
Block and multilevel preconditioning for stochastic Galerkin
problems with lognormally distributed parameters

and tensor product polynomials

Ivana Pultarová

Mathematical Institute, Faculty of Mathematics and Physics, Charles University in Prague,
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Abstract.
The stochastic Galerkin method is a popular numerical method for the solution of differential
equations with randomly distributed data. We focus on isotropic elliptic problems with lognormally
distributed coefficients. We study the block-diagonal preconditioning and the algebraic multilevel
preconditioning based on the block splitting according to some hierarchy of approximation spaces
for the stochastic part of the solution. We introduce upper bounds for the resulting condition
numbers, and we derive a tool for obtaining sharp guaranteed upper bounds for the strengthened
Cauchy-Bunyakowsky-Schwarz constant, which can serve as an indicator of the efficiency of some
of these preconditioning methods. The presented multilevel approach yields a tool for efficient
guaranteed two-sided a posteriori estimates of algebraic errors and for adaptive algorithms as well.
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1 Introduction

We focus on the numerical solution of elliptic differential equations with randomly distributed data.
In practice, several approaches are usually used. We can apply the Monte Carlo method, which
may suffer from slow convergence due to a large number of test problems which must be solved.
The multilevel Monte Carlo method [22] is more efficient, but it still needs the solution of many
deterministic problems and does not offer any systematic error estimate. Collocation methods
need only a small number of samples and solutions of associated problems, but the whole set of
sample parameters must be changed and associated problems must be recomputed if we need some
refinement of the current solution. Introducing a weak formulation with respect to physical and
stochastic components of the problem gives rise to the stochastic Galerkin method (SGM), which
transforms the parametrized differential equation into a high dimensional deterministic problem [6,
8, 11, 39]. The convergence theory of SGM and a priori error estimates are well understood [6, 7, 11,
12] even for problems with lognormally distributed coefficients [5, 23]. Systems of linear equations
arising from SGM and their spectral properties represent relatively new issues within numerical
linear algebra [17, 28]. In this paper, we are interested in preconditioning and in a posteriori
estimates of algebraic errors of approximate solutions of SGM.

Preconditioning methods usually use some kind of approximate inverse of a given matrix derived,
for example, from some reduction or simplification of a given problem. For example, we may use
diagonal blocks of the SGM matrix or blocks which correspond to some underlying deterministic
problem. These two methods coincide and are called mean based preconditioning, if the coefficients
of the equation are expanded into a series which is linear in stochastic variables [16, 28, 41]. They
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are efficient especially if the coefficient of variation of the data is small, or for log-transformed
problems [37]. The Kronecker product of two sparse matrices of stochastic and physical variables,
respectively, was used and studied in [36]. It can be expected that any type of preconditioning
employing some appropriate partitioning of physical variables can be successfully applied to SGM.
For example, good efficiency of multigrid algorithms and of Schwarz and domain decomposition
methods was reported in [9, 15, 25, 26] and in [34, 35], respectively. Some recent papers revealed
that hierarchical or Schur complement preconditioning can be successfully applied to stochastic
discretization spaces as well. Numerical results for normally or lognormally distributed coefficients
for such methods were presented in [32, 33] and some upper bounds for the resulting condition
numbers were theoretically proved for uniform or normal distributions in [30].

The goal of this paper is to study block-diagonal preconditioning and algebraic multilevel (AML)
splittings of stochastic approximation spaces and associated preconditioning of problems with
lognormally distributed coefficients. These coefficients yield more complicated structures of the
matrices of discretized problems than the coefficients which depend linearly on random variables.
The efficiency of AML preconditioners [2, 13, 24], can be quantified by means of the strength-
ened Cauchy-Bunyakowsky-Schwarz (CBS) constant. Sharp uniform upper bounds for the CBS
constants can be obtained for many types of finite element (FE) discretization spaces, see, for in-
stance, [3]. Although a coupling between physical and stochastic variables yield more complicated
structures than those arising from deterministic FE methods, the CBS constants can be estimated
for SGM in some cases. Theoretical proofs were obtained for problems with coefficients which
depend linearly on random variables [29, 30]. In the present paper, we focus on problems with
lognormally distributed parameters [5, 23, 32, 37, 38]. Up to our knowledge, this is the first time
when the CBS constant for a hierarchical two-by-two matrix splitting for problems with lognor-
mally distributed parameters has been theoretically estimated. There are two main assumptions
used in this paper: the coefficients of the problem are assumed to be constant in every element of
the physical domain, and stochastic approximation spaces are in the form of a tensor product of
orthogonal multivariate polynomials. While the former assumption represents a usual assumption
for the approximation of data, the latter could be quite restrictive. We must stress that, up to
now, the results for the other frequently used discretization, complete polynomials, have not been
available. Still, the introduced results present a new direction in the preconditioning of SGM and
show how the original AML ideas can be applied to new problems. In addition, we show that
the technique used for estimating the CBS constant, a kind of element-wise computation, can be
adopted to obtain the upper bounds for block preconditioning for SGM. Let us also mention that
the theoretical upper bounds for the CBS constants may yield efficient two-sided and guaranteed
a posteriori estimates of the algebraic error of an approximate solution.

In the following section, we introduce our model problem: a differential equation and the parametriza-
tion of random input data. The elements of the SGM matrix are derived in section 3 for tensor
products of polynomials used for the discretization of stochastic components of the solution. For
theoretical purposes, matrix elements are evaluated using shifted Hermite orthogonal polynomials
on each element separately. In section 4, we recall the AML strategy for a hierarchical two-by-two
block splitting of a matrix, or, equivalently, for the splitting of approximation finite-dimensional
discretization spaces. We present a lemma which enables us to evaluate the upper bounds for
the CBS constants for SGM from a matrix associated with a single reference element only. We
show how the upper bound for the CBS constant indicates the efficiency of some AML precondi-
tioning methods. We recall the formula for two-sided a posteriori error estimates. In section 5,
we formulate the main results of the paper, the guaranteed upper bounds for the CBS constants
for elliptic differential equations with isotropic lognormally distributed parameters using tensor
product polynomials for the discretization of the stochastic component of the solution and the
upper bound for the condition number for the block diagonal preconditioning. Simple numerical
experiments in section 6 illustrate the obtained theoretical results and the paper is concluded by
a short discussion.
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2 Problem setting

Let (Ω,F , µ) be a complete probability space where Ω is the sample space with σ-algebra F of its
subsets and with the probability measure µ : F → 〈0, 1〉. For a real valued random variable ξ in
(Ω,F , µ), we denote the expectation by

E[ξ] =

∫
Ω

ξ(ω) dµ(ω) =

∫
R
zρ(z) dz,

where ρ : R → R is the associated probability density function. Let D ⊂ Rd, d = 1, 2 or 3, be a
bounded Lipschitz domain and let ∂D be the boundary of D. We solve a model elliptic boundary
value problem in almost sure sense [5, 23, 39]

−∇ · (a(x, ω)∇u(x, ω)) = f(x) (1)

in D × Ω with the homogeneous Dirichlet condition on the boundary ∂D × Ω. The techniques
and methods developed in this paper can be directly applied to problems with non-homogeneous
boundary conditions or with a combination of Dirichlet and Neumann boundary conditions, cf. also
section 4.1. The variable x ∈ D denotes physical coordinates and the gradient symbol denotes
differentiation with respect to x. The function f ∈ L2(D) is deterministic, but the results of this
paper extend to f dependent on ω.

Our interest is devoted to problems where the diffusion coefficient a(x, ω) is a lognormally dis-
tributed scalar random field. Let y = (y1, . . . , yN ) : Ω→ Γ be a vector of random variables which
are independent and normally distributed with zero mean and unit variance and with the same
probability density ρ(yi) = e−y

2
i /2/
√

2π. Here, Γ = RN is the joint image and ρ̄(y) =
∏N
i=1 ρ(yi)

is the joint probability density function of yi, i = 1, . . . , N . We consider the diffusion coefficient
a(x, ω) : D × Ω→ R of our model problem in the form

a(x, ω) = exp

(
a0(x) +

N∑
i=1

ai(x)yi(ω)

)
. (2)

The logarithm of a(x, ω) may represent, for example, the truncated Karhunen-Loève expansion
of some random process. Then ai(x) ∈ L2(D) would be normalized and pair-wise orthogonal
eigenfunctions of some covariance operator C(x, x′) defined on D2, which would be multiplied by
the square roots of the corresponding eigenvalues [7, 8, 18, 23, 37]. Since the eigenvalues form
a sequence of real non-negative decreasing numbers which tend to zero, the norms of ak in (2)
tend to zero as well. In what follows, we do not specify where the functions ak come from, we
only suppose that they are constant on the interiors of the elements used for the discretization of
D. The Doob-Dynkin lemma [5, 10, 16] says that u satisfying (1) with a defined by (2) can be
expressed as a random field for every x ∈ D, i.e. u = u(x, y), and∫

Ω

g(y(ω)) dµ(ω) =

∫
Γ

g(y)ρ̄(y) dy

can be used to evaluate all integrals over the sample space Ω for all Borel functions g of y. As
a consequence, we can introduce the weak formulation of (1). Let us define the bilinear form
A : H ×H → R,

A(u, v) =

∫
Γ

∫
D

a∇u · ∇vρ̄ dxdy, (3)

where H = H1
0 (D)⊗ L2

ρ̄(Γ), where L2
ρ̄(Γ) is the weighted Sobolev space of square-integrable func-

tions defined on Γ with the weight function ρ̄. A(u, v) is the energy scalar product inducing the
energy norm in a usual way [5, 6, 7, 18, 28]

‖u‖A =

∫
Γ

∫
D

a |∇u|2 ρ̄dxdy.
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For f from the dual space H ′ and for v ∈ H, let

〈f, v〉 =

∫
Γ

∫
D

fvρ̄dxdy.

The weak formulation of problem (1) then reads: find u ∈ H such that

A(u, v) = 〈f, v〉 (4)

for all v ∈ H. Due to the normal distribution of yi in (2), i = 1, . . . , N , the coefficient a is
not bounded away from zero and from infinity. In other words, there do not exist any constants
c1, c2 ∈ R, such that

0 < c1 ≤ a(x, ω) ≤ c2 <∞

almost sure and almost everywhere in D. However, following Lemma 1.2 in [5], we can prove the
existence and the uniqueness of the solution u to problem (4) and the boundedness of moments of
u up to the order k if f ∈ L2(D) ⊗ L2k(Ω). In our setting, f ∈ L2(D) is deterministic, then this
assumption is trivially fulfilled. Another approach to prove the well posedness of (4) was introduced
by Gittelson in [23]. To avoid difficulties in numerical computation, one can also use the truncated
normal probability distribution of yi and corresponding sets of orthogonal polynomials as the bases
of approximation spaces, see [37].

3 Stochastic Galerkin method

The discretization of model problem (4) can be obtained by its projection into some finite-
dimensional subspace V of H and by using the truncated generalized polynomial chaos expan-
sion [8] of an approximate solution

u(x, y) =

M∑
j=1

uj(x)Φj(y), (5)

where {Φj(y)}Mj=1 is a set of N -variate polynomials, which are orthogonal with respect to the

scalar product of L2
ρ̄(Γ). This method is known as the stochastic Galerkin method (SGM) or as

the spectral Galerkin approach [5, 6, 11, 21]. Let uj ∈ Vx ⊂ H1
0 (D), j = 1, . . . ,M , where Vx is a

span of (bi)linear finite element basis functions ψr(x), r = 1, . . . , F , defined on D. Thus,

u(x, y) =

M∑
j=1

F∑
r=1

ujrψr(x)Φj(y), (6)

ujr ∈ R. Let Φj(y) be products of univariate polynomials

Φj(y) = φj1(y1)φj2(y2) . . . φjN (yN ), (7)

where φk denotes a polynomial of the order k = 0, 1, . . ., and let Vy be the span of Φ1(y), . . . ,ΦM (y).
Two main types of sets ofN -variate polynomials Φj(y) are usually considered for the approximation
off u: complete polynomials of the total degree less than or equal to a given constant P , i.e. 0 ≤
j1 + . . . + jn ≤ P , or tensor products of univariate polynomials of orders which do not exceed
the given constants Pk, i.e. jk ≤ Pk for k = 1, . . . , N . Complete polynomials are recommended
to be used, for example, if the norms of functions ak, k = 1, . . . , N , in (2) are approximately
the same, because it can be expected that the solution can be well approximated by polynomials
Φi(y) where the variables yi have almost the same influence. The tensor product polynomials
can be more appropriate, for example, if the norms of ak decay rapidly with the growing k. In
this case, the maximal degrees of polynomials φjk(yk) of the expansion of a decay with a similar
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rate if k increases, see [18], and we may expect that the solution can be accurately and efficiently
approximated by Φi(y) where the maximal orders of φjk(yk) get smaller when k increases. Thus, it
can be more efficient to use tensor product polynomials with decreasing Pk than a set of complete
polynomials. In this paper, we only consider tensor product polynomials. The dimension of a set
of tensor product polynomials of N variables of degrees Pk, k = 1, . . . , N , is

M =

N∏
i=1

(Pi + 1).

The finite-dimensional solution space of (4) is then the tensor product space V = Vx ⊗ Vy of the
dimension M × F . The convergence analysis and a priori error estimates for these discretization
spaces can be found, for example, in [5, 6, 11, 12, 23]. The discretized problem is represented by
a system of M × F linear equations of M × F unknowns

Au = B.

We denote a function u ∈ V and its vector representation with respect to some fixed basis of V
with the same letter. Let us denote the coordinates of A, u, and B by pairs of indices, say j, r, such
that the first index j is the coordinate with respect to the basis functions Φj(y), j = 1, . . . ,M , of
Vy, and the second index r is the coordinate with respect to the FE basis functions ψr(x) of Vx. Let
us order the basis functions Φj(y)ψr(x) of V lexicographically, i.e. in such a way that the second
subscript is changing faster than the first one. Let the N -variate polynomials Φj(y) be ordered in
such a manner that j < m whenever Φj(y) = φj1(y1) . . . φjN (yN ), Φm(y) = φm1

(y1) . . . φmN
(yN )

and (j1, . . . , jN ) < (m1, . . . ,mN ) according to the anti-lexicographical ordering, which means, for
example, that the first element is changing fastest.

Let us denote by Ajk the block of A of the size F × F associated with the basis polynomials
Φj and Φk, and let (Ajk)rs be an element of this block corresponding to the finite element basis
functions ψr and ψs. Let us order the elements of the solution vector u and of the right hand side
B adequately. Then the elements of A and B are

(Ajk)rs =
1

(2π)N/2

∫
RN

∫
D

exp

(
a0(x) +

N∑
i=1

ai(x)yi

)
×∇ψr(x) · ∇ψs(x)Φj(y)Φk(y)e−(y21+...+y2N )/2 dxdy (8)

Bjr =
1

(2π)N/2

∫
RN

∫
D

f(x)ψr(x)Φj(y)e−(y21+...+y2N )/2 dx dy.

Note that Bjr = 0 for j > 0 whenever f is deterministic. Since we focus on the spectral properties
of preconditioning of A, our starting point is to find suitable formulas for evaluating the integral∫

RN

exp

(
a0(x) +

N∑
i=1

ai(x)yi

)
Φj(y)Φk(y)e−(y21+...+y2N )/2 dy,

or, especially, ∫
R

exp (ai(x)yi)φji(yi)φki(yi)e
−y2i /2 dyi,

for i = 1, . . . , N , provided that ai(x) are constant on every element.

3.1 Shifted Hermite polynomials

Let Φj , j = 1, . . . ,M , be the multivariate orthogonal polynomials defined by (7) where the univari-
ate polynomials φk are normalized Hermite polynomials orthogonal with respect to the weighted
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scalar product of L2
ρ(R), where ρ(z) = e−z

2/2/
√

2π. The normalized Hermite polynomials φk can
be obtained recursively from φ0(z) = 1, φ1(z) = z, and

√
k + 1φk+1(z) = zφk(z)−

√
kφk−1(z). (9)

for k ≥ 2 [19, 31]. Then
1√
2π

∫
R

(φk(z))2 e−z
2/2 dz = 1

and
1√
2π

∫
R
zφk(z)φk+1(z) e−z

2/2 dz =
√
k + 1. (10)

One can easily prove by induction that a shifted Hermite polynomial is given by

φn(z + c) =

n∑
k=0

(
n

k

)√
k!

n!
cn−kφk(z). (11)

Then, for c ∈ R, we have∫
R
φj(z)φk(z)ecze−z

2/2 dz =

∫
R
φj(z)φk(z)ec

2/2e−(z−c)2/2 dz

= ec
2/2

∫
R
φj(z)φk(z)e−(z−c)2/2 dz

= ec
2/2

∫
R
φj(z + c)φk(z + c)e−z

2/2 dz

= ec
2/2

∫
R

j∑
m=0

(
j

m

)√
m!

j!
cj−mφi(z)

k∑
n=0

(
k

n

)√
n!

k!
ck−nφn(z)e−z

2/2 dz

= ec
2/2

∫
R

j∑
m=0

k∑
n=0

(
j

m

)(
k

n

)√
m!

j!

n!

k!
cj+k−m−nφm(z)φn(z)e−z

2/2 dz

= ec
2/2

j∑
m=0

k∑
n=0

(
j

m

)(
k

n

)√
m!

j!

n!

k!
cj+k−m−n

∫
R
φm(z)φn(z)e−z

2/2 dz

= ec
2/2

j∑
m=0

k∑
n=0

(
j

m

)(
k

n

)√
m!

j!

n!

k!
cj+k−m−nδnm

√
2π

= ec
2/2
√

2π

min(j,k)∑
m=0

(
j

m

)(
k

m

)
m!√
j!k!

cj+k−2m. (12)

We make use of the last expression in the subsequent sections.

3.2 Stochastic Galerkin matrices for lognormally distributed parameters

The elements of A defined by (8) can be approximated in several different ways. In [17, 32],
the standard polynomial chaos expansion of a(x, y) in terms of N -variate Hermite orthogonal
polynomials [20] is considered

a(x, y) = exp

(
a0(x) +

N∑
i=1

ai(x)yi

)
≈

M̃∑
k=0

ãk(x)Φk(y), (13)

where

ãk(x) =
E [a(x, y)Φk(y)]

E [Φ2
k(y)]

=
E [Φk(y + h(x))]

E [Φ2
k(y)]

exp

(
a0(x) +

1

2

N∑
i=1

a2
i (x)

)
,
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where h(x) is the deterministic vector h(x) = (a1(x), . . . , aN (x)). The truncated polynomial chaos
expansion (13) of a(x, y) can be then substituted into (2) and (8). Note that E [Φk(y + h(x))]
could be evaluated making use of shifted Hermite polynomials for every x ∈ D. In the evaluation
of (8), it is then necessary to integrate the products of triples of orthogonal polynomials∫

R
φi(z)φj(z)φk(z)e−z

2/2 dz,

which is guaranteed to be zero if, for example, k > i + j. This means that Φk(y) in the expan-
sion (13) of a(x, y) must be considered up to the degree 2P + 1 in all variables yi whenever one
uses polynomials of the degrees P for the solution and test spaces. Otherwise, the matrix A may
become semidefinite or indefinite, cf. [27]. Thus, M̃ in (13) must be sufficiently large. This form of
the expansion and evaluation of a allows us to compute and store only component blocks (of sizes
M ×M or F × F ) instead of the whole Kronecker product matrix A.

In our paper, we use a formally different way to evaluate the entries of A. However, if all ai(x)
are constant on each element, the resulting values of the entries of A are the same as if they were
computed in the classical way presented above. The reason why we express the entries of A in
a different form is purely theoretical: this provides a better insight into the structure of A. In
particular, we will see that if ai(x), i = 1, . . . , N , are constant on every element, the energy scalar
product (3) of two basis functions of V integrated only over a single reference element has the form
of Kronecker product of matrices with simple structures. The entries of A given by (8) are

(Ajk)rs =
1

(2π)N/2

∫
D

ea0(x)∇ψr(x) · ∇ψs(x)

·
∫
RN

ea1(x)y1+...+an(x)ynΦj(y)Φk(y)e−(y21+...+y2N )/2 dy dx.

Let us denote

G̃ijk(x) =
1√
2π

∫
RN

eai(x)zφj(z)φk(z)e−z
2/2 dz

= eai(x)2/2

min(j,k)∑
m=0

(
j

m

)(
k

m

)
m!√
j!k!

ai(x)j+k−2m, (14)

where the last equality follows from (12). Then

(Ajk)rs =

∫
D

N∏
i=1

G̃ijiki(x) ea0(x)∇ψr(x) · ∇ψs(x) dx,

=

∫
D

Gjk(x) ea0(x)∇ψr(x) · ∇ψs(x) dx, (15)

for r, s = 1, . . . , F , i = 1, . . . , N , j, k = 1, . . . ,M , where

Gjk(x) =

N∏
i=1

G̃ijiki(x),

and where Φj(y) = φj1(y1) . . . φjN (yN ), Φk(y) = φk1(y1) . . . φkN (yN ).

Let us introduce some observations. The matrix A is symmetric and positive definite for any set
of approximation polynomials Φj(y), j ∈ I ⊂ {1, . . . ,M}. This means that every diagonal block
Ajj of A is symmetric and positive definite. Each F × F block Ajk of A corresponding to Φj(y)
and Φk(y) is sparse and its non-zero pattern is the same as the non-zero pattern of the stiffness
matrix of the corresponding deterministic problem.
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The main goal of this paper is to study the spectral properties of block-diagonal and hierarchi-
cal preconditioning of A. We will consider only such a splitting of V that corresponds to some
collection of subsets of polynomials Φj(y). It means that we do not use any partitioning with
respect to physical unknowns. Some details of a general analysis of the two-by-two hierarchical
preconditioning can be found in the next section.

4 Algebraic multilevel preconditioning

The AML preconditioning is based on a hierarchical decomposition of the finite-dimensional solu-
tion spaces. The main quantity which can serve as a ”measure of efficiency” is the strengthened
Cauchy-Bunyakowsky-Schwarz (CBS) constant [2, 13, 24]. If there is a guaranteed upper bound
for the CBS constant which is sufficiently small and if the ratios of dimensions of any two consec-
utive hierarchical spaces are sufficient, we can efficiently employ some types of algebraic multilevel
preconditioning.

Let us consider an elliptic differential equation with Dirichlet or Dirichlet and Neumann boundary
conditions, possibly with random input data. Let A(u, v) be the energy scalar product induced
by the weak form of the problem and defined on some appropriate function space H. Let V ⊂ H
be some finite-dimensional discretization space which can be expressed as the direct sum of its
subspaces U and W of positive dimensions, U ∩W = 0,

V = U ⊕W.

Let A be the matrix of the resulting system of linear equations accordingly decomposed into the
two-by-two block form,

Au =

(
A11 A12

AT12 A22

)(
u1

u2

)
=

(
B1

B2

)
= B. (16)

Then A, A11 and A22 are symmetric positive definite matrices. We again do not distinguish
between the function u ∈ V and its vector representation with respect to some fixed basis of V .
Thus, we can write vTAu instead of A(u, v) for some real vectors or for u, v ∈ V , respectively.

4.1 CBS constant

The CBS constant γ ∈ 〈0, 1) [2, 13, 24] for subspaces U and W with respect to a symmetric and
positive semidefinite bilinear form A(u, v) is the smallest real γ ≥ 0 satisfying

A(u,w)2 ≤ γ2 A(u, u) A(w,w), u ∈ U, w ∈W,

or, equivalently,
(vT1 A12v2)2 ≤ γ2 vT1 A11v1 v

T
2 A22v2,

where v1 and v2 are any real vectors of appropriate dimensions.

Making use of specific discretization spaces, like, for example, hierarchical FE spaces, a guaranteed
upper bound for γ can be easily obtained after the ”restriction” of V , U , W and A(u, v) on a single
reference ”macro-element”, and from the splitting of such a ”local” space according to V = U⊕W .
This is a classical tool used in the AML theory, which appears, for example, in [2, 3, 4, 13, 24]. We
introduce a variant of this proposition, which is general enough and thus applicable to SGM. Let us
consider a set of symmetric positive semidefinite bilinear forms Ai(·, ·) : V × V → R, i = 1, . . . , n,
and let A(·, ·) be a symmetric positive definite bilinear form (scalar product) defined by

A(u, v) =

n∑
i=1

Ai(u, v), (17)
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for all u, v ∈ H.

Lemma 4.1 Let A(·, ·) : V × V → R be a scalar product, V = U ⊕W , U ∩W = 0 and let (17)
hold. Denote by γi ∈ 〈0, 1) the CBS constants for Ai(·, ·) and for subspaces U and W , i.e.

Ai(u,w)2 ≤ γ2
i Ai(u, u) Ai(w,w), u ∈ U, w ∈W, i = 1, . . . , n.

Then for the CBS constant γ for A(·, ·) and for U and W , we have γ ≤ maxi=1,...,n γi.

Proof. Denote β = maxi=1,...,n γi. Then from A(u,w) =
∑n
i=1Ai(u,w) and from the Hölder

inequality, we have for any u ∈ U and w ∈W ,

A(u,w)2 =

(
n∑
i=1

Ai(u,w)

)2

≤

(
n∑
i=1

|Ai(u,w)|

)2

≤

(
n∑
i=1

γi
√
Ai(u, u)Ai(w,w)

)2

≤ β2

(
n∑
i=1

√
Ai(u, u)Ai(w,w)

)2

≤ β2

(
n∑
i=1

Ai(u, u)

) n∑
j=1

Aj(w,w)


= β2A(u, u)A(w,w),

which completes the proof.

Lemma 4.1 allows us to estimate the CBS constant of the energy scalar product (3) using the
integration only over individual elements of the domain D. In this case A(·, ·) corresponds to the
integration over D and Ai(·, ·) corresponds to the integration over some element Di provided the
interiors of the elements are pair-wise disjoint and their union equals D. Moreover, for estimating
γi it is enough to consider only a general reference element. Note that Ai(·, ·) is positive definite if
Di coincides with a part of the boundary where the Dirichlet boundary condition is applied, and
Ai(·, ·) is positive semi-definite, otherwise. The latter case corresponds to the Neumann problem on
Di and it is also used for the reference element to obtain the upper bound for the CBS constants
γi. Since we consider the splitting of the approximation spaces only with respect to stochastic
variables in this paper, neither the shape nor the size of the elements influence this estimate. Let
us mention that the technique of estimating the CBS constant of SGM and of estimating the
condition number for the block diagonal preconditioning is the main contribution of this paper.
This technique is based on considering (3) on a single reference element.

4.2 Algebraic multilevel methods

In this paper, we define the condition number κ̂(B−1A) of the product of a symmetric matrix A
and its symmetric approximate inverse B−1 by the ratio of the maximal and minimal eigenvalues
of B−1A, which is identical to the common definition of the condition number of B−1/2AB−1/2,
κ(B−1/2AB−1/2) (but it is not the same as κ(B−1A), because the eigenvalues of B−1A2B−1 and of
B−1/2AB−1AB−1/2 may be different if A and B do not commute). Let us now recall the principles
of AML preconditioning methods, which are fully described e.g. in [2, 13, 24]. Let A be considered
in a two-by-two block form of (16), and let us assume that the block A11 can be again hierarchically
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decomposed into two-by-two blocks. Let for any such hierarchical two-by-two block partitioning
the CBS constant be not greater than γ ∈ 〈0, 1), i.e.

(uTA12v)2 ≤ γ2uTA11u v
TA22v,

for all vectors u and v of appropriate sizes. Let us further assume that it is relatively easy to solve
a set of linear equations with the matrix A22 and that it is relatively costly to solve a system with
A11. The matrices A and A−1 can be decomposed into

A =

(
I A12A

−1
22

0 I

)(
A11 −A12A

−1
22 A21 0

0 A22

)(
I 0

A−1
22 A21 I

)
A−1 =

(
I 0

−A−1
22 A21 I

)(
(A11 −A12A

−1
22 A21)−1 0

0 A−1
22

)(
I −A12A

−1
22

0 I

)
.

Denote the Schur complement of A22 by S = A11−A12A
−1
22 A21. In AML methods, S−1 is approx-

imated by
Z = M−1

11 Q
(
A11M

−1
11

)
,

where M11 is either equal to A11, or is an approximation to it. Here Q should be a polynomial of
a low order fulfilling Q(1) = 1. Thus, for the preconditioner of A, we can take

M−1 =

(
I 0

−A−1
22 A21 I

)(
M−1

11 Q(A11M
−1
11 ) 0

0 A−1
22

)(
I −A12A

−1
22

0 I

)
. (18)

For example, if we use M−1
11 = A−1

11 /(1− γ2), then we get for the spectrum of M−1A

σ(M−1A) = {1/(1− γ2)} ∪ σ(A−1
11 S/(1− γ2)) ⊂ 〈1, 1/(1− γ2)〉. (19)

Thus, if we use for preconditioning only the blocks A11 and A22, i.e. if M11 = A11, the resulting
method corresponds exactly to the two-by-two block Gauss-Seidel preconditioning [33, 42] and
κ̂(M−1A) ≤ 1/(1−γ2). When we substitute M−1

11 (≈ A−1
11 ) recursively in the same manner as M−1

in (18), we obtain the V-cycle type of the AML preconditioning. This method will be called AML-
V in our numerical examples in section 6. The condition number is then bounded by 1/(1−γ2)L−1,
where L is the number of levels, cf. [24]. If the CBS constants differ on different levels, the resulting
condition number is bounded by 1/((1−γ2

1) · · · (1−γ2
L−1)), where γk are particular CBS constants.

Numerical examples will be presented in section 6.

We can also only use the two-by-two block diagonal matrix with blocks A11 and A22 for the
preconditioning of A. Then the resulting condition number is bounded by

κ̂

((
A11 0
0 A22

)−1

A

)
≤ 1 + γ

1− γ
, (20)

see [24]. This method will be called B2 in section 6.

Let us assume that σ(A11M
−1
11 ) ⊂ 〈1, λ〉. Then, there exists a polynomial Q of the first degree

such that

σ
(
A11M

−1
11 Q(A11M

−1
11 )
)
⊂
〈

1,
(1 + λ)2

4λ

〉
.

Indeed, we can choose Q(t) = α(β − t) where β = 1 + λ and α = 1/λ. Moreover, we have

σ

(
1

1− γ2
A−1

11 (A11 −A12A
−1
22 A21)

)
⊂ 1

1− γ2

〈
1− γ2, 1

〉
=

〈
1,

1

1− γ2

〉
.

Let us come back to the preconditioning defined by (18), where the exact term S−1 is substituted by
M−1

11 Q(A11M
−1
11 ). If we started with σ(M−1

11 A11) ⊂ 〈1, λ〉, we would like to get σ(M−1A) ⊂ 〈1, λ〉
again. Thus, we need

(1 + λ)2

4λ

1

1− γ2
≤ λ. (21)

10



It can be verified that the solution of this inequality λ > 1 exists if γ2 < 3/4. In such a case,

λ ≥ 1

2
√

1− γ2 − 1
. (22)

Then

σ

(
1

1− γ2

yTM−1y

yTA−1y

)
∈ 〈1, λ〉

and
κ̂
(
M−1A

)
≤ λ.

Thus, we can prove recursively that for γ2 < 3/4 the condition number for this type of the multilevel
AML method (recursive two-by-two splitting of the first block of A and using (18)) is less than or

equal to λ = 1/(2
√

1− γ2 − 1). This method will be called AML-W in section 6.

Remark 4.2 If a in (2) is linear in y and if yi are uniformly or normally distributed, then under
some conditions and for some splitting of the solution space, γ2 < 1/2 and thus (21) can be fulfilled
for λ = 1 +

√
2, see [30].

Remark 4.3 Due to the twofold solution of linear systems with M11 on every level, the AML-W
scheme has a form of the W-cycle. It means that in every loop and on every level k = 1, 2, . . . , L,
there must be at least 2(L−k) matrix-vector multiplications (of different dimensions according to
the size of the problem on the level k) performed. Thus, the AML preconditioning can be optimal
only if the reduction ratio between the dimensions of A and A11 is sufficient on every level. In such
a case, the resulting condition number is uniformly bounded and the number of operations of a
single step of the AML-W preconditioning can be linearly proportional to the number of elements
of A, cf. [24]. On the other hand, within the AML-V method, only two systems with matrices
corresponding to the A22 block must be solved on levels 1, . . . , L−1 and one system must be solved
on the level L.

Remark 4.4 Let us summarize that applying the two-by-two block triangular preconditioner M ,
the resulting condition number of the matrix is bounded from above by 1/(1− γ2), see (19). If we
only use the two-by-two block diagonal preconditioner, the resulting condition number is bounded
by (1 + γ)/(1 − γ), see (20). If we use the hierarchical AML-W method with the polynomial
Q of the degree one, and if γ2 < 3/4 then the resulting condition number is bounded by λ =

1/(2
√

1− γ2−1). The resulting condition number is bounded by 1/((1−γ2
1) · · · (1−γ2

L−1)) for the
AML-V method, where γk is the CBS constant on level k. Computational complexities of these
methods depend on particular problems.

Remark 4.5 Apart from preconditioning, the AML approach also leads to reliable a posteriori
estimates of the algebraic error, see, for example [1, Chapter 5.4]. Having γ sufficiently small,
taking the residual r of some approximation of u and noticing that σ(M−1A) ⊂ 〈1, λ〉, we get

1

λ
rTM−1r ≤ rTA−1r ≤ rTM−1r.

This together with rTA−1r = eTAe where e = A−1r is the algebraic error of u, means that the
energy norm of the error can be estimated by the relatively easily computable term rTM−1r. This
estimate is two-sided, guaranteed and its computational cost corresponds to evaluating M−1r.
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5 Block preconditioning and CBS constants for the stochas-
tic Galerkin method for lognormally distributed parame-
ters

In this section, we introduce the main results of this paper: (i) guaranteed upper bounds for
the CBS constants for hierarchical two-by-two splitting of the matrix, and (ii) guaranteed upper
bounds for the condition numbers for the block-diagonal preconditioning. Both results are obtained
for the SGM matrix A for problems with lognormally distributed parameters defined by (8). We
consider only tensor products of Hermite polynomials as bases for the approximation of stochastic
components of the solution. The hierarchical splitting and the choice of blocks for the block-
diagonal preconditioning is made only with respect to the degrees of approximation polynomials
of stochastic variables. In the same way as in section 3, let us denote by Mjk and by (Mjk)rs the
blocks of M and their elements, respectively. The sizes of the blocks will always be clear from the
context. In the following, we use the common consensus that

∏m
i=k ci = 1 for any ci ∈ R whenever

m < k.

Let V = Vx ⊗ Vy be the approximation space defined in section 3. According to Lemma 4.1
and to section 4.1, to obtain the uniform upper bound for the CBS constant, we can restrict our
problem to a single reference element, which we call E. Let us also assume that all functions ai(x),
i = 0, 1, . . . , N , defined by (2) are piecewise constant, and, thus, they are constant on E. Let the
span of all FE basis functions which are non-zero on E be denoted by Vx;E . Then to determine
the CBS constant for some splitting of V = Vx ⊗ Vy, we can only study the adequate splitting of
VE = Vx;E ⊗ Vy. Let FE be the number of basis functions of Vx,E and let AE be the matrix of the
corresponding Neumann problem on E. Then AE is positive semidefinite, cf. section 4.1.

Denote by Vy;P1,...,PN
the span of polynomials Φj(y) = φj1(y1) . . . φjN (yN ) where φji(yi) are Her-

mite orthogonal polynomials (defined by (9)) of the degree less than or equal to Pi, i = 1, . . . , N .
Let Wy;N ;P1,...,PN

be the span of polynomials Φj(y) = φj1(y1) . . . φjN (yN ) where the degree of
φji(yi) is less than or equal to Pi, i = 1, . . . , N − 1 and the degree of φjN (yN ) is equal to PN . We
consider the splitting of the discretization space V into the direct sum of two subspaces

V = Vx ⊗ Vy;P1,...,PN
= (Vx ⊗ Vy;P1,...,PN−1)⊕ (Vx ⊗Wy;N ;P1,...,PN

). (23)

It means that the set of Φj(y) is decomposed into two parts according to the degree of the poly-
nomials of the ”last” random variable yN . The corresponding splitting of the discretization space
VE is then

VE = Vx;E ⊗ Vy;P1,...,PN
= (Vx;E ⊗ Vy;P1,...,PN−1)⊕ (Vx;E ⊗Wy;N ;P1,...,PN

). (24)

The dimensions of these spaces are

dim (Vx;E ⊗ Vy;P1,...,PN
) = FE ·

N∏
k=1

(Pk + 1),

dim (Vx;E ⊗ Vy;P1,...,PN−1) = FE · PN ·
N−1∏
k=1

(Pk + 1),

dim (Vx;E ⊗Wy;N ;P1,...,PN
) = FE ·

N−1∏
k=1

(Pk + 1).

Collecting the findings of previous sections and paragraphs, we may now approach to the main
results of this paper.

12



Theorem 5.1 Let us consider the problem (2)-(4) with piecewise constant functions ak(x), k =
0, 1, . . . , N , which are constant on the interiors of all elements used for some FE discretization of
the problem. Let the two-by-two splitting of the approximation space V = Vx ⊗ Vy be considered
as a direct sum of the form (23). Then the CBS constant γ for this splitting and for the scalar
product A(·, ·) is bounded by

γ2 ≤ β − 1

β
,

where

β =

PN∑
k=0

(
PN
k

)
1

k!
c2k

and c = ‖aN (x)‖∞ on D.

Proof. According to Lemma 4.1, section 4.1 and the previous paragraphs of section 5, we can only
study the corresponding Neumann problem on a single reference element E. Let the corresponding
matrix AE be split in accordance with (24). This means that we can evaluate (8), (14) and (15) only
on E, where ai(x) = ai, i = 0, 1, . . . , N , are constant (and possibly negative). Then G̃ijk(x) = G̃ijk
and Gjk(x) = Gjk are constant on E as well, and

G̃ijk = ea
2
i /2

min(j,k)∑
m=0

(
j

m

)(
k

m

)
m!√
j!k!

aj+k−2m
i , (25)

Gjk =

N∏
i=1

G̃ijiki , (26)

j, k = 1, . . . ,M . Let KE be the stiffness matrix of the deterministic Neumann problem with the
coefficient ea0 on E. Then AE = G⊗KE and the elements of AE are

(AEjk)rs = Gjk · (KE)rs, (27)

j, k = 1, . . . ,M , r, s = 1, . . . , FE . Then, for instance, for N = 1 and P = 2 we have Φ1(y) = φ0(y1),

Φ2(y) = φ1(y1), Φ3(y) = φ2(y1), and the matrix AE = A
[N,P ]
E = A

[1,2]
E is

A
[1,2]
E = ea

2
1/2

 KE a1KE (a2
1/
√

2)KE

a1KE (1 + a2
1)KE (

√
2a1 + a3

1/
√

2)KE

(a2
1/
√

2)KE (
√

2a1 + a3
1/
√

2)KE (1 + 2a2
1 + a4

1/2)KE


= ea

2
1/2

 1 a1 a2
1/
√

2

a1 1 + a2
1

√
2a1 + a3

1/
√

2

a2
1/
√

2
√

2a1 + a3
1/
√

2 1 + 2a2
1 + a4

1/2

⊗KE ,

where ⊗ stands for the Kronecker product of matrices. If, for example, N = 2, P1 = P2 = 2
then according to the ordering of Φj(y) defined in section 3, we have Φ1(y) = φ0(y1)φ0(y2),
Φ2(y) = φ1(y1)φ0(y2), Φ3(y) = φ2(y1)φ0(y2), Φ4(y) = φ0(y1)φ1(y2), . . . , Φ9(y) = φ2(y1)φ2(y2),

and AE = A
[N,P ]
E = A

[2,2]
E is

A
[2,2]
E = ea

2
2/2

 1 a2 a2
2/
√

2

a2 1 + a2
2

√
2a2 + a3

2/
√

2

a2
2/
√

2
√

2a2 + a3
2/
√

2 1 + 2a2
2 + a4

2/2

⊗A[1,2]
E .

As shown in this small example, due to (15) and (27), the matrix AE has the Kronecker product
structure. The numbering and the tensor product form of approximation polynomials Φj(y) yield
the block structure of AE , where each block is associated with a single degree of φjN (yN ). Then
AE is built from (PN +1)×(PN +1) blocks where all of these blocks are equal up to a multiplicative
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constant. The sizes of all of these blocks are FE
∏N−1
i=1 (Pi + 1)× FE

∏N−1
i=1 (Pi + 1). Then, finally,

for estimating the CBS constant for the splitting (24), we may study only the splitting of a
(PN + 1)× (PN + 1) matrix Ã, the entries of which are

(Ã)j+1,k+1 = e−a
2
N/2G̃Njk, (28)

for j, k = 0, . . . , PN . We have

(Ã)j+1,k+1 =

min(j,k)∑
m=0

(
j

m

)(
k

m

)
m!√
j!k!

aj+k−2m
N =

min(j,k)∑
m=0

(
j

m

)√
m!

j!
aj−mN

(
k

m

)√
m!

k!
ak−mN .

It can be noticed that Ã is the sum of (PN + 1)× (PN + 1) rank-one matrices,

Ã =

PN∑
m=0

v̄mv̄
T
m,

where ṽm ∈ RPN+1, (v̄m)i = 0 if i < m and

(v̄m)i+1 =

(
i

m

)√
m!

i!
ai−mN =

√
i!

(i−m)!
√
m!
ai−mN ,

otherwise. For example, for PN = 2 we have

Ã =

 1
aN
1√
2
a2
N

( 1 aN
1√
2
a2
N

)
+

 0
1√
2aN

( 0 1
√

2aN
)

+

 0
0
1

( 0 0 1
)
.

Let us consider the matrix Ã in the two-by-two block form

Ã =

(
Ã11 Ã12

ÃT12 Ã22

)
, (29)

where Ã11 is of the type PN × PN and Ã22 is a scalar. Let u = (u1, . . . , uPN
) ∈ RPN and w ∈ R

be arbitrary, and let us study the CBS constant γ in

(uT Ã12w)2 ≤ γ2uT Ã11uw
T Ã22w.

We have

uT Ã11u =

PN∑
k=0

(
PN∑

i=k+1

ui(ṽk)i

)2

=

PN−1∑
k=0

(
PN∑

i=k+1

ui(ṽk)i

)2

,

wT Ã22w =

PN∑
k=0

(ṽk)2
PN+1

w2,

uT Ã12w =

PN∑
k=0

PN∑
i=k+1

ui(ṽk)i(ṽk)PN+1
w =

PN−1∑
k=0

PN∑
i=k+1

ui(ṽk)i(ṽk)PN+1
w,

where the second and last equalities follow from (ṽPN
)i = 0 for i = 1, . . . , PN . Then from Hölder’s

inequality

(uT Ã12w)2 =

(
PN−1∑
k=0

PN∑
i=k+1

ui(ṽk)i(ṽk)PN+1
w

)2

≤
PN−1∑
k=0

(
PN∑

i=k+1

ui(ṽk)i

)2 PN−1∑
k=0

(ṽk)2
PN+1

w2

=

∑PN−1
k=0 (ṽk)2

PN+1∑PN

k=0(ṽk)2
PN+1

uT Ã11uw
T Ã22w.
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Finally, this yields

γ2 ≤
∑PN−1
k=0 (ṽk)2

PN+1∑PN

k=0(ṽk)2
PN+1

=

∑PN−1
k=0

(
PN

k

)2 k!
PN !a

2PN−2k
N∑PN

k=0

(
PN

k

)2 k!
PN !a

2PN−2k
N

=

∑PN−1
k=0

(
PN

k

)2 k!
PN !a

2PN−2k
1

1 +
∑PN−1
k=0

(
PN

k

)2 k!
PN !a

2PN−2k
N

=

∑PN−1
k=0

(
PN

k

)
1

(PN−k)!a
2PN−2k
N

1 +
∑PN−1
k=0

(
PN

k

)
1

(PN−k)!a
2PN−2k
N

=

∑PN

k=0

(
PN

PN−k
)

1
(PN−k)!a

2PN−2k
N − 1∑PN

k=0

(
PN

PN−k
)

1
(PN−k)!a

2PN−2k
N

=

∑PN

k=0

(
PN

k

)
1
k!a

2k
N − 1∑PN

k=0

(
PN

k

)
1
k!a

2k
N

. (30)

Note that the upper bound for γ2 depends on |aN | and that it increases if |aN | grows. Then taking
c = ‖aN (x)‖∞ instead of aN in (30) completes the proof of the theorem.

Remark 5.2 The studied problem is isotropic and the coefficient a in (3) is a scalar function. We
can treat similarly a more general problem, where a and ak are d× d positive definite matrices. In
such a case, instead of scalars exp(akyk) we would consider matrices, but in the analysis we would
deal with scalars exp(λkmyk), where λkm is the mth eigenvalue of the matrix ak. This analysis is
rather technical and does not seem to bring anything new to the presented theory therefore we do
not develop it in this direction.

Theorem 5.3 Let us consider the problem (2)-(4) with piecewise constant functions ak(x), k =
0, 1, . . . , N , which are constant on the interiors of all elements used for the FE discretization of
the problem. Let the block-diagonal preconditioning be considered for the system of linear equations
with the matrix A defined by (8), where the preconditioning diagonal blocks are of the sizes s =

F
∏N−1
k=1 (Pk + 1) and correspond to the approximation subspaces Wy;N ;P1,...,PN−1,k, where k =

0, 1, . . . , PN , respectively. Then the condition number κ̂(ABD) of the resulting system is bounded
by

κ̂(ABD) ≤
maxz∈〈−c,c〉 λmax(G̃N ;d(z))

minz∈〈−c,c〉 λmin(G̃N ;d(z))

where c = ‖aN‖∞ on D, λmin(G̃N ;d(z)) and λmax(G̃N ;d(z)) are the extremal eigenvalues of G̃N ;d(z),

which is the diagonally preconditioned matrix G̃N (z) of the size (PN + 1)× (PN + 1), where

(G̃N (z))j+1,k+1 =

min(j,k)∑
m=0

(
j

m

)(
k

m

)
m!√
j!k!

zj+k−2m.

Proof. Let us denote by Et the elements of D used by the FE method for the physical component
of the solution, D = ∪ND

t=1Ēt. Then we can consider a(u, u) = uTAu as a sum of integrals over
individual elements Et and we can look at the structure of A from yet another perspective,

A =

ND∑
t=1

G̃N (zt)⊗ G̃N−1(zt)⊗ · · · G̃1(zt)⊗KEt

where zt = aN (xt) and xt is any point from the interior of Et, G̃i(z) is of the type (Pi+1)×(Pi+1),
KEt is of the type F × F and

(
G̃i(z)

)
j+1,k+1

= ez
2/2

min(j,k)∑
m=0

(
j

m

)(
k

m

)
m!√
j!k!

zj+k−2m, i = 1, . . . , N

(KEt
)rs =

∫
KEt

ea0(xt)∇ψr(x) · ∇ψs(x) dx.
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Note that the matrix G̃N (z) equals Ã from the proof of Theorem 5.1 if z = aN . Let G̃diag
N (z) be

the diagonal part of G̃N (z). Denote c = ‖aN‖∞. Note that c = maxt=1,...,ND
|aN (xt)|. Let us

denote the extremal eigenvalues of the diagonally preconditioned matrix G̃N (z) by

α1 = min
z∈〈−c,c〉

λmin

((
G̃diag
N (z)

)−1

G̃N (z)

)
α2 = max

z∈〈−c,c〉
λmax

((
G̃diag
N (z)

)−1

G̃N (z)

)
.

Since G̃N (z) is positive definite for z ∈ R and c <∞, then 0 < α1 ≤ α2 <∞. We have

uTAu =

ND∑
t=1

uT G̃N (zt)⊗ G̃N−1(zt)⊗ · · · G̃1(zt)⊗KEt
u

and thus,

uTAu ≥ α1

ND∑
t=1

uT G̃diag
N (zt)⊗ G̃N−1(zt)⊗ · · · G̃1(zt)⊗KEtu

uTAu ≤ α2

ND∑
t=1

uT G̃diag
N (zt)⊗ G̃N−1(zt)⊗ · · · G̃1(zt)⊗KEtu.

Since for the block diagonal matrix M with blocks of A corresponding to the approximation
subspaces Wy;N ;P1,...,PN−1,k, k = 0, 1, . . . , PN we have

uTMu =

ND∑
t=1

uT G̃diag
N (zt)⊗ G̃N−1(zt)⊗ · · · G̃1(zt)⊗KEtu,

we get
α1 u

TMu ≤ uTAu ≤ α2 u
TMu

and therefore the resulting condition number is not greater than α2/α1, which completes the proof.

Remark 5.4 Theorem 5.3 transforms the question about the condition number for the block-
diagonal preconditioning of the stochastic Galerkin matrix A to estimating the maximal and mini-

mal eigenvalues of the (PN + 1)× (PN + 1) matrices G̃N ;d(z) =
(
G̃diag
N (z)

)−1

G̃N (z) for z ∈ 〈−c, c〉
where c = maxt=1,...,ND

|aN (xt)|. We assume that aN (x) is constant on every element. Although

we are not able to evaluate the extremal eigenvalues of G̃N ;d(z) exactly, we can estimate them eas-
ily, for example, from graphical plots of these eigenvalues depending on z ∈ 〈−c, c〉. The elements
of G̃N ;d(z) are also given by

(
G̃N ;d(z)

)
j+1,k+1

=

min(j,k)∑
m=0

(
j

m

)(
k

m

)
m!√
j!k!

zj+k−2m

=

∫
R φi(y)φj(y)ezy+ y2

2 dy√∫
R φ

2
i (y) ezy+ y2

2 dy
∫
R φ

2
j (y)ezy+ y2

2 dy
,

where φj are normalized Hermite orthogonal polynomials. Obviously, α1(0) = α2(0) = 1, because

G̃N ;d(0) is the identity matrix. Interestingly, for example, for PN ≤ 4 the functions α1(z) =

λmin(G̃N ;d(z)) and α2(z) = λmax(G̃N ;d(z)) are both even and they monotonically decrease and
increase, respectively, on 〈0, c〉. But a theoretical proof of

α1(c) = minz∈〈−c,c〉λmin(G̃N ;d(z))

α2(c) = maxz∈〈−c,c〉λmax(G̃N ;d(z))
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for any PN is not known to the author. Some examples comparing the exact values of condition
numbers and their upper bounds obtained by Theorem 5.3 for block diagonal preconditioning of
A for PN = 2, 3 or 4 are presented in Table 4 in the next section.

6 Numerical experiments

In this section, we introduce some simple numerical experiments where we apply several precondi-
tioning methods and compare the resulting condition numbers with their theoretical upper bounds
derived in previous sections. We also compare some numerical values of the CBS constants γ with
their theoretical upper bounds. We consider problem (4) with d = 1, D = (0, 1), f = 1 and a given
by (2) where and a0(x) = 1, ak(x) = ck sin(kπx), where ck = 1/2 in Tables 1 and 3, or ck = 1/k
in Tables 2 and 4, or ck = 1 in Table 4, k = 1, . . . , N . The matrix A is defined by (8), where,
N = 1, 2, 3 or 4, the number F of finite element basis functions is variable.

In Tables 1 and 2, we present the squares of the computed CBS constants and their theoretical
upper bounds obtained from Theorem 5.1. The results in Table 1 illustrate that for different
problems, the upper bound for γ depends only on PN when cN = ‖aN‖∞ does not change. The
results of Table 2 show the influence of cN together with PN . The theoretical upper bounds for
γ2 are almost reached even if the examples are low-dimensional: d = 1 and F = 10. We show in
Table 3 that γ2 may change for different values of F but is still bounded by its theoretical upper
bound. In general, the upper bounds for condition numbers depend neither on the number of
deterministic degrees of freedom nor on the condition number of the corresponding deterministic
problem, see also [29, 30].

Many types of preconditioning methods for SGM can be examined and compared. Especially, the
methods for the log-transformed problem may be competitive, see, for example, [37]. In this paper
we restrict ourselves to a small number of preconditioning methods which are of a similar nature
as the introduced AML methods. We compare six types of methods which are either well known
or described in section 4.2:

1. Diagonal preconditioning (D). This is the classical diagonal scaling of the matrix A: multi-
plying A by D−1, where D is the diagonal of A. We expect that this method is weak and we
introduce it just to show the conditioning of A (almost) unpreconditioned.

2. Block diagonal mean based preconditioning (BDm). The preconditioning block diagonal

matrix is composed of M =
∏N
k=1(Pk + 1) diagonal blocks which are identical and equal to

the first diagonal block of A of the size F . The complexity of one step of this method is the
same as solving M problems of the sizes F with the same matrix but with different right
hand sides. The BDm preconditioning can be parallelized.

3. Block diagonal preconditioning (BD). We use PN + 1 diagonal blocks of A of sizes s =

F
∏N−1
k=1 (Pk + 1). The complexity of one step of this method is thus given by solving PN + 1

problems of the size s. This method can be parallelized. Note that the blocks are larger than
those in the BDm method. The blocks are different in the case of lognormally distributed
a, as opposed to the case where a depends linearly on random variables, where the diagonal
blocks are the same. The upper bounds for condition numbers are given by Theorem 5.3.

4. Two-by-two block preconditioning (B2). The preconditioning matrix is composed of two
diagonal blocks of A of sizes sPN and s, respectively. Due to the large size of the first block,
this method is rather demanding and we introduce it mainly for theoretical purposes. The
resulting condition number is bounded by κ̂B2 ≤ (1+γ)/(1−γ), where γ is the CBS constant
for the corresponding splitting of A defined by (23), see (20) in section 4.2.
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5. Algebraic multilevel V-cycle (AML-V). We use PN + 1 levels of hierarchy with respect to the
polynomial degree of the stochastic variable yN . In one step of this method, 2PN −1 systems
of equations of the size s are solved. The resulting condition number can be estimated by
κ̂V ≤ 1/((1− γ2

1) · · · (1− γ2
PN

)), see section 4.2.

6. Algebraic multilevel W-cycle (AML-W). We use PN + 1 levels of hierarchy with respect
to the polynomial degree of the stochastic variable yN . In one step of this method one
solves approximately (depending on the implementation of the recursions for very low levels
of hierarchy) 2PN sets of linear equations of sizes s, see section 4.2 or [24]. The resulting

condition number can be estimated by κ̂W = λ = 1/(2
√

1− γ2 − 1) if Q is of the degree
one and γ2 < 3/4, see (22). In our experiments, we only use the degree of Q equal to one,
and thus, we do not apply this method to the case γ2 ≥ 3/4. If the CBS constants differ on
different levels of hierarchy, a more accurate estimate for λ is possible, but the evaluation is
more involved. We do not treat this case in this paper.

In Table 4, the condition numbers, their theoretical upper bounds and the numbers of steps of the
CG method are shown for four numerical experiments for the problem introduced at the beginning
of this section. In all experiments we use F = 100 and Pk = 2, 3 or 4 for k = 1, . . . , N . In
experiments (a) and (b) we set N = 1, and in (c) and (d) we set N = 3. In (a) we set c1 = 1/3
while in (b) we set c1 = 1. In (c) we set ck = 1/k, while in (d) we set ck = 1, for k = 1, 2, 3. We can
see that if cN or PN increase, the effect of all preconditioning methods gets worse although with
different rates. Since we use the splitting with respect to polynomials of the variable yN only, it
is natural that only methods D and BDm are influenced by the number of stochastic variables N .
Methods BD and BDm are almost equivalent for moderate ck, but they differ, if ck increases. As
recalled in section 4.2, the W-cycle AML algorithm can be applied only if γ2 < 3/4, therefore, the
AML-W is not applied if γ2 ≥ 3/4 in our experiments. Interestingly, since γ changes for different
levels of hierarchy, namely, it is smaller for lower levels, the condition numbers of AML-V and
AML-W are comparable in our experiments. However, the upper bounds for condition numbers
overestimate the true values for AML-V in some experiments.

Taking into account the computational effort, we can observe that more work means better pre-
conditioning in general, with the following exception: in the BD method PN +1 systems of the size
s are solved in every preconditioning step, while in the AML-V method 2PN + 1 systems of the
same sizes s are solved in every step. In Table 5 we compare the overall numbers of systems of the
size s which must be solved before reaching the prescribed relative error 1E-8. It seems that the
AML-V method is slightly more efficient than the BD method and the difference becomes more
remarkable if the conditioning of the matrix A gets worse. On the other hand, parallelization can
be better applied to the BD than to the AML-V method.

Table 1: The CBS constants γ2 obtained for the block splitting of A defined by (23), and their
theoretical upper bounds obtained for a0(x) = 1, ck = ‖ak‖∞ = 1/2, F = 10, P1 = P2 = P3 =
P4 = 1, 2, 3, 4 or 5, and N = 1, 2, 3 or 4.

Pk = 1 2 3 4 5

A:
N = 1 0.1965 0.3417 0.4523 0.5387 0.6074
N = 2 0.1874 0.3283 0.4370 0.5229 0.5918
N = 3 0.1871 0.3274 0.4357 0.5210 0.5896
N = 4 0.1938 0.3406 0.4521 0.5388 0.6077
upper bounds:
N = 1, 2, . . . 0.2000 0.3469 0.4584 0.5451 0.6138
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Table 2: The CBS constants γ2 obtained for the block splitting of A defined by (23) and their
theoretical upper bounds obtained for a0(x) = 1, ck = ‖ak‖∞ = 1/k, F = 10, P1 = P2 = P3 =
P4 = 1, 2, 3, 4 or 5, and N = 1, 2, 3 or 4.

Pk = 1 2 3 4 5

A:
N = 1 0.4944 0.7088 0.8190 0.8815 0.9195
N = 2 0.1878 0.3294 0.4390 0.5255 0.5949
N = 3 0.0928 0.1734 0.2463 0.3126 0.3715
N = 4 0.0567 0.1100 0.1589 0.2039 0.2454
upper bounds:
N = 1 0.5000 0.7143 0.8235 0.8852 0.9224
N = 2 0.2000 0.3469 0.4584 0.5351 0.6138
N = 3 0.1000 0.1859 0.2604 0.3254 0.3826
N = 4 0.0588 0.1127 0.1621 0.2075 0.2495

Table 3: The CBS constants γ2 obtained for the block splitting of A defined by (23) for N = 3,
P1 = P2 = P3 = 2, c3 = ‖a3‖∞ = 1/2, and F = 5, 10, 25, 50 and 100. The theoretical upper bound
for γ2 is 0.3469 (see Table 1).

F = 5 10 25 50 100

A: 0.2050 0.3274 0.3461 0.3469 0.3467

7 Discussion

We study block preconditioning methods for SGM for elliptic problems with lognormally dis-
tributed coefficients. We focus especially on AML methods and on block-diagonal preconditioning
methods. The physical part of the solution is approximated by FE functions and the stochastic
part is approximated by the tensor products of polynomials. Both preconditioning methods use
only a (hierarchical) splitting of the approximation spaces of the stochastic part of the solution.
We prove guaranteed upper bounds for the resulting condition numbers. Some of these bounds are
based on the strengthened CBS constants. We introduce a methodology for obtaining guaranteed
upper bounds for these constants. Let us recall that having these bounds, we can also use the
AML approach to obtain guaranteed two-sided a posteriori estimates of the algebraic error, which
can be employed, for example, in adaptive algorithms. Our estimates of the CBS constant do not
depend on the type of FE used for the physical part of the solution and they hold true if the
numbers of stochastic degrees of freedom are different in different parts of the physical domain.
The main limitation of this paper is that a proof of the upper bound for the CBS constant for
complete polynomials is missing. Preliminary numerical experiments made by the author indicate
that the upper bounds for the CBS constants obtained for complete polynomials of the total order
P are greater than the bound for tensor product polynomials up to the degree Pk = P . However,
no theoretical estimates have been available yet.

It should be mentioned that there is probably no general strategy to be used for the preconditioning
of SGM. Practical problems may vary significantly in both physical and stochastic parts of the
input data and therefore different (combinations of) preconditioning methods may lead to the
best efficiency for particular problems. In our paper, we demonstrate that block preconditioners
deteriorate with different rates when the coefficients of variation and/or degrees of approximation
polynomials grow. But the outcomes of this paper may help to decide on a theoretical basis
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Table 4: Condition numbers (κ̂) and their theoretical upper bounds (κ̂est), if they are available,
and numbers of CG iterations (it) to get the relative error 1E-8 for F = 100, N = 1 or 3, and for
different ck = ‖ak‖∞, Pk = 2, 3 or 4 (numerical experiments (a)-(d)). The minus sign denotes that
the number of steps of the CG method exceeds 1000 and the slash sign denotes that the W-cycle
cannot be performed with Q of degree one because of γ2 ≥ 0.75 (cf. section 4.2).

κ̂ ≤ κ̂est it κ̂ ≤ κ̂est it κ̂ ≤ κ̂est it
Pk = 2 3 4

(a) N = 1, c1 = 1/3
γ2 = 0.19 0.26 0.32

D 9.20E+03 191 1.22E+04 272 1.57E+04 363
BDm 3.16 15 4.71 18 6.66 21
BD 3.12 ≤ 3.12 14 4.65 ≤ 4.65 18 6.58 ≤ 6.58 21
B2 2.52 ≤ 2.52 11 3.08 ≤ 3.08 11 3.66 ≤ 3.66 10
AML-V 1.23 ≤ 1.36 6 1.39 ≤ 1.85 7 1.57 ≤ 2.74 8
AML-W 1.23 ≤ 1.24 6 1.36 ≤ 1.39 7 1.50 ≤ 1.56 7

(b) N = 1, c1 = 1
γ2 = 0.71 0.82 0.89

D 4.21E+04 279 1.03E+05 468 2.30E+05 723
BDm 28.20 48 90.71 75 250.61 125
BD 22.64 ≤ 22.65 42 70.69 ≤ 70.73 72 191.43 ≤ 191.54 106
B2 11.91 ≤ 11.92 29 20.61 ≤ 20.62 35 32.79 ≤ 32.80 41
AML-V 4.00 ≤ 7.00 17 8.60 ≤ 39.67 25 18.54 ≤ 345.43 36
AML-W 3.96 ≤ 14.48 17 / / / /

(c) N = 3, ck = 1/k
γ2 = 0.19 0.26 0.32

D 1.53E+05 - 5.69E+05 - 1.80E+06 -
BDm 138.41 104 770.28 229 3.42E+03 454
BD 3.12 ≤ 3.12 15 4.65 ≤ 4.65 18 6.57 ≤ 6.58 22
B2 2.52 ≤ 2.52 12 3.08 ≤ 3.08 12 3.65 ≤ 3.66 11
AML-V 1.23 ≤ 1.36 7 1.38 ≤ 1.85 8 1.57 ≤ 2.74 8
AML-W 1.23 ≤ 1.24 7 1.36 ≤ 1.39 7 1.50 ≤ 1.56 7

(d) N = 3, ck = 1
γ2 = 0.71 0.82 0.89

D 1.04E+06 - 7.50E+06 - 5.85E+07 -
BDm 4.50E+03 537 8.49E+04 - 1.09E+06 -
BD 22.62 ≤ 22.65 44 70.60 ≤ 70.73 76 191.11 ≤ 191.54 120
B2 11.90 ≤ 11.92 30 20.60 ≤ 20.62 37 32.76 ≤ 32.80 44
AML-V 4.00 ≤ 7.00 17 8.60 ≤ 39.67 26 18.51 ≤ 345.43 37
AML-W 3.95 ≤ 14.48 17 / / / /
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Table 5: Numbers of sets of equations of the size s solved within the solution by the BD and
AML-V methods, respectively, and ratios of these numbers for settings (a) - (d).

(a) (b) (c) (d)
Pk: 2 3 4 2 3 4 2 3 4 2 3 4

BD 42 72 105 126 288 530 45 72 110 132 304 600
AML-V 30 49 72 85 175 324 35 56 72 85 182 333
BD / AML-V 1.4 1.5 1.5 1.5 1.6 1.7 1.3 1.3 1.5 1.6 1.7 1.8

which strategy of preconditioning can be acceptable. Our results of [30] justify the convergence
of experiments of [33], while our new estimates may lead to explaining the numerical experiments
of [32].
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