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Abstract

We present a posteriori error analysis of diffusion problems where the diffusion tensor is not necessarily
symmetric and positive definite and can in particular change its sign. We first identify the correct
intrinsic error norm for such problems, covering both conforming and nonconforming approximations. It
combines a dual (residual) norm together with the distance to the correct functional space. Importantly,
we show the equivalence of both these quantities defined globally over the entire computational domain
with the Hilbertian sums of their localizations over patches of elements. In this framework, we then
design a posteriori estimators which deliver simultaneously guaranteed error upper bound, global and
local error lower bounds, and robustness with respect to the (sign-changing) diffusion tensor. Robustness
with respect to the approximation polynomial degree is achieved as well. The estimators are given in
a unified setting covering at once conforming, nonconforming, mixed, and discontinuous Galerkin finite
element discretizations in two or three space dimensions. Numerical results illustrate the theoretical
developments.

Key words: noncoercive problem, sign change, metamaterial, a posteriori error estimate, dual norm, dis-
tance to energy space, localization, equivalence local–global, minimization, best approximation, equilibrated
flux, unified framework, robustness, finite element methods

1 Introduction

Let Ω ⊂ Rd, 1 ≤ d ≤ 3, be an open polytope (polygon for d = 2, polyhedron for d = 3) with a Lipschitz-
continuous boundary ∂Ω, Σ a tensor-valued diffusion tensor, and f a datum. We consider the following
problem: find u : Ω→ R such that

−∇·(Σ∇u) = f in Ω, (1.1a)

u = 0 on ∂Ω. (1.1b)

In contrast to the usual setting, cf. Ciarlet [23], we relax the assumption of Σ being positive definite
(and symmetric). Such a situation arises as a model problem in electromagnetism for interfaces between
dielectrics and (negative) metamaterials or metals, see, e.g., Bonnet-BenDhia et al. [10] or Wallen et al. [53]
and the references therein. The exemplar situation is the case where Ω is composed of two subdomains Ω+

and Ω− of nonzero measure such that Σ|Ω+
= σ+I and Σ|Ω− = σ−I, where σ+ > 0 and σ− < 0 are two

scalars and I is the identity tensor.
We will call u ∈ H1

0 (Ω) a weak solution of (1.1) if

(Σ∇u,∇v) = (f, v) ∀v ∈ H1
0 (Ω). (1.2)
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Conditions for well-posedness (existence, uniqueness, and continuous dependence on the data) of the general
problem (1.2) follow from the celebrated Banach–Nečas–Babuška (also called Brezzi–Babuška or inf–sup)
theorem, cf., e.g., Ern and Guermond [30, Theorem 2.6]. They have recently been revisited via the T-
coercivity approach, see, e.g., Bonnet-BenDhia et al. [9] or Chesnel and Ciarlet [20] and the references
therein. Conception of numerical approximations, their well-posedness, and a priori error estimates have
been addressed in [20] in the conforming finite element context and in [21] in the nonconforming finite
element and discontinuous Galerkin context.

A posteriori error analysis for problems of type (1.1) has likewise been started recently. In particular,
Nicaise and Venel [39] bound the error between the known finite element approximation uh and the unknown
weak solution u given by (1.2) by a computable a posteriori indicator. The bound, however, features an
unknown generic constant. The dependence of the quality of the estimator on the tensor Σ (on the ratio,
or contrast, σ+/σ− in the simplest setting) is, unfortunately, not traced; numerical experiments indicate
deterioration of the behavior (so-called non-robustness) when the contrast is approaching the set of forbidden
values given by an interval to which the value −1 always belongs. In [39], there is also a need for a
discrete version of the trace lifting operator, both in the analysis and in the implementation. The previous
contributions on diffusion problems with jumping coefficients, see Bernardi and Verfürth [6], Ainsworth [1],
or [52] and the references therein, only study the standard positive definite case.

In terms of a posteriori analysis, there are four goals of this contribution: firstly, we want to derive
a posteriori error estimates which are guaranteed, certifying the maximal error and featuring no unknown
constant. Secondly, we wish them to be robust with respect to the jumps and sign changes in the tensor
Σ. The adaptive mesh refinement based on the a posteriori error estimators developed in this work pro-
duces in particular in our numerical experiments sequences of meshes leading to optimal decay rates for an
arbitrarily singular solution. Thirdly, we want to develop a unified framework covering all standard numer-
ical methods. We achieve this via the concept of flux and potential reconstructions, following Prager and
Synge [42], Ladevèze and Leguillon [36], Kelly [34], Destuynder and Métivet [26], Luce and Wohlmuth [37],
and Braess and Schöberl [12] for equilibrated fluxes, Prager and Synge [42], Destuynder and Métivet [25],
Ainsworth [1], or Carstensen and Merdon [18] for the potentials, and the unifying frameworks in Nicaise et
al. [40], Repin [43], Ainsworth [2], Carstensen et al. [16], Becker et al. [5], or [52, 31, 32], see also the
references therein. Fourthly and lastly, in extension of Braess et al. [11] for conforming finite elements and
of [32, 33] for nonconforming, mixed, and discontinuous Galerkin finite elements, we obtain robustness with
respect to the approximation polynomial degree.

The key point for obtaining the above-discussed properties is a proper choice of the way the error is
measured. For conforming (lying in the space H1

0 (Ω)) approximations, Verfürth [49], Chaillou and Suri [19],
Veeser and Verfürth [46], Kreuzer and Süli [35], and [52, 29, 31] used the intrinsic problem-dependent norm
given by the dual norm of the residual stemming from the weak formulation. We articulate here two
goals. We first identify a proper generalization of this concept to our setting, including nonconforming
approximations uh 6∈ H1

0 (Ω). The norm in which we measure the error is in particular given by

|||v|||2 := max
ϕ∈H1

0 (Ω); ‖∇ϕ‖=1
(Σ∇θv,∇ϕ)2 + min

ζ∈H1
0 (Ω)
‖∇θ(v − ζ)‖2 +

∑

e∈Eh
h−1
e ‖Π0

e[[v]]‖2e. (1.3)

Here v lies in H1(Th), the broken Sobolev space, see (2.4) below, and ∇θ is the discrete gradient defined
below by (2.6). For v = u − uh, the first term above is the dual norm of the residual, the second one is
the distance to the energy space in a gradient seminorm, and the last one evaluates the size of the mean
values of jumps in the approximate solution uh. Secondly, we prove that |||·||| as well as both its components
‖·‖∗ (first term in (1.3)) and ‖·‖# (last two terms in (1.3)) are equivalent to the Hilbertian sums of their
localizations on patches of elements. These results seem to be of independent interest, stating a local–global
equivalence for norms that are only global at a first sight. For dual (residual) norms, a result of this type
has probably first been shown in Babuška and Miller [4, Theorem 2.1.1], and may be deduced from more
recent a posteriori analyses, see in particular Carstensen and Funken [17], Morin et al. [38], Verfürth [48, 50],
Veeser and Verfürth [46], Cohen et al. [24], and the references therein, typically for piecewise polynomial
approximations. It has recently been extended in [8] to any bounded linear functional on the Sobolev space
W 1,p

0 (Ω), p > 1. Galerkin orthogonality with respect to lowest-order modes turns out to be crucial here for
one direction of the equivalence. For the distance to the energy space, our localization result seems to be
new, although a clue can be again found in a posteriori error estimates for nonconforming finite element
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methods on piecewise polynomial spaces, see, e.g., [16, Theorem 5.1], the survey [32], and the references
therein. We also cite Veeser [45] who recently proved that local and global best-approximation errors in the
energy norm are equivalent for piecewise polynomial spaces. Here, we derive the localization results on the
entire broken Sobolev space H1(Th) and give direct and minimal proofs with clearly identified constants that
only depend on mesh shape regularity and on the space dimension. This in particular gives robustness with
respect to the tensor Σ and does not request one to work with piecewise polynomial spaces. Computable
upper bounds on the generic constants are also indicated. In a posteriori error analysis, these results allow
to pass from merely global to actually local efficiency, namely in [49, 46, 52, 29, 31] and in the references
therein.

Our paper is organized as follows. Section 2 sets the notation and assumptions and identifies and
examines the intrinsic norm |||·|||. Section 3 resumes our general findings about the localization of global
norms. A posteriori estimates in an abstract framework for all standard numerical approximations of
problem (1.1) then form the content of Section 4. Finally, Section 5 illustrates our theoretical developments
on two numerical examples, whereas Section 6 gives some concluding remarks and outlook.

2 Setting

This section introduces the notation, assumptions, and discusses in detail the choice of the way we will
measure the error in numerical approximations of problem (1.1).

2.1 Notation

Let {Th}h be a family of simplicial partitions of the domain Ω, i.e., ∪K∈ThK = Ω for all Th, any element
K ∈ Th for any mesh Th is a closed simplex, and the intersection of two different simplices in one mesh
Th is either empty, a vertex, or their common l-dimensional face, 1 ≤ l ≤ d − 1. The set of vertices will
be denoted by Vh; it is composed of interior vertices V int

h and vertices located on the boundary Vext
h . For

element K ∈ Th, VK denotes the set of its vertices. For a vertex a ∈ Vh, Ta stands for the patch of
the elements of Th which share a, for ωa the corresponding open subdomain, and ψa for the continuous,
piecewise affine “hat” function which takes value 1 at the vertex a and zero at the other vertices.

The mesh (d − 1)-dimensional faces are collected in the set Eh, with interior faces E int
h and boundary

faces Eext
h . A generic face is denoted by e and its diameter by he. For any e ∈ Eh, ne stands for the unit

normal vector to e; the orientation is arbitrary but fixed for e ∈ E int
h and points outwards of Ω for e ∈ Eext

h .
We will use the jump operator [[·]] yielding the difference evaluated along ne of the traces of the argument
from the two mesh elements that share e ∈ E int

h and the actual trace for e ∈ Eext
h . Similarly, {{·}} stands for

the mean value of the traces from adjacent mesh elements on faces from E int
h and the actual trace on Eext

h .
We denote by Π0

e the L2(e)-orthogonal projection onto constants (mean value) on a face e ∈ Eh.
For a d-dimensional subdomain ω of Ω, we use (·, ·)ω to denote the L2(ω) or [L2(ω)]d scalar product and

‖·‖ω for the associated norm; shall ω = Ω, the subscript is dropped. For (d − 1)-dimensional subdomains,
we similarly use 〈·, ·〉ω and ‖·‖ω.

2.2 Assumptions

Throughout the paper, we shall suppose the following:

Assumption 2.1 (Setting). We suppose that

• the family {Th}h is shape regular in the sense that there exists a constant κT > 0 such that, for all
triangulations Th, maxK∈Th hK/%K ≤ κT , where hK is the diameter of K and %K is the diameter of
the largest ball inscribed in K;

• Σ ∈ [L∞(Ω)]d×d is piecewise constant on each given Th;

• f ∈ L2(Ω);

• there exists a linear bijective operator T : H1
0 (Ω)→ H1

0 (Ω), cf. [20, Definition 3], bounded in the sense
that ‖∇(Tv)‖ ≤ ‖T‖‖∇v‖ for all v ∈ H1

0 (Ω), ‖T‖ < ∞, and such that the bilinear form in (1.2) is
T-coercive in the sense that (Σ∇v,∇(Tv)) ≥ α‖∇v‖2 for all v ∈ H1

0 (Ω), α > 0.
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Under Assumption 2.1, one immediately obtains:

Corollary 2.2 (Weak solution). There exists a well-posed solution of problem (1.1) in the sense (1.2). It
satisfies u ∈ H1

0 (Ω) and σ := −Σ∇u ∈ H(div,Ω) with ∇·σ = f .

2.3 Intrinsic norm in the conforming setting

Let, for the moment, v ∈ H1
0 (Ω) and ∇θ = ∇. The weak formulation (1.2) and Assumption 2.1 suggest the

intrinsic norm
‖v‖∗ := max

ϕ∈H1
0 (Ω); ‖∇ϕ‖=1

(Σ∇θv,∇ϕ); (2.1a)

this writing takes immediately the form we need in this paper, for v from the broken Sobolev space H1(Th)
and the discrete gradient ∇θ defined below. We define the local versions of (2.1a), for each vertex a ∈ Vh
and the corresponding patch subdomain ωa, as

‖v‖∗,ωa := max
ϕ∈H1

0 (ωa); ‖∇ϕ‖ωa=1
(Σ∇θv,∇ϕ)ωa . (2.1b)

For v ∈ H1
0 (Ω), [–] the Cauchy–Schwarz inequality implies

(Σ∇v,∇(Tv))

‖∇(Tv)‖ ≤ ‖v‖∗ ≤ ‖Σ∇v‖ ∀v ∈ H1
0 (Ω), (2.2)

and the boundedness and coercivity of the operator T and the boundedness of the tensor Σ allow to further
confine

α

‖T‖‖∇v‖ ≤ ‖v‖∗ ≤ ‖Σ‖∞‖∇v‖ ∀v ∈ H1
0 (Ω), (2.3)

so that ‖v‖∗ is indeed a norm on the space H1
0 (Ω), equivalent to the canonical norm ‖∇v‖. Note, however,

that the equivalence constants α
‖T‖ and ‖Σ‖∞ are setting- and problem-dependent (not robust), see Re-

mark 5.1 below for a discussion of a particular example. Remark also that (Σ∇v,∇v) may become negative,
which excludes the notion itself of an energy norm; on the other hand ‖v‖∗ = ‖∇v‖ in the case where Σ = I,
so that ‖v‖∗ is a natural extension of the canonical norm of the Laplace operator.

2.4 Broken Sobolev space and broken and discrete gradients

In order to make our analysis as general as possible, we will henceforth often work with the broken Sobolev
space H1(Th) related to the mesh Th,

H1(Th) := {v ∈ L2(Ω); v|K ∈ H1(K) ∀K ∈ Th}. (2.4)

The corresponding broken gradient ∇h is given by, for v ∈ H1(Th),

(∇hv)|K = ∇(v|K) ∀K ∈ Th. (2.5)

In order to, in particular, take into account in our analysis discontinuous Galerkin methods, we are lead
to further generalize the concept of the broken gradient following, e.g., Di Pietro and Ern [27, Section 4.3]
and the references therein. For each face e ∈ Eh, let Te regroup the (one or two) mesh elements sharing
the face e. We let V0(Te) stand for piecewise constant vectors on Te, i.e., vh|K ∈ [P0(K)]d for all K ∈ Te.
Alternatively, vectors vh such that vh|K ∈ [P0(K)]d + P0(K)x for all K ∈ Te (piecewise lowest-order
Raviart–Thomas–Nédélec space) could also be used. In both cases, vh·ne is constant for vh ∈ V0(Te). Let
v ∈ H1(Th). We define the lifting operator le : L2(e)→ V0(Te) by

(le([[v]]),vh)Te = 〈{{vh}}·ne, [[v]]〉e ∀vh ∈ V0(Te).

We then extend le([[v]]) by zero outside of Te. For a parameter θ ∈ {−1, 0, 1}, the discrete gradient ∇θv ∈
[L2(Ω)]d is given by

∇θv := ∇hv − θ
∑

e∈Eh
le([[v]]). (2.6)

4

Pr
ep
ri
nt
:M
OR
E/
20
17
/1
0

ht
tp
:/
/m
or
e.
ka
rl
in
.m
ff
.c
un
i.
cz



We observe that ∇θv = ∇hv when θ = 0 or when the jumps of v are of mean value 0, i.e., 〈[[v]], 1〉e = 0 for
all e ∈ Eh. Similarly, both broken and discrete gradients are consistent extensions of the weak gradient ∇
in the sense that

∇θv = ∇hv = ∇v ∀v ∈ H1
0 (Ω). (2.7)

2.5 Nonconformity evaluation

An important observation is that ‖·‖∗ given by (2.1a) is merely a seminorm on the broken Sobolev space
H1(Th). Consequently, it is not sufficient to evaluate the error therein, and we are lead to quantify the
nonconformity H1(Th) 6⊂ H1

0 (Ω). An intrinsic measure here is simply the distance to the energy space
H1

0 (Ω), minζ∈H1
0 (Ω)‖∇θ(v− ζ)‖ for v ∈ H1(Th). As in this expression, only the gradient seminorm appears,

we are finally lead to evaluate the nonconformity as

‖v‖2# := min
ζ∈H1

0 (Ω)
‖∇θ(v − ζ)‖2+

∑

e∈Eh
h−1
e ‖Π0

e[[v]]‖2e v ∈ H1(Th). (2.8a)

The second term with the mean values of the jumps on the faces given by Π0
e[[v]] ensures the validity of the

broken Poincaré–Friedrichs inequality and plays a key role in Lemma 2.3 below. Note also that scaling both
or one term in (2.8a) by generic constants is possible. As local versions of (2.8a), we define

‖v‖2#,ωa
:= min

ζ∈H1
#(ωa)

‖∇θ(v − ζ)‖2ωa
+

∑

e∈Eh, a∈e
h−1
e ‖Π0

e[[v]]‖2e (2.8b)

for each vertex a ∈ Vh and the corresponding patch subdomain ωa. Here

H1
#(ωa) := H1(ωa), a ∈ V int

h ,

H1
#(ωa) := {v ∈ H1(ωa); v = 0 on ∂ωa ∩ ∂Ω}, a ∈ Vext

h .
(2.9)

2.6 Intrinsic norm

Combining (2.1a) and (2.8a), we define the total intrinsic norm as

|||v|||2 = ‖v‖2∗ + ‖v‖2# v ∈ H1(Th). (2.10)

We have the following simple but crucial result:

Lemma 2.3 (Intrinsic norm). Let the broken Sobolev space H1(Th) be given by (2.4) and the discrete
gradient ∇θ by (2.6) with θ ∈ {−1, 0, 1}. Then |||·||| given by (2.10) defines a norm on H1(Th).

Proof. Clearly, |||αv||| = |α||||v||| and |||v + w||| ≤ |||v||| + |||w||| for any α ∈ R and any v, w ∈ H1(Th).
Let now |||v||| = 0. Then the second term in (2.8a) implies that the jumps of v are of mean value 0,
〈[[v]], 1〉e = 0 for all e ∈ Eh, and thus ∇θ = ∇h. Consequently, for s := arg minζ∈H1

0 (Ω)‖∇h(v − ζ)‖, the
broken Poincaré–Friedrichs inequality

‖v − s‖ ≤ CbPF,ΩhΩ‖∇h(v − s)‖,

see Brenner [13] or [51], implies from the fact that the first term in (2.8a) vanishes that v = s and thus
v ∈ H1

0 (Ω). Finally, the equivalence (2.3) valid on the energy space H1
0 (Ω) shows that indeed v = 0.

2.7 Evaluating the error by the dual norm of the residual and the distance to
the energy space

When Σ = I, there holds, for arbitrary u ∈ H1
0 (Ω) and uh ∈ H1(Th),

‖∇θ(u− uh)‖2 = max
ϕ∈H1

0 (Ω); ‖∇ϕ‖=1
(∇θ(u− uh),∇ϕ)2 + min

ζ∈H1
0 (Ω)
‖∇θ(uh − ζ)‖2, (2.11)
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see Theorems 3.3 in [32, 28] and the references therein. Note that the present definition (2.8a) implies

‖u− uh‖2# = min
ζ∈H1

0 (Ω)
‖∇θ((u− uh)− ζ)‖2 +

∑

e∈Eh
h−1
e ‖Π0

e[[u− uh]]‖2e

= min
ζ∈H1

0 (Ω)
‖∇θ(uh − ζ)‖2 +

∑

e∈Eh
h−1
e ‖Π0

e[[uh]]‖2e,
(2.12)

since u ∈ H1
0 (Ω) and since its jumps are zero. Thus ‖u−uh‖# is a distance of uh to the space H1

0 (Ω) and it
simplifies to the energy distance minζ∈H1

0 (Ω)‖∇θ(uh − ζ)‖ = minζ∈H1
0 (Ω)‖∇h(uh − ζ)‖ whenever the jumps

of uh are of mean value zero, 〈[[uh]], 1〉e = 0 for all e ∈ Eh. For Σ = I, our intrinsic problem-dependent error
thus takes the form

|||u− uh|||2 = ‖u− uh‖2∗ + ‖u− uh‖2# = ‖∇θ(u− uh)‖2 +
∑

e∈Eh
h−1
e ‖Π0

e[[uh]]‖2e,

so that in particular |||u− uh||| = ‖∇θ(u− uh)‖ whenever the jumps of uh are of mean value zero. In what
concerns the first term ‖u − uh‖∗, using the dual norm definition (2.1a), equivalence (2.7) on H1

0 (Ω), and
the weak solution characterization (1.2), it takes the form

‖u− uh‖∗ = max
ϕ∈H1

0 (Ω); ‖∇ϕ‖=1
{(f, ϕ)− (Σ∇θuh,∇ϕ)},

so that this is nothing but the dual norm of the residual. Note that only this term remains whenever
uh ∈ H1

0 (Ω); in this case |||u− uh||| = ‖u− uh‖∗.

2.8 Orthogonality with respect to the hat functions

We conclude this introductory section by an assumption that will be crucial for some of the forthcoming
results:

Assumption 2.4 (Galerkin orthogonality with respect to ψa). There holds

(Σ∇θuh,∇ψa)ωa = (f, ψa)ωa ∀a ∈ V int
h .

This assumption is naturally satisfied in most Galerkin numerical approximations of problem (1.1),
namely in various conforming, nonconforming, and discontinuous Galerkin finite elements. Application to
mixed finite elements can be achieved along the lines of [32, Section 4.4].

3 Equivalent localization of global dual and distance norms

This section shows that two types of global norms, dual norms on the space H1
0 (Ω) of the form ‖·‖∗

of (2.1a) and distance norms of the form ‖·‖# of (2.8a), admit an equivalence with their local versions of
the respective forms ‖·‖∗,ωa of (2.1b) and ‖·‖#,ωa of (2.8b). Let us note immediately that Assumption 2.4
is central for one direction in the first case. This may be seen as an extension of some previous results
in [4, 17, 38, 48, 46, 24, 50, 31, 32] to the broken Sobolev space H1(Th) of (2.4). The presentation below is
not necessarily linked to a posteriori error analysis and we find it of independent interest. We give direct
and minimal proofs, with clearly identified constants that only depend on the mesh shape regularity κT
and space dimension d. All results here actually hold for any space dimension d ≥ 1.

3.1 Some useful local inequalities

Some more definitions and tools will now be needed. Let first the patchwise Sobolev spaces be given by

H1
∗ (ωa) := {v ∈ H1(ωa); (v, 1)ωa = 0}, a ∈ V int

h ,

H1
∗ (ωa) := {v ∈ H1(ωa); v = 0 on ∂ωa ∩ ∂Ω}, a ∈ Vext

h .
(3.1)
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It follows from [17, Theorem 3.1], [11, Section 3], see also [32, Lemma 3.12], that

‖∇(ψav)‖ωa ≤ Ccont,PF‖∇v‖ωa ∀v ∈ H1
∗ (ωa), ∀a ∈ Vh, (3.2)

where
Ccont,PF := max

a∈Vh
{1 + CPF,ωahωa‖∇ψa‖∞,ωa} (3.3)

only depends on the shape regularity parameter κT and possibly on the space dimension d. Here CPF,ωa is
the Poincaré–Friedrichs constant from

‖v‖ωa ≤ CPF,ωahωa‖∇v‖ωa ∀v ∈ H1
∗ (ωa),

see Payne and Weinberger [41] or Veeser and Verfürth [47].
Similarly, it follows as in [32, Lemma 3.13] and [33, Section 4] that

‖∇h(ψav)‖ωa ≤ Ccont,bPF

(
‖∇hv‖ωa +

{ ∑

e∈Eh, a∈e
h−1
e ‖Π0

e[[v]]‖2e

}1/2)
,

∀v ∈ H1(Ta) with (v, 1)ωa = 0 when a ∈ V int
h , ∀a ∈ Vh,

(3.4)

where Ccont,bPF := maxa∈Vh{1 + CbPF,ωahωa‖∇ψa‖∞,ωa} only depends on the shape regularity parameter
κT and possibly on the space dimension d. Here CbPF,ωa is the constant from the broken Poincaré–Friedrichs
inequality

‖v‖ωa ≤ CbPF,ωahωa


‖∇hv‖2ωa

+
∑

e∈Eh, a∈e
h−1
e ‖Π0

e[[v]]‖2e




1/2

,

∀v ∈ H1(Ta) with (v, 1)ωa = 0 when a ∈ V int
h ,

(3.5)

see Brenner [13] or [51].
Finally, as the spaces V0(Te) in the definition (2.6) of the discrete gradient consist of low-order polyno-

mials, the inverse inequality gives

‖vh·ne‖e ≤ Cinvh
−1/2
e ‖vh‖K ∀K ∈ Th, ∀e ∈ EK , ∀vh ∈ V0(Te), (3.6)

where Cinv only depends on κT and d.

3.2 Localization of dual (residual) norms

The following is our localization result for the dual norm of the residual ‖u− uh‖∗ defined by (2.1a), with
the patchwise contributions ‖u− uh‖∗,ωa given by (2.1b):

Proposition 3.1 (Localization of the dual norm of the residual). Let u be the weak solution given by (1.2)
and let uh ∈ H1(Th) satisfying Assumption 2.4 be arbitrary. Then

‖u− uh‖∗ ≤ (d+ 1)1/2Ccont,PF

{ ∑

a∈Vh
‖u− uh‖2∗,ωa

}1/2

, (3.7a)

{
1

d+ 1

∑

a∈Vh
‖u− uh‖2∗,ωa

}1/2

≤ ‖u− uh‖∗. (3.7b)

Remark 3.2 (Bound (3.7a) with patchwise constants). Using Ccont,PF,ωa := {1 + CPF,ωahωa‖∇ψa‖∞,ωa}
in (3.7a) in place of Ccont,PF, the slightly sharper bound

‖u− uh‖∗ ≤ (d+ 1)1/2

{ ∑

a∈Vh
C2

cont,PF,ωa
‖u− uh‖2∗,ωa

}1/2

(3.8)

immediately follows.

7

Pr
ep
ri
nt
:M
OR
E/
20
17
/1
0

ht
tp
:/
/m
or
e.
ka
rl
in
.m
ff
.c
un
i.
cz



This proposition is an immediate consequence of the following general theorem of independent interest.
Recall that Ccont,PF is the constant from inequality (3.2):

Theorem 3.3 (Localization of a dual norm with ψa-Galerkin orthogonality). Let v ∈ [L2(Ω)]d. Then,
under the hat functions orthogonality condition

(v,∇ψa)ωa = 0 ∀a ∈ V int
h , (3.9)

there holds

max
ϕ∈H1

0 (Ω); ‖∇ϕ‖=1
(v,∇ϕ)2 ≤ (d+ 1)C2

cont,PF

∑

a∈Vh
max

ϕ∈H1
0 (ωa); ‖∇ϕ‖ωa=1

(v,∇ϕ)2
ωa
. (3.10a)

There always holds

∑

a∈Vh
max

ϕ∈H1
0 (ωa); ‖∇ϕ‖ωa=1

(v,∇ϕ)2
ωa
≤ (d+ 1) max

ϕ∈H1
0 (Ω); ‖∇ϕ‖=1

(v,∇ϕ)2. (3.10b)

Proof. Let ϕ ∈ H1
0 (Ω) with ‖∇ϕ‖ = 1 be fixed. The partition of unity by the hat functions ψa,

∑
a∈Vh ψa =

1, and the Galerkin orthogonality with respect to ψa expressed by (3.9) give

(v,∇ϕ) =
∑

a∈Vh
(v,∇(ψaϕ)) =

∑

a∈Vh
(v,∇(ψaϕ))ωa

=
∑

a∈Vint
h

(v,∇(ψa(ϕ−Π0,ωaϕ)))ωa +
∑

a∈Vext
h

(v,∇(ψaϕ))ωa ,

where Π0,ωaϕ is the mean value of the function ϕ on the patch ωa. There holds (ϕ−Π0,ωaϕ)|ωa ∈ H1
∗ (ωa)

for the space H1
∗ (ωa) given by (3.1) and (ψa(ϕ − Π0,ωaϕ))|ωa ∈ H1

0 (ωa) for an interior vertex a ∈ V int
h .

Similarly, ϕ|ωa ∈ H1
∗ (ωa) and (ψaϕ)|ωa ∈ H1

0 (ωa) for a boundary vertex a ∈ Vext
h . Thus, passing to a

maximum and using inequality (3.2) yields, for any interior vertex a ∈ V int
h ,

(v,∇(ψa(ϕ−Π0,ωaϕ)))ωa = ‖∇(ψa(ϕ−Π0,ωaϕ))‖ωa

(
v,

∇(ψa(ϕ−Π0,ωaϕ))

‖∇(ψa(ϕ−Π0,ωaϕ))‖ωa

)
ωa

≤ ‖∇(ψa(ϕ−Π0,ωaϕ))‖ωa max
ϕ∈H1

0 (ωa); ‖∇ϕ‖ωa=1
(v,∇ϕ)ωa

≤ Ccont,PF‖∇(ϕ−Π0,ωaϕ)‖ωa max
ϕ∈H1

0 (ωa); ‖∇ϕ‖ωa=1
(v,∇ϕ)ωa

= Ccont,PF‖∇ϕ‖ωa max
ϕ∈H1

0 (ωa); ‖∇ϕ‖ωa=1
(v,∇ϕ)ωa ,

finally employing that the gradient of a constant vanishes. A similar estimate holds for a ∈ Vext
h . Thus, the

Cauchy–Schwarz inequality gives

(v,∇ϕ)2 ≤ C2
cont,PF

∑

a∈Vh
‖∇ϕ‖2ωa

∑

a∈Vh
max

ϕ∈H1
0 (ωa); ‖∇ϕ‖ωa=1

(v,∇ϕ)2
ωa
.

Now the fact that each simplex has d+ 1 vertices gives

∑

a∈Vh
‖∇ϕ‖2ωa

=
∑

a∈Vh

∑

K∈Ta
‖∇ϕ‖2K =

∑

K∈Th

∑

a∈VK
‖∇ϕ‖2K = (d+ 1)‖∇ϕ‖2, (3.11)

so that the premise ‖∇ϕ‖ = 1 finally yields (3.10a).
The converse estimate (3.10b) does not need the hypothesis (3.9). Let a ∈ Vh and let ζa ∈ H1

0 (ωa) be
defined by the lifting

(∇ζa,∇ϕ)ωa = (v,∇ϕ)ωa ∀ϕ ∈ H1
0 (ωa).

Then

(v,∇ζa)ωa = (∇ζa,∇ζa)ωa = max
ϕ∈H1

0 (ωa); ‖∇ϕ‖ωa=1
(∇ζa,∇ϕ)2

ωa
= max
ϕ∈H1

0 (ωa); ‖∇ϕ‖ωa=1
(v,∇ϕ)2

ωa
.
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Consequently, taking ζ :=
∑

a∈Vh ζ
a ∈ H1

0 (Ω),

∑

a∈Vh
max

ϕ∈H1
0 (ωa); ‖∇ϕ‖ωa=1

(v,∇ϕ)2
ωa

=
∑

a∈Vh
(v,∇ζa)ωa = (v,∇ζ)

≤ max
ϕ∈H1

0 (Ω); ‖∇ϕ‖=1
(v,∇ϕ)‖∇ζ‖,

where we finally passed to the maximum. Noticing that

‖∇ζ‖2 =
∑

K∈Th

∥∥∥∥
∑

a∈VK
(∇ζa)|K

∥∥∥∥
2

K

≤ (d+ 1)
∑

a∈Vh
‖∇ζa‖2ωa

,

we arrive at (3.10b).

Remark 3.4 (Further generalization). Theorem 3.3 has recently been extended to any bounded linear func-
tional on the Sobolev space W 1,p

0 (Ω), p > 1, in [8].

3.3 Localization of distances to the energy space

Recall that d is the space dimension, ∇h is the broken gradient given by (2.5), ∇θ is the discrete gradient
given by (2.6) with the parameter θ ∈ {−1, 0, 1}, and that the constants Ccont,bPF and Cinv are respectively
given by (3.4) and (3.6). It appears that the distance ‖u − uh‖# defined in (2.8a) admits a similar local-
ization property for the contributions ‖u− uh‖#,ωa defined in (2.8b), as this was the case for ‖u− uh‖∗ in
Proposition 3.1:

Proposition 3.5 (Localization of the distance to the energy space). Let u ∈ H1
0 (Ω) and uh ∈ H1(Th) be

arbitrary. Then

‖u− uh‖2# ≤ C2
loc

∑

a∈Vh
‖u− uh‖2#,ωa

,

∑

a∈Vh
‖u− uh‖2#,ωa

≤ (d+ 1)‖u− uh‖2#,

where

C2
loc := 8(d+ 1)C2

cont,bPF +
1

d

(
2|θ|2(d+ 1)C2

inv + 1
)

+
1

d

(
8|θ|2(d+ 1)3C2

cont,bPFC
2
inv

)
. (3.12)

To prove this result, the following theorem of independent interest will be crucial:

Theorem 3.6 (Localization of a global distance for jumps of mean value zero). Let v ∈ H1(Th). Then,
when the jumps of v have zero mean values, i.e.

〈[[v]], 1〉e = 0 ∀e ∈ Eh, (3.13)

there holds
min

ζ∈H1
0 (Ω)
‖∇h(v − ζ)‖2 ≤ (d+ 1)C2

cont,bPF

∑

a∈Vh
min

ζ∈H1
#(ωa)

‖∇h(v − ζ)‖2ωa
. (3.14a)

There always holds

∑

a∈Vh
min

ζ∈H1
#(ωa)

‖∇h(v − ζ)‖2ωa
≤ (d+ 1) min

ζ∈H1
0 (Ω)
‖∇h(v − ζ)‖2; (3.14b)

(3.14b) also holds for the discrete gradient ∇θ in place of the broken gradient ∇h.

Proof. The second claim (3.14b) is immediate, as local-best approximation is always subordinate to the
global-best one:

∑

a∈Vh
min

ζ∈H1
#(ωa)

‖∇h(v − ζ)‖2ωa
≤ min
ζ∈H1

0 (Ω)

∑

a∈Vh
‖∇h(v − ζ)‖2ωa

= (d+ 1) min
ζ∈H1

0 (Ω)
‖∇h(v − ζ)‖2.
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In the inequality, we have used that restriction of any ζ ∈ H1
0 (Ω) to the patch subdomain ωa for any vertex

a ∈ Vh lies in the space H1
#(ωa) given by (2.9); in the equality, the fact that each element K ∈ Th lies in

(d + 1) patches has been employed as in (3.11). This estimate is obviously the same for ∇hv replaced by
∇θv. The rest of the proof is thus dedicated to showing the first claim (3.14a).

Let, for a given vertex a ∈ Vh, sa be defined by the orthogonal projection of the function ψav onto the
space H1

0 (ωa),
sa := arg min

ζ∈H1
0 (ωa)
‖∇h(ψav − ζ)‖ωa ; (3.15)

equivalently, sa ∈ H1
0 (ωa) solves

(∇sa,∇ζ)ωa = (∇h(ψav),∇ζ)ωa ∀ζ ∈ H1
0 (ωa).

Extending sa by zero outside of ωa and setting s :=
∑

a∈Vh s
a ∈ H1

0 (Ω), we have, also employing the
partition of unity

∑
a∈VK ψa|K = 1|K ,

min
ζ∈H1

0 (Ω)
‖∇h(v − ζ)‖2 ≤ ‖∇h(v − s)‖2 =

∑

K∈Th
‖∇h(v − s)‖2K

=
∑

K∈Th

∥∥∥∥
∑

a∈VK
(∇h(ψav − sa))|K

∥∥∥∥
2

K

≤ (d+ 1)
∑

a∈Vh
‖∇h(ψav − sa)‖2ωa

.

(3.16)

The fact that ψaζ ∈ H1
0 (ωa) for any ζ ∈ H1

#(ωa) gives from (3.15)

‖∇h(ψav − sa)‖ωa ≤ inf
ζ∈H1

#(ωa)
‖∇h(ψa(v − ζ))‖ωa . (3.17)

Let H1
#,v(ωa) := H1

#(ωa) for a ∈ Vext
h and H1

#,v(ωa) := {ζ ∈ H1
#(ωa); (ζ, 1)ωa = (v, 1)ωa} for a ∈ V int

h .

Introducing this space allows us to restrain the arguments to mean value zero on vertices a ∈ V int
h , so that

we can employ inequality (3.4). Therein the jumps actually disappear thanks to the present simplifying
assumption (3.13). In combination with the Cauchy–Schwarz inequality, we obtain

inf
ζ∈H1

#(ωa)
‖∇h(ψa(v − ζ))‖ωa ≤ inf

ζ∈H1
#,v(ωa)

‖∇h(ψa(v − ζ))‖ωa

≤ Ccont,bPF min
ζ∈H1

#,v(ωa)
‖∇h(v − ζ)‖ωa

= Ccont,bPF min
ζ∈H1

#(ωa)
‖∇h(v − ζ)‖ωa ;

(3.18)

in the final equality, we have employed that the gradient of a constant on the patch ωa vanishes. Collecting
these results finishes the proof.

Proof of Proposition 3.5. The equality

∑

a∈Vh

∑

e∈Eh, a∈e
h−1
e ‖Π0

e[[v]]‖2e = d
∑

e∈Eh
h−1
e ‖Π0

e[[v]]‖2e ∀v ∈ H1(Th) (3.19)

follows immediately from the fact that each face is shared by d vertices. The second claim of Proposition 3.5
then follows from inequality (3.14b) employed for the discrete gradient ∇θ and using definitions (2.8a)
and (2.8b) together with property (2.12). We now turn to the proof of the first claim of Proposition 3.5.

Let v ∈ H1(Th) be arbitrary (not subject to condition (3.13)) and recall that by definition (2.8a), one has
‖v‖2# = minζ∈H1

0 (Ω)‖∇θ(v− ζ)‖2 +
∑
e∈Eh h

−1
e ‖Π0

e[[v]]‖2e. From (3.19), the jump terms immediately take the
local form requested in (2.8b). Denote s1 := arg minζ∈H1

0 (Ω)‖∇θ(v − ζ)‖ and s2 := arg minζ∈H1
0 (Ω)‖∇h(v −

ζ)‖. The minimization property of s1 together with the discrete gradient definition (2.6) and the fact that
the jumps of s2 are zero give

‖∇θ(v − s1)‖2 ≤ ‖∇θ(v − s2)‖2 =

∥∥∥∥∥∇h(v − s2)− θ
∑

e∈Eh
le([[v]])

∥∥∥∥∥

2

≤ 2‖∇h(v − s2)‖2 + 2|θ|2
∥∥∥∥∥
∑

e∈Eh
le([[v]])

∥∥∥∥∥

2

.

(3.20)
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Recall that Te regroups the mesh elements sharing the face e. Thus, employing the inverse inequality (3.6)
for the jump term above, we infer, as in [15, Proof of Theorem 6.3],

∥∥∥∥∥
∑

e∈Eh
le([[v]])

∥∥∥∥∥

2

≤ (d+ 1)
∑

e∈Eh
‖le([[v]])‖2Te ≤ (d+ 1)C2

inv

∑

e∈Eh
h−1
e ‖Π0

e[[v]]‖2e. (3.21)

Finally, for the bound on ‖∇h(v − s2)‖, we use that s2 is the minimizer for the broken gradient ∇h and
proceed as in the proof of Theorem 3.6. In particular, both (3.16) and (3.17) hold true, whereas in (3.18),
we need to employ inequality (3.4) without assumption (3.13), yielding

inf
ζ∈H1

#(ωa)
‖∇h(ψa(v − ζ))‖ωa ≤ Ccont,bPF

(
min

ζ∈H1
#(ωa)

‖∇h(v − ζ)‖ωa +

{ ∑

e∈Eh, a∈e
h−1
e ‖Π0

e[[v]]‖2e

}1/2)
. (3.22)

Consequently,

‖∇h(v − s2)‖2 ≤ 2(d+ 1)C2
cont,bPF

∑

a∈Vh

{
min

ζ∈H1
#(ωa)

‖∇h(v − ζ)‖2ωa
+

∑

e∈Eh, a∈e
h−1
e ‖Π0

e[[v]]‖2e

}
.

This already gives an upper bound with a local minimization structure, and we are left to make reappear
the discrete gradients in place of the broken ones. In order to do so, we proceed similarly to (3.20),

∑

a∈Vh
min

ζ∈H1
#(ωa)

‖∇h(v − ζ)‖2ωa
≤ 2

∑

a∈Vh
min

ζ∈H1
#(ωa)

‖∇θ(v − ζ)‖2ωa
+ 2|θ|2

∑

a∈Vh

∥∥∥∥∥
∑

e∈Eh
le([[v]])

∥∥∥∥∥

2

ωa

≤ 2
∑

a∈Vh
min

ζ∈H1
#(ωa)

‖∇θ(v − ζ)‖2ωa
+ 2|θ|2(d+ 1)2C2

inv

∑

e∈Eh
h−1
e ‖Π0

e[[v]]‖2e,
(3.23)

where we have used
∑

a∈Vh‖
∑
e∈Eh le([[v]])‖2ωa

= (d+1)‖∑e∈Eh le([[v]])‖2 like in (3.11) and (3.21). Altogether,

‖v‖2# ≤ C2
loc

∑

a∈Vh

{
min

ζ∈H1
#(ωa)

‖∇θ(v − ζ)‖2ωa
+

∑

e∈Eh, a∈e
h−1
e ‖Π0

e[[v]]‖2e

}
,

where C2
loc is given by (3.12), and the proof is concluded using the property (2.12) to apply the derived

result to v = u− uh.

4 Guaranteed, robust, and locally efficient a posteriori estimates
in a unified framework

We present in this section our a posteriori estimates on the error in a numerical approximation of prob-
lem (1.1). The estimates give guaranteed global error upper bound (global reliability). Crucially, we
achieve all robustness with respect to the jumps and anisotropy of the diffusion tensor Σ, robustness with
respect to the approximation polynomial degree, and local error lower bound (local efficiency); the latter
in consequence of the localization results of Section 3. Our results are presented in an abstract framework,
following [31, 32, 33]. This enables to cover at once basically any classical numerical method, in partic-
ular all types of conforming, nonconforming, mixed, and discontinuous Galerkin finite elements. The key
idea is to build a piecewise polynomial H1

0 (Ω)-conforming potential reconstruction and a piecewise poly-
nomial H(div,Ω)-conforming equilibrated flux reconstruction, in extension of the methodology developed
in [42, 36, 34, 25, 26, 37, 1, 40, 12, 43, 2, 52, 18, 5] and the references therein.

4.1 Flux and potential reconstruction

Let Pp(Th), p ≥ 0, stand for piecewise polynomials on the mesh Th of total degree at most p; we will denote
by Πp the L2(Ω)-orthogonal projection onto Pp(Th). For vector-valued functions, the Raviart–Thomas–
Nédélec mixed finite element spaces will be used; RTNp(Th) := {vh ∈ [L2(Ω)]d; vh|K ∈ RTNp(K)}, p ≥ 0,
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with the local spaces RTNp(K) := [Pp(K)]d + Pp(K)x, K ∈ Th, see Brezzi and Fortin [14] or Roberts and
Thomas [44].

To obtain an H(div,Ω)-conforming flux reconstruction, we solve homogeneous local Neumann (Neumann–
Dirichlet close to the boundary) problems over patches of elements Ta via the mixed finite element method:

Definition 4.1 (Equilibrated flux reconstruction). Let uh ∈ H1(Th) satisfy Assumption 2.4. For all vertices
a ∈ Vh, set

Va
h := {vh ∈ RTNp(Ta) ∩H(div, ωa); vh·nωa = 0 on ∂ωa},

Qa
h := {qh ∈ Pp(Ta); (qh, 1)ωa = 0}, a ∈ V int

h ,

Va
h := {vh ∈ RTNp(Ta) ∩H(div, ωa); vh·nωa = 0 on ∂ωa \ ∂Ω},

Qa
h := Pp(Ta),

a ∈ Vext
h .

Then prescribe σa
h ∈ Va

h and r̄ah ∈ Qa
h by solving

(σa
h,vh)ωa − (r̄ah,∇·vh)ωa = −(ψaΣ∇θuh,vh)ωa ∀vh ∈ Va

h, (4.1a)

(∇·σa
h, qh)ωa = (ψaf −Σ∇θuh·∇ψa, qh)ωa ∀qh ∈ Qa

h (4.1b)

and define, after extension by zero outside of ωa,

σh :=
∑

a∈Vh
σa
h.

To obtain an H1
0 (Ω)-conforming potential reconstruction, we solve homogeneous local Dirichlet problems

over patches of elements Ta via the finite element method:

Definition 4.2 (Potential reconstruction). Let uh ∈ H1(Th). For all vertices a ∈ Vh, set

W a
h := Pp+1(Ta) ∩H1

0 (ωa).

Then prescribe sah ∈W a
h by solving

(∇sah,∇ζh)ωa = (∇h(ψauh),∇ζh)ωa ∀ζh ∈W a
h (4.2)

and define, after extension by zero outside of ωa,

sh :=
∑

a∈Vh
sah.

The two above constructions yield a piecewise vector-valued polynomial σh ∈ RTNp(Th)∩H(div,Ω) and
a piecewise scalar-valued polynomial sh ∈ Pp+1∩H1

0 (Ω). In practice, the approximate solution uh is a piece-
wise p-degree polynomial, see Assumption 4.6 below, and this fixes the degree p in Definitions 4.1 and 4.2.
It is also easy to verify that ∇·σh = Πpf , see [12] or [32, Lemma 3.5]. Problems (4.1) and (4.2) actually
admit local minimization characterizations, see, e.g., [32, Remarks 3.7 and 3.10] and [33, Corollaries 3.1
and 3.3]:

Remark 4.3 (Local minimizations). Problems (4.1) and (4.2) can be equivalently rewritten as

σa
h := arg min

vh∈Va
h,∇·vh=ΠQa

h
(ψaf−Σ∇θuh·∇ψa)

‖ψaΣ∇θuh + vh‖ωa ∀a ∈ Vh, (4.3a)

sah := arg min
ζh∈Wa

h

‖∇h(ψauh − ζh)‖ωa ∀a ∈ Vh. (4.3b)

Remark 4.4 (Discrete and broken gradients). In practice, one could also choose sah := arg minζh∈Wa
h

‖∇θ(ψauh − ζh)‖ωa instead of (4.3b). The current choice is motivated by the key property (4.5b) below
which enables to prove the (local) efficiencies in Theorem 4.7.
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4.2 Guaranteed error control

We present here our a posteriori error estimate on the intrinsic error |||u− uh||| given by (2.10), still merely
under Assumption 2.4, in the very abstract setting uh ∈ H1(Th). Define the data oscillation estimators

ηosc,K :=
hK
π
‖f −Πpf‖K , K ∈ Th.

It follows as in [32] and the references therein that:

Theorem 4.5 (A posteriori estimate in a unified framework). Let u be the weak solution of problem (1.1)
given by (1.2). Let uh ∈ H1(Th) satisfying Assumption 2.4 be arbitrary. Consider the equilibrated flux
reconstruction of Definition 4.1 and the potential reconstruction of Definition 4.2. Then the error u − uh
measured in intrinsic norm (2.10) can be estimated by

|||u− uh|||2 ≤
∑

K∈Th
(‖Σ∇θuh + σh‖K + ηosc,K)2 +

∑

K∈Th
‖∇θ(uh − sh)‖2K+

∑

e∈Eh
h−1
e ‖Π0

e[[uh]]‖2e. (4.4)

4.3 Robust (local) efficiency

We now prove the converse statement to Theorem 4.5, and this locally in the neighborhood of each mesh
element. Results of Section 3 are of course crucial here, stating that the intrinsic norm (2.10) in which
we measure the error indeed admits a local structure. For this local efficiency result, we need to suppose
that the approximate solution uh is a piecewise polynomial of the degree p that we have already used in
Section 4.1 for the flux and potential reconstructions:

Assumption 4.6 (Piecewise polynomial approximation). The approximate solution uh is a piecewise poly-
nomial of degree p ≥ 1, uh ∈ Pp(Th).

The crucial ingredient for local efficiency under Assumption 4.6 are the following two stability results
for the problems (4.1) and (4.2), shown respectively in [11, Theorem 7] and in [32, Corollary 3.16] in two
space dimensions and extended to three space dimensions in [33, Corollaries 3.1 and 3.3] (recall that the
space H1

∗ (ωa) is given by (3.1)):

‖ψaΣ∇θuh + σa
h‖ωa ≤ Cst max

ϕ∈H1
∗(ωa); ‖∇ϕ‖ωa=1

{−(ψaΣ∇θuh,∇ϕ)ωa + (Πp(ψaf)−Σ∇θuh·∇ψa, ϕ)ωa},

(4.5a)

min
ζh∈Wa

h

‖∇h(ψauh − ζh)‖ωa≤ Cst min
ζ∈H1

0 (ωa)
‖∇h(ψauh − ζ)‖ωa . (4.5b)

Here Cst is a constant that only depends on the mesh shape regularity κT and on the space dimension d.
A computable upper bound on Cst is given in [32, Lemma 3.23]. Note that (4.5b) is stated for the broken
gradient (2.5).

Define a local efficiency data oscillation term

η̃osc,K :=
hK
π
‖ψaf −Πp(ψaf)‖K , K ∈ Th, (4.6)

together with η̃osc :=
{∑

K∈Th(η̃osc,K)2
}1/2

. Recall that the dual norm of the residual ‖u− uh‖∗ is defined
by (2.1a) and it localizes following Proposition 3.1; the distance to the energy space ‖u − uh‖# is given
by (2.8a) and it localizes following Proposition 3.5; the broken gradient is given by (2.5) and the discrete
gradient by (2.6); the constants Ccont,PF, Ccont,bPF, and Cloc are respectively given by (3.2), (3.4), and (3.12).
We then have:

Theorem 4.7 (Local and global efficiency and robustness for Theorem 4.5). Let u be the weak solution
given by (1.2) and let uh verify Assumptions 2.4 and 4.6. Then, for σh given by Definition 4.1,

‖Σ∇θuh + σh‖K ≤ CstCcont,PF

∑

a∈VK
‖u− uh‖∗,ωa + Cst

∑

a∈VK

{ ∑

K′∈Ta
η̃2

osc,K′

}1/2

∀K ∈ Th, (4.7a)

‖Σ∇θuh + σh‖ ≤ (d+ 1)CstCcont,PF‖u− uh‖∗ + (d+ 1)Cstη̃osc. (4.7b)
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Similarly, for sh given by Definition 4.2, when 〈[[uh]], 1〉e = 0 for all faces e ∈ Eh,

‖∇h(uh − sh)‖K ≤ CstCcont,bPF

∑

a∈VK
‖u− uh‖#,ωa ∀K ∈ Th, (4.8a)

‖∇h(uh − sh)‖ ≤ (d+ 1)CstCcont,bPF‖u− uh‖# (4.8b)

and in general

‖∇θ(uh − sh)‖K ≤ CstCloc

∑

a∈VK

∑

a′∈ωa

‖u− uh‖#,ωa′ ∀K ∈ Th, (4.9a)

‖∇θ(uh − sh)‖ ≤ (d+ 1)1/2CstCloc‖u− uh‖#. (4.9b)

There always holds
h−1/2
e ‖Π0

e[[uh]]‖e = h−1/2
e ‖Π0

e[[u− uh]]‖e ∀e ∈ Eh. (4.10)

Proof. Assertion (4.7a) follows as in [11, Theorem 1], cf. also [32, Theorem 3.17], whereas inequality (4.7b)
can be shown as in [32, Lemma 3.22]. As (4.10) is straightforward, we only prove inequalities (4.8) and (4.9).

Let first 〈[[uh]], 1〉e = 0 for all e ∈ Eh, so that in particular ∇h = ∇θ. Fix an element K ∈ Th. Using
Definition 4.2 of sah that yields (4.3b), the potential reconstruction decomposition sh|K =

∑
a∈VK s

a
h|K ,

the partition of unity by the hat functions
∑

a∈VK ψa|K = 1|K , the triangle inequality, and enlarging the
integration set, we infer

‖∇h(uh − sh)‖K =

∥∥∥∥
∑

a∈VK
(∇h(ψauh − sah))|K

∥∥∥∥
K

≤
∑

a∈VK
‖∇h(ψauh − sah)‖ωa . (4.11)

Now, the stability (4.5b), inequalities (3.17)–(3.18) with v = uh, the local norm definition (2.8b), and the
fact that 〈[[uh]], 1〉e = 0 for all e ∈ Eh imply ‖uh‖#,ωa = ‖u− uh‖#,ωa , proceeding as in (2.12). Thus

‖∇h(ψauh − sah)‖ωa ≤ Cst min
ζ∈H1

0 (ωa)
‖∇h(ψauh − ζ)‖ωa ≤ CstCcont,bPF‖u− uh‖#,ωa . (4.12)

Thus (4.8a) follows. The global efficiency (4.8b) is then a consequence of the estimate of the form (3.16)
together with (4.11), (4.12), (3.14b), and the norm definitions (2.8)

‖∇h(uh − sh)‖2 ≤ (d+ 1)
∑

a∈Vh
‖∇h(ψauh − sah)‖2ωa

≤ (d+ 1)C2
st

∑

a∈Vh
min

ζ∈H1
0 (ωa)
‖∇h(ψauh − ζ)‖2ωa

≤ (d+ 1)C2
stC

2
cont,bPF

∑

a∈Vh
‖u− uh‖2#,ωa

≤ (d+ 1)2C2
stC

2
cont,bPF min

ζ∈H1
0 (Ω)
‖∇h((u− uh)− ζ)‖2.

(4.13)

In order to show (4.9a), remark first that, using the discrete gradient definition (2.6), the triangle
inequality, and (4.11),

‖∇θ(uh − sh)‖K =

∥∥∥∥∥∇h(uh − sh)− θ
∑

e∈EK
le([[uh]])

∥∥∥∥∥
K

≤
∑

a∈VK
‖∇h(ψauh − sah)‖ωa + |θ|

∥∥∥∥∥
∑

e∈EK
le([[uh]])

∥∥∥∥∥
K

.

First, as in (3.21), employing definition (2.8b),

∥∥∥∥∥
∑

e∈EK
le([[uh]])

∥∥∥∥∥
K

≤ (d+ 1)1/2Cinv

{ ∑

e∈EK
h−1
e ‖Π0

e[[v]]‖2e

}1/2

≤ 1

d
(d+ 1)1/2Cinv

∑

a∈VK
‖u− uh‖#,ωa .
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Next, the finite element stability (4.5b) together with (3.17) and (3.22) give

‖∇h(ψauh − sah)‖ωa ≤ Cst min
ζ∈H1

0 (ωa)
‖∇h(ψauh − ζ)‖ωa ≤ Cst inf

ζ∈H1
#(ωa)

‖∇h(ψa(uh − ζ))‖ωa

≤ CstCcont,bPF

(
min

ζ∈H1
#(ωa)

‖∇h(uh − ζ)‖ωa +

{ ∑

e∈Eh, a∈e
h−1
e ‖Π0

e[[uh]]‖2e

}1/2)
.

Using once more the discrete gradient definition (2.6) and proceeding as in (3.23),

min
ζ∈H1

#(ωa)
‖∇h(uh − ζ)‖2ωa

≤ 2 min
ζ∈H1

#(ωa)
‖∇θ(uh − ζ)‖2ωa

+ 2|θ|2
∥∥∥∥∥

∑

e∈Eh,e∈ωa

le([[uh]])

∥∥∥∥∥

2

ωa

≤ 2 min
ζ∈H1

#(ωa)
‖∇θ(uh − ζ)‖2ωa

+ 2|θ|2(d+ 1)C2
inv

∑

e∈Eh,e∈ωa

h−1
e ‖Π0

e[[uh]]‖2e

≤
(

2 +
1

d
2|θ|2(d+ 1)C2

inv

) ∑

a′∈ωa

‖u− uh‖2#,ωa′
,

where we have used estimate of the form (3.21) for such faces e ∈ Eh that lie in the closure of the patch
subdomain ωa, whence

min
ζ∈H1

#(ωa)
‖∇h(uh − ζ)‖ωa ≤

(
2 +

1

d
2|θ|2(d+ 1)C2

inv

)1/2 ∑

a′∈ωa

‖u− uh‖#,ωa′ .

Altogether,

‖∇θ(uh − sh)‖K ≤ CstCcont,bPF

(
2 +

1

d
2|θ|2(d+ 1)C2

inv

)1/2 ∑

a∈VK

∑

a′∈ωa

‖u− uh‖#,ωa′

+ CstCcont,bPF

∑

a∈VK
‖u− uh‖#,ωa

+
1

d
|θ|(d+ 1)1/2Cinv

∑

a∈VK
‖u− uh‖#,ωa ,

which proves (4.9a), using that Cst ≥ 1 and definition (3.12) of the constant Cloc.
Finally, for the global bound (4.9b), we first use, as in (3.20)–(3.21),

‖∇θ(uh − sh)‖2 ≤ 2‖∇h(uh − sh)‖2 + 2|θ|2(d+ 1)C2
inv

∑

e∈Eh
h−1
e ‖Π0

e[[uh]]‖2e.

One next employs the first line of (4.13). From there, the conclusion follows as in the proof of Proposition 3.5.

Remark 4.8 (Efficiency in the L2 flux norm for Theorem 4.7). The Cauchy–Schwarz inequality gives
‖v‖∗,ωa ≤ ‖Σ∇θv‖ωa and ‖v‖∗ ≤ ‖Σ∇θv‖ for all v ∈ H1(Ta) from (2.1), so that, immediately,

‖Σ∇θuh + σh‖K ≤ CstCcont,PF

∑

a∈VK
‖Σ∇θ(u− uh)‖ωa + Cst

∑

a∈VK

{ ∑

K′∈Ta
η̃2

osc,K′

}1/2

∀K ∈ Th,

‖Σ∇θuh + σh‖ ≤ (d+ 1)CstCcont,PF‖Σ∇θ(u− uh)‖+ (d+ 1)Cstη̃osc.

Applications to conforming, nonconforming, mixed, and discontinuous Galerkin approximations are
straightforward following [32, Section 4].

Remark 4.9 (More general diffusion tensors Σ). For Theorems 4.5 and 4.7, the requirement of piecewise
constant diffusion tensor Σ from Assumption 2.1 is unavoidable. It is namely crucial for inequality (4.5a) to
hold. If Σ is piecewise polynomial of degree p′ and uh is piecewise polynomial of degree p, then RTNp+p′(Ta)
spaces would need to be chosen in Definition 4.1 to maintain the present form of the results; otherwise a
supplementary oscillation term of the datum Σ of the form of (4.6) would appear in Theorem 4.7.
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Remark 4.10 (Polynomial degree and cost of the reconstructions). The reconstruction of Definition 4.1
relies on solution of local problems with RTNp(Ta)-spaces, whereas that of Definition 4.2 on solution of local
problems with Pp+1(Ta) spaces. Although these constructions are local, the associated computational burden
may not be completely negligible. There exist various ways how to decrease it. First, the proofs in [11]
and [33] actually show that the solves of local problems on each patch Ta by finite elements can be replaced
by an explicit run through Ta and a local construction inside each mesh element. This explicit construction
remarkably maintains the polynomial-degree robustness. Equilibrated reconstruction in RTNp−1(Ta) for
uh ∈ Pp has also been suggested in [11] and analyzed in [31, Section 6.2]; one does not know here, however,
whether it leads to polynomial-degree robustness. A recent survey of cheaper (but possibly not polynomial-
degree robust) a posteriori estimators via reconstructions can be found in [5].

5 Numerical experiments

We report here the results of two numerical experiments, while relying on the conforming piecewise affine
finite element approximation: find uh ∈ Vh := P1(Th) ∩H1

0 (Ω) such that

(Σ∇uh,∇vh) = (f, vh) ∀vh ∈ Vh. (5.1)

The experiments were implemented by Jan Blechta (Charles University in Prague) using the dolfin-tape [7]
package built on top of the FEniCS Project [3].

We start by noting that that since uh ∈ H1
0 (Ω), |||u − uh||| = ‖u − uh‖∗, and the nonconformity error

‖u− uh‖# is zero. We will focus on our a posteriori error estimates of Theorem 4.5, while tracing the error
‖u− uh‖∗ defined by (2.1a) and the estimate of (4.4) that simplifies to

‖u− uh‖∗ ≤η :=

{ ∑

K∈Th
(‖Σ∇uh + σh‖K + ηosc,K)2

}1/2

; (5.2)

indeed, sh = uh and [[uh]] = 0 for all e ∈ Eh here, cf. (4.9). The efficiency of our estimates, proven by (4.7b)
of Theorem 4.7, is in practice best appreciated by the effectivity index

Eff :=
η

‖u− uh‖∗
. (5.3)

In what follows, we compute ‖u − uh‖∗ approximately with relative accuracy 10−2, see the details in [8,
Section 5]. We will also display the canonical H1

0 (Ω)-norm of the error ‖∇(u− uh)‖.
Two test cases, one with a regular solution and one with a singular solution, are considered. Only

uniform mesh refinement is used in the first case, whereas mesh adaptivity is employed in the second one.
Here all elements where the estimator exceeds 50% of the maximal estimator value on the given mesh are
refined by the so-called newest-vertex bisection refinement algorithm.

5.1 A regular weak solution

We first consider the test case from [39, Section 5.1] with a regular solution. We set Ω := (−1, 1)× (−1, 1)
with Ω+ := (0, 1)× (−1, 1) and Ω− := (−1, 0)× (−1, 1) and let Σ|Ω+

= σ+I, Σ|Ω− = σ−I with σ+ = 1 and
σ− < 0. The exact solution is given by

u(x, y) = σ−x(x+ 1)(x− 1)(y + 1)(y − 1) for (x, y) ∈ Ω+,

u(x, y) = x(x+ 1)(x− 1)(y + 1)(y − 1) for (x, y) ∈ Ω−,

and the (inhomogeneous) source term f is prescribed accordingly. Note that this solution indeed leads to
the homogeneous Dirichlet boundary condition. Together with its finite element approximation and the
corresponding initial mesh for the setting σ− = −1/3, it is presented in Figure 1. Higher values of the
approximate solution can be noted in particular in the left subdomain Ω−. Specifying the operator T as is
in [39], see also Remark 5.1 below, one can see that the problem is well-posed when σ− 6= −1.

The ‖u − uh‖∗ and ‖∇(u − uh)‖ errors and the estimate η of (5.2) are traced in the left parts of
Figures 2–4, for three different choices of the parameter σ−. The corresponding effectivity indices given
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Figure 1: Exact (left) and approximate (right) solution with the corresponding initial mesh, the regular
case with σ− = −1/3
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Figure 2: Estimates and errors for uniform mesh refinement (left) and the corresponding effectivity indices
(right), the regular case with σ− = −0.01

by (5.3) are plotted in the right parts of these figures. We observe a systematic first-order decrease of both
errors, as predicted by the a priori error analysis, cf. [20]. The overall estimator η of (5.2), as well as its

principal component given by
{∑

K∈Th‖Σ∇uh + σh‖2K
}1/2

, also decrease with first order, in agreement

with Theorems 4.5 and 4.7. On the other hand, the data oscillation estimator
{∑

K∈Th η
2
osc,K

}1/2
decreases

with a slope of two and its influence rapidly diminishes.
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Figure 3: Estimates and errors for uniform mesh refinement (left) and the corresponding effectivity indices
(right), the regular case with σ− = −1/3

The effectivity indices in all the three settings are very close to the optimal value of one, including the
last challenging case σ− = −0.99 which is very close to the well-posedness limit. This clearly demonstrates
the robustness of our estimates with respect to the jump and sign-change in the diffusion tensor Σ, if the
error is measured in the intrinsic norm ‖u− uh‖∗. It can be noted from Figures 2–4 that such a robustness
does not hold for the canonical norm ‖∇(u − uh)‖. Similarly, the upper bound ‖Σ∇(u − uh)‖ and the

lower bound (Σ∇(u−uh),∇(T(u−uh)))
‖∇(T(u−uh))‖ on the intrinsic error ‖u − uh‖∗ given by (2.2) seem rather Σ- and T-

dependent, see in particular the numerical study in [22, Section 6]. Finally, Figure 5 illustrates that the
distribution of the error is predicted very correctly by our estimators (plotting by a piecewise affine function
is done as explained in [8, Section 5]).

We finish this section by a remark relative to the specific case σ− = −1/3:

Remark 5.1 (Equivalence of the intrinsic norm with its upper and lower bounds). Consider the intrinsic

norm ‖u−uh‖∗ given by (2.1a) together with its upper ‖Σ∇(u−uh)‖ and lower bounds (Σ∇(u−uh),∇(T(u−uh)))
‖∇(T(u−uh))‖

that follow from (2.2). Interestingly enough, they all coincide in the case σ− = −1/3. To explain this
behavior, note first that ‖Σ∇(u − uh)‖ and ‖u − uh‖∗ will coincide whenever Σ∇(u − uh) is a gradient
of some scalar field from H1

0 (Ω). This will happen when curl of Σ∇(u − uh) = 0 on all K ∈ Th and
[[Rπ

2
Σ∇(u− uh)·n]] = 0 on all e ∈ Eh. These conditions are actually satisfied in this test case for all values

of σ−. To account for the other equality, one then notices that, when σ− ∈ (−1, 0), the operator T may be
defined as

Tu(x, y) =

{
u+(x, y) for (x, y) ∈ Ω+,
−u−(x, y) + 2u+(−x, y) for (x, y) ∈ Ω−

for this test case, with u+ := u|Ω+
and u− := u|Ω− . The chosen exact solution being such that u+(x, y) =

−σ−u−(−x, y) for (x, y) ∈ Ω+, the formula for Tu in Ω− simplifies to (Tu)|Ω− = (−1− 2σ−)u−. With the
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Figure 4: Estimates and errors for uniform mesh refinement (left) and the corresponding effectivity indices
(right), the regular case with σ− = −0.99
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Figure 5: Exact (left) and estimated (right) error distribution, the regular case with σ− = −1/3

help of these expressions, one may compute exactly

R(σ−) :=
(Σ∇u,∇(Tu))

‖∇(Tu)‖ ‖Σ∇u‖ =
(1 + 2σ− + |σ−|)

(|1 + 2σ−|2 + |σ−|2)
1/2√

2
.

For σ− ∈ (−1/3, 0), it holds that R(σ−) ∈ (1/
√

2, 1) and moreover R(−1/3) = 1, whereas limσ−→−1R(σ−) =

0. To obtain the same result for the ratio (Σ∇(u−uh),∇(T(u−uh)))
‖∇(T(u−uh))‖ ‖Σ∇(u−uh)‖ , one needs to work with symmetric meshes
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Figure 6: Approximate solution uh (left) the pointwise error u − uh (right) on the corresponding initial
mesh, the singular case with σ− = −3.1

with respect to the line {x = 0}, that is, globally T-conform meshes in the sense of [20]. In this case, one
has TVh = Vh, so that the properties of T at the continuous level carry over to the discrete level, whereas
uh|Ω+

(x, y) = −σ−uh|Ω−(−x, y) for (x, y) ∈ Ω+, by direct inspection of the formulation (5.1).

5.2 A singular weak solution

We next consider the test case from [39, Section 5.2] with a singular solution. We set Ω := (−1, 1)× (−1, 1)
with Ω+ := (0, 1) × (0, 1) and Ω− := Ω \ Ω+ and let again Σ|Ω+ = σ+I, Σ|Ω− = σ−I with σ+ = 1 and
σ− < 0. The exact solution is according to Bonnet-BenDhia et al. [10] given by

u(x, y) = rλ(c1 sin(λθ) + c2 sin(λ(π/2− θ))) for (x, y) ∈ Ω+,

u(x, y) = rλ(d1 sin(λ(θ − π/2)) + d2 sin(λ(2π − θ)) for (x, y) ∈ Ω−.
(5.4)

Here (r, θ) are the polar coordinates centered at the origin and λ = 2/π arccos((1 − σ−)/(2|1 + σ−|)).
We consider two test settings with σ− = −5 and σ− = −3.1 leading respectively to c1 = 1, c2 = −1,
d1 = −0.8, d2 = −0.8, λ ≈ 0.4601069123 and c1 = 1, c2 = −1, d1 ≈ −0.3556451613, d2 ≈ 0.3556451613,
λ ≈ 0.1391989493. Classically, u ∈ H1+λ(Ω) only, with a singularity at the origin. The finite element
approximation on the coarsest mesh for the case σ− = −3.1 is presented in the left part of Figure 6. The
steep gradient around the origin of the exact solution is largely missed by the approximation, as it can
be seen from the right part of Figure 6. The inhomogeneous Dirichlet boundary condition is prescribed
according to (5.4). It is naturally treated in the reconstruction of Definition 4.1, see [28, Definition 3.5],
but we neglect here the additional quadrature estimator that theoretically appears in the upper and lower
bounds, see [28, Theorems 3.3 and 3.12] and [33, Corollary 3.8]. The source term f corresponding to (5.4) is
equal to 0; consequently, the data oscillation estimators ηosc,K in (5.2) vanish. The operator T is specified
in [39]; the problem is in particular well-posed when σ− < −3 or −1/3 < σ− < 0.

The intrinsic error norm ‖u−uh‖∗ together with the canonical error norm ‖∇(u−uh)‖ and the estimator
η given by (5.2) are presented in the left parts of Figures 7–8. The corresponding effectivity indices are then
given in the right parts of these figures. They are remarkably close to the optimal value of one in all the
settings, illustrating numerically the robustness that has been proven in Section 4. The convergence orders
of both errors and of the estimate for uniform mesh refinement correspond to the a priori analysis, being
0.46 and 0.12 respectively in the two settings. For adaptive mesh refinement (after a preliminary phase
for the strongly singular setting), the convergence orders are optimal and close to 1. Finally, the predicted
spatial distribution of the error still seems to be very accurate even in the close-to-the-limit singular case
σ− = −3.1, see Figure 9.
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Figure 7: Estimates and errors for uniform and adaptive mesh refinement (left) and the corresponding
effectivity indices (right), the singular case with σ− = −5

6 Conclusions and outlook

We have shown in this work that globally defined dual norms as well as globally defined distance norms to the
energy space admit an equivalent localization. Direct proofs with clearly identified constants are given. In
the setting of the transmission problem with sign-changing coefficients (1.1), this suggests that the intrinsic
global norm (2.10) is suitable for a posteriori error analysis. Indeed, relying on the concept of flux and
potential reconstructions, we have obtained a guaranteed upper bound, as well as local lower bounds up to
a generic constant independent of the jump or sign change in the diffusion coefficient and the approximation
polynomial degree. This robustness is moreover obtained in a unified framework covering basically all
classical numerical methods. Numerical experiments, in the conforming finite element setting, confirm these
results [–]. Possible future developments include control of the error from a not completely converged linear
solver (and corresponding stopping criteria), extension to nonlinear problems, or proposition of an adaptive
operator T for self-adapting the method.

A Localization of the flux distance to the energy space

In extension of the discussion in Section 2.7, we can observe that

‖u− uh‖∗ ≤ min
σ∈H(div,Ω);∇·σ=f

‖Σ∇θuh + σ‖

by the Green theorem, so that ‖u− uh‖∗ is linked to the nonconformity in the approximate flux −Σ∇θuh.
We now present for this term a localization result like those of Section 3.2. Let H∗(div, ωa) stand for
H(div, ωa) functions with zero normal trace in the appropriate sense on ∂ωa for a ∈ V int

h and for H(div, ωa)
functions with zero normal trace in the appropriate sense on ∂ωa \ ∂Ω for a ∈ Vext

h . One can show similarly
as in Section 3.2, with the constant Ccont,PF of inequality (3.2) that:
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Figure 8: Estimates and errors for uniform and adaptive mesh refinement (left) and the corresponding
effectivity indices (right), the singular case with σ− = −3.1
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Figure 9: Exact (left) and estimated (right) error distribution on an adaptively refined mesh, the singular
case with σ− = −3.1

Theorem A.1 (Localization of the flux nonconformity evaluation). Let uh ∈ H1(Th) satisfying Assump-
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tion 2.4 be arbitrary. Then

min
σ∈H(div,Ω);∇·σ=f

‖Σ∇θuh + σ‖2 ≤ (d+ 1)
∑

a∈Vh
min

σa∈H∗(div,ωa);∇·σa=ψaf−Σ∇θuh·∇ψa

‖ψaΣ∇θuh + σa‖2ωa
,

∑

a∈Vh
min

σa∈H∗(div,ωa);∇·σa=ψaf−Σ∇θuh·∇ψa

‖ψaΣ∇θuh + σa‖2ωa
≤ (d+ 1)C2

cont,PF min
σ∈H(div,Ω);∇·σ=f

‖Σ∇θuh + σ‖2.
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