)) ● ∇θ][[Bκp(t)]δ ∶Dδ + 1

3
Tr Bκp(t) divv −Cκp(t) ∶Dκp(t)]. (7.13)

Note that the splitting has no influence on the right-hand side of the evolution equation for the entropy (7.6): the entropy
production remains the same regardless of the value of the splitting parameters α and β.

We conclude that the evolution equation for the entropy reads

ρ
dη

dt
+ div jη = 1

θ
{(Jdivv)divv + JDδ ∶Dδ + JDκp(t) ∶Dκp(t) − J∇θ ● ∇θ

θ
} , (7.14a)

where the entropy flux has been identified as

jη =def

je + µ̃ (∇Tr Bκp(t)) d
dt

(Tr Bκp(t))
θ

, (7.14b)

which by virtue of the explicit formula for d
dt

Tr Bκp(t) , see (3.6a), means that the explicit formula for the entropy flux jη
reads

jη = je + 2µ̃ [(Bκp(t) ∶D) − (Cκp(t) ∶Dκp(t))]∇Tr Bκp(t)
θ

. (7.14c)

The flux terms Jdivv, JDδ , JDκp(t) and J∇θ are given by the formulae

Jdivv =def m + pdM,A
th − µ

3
Tr Bκp(t) + µ + µ̃3 Tr [(∇Tr Bκp(t))⊗ (∇Tr Bκp(t))] + 2

3
µ̃Tr Bκp(t) (∆ Tr Bκp(t))

− 2

3
[(1 − α)µ̃ − (1 − β)θdµ̃

dθ
] [ (∇Tr Bκp(t)) ● ∇θθ ]Tr Bκp(t) , (7.14d)

and

JDδ =def Tδ − µ(Bκp(t))δ + µ̃[(∇Tr Bκp(t))⊗ (∇Tr Bκp(t))]δ + 2µ̃ (∆ Tr Bκp(t)) (Bκp(t))δ
− 2 [(1 − α)µ̃ − (1 − β)θdµ̃

dθ
] [ (∇Tr Bκp(t)) ● ∇θθ ](Bκp(t))δ, (7.14e)

and

JDκp(t) =def µ (Cκp(t) − I) − 2µ̃ (∆ Tr Bκp(t))Cκp(t) + 2 [(1 − α)µ̃ − (1 − β)θdµ̃

dθ
] [ (∇Tr Bκp(t)) ● ∇θθ ]Cκp(t) , (7.14f)

J∇θ =def je + [αµ̃ − βθdµ̃

dθ
] (∇Tr Bκp(t)) d

dt
(Tr Bκp(t)) , (7.14g)

where α and β are the splitting parameters.
The derived entropy evolution equation (7.14a) can now be compared with a generic evolution equation for the entropy

that takes the form (6.2). Following Rajagopal and Srinivasa (2000) and Rajagopal and Srinivasa (2004) we are now in a
position to specify how the material produces the entropy. We chose a specific ξ in (6.2) and compare the desired entropy
production ξ with the right-hand side of (7.14a), which is the form implied by the choice of the Helmholtz free energy.
This leads to the identification of relations between the flux terms Jdivv, JDδ , JDκp(t) and J∇θ and the corresponding

kinematical/thermal quantities.
In principle, the “comparison” of the desired entropy production ξ and the entropy production structure dictated by (7.14)

can be made more precise by appealing to the maximisation of the entropy production procedure, Rajagopal and Srinivasa
(2004), or to some other thermodynamics-based argument. In the present case, we limit ourselves to a simple “comparison”
of the two formulae for the entropy production. This provides us with a simple argument that, in the present case, effectively
leads to the same result as more involved thermodynamics-based arguments.

7.2. Entropy production and constitutive relations. If the ansatz for the Helmholtz free energy is chosen as in (A),
then the evolution equation for the entropy is (7.14). On the other hand, the entropy production ξ in the material is assumed
to take the form

ξ̃ = 1

θ
(2ν + 3λ

3
(divv)2 + 2νDδ ∶Dδ + ν1 (Cκp(t)Dκp(t) +Dκp(t)Cκp(t)) ∶Dκp(t) + 1

θ
κ ∣∇θ∣2) , (7.15)

where ν, ν1, λ and κ are constants such that

2ν + 3λ

3
≥ 0, ν ≥ 0, ν1 ≥ 0, κ ≥ 0. (7.16)

Pr
ep
ri
nt
:M
OR
E/
20
17
/1
4

ht
tp
:/
/m
or
e.
ka
rl
in
.m
ff
.c
un
i.
cz



THERMODYNAMICS OF VISCOELASTIC RATE-TYPE FLUIDS WITH STRESS DIFFUSION 9

The definition of Cκp(t) = F⊺κp(t)Fκp(t) implies that the entropy production ξ̃ is non-negative3. Consequently, the second

law of thermodynamics is automatically satisfied. Apparently, the ansatz for the entropy production is motivated by the
knowledge of the entropy production formulae for a compressible Navier–Stokes–Fourier fluid and a Maxwell/Oldroyd-B
incompressible viscoelastic fluid, see Málek et al. (2015a), Málek and Pr̊uša (2017) and Hron et al. (2016).

If we compare the generic entropy evolution equation (6.2) with desired entropy production ξ =def ξ̃, that is

ρ
dη

dt
+ div jη = 1

θ
(2ν + 3λ

3
(divv)2 + 2νDδ ∶Dδ + ν1 (Cκp(t)Dκp(t) +Dκp(t)Cκp(t)) ∶Dκp(t) + 1

θ
κ ∣∇θ∣2) , (7.17)

with the entropy evolution equation (7.6) implied by the ansatz for the Helmholtz free energy, that is

ρ
dη

dt
+ div jη = 1

θ
{(Jdivv)divv + JDδ ∶Dδ + JDκp(t) ∶Dκp(t) − J∇θ ● ∇θ

θ
} , (7.18)

we see that the flux terms Jdivv, JDδ , JDκp(t) and J∇θ must satisfy the equalities

Jdivv = 2ν + 3λ

3
divv, (7.19a)

JDδ = 2νDδ, (7.19b)

JDκp(t) = ν1 (Cκp(t)Dκp(t) +Dκp(t)Cκp(t)) , (7.19c)

J∇θ = −κ∇θ. (7.19d)

The equations (7.19) are in fact the sought constitutive relations for the Cauchy stress tensor T =mI+Tδ and the energy
flux je; in particular (7.19c) is, as we shall show below, a rate-type equation for Bκp(t) .

Indeed, if we recall the definition of Jdivv, see (7.14d), then equation (7.19a) can be solved for the mean normal stress m,
which yields

m = −pdM,A
th + µ

3
Tr Bκp(t) − µ − µ̃3 Tr [(∇Tr Bκp(t))⊗ (∇Tr Bκp(t))] − 2

3
µ̃Tr Bκp(t) (∆ Tr Bκp(t))

+ 2

3
[(1 − α)µ̃ − (1 − β)θdµ̃

dθ
] [ (∇Tr Bκp(t)) ● ∇θθ ]Tr Bκp(t) + 2ν + 3λ

3
divv. (7.20a)

The constitutive relation for the traceless part of the Cauchy stress tensor Tδ can be, by virtue of the definition of the flux
term JDδ , see (7.14e), read from (7.19b) as

Tδ = 2νDδ + µ(Bκp(t))δ − µ̃[(∇Tr Bκp(t))⊗ (∇Tr Bκp(t))]δ − 2µ̃ (∆ Tr Bκp(t)) (Bκp(t))δ
+ 2 [(1 − α)µ̃ − (1 − β)θdµ̃

dθ
] [ (∇Tr Bκp(t)) ● ∇θθ ](Bκp(t))δ. (7.20b)

The last equation (7.19d) yields, by virtue of the definition (7.14g), the following formula for the energy flux je:

je = −κ∇θ − [αµ̃ − βθdµ̃

dθ
] (∇Tr Bκp(t)) d

dt
(Tr Bκp(t)) . (7.20c)

Finally, equation (7.19c) and the definition of the flux term JDκp(t) , see (7.14f), imply that Cκp(t) and Dκp(t) commute.

(The proof is the same as in the classical case µ̃ = 0, see Rajagopal and Srinivasa (2000).) Once we know that Cκp(t) and

Dκp(t) commute, we can multiply (7.19c) by F⊺κp(t) from the right and by F−⊺κp(t) from the left, which yields

F−⊺κp(t) {µ (Cκp(t) − I) − 2µ̃ (∆ Tr Bκp(t))Cκp(t) + 2 [(1 − α)µ̃ − (1 − β)θdµ̃

dθ
] [ (∇Tr Bκp(t)) ● ∇θθ ]Cκp(t)}F⊺κp(t)

= 2ν1Fκp(t)Dκp(t)F⊺κp(t) . (7.20d)

Now we recall the definitions Cκp(t) =def F⊺κp(t)Fκp(t) and Bκp(t) =def Fκp(t)F⊺κp(t) and the fact that the right-hand side can be

identified with the upper convected derivative of Bκp(t) , see (3.5). This yields the following evolution equation for Bκp(t) :

ν1

▽
Bκp(t) + µ (Bκp(t) − I) = 2µ̃ (∆ Tr Bκp(t))Bκp(t) − 2 [(1 − α)µ̃ − (1 − β)θdµ̃

dθ
] [ (∇Tr Bκp(t)) ● ∇θθ ]Bκp(t) . (7.20e)

Once we have this equation, we can determine the evolution of Bκp(t) , which is the quantity that appears in the formulae for

the Cauchy stress tensor T and the energy flux je, see (7.20a)–(7.20c). This completes the formulation of the constitutive
relations for T and je.

3Indeed, by virtue of Cκp(t) = F⊺κp(t)Fκp(t) we see that (Cκp(t)Dκp(t) +Dκp(t)Cκp(t)) ∶Dκp(t) = 2 ∣Fκp(t)Dκp(t) ∣2 ≥ 0.
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10 JOSEF MÁLEK, VÍT PRŮŠA, TOMÁŠ SKŘIVAN, AND ENDRE SÜLI

7.3. Entropy production in terms of the primitive variables. The entropy production specified in (7.15) contains
the quantities Cκp(t) and Dκp(t) that are not convenient since we do not have explicit evolution equations for these variables.

However, the term (Cκp(t)Dκp(t) +Dκp(t)Cκp(t)) ∶ Dκp(t) can be easily rewritten in terms of Bκp(t) and its time derivatives.

Indeed, the critical term reads (Cκp(t)Dκp(t) +Dκp(t)Cκp(t)) ∶ Dκp(t) = ∣Fκp(t)Dκp(t) ∣2 , which can be converted, by virtue

or (3.5), to

(Cκp(t)Dκp(t) +Dκp(t)Cκp(t)) ∶Dκp(t) = 1

4
Tr( ▽

Bκp(t)B−1
κp(t)

▽
Bκp(t)) . (7.21)

(See also Hron et al. (2016) for a similar manipulation in the case of classical viscoelastic rate-type models.) Further, one
can exploit the evolution equation for Bκp(t) , see (7.20e), and convert the right-hand side of (7.21) to a form that does not
include time derivatives,

(Cκp(t)Dκp(t) +Dκp(t)Cκp(t)) ∶Dκp(t) = 1

4
Tr(AB−1

κp(t)A) , (7.22a)

where

A =def
2µ̃

ν1

(∆ Tr Bκp(t))Bκp(t) − 2

ν1
[(1 − α)µ̃ − (1 − β)θdµ̃

dθ
] [ (∇Tr Bκp(t)) ● ∇θθ ]Bκp(t) − µ

ν1

(Bκp(t) − I) . (7.22b)

Using (7.21), we see that the entropy production (7.15) can be rewritten as

ξ̃ = 1

θ
(2ν + 3λ

3
(divv)2 + 2νDδ ∶Dδ + ν1

2
Tr( ▽

Bκp(t)B−1
κp(t)

▽
Bκp(t)) + κ ∣∇θ∣2

θ
) , (7.23)

hence the entropy production contains the same quantities as the constitutive relations for the Cauchy stress tensor, the
energy flux and the evolution equation for Bκp(t) . If necessary, identity (7.22a) can be used as well, which would yield yet
another reformulation of the entropy production. In particular, if µ̃ = 0, one would get

ν1

2
Tr( ▽

Bκp(t)B−1
κp(t)

▽
Bκp(t)) = µ2

2ν1
(Tr Bκp(t) +Tr B−1

κp(t) − 6) . (7.24)

7.4. Evolution equation for the temperature. Having expressed the entropy production in terms of the primitive
variables v, θ, ρ and Bκp(t) , we are ready to formulate the evolution equation for the temperature. The temperature
evolution equation follows from the entropy evolution equation. The entropy η is given as the derivative of the Helmholtz
free energy ψ with respect to the temperature,

η = −∂ψ
∂θ

(θ, ρ,Bκp(t) ,∇Tr Bκp(t)). (7.25)

Using the decomposition (4.3) and the chain rule, we see that the Helmoltz free energy ansatz (A) leads to

dη

dt
= d

dt

⎛⎝−∂ψ̃∂θ − 1

ρ

∂
̃̃
ψ

∂θ

⎞⎠ = ⎛⎝−∂
2ψ̃

∂θ2
− 1

ρ

∂2 ̃̃
ψ

∂θ2

⎞⎠ dθ

dt
+ ∂

∂θ

⎛⎝−∂ψ̃∂ρ + ̃̃
ψ

ρ2

⎞⎠ dρ

dt
− 1

ρ

∂2 ̃̃
ψ

∂θ∂ ∣∇Tr Bκp(t) ∣2
d

dt
∣∇Tr Bκp(t) ∣2 . (7.26)

Introducing the notation

cNSE
V =def −θ∂2ψ̃

∂θ2
, (7.27)

and using the definition of the thermodynamic pressure pdM,A
th , see (5.8b), we can rewrite (7.26) as

dη

dt
= 1

θ
(cNSE

V − θ

2ρ

d2µ̃

dθ2
∣∇Tr Bκp(t) ∣2) dθ

dt
− 1

ρ2

∂pdM,A
th

∂θ

dρ

dt
− 1

2ρ

dµ̃

dθ

d

dt
∣∇Tr Bκp(t) ∣2 . (7.28)

This provides us with a relation between the time derivative of the entropy and the time derivative of the temperature.
Clearly, the notation cNSE

V is motivated by the classical formula for the specific heat at constant volume. Concerning the

time derivatives dρ
dt

and d
dt

∣∇Tr Bκp(t) ∣2 on the right-hand side of (7.28), we can exploit the balance of mass (5.6) and the

kinematic identity (3.6c), which yield

ρ
dη

dt
= 1

θ

⎧⎪⎪⎨⎪⎪⎩(ρc
NSE
V − θ

2

d2µ̃

dθ2
∣∇Tr Bκp(t) ∣2) dθ

dt
+ θ∂pdM,A

th

∂θ
divv

⎫⎪⎪⎬⎪⎪⎭
+ dµ̃

dθ
{[∆ (Tr Bκp(t))] d

dt
(Tr Bκp(t)) + L ∶ [∇ (Tr Bκp(t))⊗∇ (Tr Bκp(t))]}

− dµ̃

dθ
div ((∇Tr Bκp(t)) d

dt
(Tr Bκp(t))) . (7.29)

Now we substitute the explicit formula (7.29) for the time derivative of the entropy into the entropy evolution equation

ρ
dη

dt
+ div jη = ξ̃. (7.30)
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THERMODYNAMICS OF VISCOELASTIC RATE-TYPE FLUIDS WITH STRESS DIFFUSION 11

By virtue of the entropy production ansatz (7.15), see also (7.23), the formula for the entropy flux (7.14b), and the kinematic
identity (7.7), we can rewrite (7.30) as

(ρcNSE
V − θ

2

d2µ̃

dθ2
∣∇Tr Bκp(t) ∣2) dθ

dt

+ θ ∂
∂θ

{pdM,A
th + µ̃

3
Tr [(∇Tr Bκp(t))⊗ (∇Tr Bκp(t))] + 2

3
µ̃Tr Bκp(t) (∆ Tr Bκp(t))}divv

+ {θ ∂
∂θ

[µ̃[(∇Tr Bκp(t))⊗ (∇Tr Bκp(t))]δ + 2µ̃ (∆ Tr Bκp(t)) (Bκp(t))δ]} ∶Dδ
+ {θ ∂

∂θ
[2µ̃ (∆ Tr Bκp(t))Cκp(t)]} ∶Dκp(t)

− θdµ̃

dθ
div ((∇Tr Bκp(t)) d

dt
(Tr Bκp(t))) + θ div

⎛⎝
je + µ̃ (∇Tr Bκp(t)) d

dt
(Tr Bκp(t))

θ

⎞⎠
= 2ν + 3λ

3
(divv)2 + 2νDδ ∶Dδ + ν1

2
Tr( ▽

Bκp(t)B−1
κp(t)

▽
Bκp(t)) + κ ∣∇θ∣2

θ
. (7.31)

Note that the term Cκp(t) ∶ Dκp(t) can be expressed in terms of Bκp(t) : it suffices to take the trace of (7.19c) and use the

definition of JDκp(t) . Further, the energy flux is given by (7.20c). Consequently (7.31) is the sought evolution equation for

the temperature in terms of the primitive variables θ, ρ, v and Bκp(t) .

7.5. Full system of governing equations for primitive variables – compressible fluid. If we fix the splitting
parameters α = 1 and β = 0, then the energy flux je is given as

je = −κ∇θ − µ̃ (∇Tr Bκp(t)) d

dt
(Tr Bκp(t)) , (7.32)

see (7.20c), while the formula for the entropy flux jη reads

jη = −κ∇θ
θ

, (7.33)

see (7.14b). The temperature evolution equation (7.31) simplifies to

(ρcNSE
V − θ

2

d2µ̃

dθ2
∣∇Tr Bκp(t) ∣2) dθ

dt
+ θ ∂

∂θ
{pdM,A

th + µ̃
3

Tr [(∇Tr Bκp(t))⊗ (∇Tr Bκp(t))] + 2

3
µ̃Tr Bκp(t) (∆ Tr Bκp(t))}divv

+ {θ ∂
∂θ

[µ̃[(∇Tr Bκp(t))⊗ (∇Tr Bκp(t))]δ + 2µ̃ (∆ Tr Bκp(t)) (Bκp(t))δ]} ∶Dδ + {θ ∂
∂θ

[2µ̃ (∆ Tr Bκp(t))Cκp(t)]} ∶Dκp(t)
= div (κ∇θ) + 2ν + 3λ

3
(divv)2 + 2νDδ ∶Dδ + ν1

2
Tr( ▽

Bκp(t)B−1
κp(t)

▽
Bκp(t))

+ θdµ̃

dθ
div [(∇Tr Bκp(t)) d

dt
Tr Bκp(t)] . (7.34)

This equation can be further transformed into a more convenient form. First, we return to the constitutive relations
for the Cauchy stress tensor T = mI + Tδ, where the mean normal stress m and the traceless part are given by (7.20a) and
(7.20b). The Cauchy stress tensor can be decomposed as

T = −peqI − Peq + Tvis − 2
dµ̃

dθ
[(∇Tr Bκp(t)) ● ∇θ]Bκp(t) , (7.35)

where

Peq =def −µ(Bκp(t))δ + µ̃[(∇Tr Bκp(t))⊗ (∇Tr Bκp(t))]δ + 2µ̃ (∆ Tr Bκp(t)) (Bκp(t))δ, (7.36a)

peq =def p
dM,A
th − µ

3
Tr Bκp(t) + µ + µ̃3 Tr [(∇Tr Bκp(t))⊗ (∇Tr Bκp(t))] + 2

3
µ̃Tr Bκp(t) (∆ Tr Bκp(t)) , (7.36b)

Tvis =def λ (divv) I + 2νD, (7.36c)

and using this notation, we can rewrite (7.34) as4

(ρcNSE
V − θ

2

d2µ̃

dθ2
∣∇Tr Bκp(t) ∣2) dθ

dt
= Tvis ∶D − θ∂peq

∂θ
divv + div (κ∇θ) − θ∂Peq

∂θ
∶Dδ + ν1

2
Tr( ▽

Bκp(t)B−1
κp(t)

▽
Bκp(t))

− 2θ
dµ̃

dθ
(∆ Tr Bκp(t)) (Cκp(t) ∶Dκp(t)) + θdµ̃

dθ
div [(∇Tr Bκp(t)) d

dt
Tr Bκp(t)] , (7.37)

which is the form that resembles the standard formula

ρcNSE
V

dθ

dt
= Tvis ∶D − θ∂peq

∂θ
divv + div (κ∇θ) (7.38)

4Recall that µ is assumed to be a constant.
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12 JOSEF MÁLEK, VÍT PRŮŠA, TOMÁŠ SKŘIVAN, AND ENDRE SÜLI

for a classical compressible Navier–Stokes–Fourier fluid, see for example Gurtin et al. (2010). (Naturally, the formula for
the equilibrium pressure peq is different in the case of a Navier–Stokes–Fourier fluid. However, if µ = 0, ν1 = 0 and µ̃ = 0,
then (7.38) coincides with (7.37), including the definition of the equilibrium pressure peq.) In this sense we have obtained
a proper generalisation of the standard temperature evolution equation in the case of a compressible viscoelastic rate-type
fluid with stress diffusion.

Note that the time derivative d
dt

Tr Bκp(t) in (7.37) can be explicitly expressed in terms of the primitive variables. It

suffices to take the trace of the evolution equation for Bκp(t) , see (7.20e), which yields

d

dt
Tr Bκp(t) = 2Bκp(t) ∶D − µ

ν1

(Tr Bκp(t) − 3) + 2µ̃

ν1

(∆ Tr Bκp(t))Tr Bκp(t) + 2

ν1

dµ̃

dθ
[(∇Tr Bκp(t)) ● ∇θ]Tr Bκp(t) . (7.39)

Further, the product Cκp(t) ∶Dκp(t) in (7.37) can be also explicitly expressed in terms of the primitive variables. It suffices to

take the trace of (7.19c) and use the definition of JDκp(t) , see (7.14f), which yields

Cκp(t) ∶Dκp(t) = µ

2ν1

(Tr Bκp(t) − 3) − µ̃

ν1

(∆ Tr Bκp(t))Tr Bκp(t) − 1

ν1

dµ̃

dθ
[(∇Tr Bκp(t)) ● ∇θ]Tr Bκp(t) . (7.40)

Finally, the governing equations for the primitive mechanical variables ρ, v and Bκp(t) are

dρ

dt
+ ρdivv = 0, (7.41a)

ρ
dv

dt
= div T + ρb, (7.41b)

ν1

▽
Bκp(t) + µ (Bκp(t) − I) = 2µ̃ (∆ Tr Bκp(t))Bκp(t) + 2

dµ̃

dθ
[(∇Tr Bκp(t)) ● ∇θ]Bκp(t) , (7.41c)

where (7.41c) follows from (7.20e). The final full system of governing equations is shown in Summary 1.

7.6. Incompressible fluid. The derivation outlined above can be also used in the case of incompressible fluids. In such
a case the procedure is very close to that used by Málek et al. (2015a) and Hron et al. (2016) with appropriate changes
reflecting the presence of the gradient term in the Helmholtz free energy ansatz, see above.

The counterpart of ansatz (A) in the incompressible case is

ψ =def ψ̃ (θ) + µ

2ρ
(Tr Bκp(t) − 3 − ln det Bκp(t)) + µ̃(θ)2ρ

∣∇Tr Bκp(t) ∣2 , (7.51a)

where ρ is a constant. The entropy evolution equation remains almost the same as in (7.18), except the term (Jdivv)divv
that vanishes by virtue of the incompressibility of the fluid. The counterpart of the entropy production ansatz (7.15) is in
the incompressible case

ξ̃ =def
1

θ
(2νDδ ∶Dδ + ν1 (Cκp(t)Dκp(t) +Dκp(t)Cκp(t)) ∶Dκp(t) + 1

θ
κ ∣∇θ∣2) , (7.51b)

where one can note that Dδ = D.

7.7. Full system of governing equations for primitive variables – incompressible fluid. The Helmholtz free energy
ansatz (7.51a) and entropy production ansatz (7.51b) then lead to following governing equations for v, m and Bκp(t) :

divv = 0, (7.52a)

ρ
dv

dt
= div T + ρb, (7.52b)

ν1

▽
Bκp(t) + µ (Bκp(t) − I) = 2µ̃ (∆ Tr Bκp(t))Bκp(t) + 2

dµ̃

dθ
[(∇Tr Bκp(t)) ● ∇θ]Bκp(t) , (7.52c)

and the temperature θ:

(ρcNSE
V − θ

2

d2µ̃

dθ2
∣∇Tr Bκp(t) ∣2) dθ

dt
= S ∶D + div (κ∇θ) − θ∂P

∂θ
∶D + ν1

2
Tr( ▽

Bκp(t)B−1
κp(t)

▽
Bκp(t))

− 2θ
dµ̃

dθ
(∆ Tr Bκp(t)) (Cκp(t) ∶Dκp(t)) + θdµ̃

dθ
div [(∇Tr Bκp(t)) d

dt
Tr Bκp(t)] , (7.52d)

where the constitutive relation for the Cauchy stress tensor reads

T =mI + S − 2
dµ̃

dθ
[(∇Tr Bκp(t)) ● ∇θ]Bκp(t) , (7.52e)

S = 2νDδ − P, (7.52f)

P = −µ(Bκp(t))δ + µ̃[(∇Tr Bκp(t))⊗ (∇Tr Bκp(t))]δ + 2µ̃ (∆ Tr Bκp(t)) (Bκp(t))δ. (7.52g)

The definition of the specific heat at constant volume cNSE
V remains the same as in the compressible case, see (7.27).

Further, the formulae for the time derivative d
dt

Tr Bκp(t) and the product Cκp(t) ∶ Dκp(t) , that appear in the temperature

evolution equation (7.52d), are also the same as in the compressible case, see (7.39) and (7.40). Finally, the formula for the
energy flux je is also the same as in the compressible case, see (7.32). The final full system of governing equations is shown
in Summary 2.
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THERMODYNAMICS OF VISCOELASTIC RATE-TYPE FLUIDS WITH STRESS DIFFUSION 13

Summary 1: Compressible viscoelastic rate-type fluid with stress diffusion and temperature-dependent
stress diffusion coefficient µ̃, splitting parameters α = 1, β = 0

Helmholtz free energy ψ, ansatz (A):

ψ = ψ̃ (θ, ρ) + 1

ρ
̃̃
ψ, (7.42a)

̃̃
ψ = µ

2
(Tr Bκp(t) − 3 − ln det Bκp(t)) + µ̃(θ)2

∣∇Tr Bκp(t) ∣2 . (7.42b)

Entropy production ξ, ansatz (7.15) rewritten in terms of primitive quantities, see (7.23):

ξ̃ = 1

θ
(2ν + 3λ

3
(divv)2 + 2νDδ ∶Dδ + ν1

2
Tr( ▽

Bκp(t)B−1
κp(t)

▽
Bκp(t)) + κ ∣∇θ∣2

θ
) . (7.43)

Material parameters (constants): µ, ν, λ, ν1, κ.
Material parameters (temperature-dependent): µ̃.
Evolution equations for ρ, v, Bκp(t) :

dρ

dt
+ ρdivv = 0, (7.44a)

ρ
dv

dt
= div T + ρb, (7.44b)

ν1

▽
Bκp(t) + µ (Bκp(t) − I) = 2µ̃ (∆ Tr Bκp(t))Bκp(t) + 2

dµ̃

dθ
[(∇Tr Bκp(t)) ● ∇θ]Bκp(t) . (7.44c)

Evolution equation for θ:

(ρcNSE
V − θ

2

d2µ̃

dθ2
∣∇Tr Bκp(t) ∣2) dθ

dt
= Tvis ∶D − θ∂peq

∂θ
divv + div (κ∇θ) − θ∂Peq

∂θ
∶Dδ + ν1

2
Tr( ▽

Bκp(t)B−1
κp(t)

▽
Bκp(t))

− 2θ
dµ̃

dθ
(∆ Tr Bκp(t)) (Cκp(t) ∶Dκp(t)) + θdµ̃

dθ
div [(∇Tr Bκp(t)) d

dt
Tr Bκp(t)] . (7.44d)

Auxiliary terms:

d

dt
Tr Bκp(t) = 2Bκp(t) ∶D − µ

ν1

(Tr Bκp(t) − 3) + 2µ̃

ν1

(∆ Tr Bκp(t))Tr Bκp(t) + 2

ν1

dµ̃

dθ
[(∇Tr Bκp(t)) ● ∇θ]Tr Bκp(t) , (7.45)

Cκp(t) ∶Dκp(t) = µ

2ν1

(Tr Bκp(t) − 3) − µ̃

ν1

(∆ Tr Bκp(t))Tr Bκp(t) − 1

ν1

dµ̃

dθ
[(∇Tr Bκp(t)) ● ∇θ]Tr Bκp(t) . (7.46)

Constitutive relation for the Cauchy stress tensor T:

T = −peqI − Peq + Tvis − 2
dµ̃

dθ
[(∇Tr Bκp(t)) ● ∇θ]Bκp(t) . (7.47)

Definitions of peq, Peq and Tvis:

Peq = −µ(Bκp(t))δ + µ̃[(∇Tr Bκp(t))⊗ (∇Tr Bκp(t))]δ + 2µ̃ (∆ Tr Bκp(t)) (Bκp(t))δ, (7.48a)

peq = pdM,A
th − µ

3
Tr Bκp(t) + µ + µ̃3 Tr [(∇Tr Bκp(t))⊗ (∇Tr Bκp(t))] + 2

3
µ̃Tr Bκp(t) (∆ Tr Bκp(t)) , (7.48b)

Tvis = λ (divv) I + 2νD. (7.48c)

Quantities derived from the Helmholtz free energy:

pNSE
th = ρ2 ∂ψ̃

∂ρ
, (7.48d)

pdM,A
th = pNSE

th − ̃̃
ψ, (7.48e)

cNSE
V = −θ∂2ψ̃

∂θ2
. (7.48f)

Constitutive relation for the energy flux je, has been already used in (7.44d):

je = −κ∇θ − µ̃ (∇Tr Bκp(t)) d

dt
(Tr Bκp(t)) . (7.49)

Constitutive relation for the entropy flux jη:

jη = −κ∇θ
θ

. (7.50)

Note that the mean normal stress m or the “pressure” is in the case of an incompressible fluid a primitive quantity that
must be solved for. It is not, as in the case of compressible fluid, a known function of the other quantities.
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14 JOSEF MÁLEK, VÍT PRŮŠA, TOMÁŠ SKŘIVAN, AND ENDRE SÜLI

Summary 2: Incompressible viscoelastic rate-type fluid with stress diffusion and temperature-
dependent stress diffusion coefficient µ̃, splitting parameters α = 1, β = 0

Helmholtz free energy ψ, incompressible variant of ansatz (A), see (7.51a):

ψ = ψ̃ (θ) + 1

ρ
̃̃
ψ, (7.53a)

̃̃
ψ = µ

2
(Tr Bκp(t) − 3 − ln det Bκp(t)) + µ̃(θ)2

∣∇Tr Bκp(t) ∣2 . (7.53b)

Entropy production ξ, incompressible variant of ansatz (7.15), see (7.51b), rewritten in terms of primitive quantities:

ξ̃ = 1

θ
(2νDδ ∶Dδ + ν1

2
Tr( ▽

Bκp(t)B−1
κp(t)

▽
Bκp(t)) + κ ∣∇θ∣2

θ
) . (7.54)

Material parameters (constants): µ, ν, λ, ν1, κ.
Material parameters (temperature-dependent): µ̃.
Evolution equations for m, v, Bκp(t) :

divv = 0, (7.55a)

ρ
dv

dt
= div T + ρb, (7.55b)

ν1

▽
Bκp(t) + µ (Bκp(t) − I) = 2µ̃ (∆ Tr Bκp(t))Bκp(t) + 2

dµ̃

dθ
[(∇Tr Bκp(t)) ● ∇θ]Bκp(t) . (7.55c)

Evolution equation for θ:

(ρcNSE
V − θ

2

d2µ̃

dθ2
∣∇Tr Bκp(t) ∣2) dθ

dt
= S ∶D + div (κ∇θ) − θ∂P

∂θ
∶D + ν1

2
Tr( ▽

Bκp(t)B−1
κp(t)

▽
Bκp(t))

− 2θ
dµ̃

dθ
(∆ Tr Bκp(t)) (Cκp(t) ∶Dκp(t)) + θdµ̃

dθ
div [(∇Tr Bκp(t)) d

dt
Tr Bκp(t)] . (7.55d)

Auxiliary terms:

d

dt
Tr Bκp(t) = 2Bκp(t) ∶D − µ

ν1

(Tr Bκp(t) − 3) + 2µ̃

ν1

(∆ Tr Bκp(t))Tr Bκp(t) + 2

ν1

dµ̃

dθ
[(∇Tr Bκp(t)) ● ∇θ]Tr Bκp(t) , (7.56)

Cκp(t) ∶Dκp(t) = µ

2ν1

(Tr Bκp(t) − 3) − µ̃

ν1

(∆ Tr Bκp(t))Tr Bκp(t) − 1

ν1

dµ̃

dθ
[(∇Tr Bκp(t)) ● ∇θ]Tr Bκp(t) . (7.57)

Constitutive relation for the Cauchy stress tensor T:

T =mI + S − 2
dµ̃

dθ
[(∇Tr Bκp(t)) ● ∇θ]Bκp(t) . (7.58)

Definitions of Tδ and P:

S = 2νDδ − P, (7.59a)

P = −µ(Bκp(t))δ + µ̃[(∇Tr Bκp(t))⊗ (∇Tr Bκp(t))]δ + 2µ̃ (∆ Tr Bκp(t)) (Bκp(t))δ. (7.59b)

Quantities derived from the Helmholtz free energy:

cNSE
V = −θ∂2ψ̃

∂θ2
. (7.59c)

Constitutive relation for the energy flux je, has been already used in (7.55d):

je = −κ∇θ − µ̃ (∇Tr Bκp(t)) d

dt
(Tr Bκp(t)) . (7.60)

Constitutive relation for the entropy flux jη:

jη = −κ∇θ
θ
. (7.61)

7.8. Remarks. Let us now focus on the model introduced in Section 7.7 (incompressible fluid, Maxwell/Oldroyd-B, where
stress diffusion is a consequence of a non-standard energy storage mechanism), and let us consider a temperature independent
stress diffusion coefficient µ̃. A few remarks are in order.

First, the “nonlocal” stress diffusion term 2µ̃ (∆ Tr Bκp(t))Bκp(t) in (7.52c) does not include the gradient of the full tensor
Bκp(t) , but only the gradient of its trace. However, if one deals with a Johnson–Segalman type model with a stress diffusion

term, it is customary to work with a stress diffusion term in the form ∆Bκp(t) . (The Laplace operator acts on the full extra

stress tensor, not only on its trace.) The question is whether the current type of nonlocal term would also provide a selection
criterion for the stress values in viscoelastic models which possess a non-monotonic flow curve, see Olmsted et al. (2000)
and Lu et al. (2000). We leave this question open, since we are, in any case, dealing with a Maxwell/Oldroyd-B model only.
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THERMODYNAMICS OF VISCOELASTIC RATE-TYPE FLUIDS WITH STRESS DIFFUSION 15

Second, let us consider Bκp(t) in the form Bκp(t) = I + b, and let us assume that b is a small quantity. If we decide to use

the system (7.52) and keep only the linear terms in b, we see that the right-hand side of (7.52c) can be approximated as

2µ̃ (∆ Tr Bκp(t))Bκp(t) ≈ 2µ̃ (∆ Tr b) I. (7.62)

Further, the Cauchy stress tensor, see (7.52e), can be approximated as5

T =mI + S − 2
dµ̃

dθ
[(∇Tr Bκp(t)) ● ∇θ]Bκp(t)
=mI + 2νDδ + µ(Bκp(t))δ − µ̃[(∇Tr Bκp(t))⊗ (∇Tr Bκp(t))]δ − 2µ̃ (∆ Tr Bκp(t)) (Bκp(t))δ≈ [m − 2µ̃ (∆ Tr b)] I + 2νDδ + µ(b)δ = m̃I + 2νDδ + µ(b)δ, (7.63)

where m̃ denotes the modified mean normal stress.
Consequently, the first order contribution of the nonlocal term µ̃

2
∣∇Tr Bκp(t) ∣2 in the free energy ansatz (A) is from

the perspective of the governing equations limited to the presence of the nonlocal term in the evolution equation (7.52c).
The Korteweg type terms [(∇Tr Bκp(t))⊗ (∇Tr Bκp(t))]δ and so forth in the Cauchy stress tensor T, see (7.52e), are of

second-order.
Finally, we note that the formula for the energy flux je allows one to identify the boundary conditions that lead to a

mechanically and thermally isolated system. Since the evolution equation for total energy reads

ρ
d

dt
(e + 1

2
∣v∣2) = div(Tv) − div je, (7.64)

we see that the net total energy ∫Ω ρ (e + 1
2
∣v∣2) dv in the domain Ω is conserved provided that ∫∂Ω (Tv − je)●nds = 0. This

is guaranteed, for example, if the velocity vanishes on the boundary ∂Ω of domain Ω:

v∣∂Ω = 0, (7.65)

and if the energy flux je vanishes on the boundary:

je ●n∣∂Ω = 0. (7.66)

If we consider the model derived in Section 7.5 (compressible fluid) and Section 7.7 (incompressible fluid), then the energy
flux is in both cases given by the formula (7.32), that is,

je = −κ∇θ − µ̃ (∇Tr Bκp(t)) d

dt
(Tr Bκp(t)) , (7.67)

and (7.66) is fulfilled if one fixes

∇θ ●n = 0, (7.68a)

∇Tr Bκp(t) ●n = 0. (7.68b)

This provides an interpretation of the commonly used boundary condition that is necessary if the nonlocal term ∆ Tr Bκp(t)
appears in the governing equations. The natural zero Neumann boundary condition for ∇Tr Bκp(t) means that the system
is closed with respect to the energy flux generated by the stress diffusion.

Finally, we see that the choice of the splitting parameters α = 1 and β = 0 that was adopted in Section 7.5 (compressible
fluid) and Section 7.7 (incompressible fluid) leads to the entropy flux in the form

jη = −κ∇θ
θ
. (7.69)

This means that the entropy flux takes in this case the standard form, which is in fact the motivation for the corresponding
choice of the splitting parameters.

The reader interested in mathematical properties of a simplified isothermal model of the type (7.52) is referred to Buĺıček
et al. (2017).

8. Derivation of constitutive relations – stress diffusion as a consequence of a nonstandard entropy
production mechanism

In this section we derive a model for viscoelastic fluids in which the stress diffusion term is attributed to a nonstandard
entropy production mechanism. The nonstandard entropy production mechanism is characterised by a gradient (nonlocal)
term in the ansatz for entropy production, while the ansatz for the Helmholtz free energy remains the same as in the classical
Maxwell/Oldroyd-B model.

5Recall that we consider temperature independent stress diffusion coefficient µ̃.
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16 JOSEF MÁLEK, VÍT PRŮŠA, TOMÁŠ SKŘIVAN, AND ENDRE SÜLI

8.1. Evolution equation for the entropy. In this case the ansatz for the Helmholtz free energy is (B), that is,

ψ =def ψ̃ (θ, ρ) + µ

2ρ
(Tr Bκp(t) − 3 − ln det Bκp(t)) . (8.1)

This is the standard ansatz that leads, if the entropy production is chosen appropriately, to the Maxwell/Oldroyd-B model,
see for example Málek et al. (2015a). In this sense, the fluid stores the energy in the same manner as a Maxwell/Oldroyd-B
type fluid. Following the same steps as before, we use (8.1) and derive the evolution equation for the entropy, which reads

ρ
dη

dt
+ div (je

θ
) = 1

θ
[{m + pdM,B

th − µ
3

Tr Bκp(t) + µ}divv + {Tδ − µ(Bκp(t))δ} ∶Dδ + {µ (Cκp(t) − I)} ∶Dκp(t)] − je ● ∇θ
θ2

. (8.2a)

The thermodynamic pressure pdM,B
th is again defined in terms of the Helmholtz free energy (8.1) as

pdM,B
th =def p

NSE
th − ̃̃

ψ, (8.2b)

where pNSE
th is defined as in (5.8a) and

̃̃
ψ is the elastic contribution to the Helmholtz free energy, see (4.3). (Equation (8.2b)

in fact equation (7.6) with µ̃ = 0.) The equation has the same form as (7.14a), that is

ρ
dη

dt
+ div (je

θ
) = 1

θ
{(Jdivv)divv + JDδ ∶Dδ + JDκp(t) ∶Dκp(t) − J∇θ ● ∇θ

θ
} , (8.3a)

where the flux terms Jdivv, JDδ , JDκp(t) and J∇θ are given by the formulae

Jdivv =def m + pdM,B
th − µ

3
Tr Bκp(t) + µ, (8.3b)

JDδ =def Tδ − µ(Bκp(t))δ, (8.3c)

JDκp(t) =def µ (Cκp(t) − I) , (8.3d)

J∇θ =def je. (8.3e)

The task is to exploit (8.3) in the identification of the constitutive relations for the Cauchy stress tensor T = mI + Tδ and
the energy flux je. In order to do so we rewrite (8.3) in a more convenient form; specifically, we reformulate the product
JDκp(t) ∶Dκp(t) in (8.3a) as

JDκp(t) ∶Dκp(t) = µ (Cκp(t) − I) ∶Dκp(t) = −µ2 Tr [ ▽
Bκp(t) (I − B−1

κp(t))] , (8.4)

which is a consequence of the identity (3.5) and the definitions Cκp(t) =def F⊺κp(t)Fκp(t) and Bκp(t) =def Fκp(t)F⊺κp(t) . This

manipulation yields (8.3a) in the form

ρ
dη

dt
+div (je

θ
) = 1

θ
{[m + pdM,B

th − µ
3

Tr Bκp(t) + µ]divv+[Tδ − µ(Bκp(t))δ] ∶Dδ− µ

2ν1
Tr [ν1

▽
Bκp(t) (I − B−1

κp(t))]− je ● ∇θ
θ

}. (8.5)

8.2. Entropy production and constitutive relations. Now we are in a position to specify how the fluid produces the
entropy. In other words we need to fix a formula for the entropy production ξ̃. This is the point where we deviate from the
approach that would lead to the standard Maxwell/Oldroyd-B fluid flow model: we shall use a different entropy production

ξ̃ than the one that is known to lead to a standard Maxwell/Oldroyd-B fluid. We fix

ξ̃ = 1

θ
{2ν + 3λ

3
(divv)2 + 2νDδ ∶Dδ + µ2

2ν1
(Tr Bκp(t) +Tr B−1

κp(t) − 6) + µµ̃(θ)
2ν1

∇Bκp(t) ⋮∇Bκp(t) + κ ∣∇θ∣2
θ

} , (8.6)

where we have used the notation

∇Bκp(t) ⋮∇Bκp(t) =def

∂Bκp(t) ij
∂xm

∂Bκp(t) ij
∂xm

. (8.7)

(Note that the additional term ∇Bκp(t) ⋮∇Bκp(t) is nonnegative.) The material parameter µ̃ that will be later identified as a
stress diffusion coefficient can be a nonnegative function of the temperature. The other material parameters ν, ν1, 2ν + 3λ
and κ are, for the sake of simplicity, assumed to be nonnegative constants.

The ansatz is motivated by the fact that we want to model a fluid that behaves almost as a Maxwell/Oldroyd-B fluid.
This is guaranteed by the presence of the first three terms and the last term in (8.7). See in particular (7.23) and (7.24)
for the reformulation of the entropy production ansatz (7.15) in a way that motivates (8.6). The penultimate term in (8.6),
that is

µµ̃(θ)
2ν1

∇Bκp(t) ⋮∇Bκp(t) , (8.8)

is, as we shall see later, the entropy production term due to stress diffusion. The entropy production is clearly nonnegative.
The desired entropy evolution equation is

ρ
dη

dt
+ div jη = ξ̃, (8.9)

where the entropy production ξ̃ is given by (8.6). The desired entropy evolution equation/entropy production must be

compared with the entropy evolution equation/entropy production specified in (8.5). Let us now manipulate (8.9) with ξ̃
given by (8.6) into the form comparable to (8.5).
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THERMODYNAMICS OF VISCOELASTIC RATE-TYPE FLUIDS WITH STRESS DIFFUSION 17

In rewriting of (8.9) we use several identities. The first of them is

1

2

⎡⎢⎢⎢⎢⎣
∂

∂xm

⎛⎝µ̃
∂Bκp(t) ij
∂xm

⎞⎠Bκp(t) jl + ∂

∂xm

⎛⎝µ̃
∂Bκp(t) lj
∂xm

⎞⎠Bκp(t) ji
⎤⎥⎥⎥⎥⎦(δli − (Bκp(t)−1)

li
)

= 1

2

⎡⎢⎢⎢⎢⎣
∂

∂xm

⎛⎝µ̃
∂Bκp(t) ij
∂xm

⎞⎠(Bκp(t) ji − δji) + ∂

∂xm

⎛⎝µ̃
∂Bκp(t) lj
∂xm

⎞⎠(Bκp(t) jl − δjl)
⎤⎥⎥⎥⎥⎦

= 1

2

∂

∂xm

⎡⎢⎢⎢⎢⎣µ̃
⎛⎝
∂Bκp(t) ij
∂xm

(Bκp(t) ji − δji) + ∂Bκp(t) lj
∂xm

(Bκp(t) jl − δjl)⎞⎠
⎤⎥⎥⎥⎥⎦ −

µ̃

2

⎡⎢⎢⎢⎣
∂Bκp(t) ij
∂xm

∂Bκp(t) ji
∂xm

+ ∂Bκp(t) lj
∂xm

∂Bκp(t) jl
∂xm

⎤⎥⎥⎥⎦ , (8.10a)

which can be symbolically written as

1

2
Tr{[div (µ̃∇Bκp(t))Bκp(t) + Bκp(t) div (µ̃∇Bκp(t)) ] (I − B−1

κp(t))}
= 1

2
div{µ̃Tr [ (∇Bκp(t)) (Bκp(t) − I) + (Bκp(t) − I) (∇Bκp(t)) ]} − µ̃∇Bκp(t) ⋮∇Bκp(t) . (8.10b)

(We have again exploited the symmetry of Bκp(t) .) Further, the term Tr Bκp(t) +Tr B−1
κp(t) − 6 can be rewritten as

Tr Bκp(t) +Tr B−1
κp(t) − 6 = Tr [(Bκp(t) − I) (I − B−1

κp(t))] . (8.11)

Using (8.10b) and (8.11) in (8.9) with ξ̃ specified via (8.6) yields after some manipulation

ρ
dη

dt
+ div

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
jη −

µµ̃
4ν1

Tr [ (∇Bκp(t)) (Bκp(t) − I) + µ̃ (Bκp(t) − I) (∇Bκp(t)) ]
θ

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
= 1

θ
{2ν + 3λ

3
(divv)2 + 2νDδ ∶Dδ + µ

2ν1
Tr [[µ (Bκp(t) − I) − 1

2
(div (µ̃∇Bκp(t))Bκp(t) + Bκp(t) div (µ̃∇Bκp(t)))] (I − B−1

κp(t))]}

+ {κ∇θ + µµ̃
4ν1

Tr [ (∇Bκp(t)) (Bκp(t) − I) + µ̃ (Bκp(t) − I) (∇Bκp(t)) ]} ● ∇θ
θ2

. (8.12)

The expression for the entropy evolution (8.12) that follows from the ansatz for the entropy production can now be
compared with the entropy evolution (8.5) implied by the chosen ansatz for the Helmholtz free energy and the underlying
kinematics. Clearly, the two equations will coincide if we set

m + pdM,B
th − µ

3
Tr Bκp(t) + µ = 2ν + 3λ

3
divv, (8.13a)

Tδ − µ(Bκp(t))δ = 2νDδ, (8.13b)

−ν1

▽
Bκp(t) = µ (Bκp(t) − I) − 1

2
[div (µ̃∇Bκp(t))Bκp(t) + Bκp(t) div (µ̃∇Bκp(t)) ], (8.13c)

je = −κ∇θ − µµ̃

4ν1
Tr [ (∇Bκp(t)) (Bκp(t) − I) + (Bκp(t) − I) (∇Bκp(t)) ], (8.13d)

jη = −κ∇θ
θ
. (8.13e)

These are the sought constitutive relations for the Cauchy stress tensor T = mI + Tδ, the energy flux je and the entropy
flux jη.

8.3. Evolution equation for the temperature. Having identified the entropy flux jη we are ready to formulate the
governing equation for the temperature. Following the same steps as in Section 7.4 we see that the Helmholtz free energy
ansatz (8.1) and the entropy production ansatz (8.6) imply that the evolution equation for the temperature θ reads

ρcNSE
V

dθ

dt
+ θ∂pdM,B

th

∂θ
divv = div (κ∇θ) + 2ν + 3λ

3
(divv)2 + 2νDδ ∶Dδ

+ µ2

2ν1
(Tr Bκp(t) +Tr B−1

κp(t) − 6) + µµ̃(θ)
2ν1

∇Bκp(t) ⋮∇Bκp(t) , (8.14)

where the specific heat at constant volume cNSE
V is obtained via differentiation of the Helmholtz free energy, see (7.27).

This equation can be further rewritten as follows. Using the constitutive relations for the Cauchy stress tensor T =mI+Tδ,
where the mean normal stress m and the traceless part Tδ are given by (8.13a) and (8.13b), we see that T can be decomposed
as

T = −peqI − Peq + Tvis, (8.15)
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18 JOSEF MÁLEK, VÍT PRŮŠA, TOMÁŠ SKŘIVAN, AND ENDRE SÜLI

where

Peq =def −µ(Bκp(t))δ, (8.16a)

peq =def p
dM,B
th − µ

3
Tr Bκp(t) + µ, (8.16b)

Tvis =def λ (divv) I + 2νD. (8.16c)

Using this notation, the evolution equation for the temperature can be rewritten as

ρcNSE
V

dθ

dt
= Tvis ∶D − θ∂peq

∂θ
divv + div (κ∇θ) + µ2

2ν1
(Tr Bκp(t) +Tr B−1

κp(t) − 6) + µµ̃(θ)
2ν1

∇Bκp(t) ⋮∇Bκp(t) , (8.17)

which resembles the standard formula for a compressible Navier–Stokes–Fourier fluid (7.37), and allows one to identify the
additional terms due to viscoelasticity and stress diffusion.

8.4. Full system of governing equations for primitive variables – compressible fluid. The Helmholtz free energy
ansatz (8.1) and entropy production ansatz (8.6) then lead to following governing equations for v, ρ and Bκp(t) :

dρ

dt
+ ρdivv = 0, (8.18a)

ρ
dv

dt
= div T + ρb, (8.18b)

ν1

▽
Bκp(t) + µ (Bκp(t) − I) = 1

2
[div (µ̃∇Bκp(t))Bκp(t) + Bκp(t) div (µ̃∇Bκp(t)) ] (8.18c)

and the temperature θ:

ρcNSE
V

dθ

dt
+ θ∂pdM,B

th

∂θ
divv = div (κ∇θ) + 2ν + 3λ

3
(divv)2 + 2νDδ ∶Dδ

+ µ2

2ν1
(Tr Bκp(t) +Tr B−1

κp(t) − 6) + µµ̃(θ)
2ν1

∇Bκp(t) ⋮∇Bκp(t) , (8.18d)

where the constitutive relation for the Cauchy stress tensor T reads

T = −pdM,B
th I + λ (divv) I + 2νD + µ (Bκp(t) − I) . (8.18e)

The specific heat at constant volume cV and the thermodynamic pressure pdM,B
th are calculated from the Helmholtz free energy

ansatz via formula (7.27) and (8.2b) respectively. The final full system of governing equations is shown in Summary 3.

8.5. Incompressible fluid. As in the previous case, it is again possible to develop an incompressible variant of the model
discussed in Section 3. The counterpart of the Helmholtz free energy ansatz (8.1) reads

ψ =def ψ̃ (θ) + µ

2ρ
(Tr Bκp(t) − 3 − ln det Bκp(t)) , (8.26)

where ρ is a constant. The entropy evolution equation remains almost the same as in (8.3a) except for the term (Jdivv)divv
that vanishes by virtue of the incompressibility of the fluid. The counterpart of the entropy production ansatz (8.6) is in
the incompressible case

ξ̃ = 1

θ
(2νDδ ∶Dδ + µ2

2ν1
(Tr Bκp(t) +Tr B−1

κp(t) − 6) + µµ̃(θ)
2ν1

∇Bκp(t) ⋮∇Bκp(t) + κ ∣∇θ∣2
θ

) . (8.27)

(Note that for an incompressible fluid one has Dδ = D.)

8.6. Full system of governing equations for primitive variables – incompressible fluid. The Helmholtz free energy
ansatz (8.26) and entropy production ansatz (8.27) then lead to the following governing equations for v, m, Bκp(t) and θ:

divv = 0, (8.28a)

ρ
dv

dt
= div T + ρb, (8.28b)

ν1

▽
Bκp(t) + µ (Bκp(t) − I) = 1

2
[div (µ̃∇Bκp(t))Bκp(t) + Bκp(t) div (µ̃∇Bκp(t)) ], (8.28c)

ρcNSE
V

dθ

dt
= div (κ∇θ) + 2νDδ ∶Dδ + µ2

2ν1
(Tr Bκp(t) +Tr B−1

κp(t) − 6) + µµ̃(θ)
2ν1

∇Bκp(t) ⋮∇Bκp(t) . (8.28d)

(Recall that in the incompressible case one has Dδ = D.) The constitutive relation for the Cauchy stress tensor T reads
T =mI + 2νD + µ(Bκp(t))δ, which can be rewritten as

T = φI + 2νD + µBκp(t) , (8.28e)

where φ denotes the spherical stress, φ =def m + µ
3

Tr Bκp(t) . The mean normal stress m/spherical stress φ is in the incom-
pressible case a primitive quantity that must be solved for ; it is not given by a constitutive relation. The specific heat at
constant volume cV is again calculated from the Helmholtz free energy ansatz via the formula (7.27). The final full system
of governing equations is shown in Summary 4.
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Summary 3: Compressible viscoelastic rate-type fluid with stress diffusion and temperature-dependent
stress diffusion coefficient µ̃; stress diffusion interpreted as an entropy producing mechanism

Helmholtz free energy ψ, ansatz (8.1):

ψ = ψ̃ (θ, ρ) + 1

ρ
̃̃
ψ, (8.19a)

̃̃
ψ = µ

2
(Tr Bκp(t) − 3 − ln det Bκp(t)) . (8.19b)

Entropy production ξ, ansatz (8.6), see (8.10) for notation:

ξ̃ = 1

θ
(2ν + 3λ

3
(divv)2 + 2νDδ ∶Dδ + µ2

2ν1
(Tr Bκp(t) +Tr B−1

κp(t) − 6) + µµ̃(θ)
2ν1

∇Bκp(t) ⋮∇Bκp(t) + κ ∣∇θ∣2
θ

) . (8.20)

Material parameters (constants): µ, ν, λ, ν1, κ.
Material parameters (temperature-dependent): µ̃.
Evolution equations for ρ, v, Bκp(t) :

dρ

dt
+ ρdivv = 0, (8.21a)

ρ
dv

dt
= div T + ρb, (8.21b)

ν1

▽
Bκp(t) + µ (Bκp(t) − I) = 1

2
[div (µ̃∇Bκp(t))Bκp(t) + Bκp(t) div (µ̃∇Bκp(t)) ]. (8.21c)

Evolution equation for θ:

ρcNSE
V

dθ

dt
+ θ∂pdM,B

th

∂θ
divv = div (κ∇θ) + 2ν + 3λ

3
(divv)2 + 2νDδ ∶Dδ

+ µ2

2ν1
(Tr Bκp(t) +Tr B−1

κp(t) − 6) + µµ̃(θ)
2ν1

∇Bκp(t) ⋮∇Bκp(t) . (8.21d)

Constitutive relation for the Cauchy stress tensor T:

T =mI + Tδ. (8.22)

Definitions of m and Tδ:

Tδ = 2νDδ + µ(Bκp(t))δ, (8.23a)

m = −pdM,B
th + µ

3
Tr Bκp(t) − µ + 2ν + 3λ

3
divv. (8.23b)

Quantities derived from the Helmholtz free energy:

pNSE
th = ρ2 ∂ψ̃

∂ρ
, (8.23c)

pdM,B
th = pNSE

th − ̃̃
ψ, (8.23d)

cNSE
V = −θ∂2ψ̃

∂θ2
. (8.23e)

Constitutive relation for the energy flux je, has been already used in (8.21d):

je = −κ∇θ − µµ̃

4ν1
Tr [ (∇Bκp(t)) (Bκp(t) − I) + (Bκp(t) − I) (∇Bκp(t)) ]. (8.24)

Constitutive relation for the entropy flux jη:

jη = −κ∇θ
θ
. (8.25)

8.7. Remarks. Let us now focus on the model introduced in Section 4 (incompressible fluid, Maxwell/Oldroyd-B, where
stress diffusion is a consequence of a non-standard entropy production mechanism). A few remarks are in order.

First, if we consider Bκp(t) in the form Bκp(t) = I+b, and if we assume that b is a small quantity, then the right-hand side

of (8.28c) can be approximated as

1

2
[div (µ̃∇Bκp(t))Bκp(t) + Bκp(t) div (µ̃∇Bκp(t)) ] ≈ div (µ̃∇b) . (8.37)

In this regime, we therefore obtain the stress diffusion term as the Laplace operator acting on the extra stress tensor b.
This is the frequently used ad hoc form of the stress diffusion term.
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Summary 4: Incompressible viscoelastic rate-type fluid with stress diffusion and temperature-
dependent stress diffusion coefficient µ̃; stress diffusion interpreted as an entropy producing mechanism

Helmholtz free energy ψ, incompressible variant of ansatz (8.1), see (8.26):

ψ = ψ̃ (θ) + 1

ρ
̃̃
ψ, (8.29a)

̃̃
ψ = µ

2
(Tr Bκp(t) − 3 − ln det Bκp(t)) . (8.29b)

Entropy production ξ, incompressible variant of ansatz (8.27), see (8.26), notation explained in (8.10):

ξ̃ = 1

θ
(2νDδ ∶Dδ + µ2

2ν1
(Tr Bκp(t) +Tr B−1

κp(t) − 6) + µµ̃(θ)
2ν1

∇Bκp(t) ⋮∇Bκp(t) + κ ∣∇θ∣2
θ

) . (8.30)

Material parameters (constants): µ, ν, λ, ν1, κ.
Material parameters (temperature-dependent): µ̃.
Evolution equations for m, v, Bκp(t) and θ:

divv = 0, (8.31a)

ρ
dv

dt
= div T + ρb, (8.31b)

ν1

▽
Bκp(t) + µ (Bκp(t) − I) = 1

2
[div (µ̃∇Bκp(t))Bκp(t) + Bκp(t) div (µ̃∇Bκp(t)) ], (8.31c)

ρcNSE
V

dθ

dt
= div (κ∇θ) + 2νDδ ∶Dδ + µ2

2ν1
(Tr Bκp(t) +Tr B−1

κp(t) − 6) + µµ̃(θ)
2ν1

∇Bκp(t) ⋮∇Bκp(t) . (8.31d)

Constitutive relation for the Cauchy stress tensor T:

T =mI + Tδ. (8.32)

Definitions of Tδ:
Tδ = 2νDδ + µ(Bκp(t))δ. (8.33)

Quantities derived from the Helmholtz free energy:

cNSE
V = −θ∂2ψ̃

∂θ2
. (8.34)

Constitutive relation for the energy flux je, has been already used in (8.31d):

je = −κ∇θ − µµ̃

4ν1
Tr [ (∇Bκp(t)) (Bκp(t) − I) + (Bκp(t) − I) (∇Bκp(t)) ]. (8.35)

Constitutive relation for the entropy flux jη:

jη = −κ∇θ
θ
. (8.36)

Second, we have obtained explicit formulae for the entropy flux jη and energy flux je. This means, that we can easily
identify the boundary conditions that make the system of interest isolated with respect to the energy and entropy exchange
via the boundary.

9. Conclusion

We have derived thermodynamically consistent models for compressible/incompressible Maxwell/Oldroyd-B type fluids
with a stress diffusion term. Following Rajagopal and Srinivasa (2004), see also Málek and Pr̊uša (2017), we have shown
that the governing equations for all primitive variables can be derived via the specification of two scalar quantities, namely
the Helmholtz free energy and the entropy production. In particular, we have identified the corresponding temperature
evolution equation that must supplement the governing equations for mechanical variables, and that must be used if one is
interested in thermomechanical coupling.

The stress diffusion term has been interpreted as a symptom of either a nonstandard energy storage mechanism or a
nonstandard entropy production mechanism. In both cases the ansatz for the Helmholtz free energy and the ansatz for the
entropy production respectively included a gradient (nonlocal) term, which subsequently resulted in a stress diffusion term
in the evolution equation for the extra stress tensor.

If the stress diffusion is interpreted as a consequence of a nonstandard energy storage mechanism, then the resulting
governing equations include, besides the stress diffusion term, other additional terms. In particular the Cauchy stress tensor
contains Korteweg type terms. On the other hand, if the stress diffusion is interpreted as a consequence of a nonstandard
entropy production mechanism, then the stress diffusion term is the only additional term in the evolution equations for the
mechanical quantities (compared to the standard Maxwell/Oldroyd-B model). The combination of the two approaches, and
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more elaborate choices of the ansatz for the Helmholtz free energy or the entropy production, can be further exploited in
the development of more complex models that go beyond Maxwell/Oldroyd-B type models.

The key thermodynamical relations, including the entropic equation of state, has been identified as a byproduct of the
derivation of the governing equations. This means that the complete arsenal of generic thermodynamics-based methods
for the investigation of the dynamics of non-equilibrium systems, see for example Glansdorff and Prigogine (1971) and
subsequent works, is unlocked for possible future applications. In particular, such thermodynamics-based methods may
provide an interesting insight into the stability of viscoelastic fluids of interest.
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Buĺıček, M., J. Málek, V. Pr̊uša, and E. Süli (2017). A PDE-analysis for a class of thermodynamically compatible viscoelastic
rate type fluids with stress diffusion. Contemporary Mathematics. Submitted.

Callen, H. B. (1985). Thermodynamics and an introduction to thermostatistics (Revised ed.). John Wiley & Sons.
Cates, M. E. and S. M. Fielding (2006). Rheology of giant micelles. Adv. Phys. 55 (7-8), 799–879.
Chupin, L. and S. Martin (2015). Stationary Oldroyd model with diffusive stress: Mathematical analysis of the model and

vanishing diffusion process. J. Non-Newton. Fluid Mech. 218, 27–39.
Dhont, J. K. G. and W. J. Briels (2008). Gradient and vorticity banding. Rheol. Acta 47 (3), 257–281.
Divoux, T., M. A. Fardin, S. Manneville, and S. Lerouge (2016). Shear banding of complex fluids. Annu. Rev. Fluid

Mech. 48 (1), 81–103.
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Hron, J., V. Miloš, V. Pr̊uša, O. Souček, and K. Tůma (2016). On thermodynamics of viscoelastic rate type fluids with

temperature dependent material coefficients. ArXiv e-prints.
Javili, A., F. dell’Isola, and P. Steinmann (2013). Geometrically nonlinear higher-gradient elasticity with energetic bound-

aries. J. Mech. Phys. Solids 61 (12), 2381–2401.
Johnson, M. W. and D. Segalman (1977). A model for viscoelastic fluid behavior which allows non-affine deformation. J.

Non-Newton. Fluid Mech. 2 (3), 255–270.
Kannan, K. and K. R. Rajagopal (2004). A thermomechanical framework for the transition of a viscoelastic liquid to a

viscoelastic solid. Math. Mech. Solids 9 (1), 37–59.
Kannan, K., I. J. Rao, and K. R. Rajagopal (2002). A thermomechanical framework for the glass transition phenomenon in

certain polymers and its application to fiber spinning. J. Rheol. 46 (4), 977–999.
Krishnan, J. M. and K. R. Rajagopal (2004). Thermodynamic framework for the constitutive modeling of asphalt concrete:

Theory and applications. J. Mater. Civ. Eng. 16 (2), 155–166.
Leonov, A. I. (1976). Nonequilibrium thermodynamics and rheology of viscoelastic polymer media. Rheol. Acta 15 (2),

85–98.
Lu, C.-Y. D., P. D. Olmsted, and R. C. Ball (2000, Jan). Effects of nonlocal stress on the determination of shear banding

flow. Phys. Rev. Lett. 84, 642–645.
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E-mail address: prusv@karlin.mff.cuni.cz

Faculty of Mathematics and Physics, Charles University in Prague, Sokolovská 83, Praha 8 – Karĺın, CZ 186 75, Czech Republic
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