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Abstract

We study the singular limit of a rotating compressible fluid described by a scaled barotropic
Navier-Stokes system, where the Rossby number = ε, the Mach number = εm, the Reynolds
number = ε−α, and the Froude number = εn are proportional to a small parameter ε → 0.
The inviscid planar Euler system is identified as the limit problem. The proof is based on
the application of the method of relative entropies and careful analysis of oscillatory integrals
describing the propagation of Rossby-acoustic waves.

1 Introduction

The basic system of equations considered in this paper are the continuity equation and the momentum
equation describing the time evolution of the mass density % = %(t, x) and the (relative) velocity
u = u(t, x) of a compressible, rotating fluid:

∗Eduard Feireisl acknowledges the support of the project LL1202 in the programme ERC-CZ funded by the Ministry
of Education, Youth and Sports of the Czech Republic.
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∂t%+ divx(%u) = 0, (1.1)

∂t(%u) + divx(%u⊗ u) +
1

ε
%(f × u) +

1

ε2m
∇xp(%) = εαdivxS(∇xu) +

1

ε2n
%∇xG, (1.2)

S(∇xu) = µ
(
∇xu +∇t

xu−
2

3
divxuI

)
+ ηdivxuI, µ > 0, η ≥ 0. (1.3)

The fluid is confined to an infinite slab

Ω = R2 × (0, 1), (1.4)

where it satisfies the slip condition

u · n|∂Ω = [S(∇xu) · n]tan|∂Ω = 0 (1.5)

imposed on the horizontal boundary.
The model (1.1 - 1.5) may be viewed as a crude approximation (f -plane model) of the Earth

atmosphere in a plane tangent to the Earth at a certain latitude, see Vallis [34, Chapter 2, Section
2.3]. Accordingly, the gravitational force is taken parallel to the vertical projection of the rotation
axis:

f = [0, 0, 1], ∇xG = [0, 0,−1],

The momentum equation (1.2) contains a small parameter ε related to different characteristic
numbers resulting from the scale analysis: Rossby number = ε, Mach number = εm, Reynolds
number = ε−α, Froude number = εn, see Klein [20]. We consider the singular limit problem for
ε↘ 0 in the multiscale regime:

m

2
> n ≥ 1, α > 0 (1.6)

for the ill-prepared initial data

%(0, ·) = %0,ε = %̃ε + εm%(1)
ε , u(0, ·) = u0, (1.7)

where %̃ε is a solution to the static problem

∇xp(%̃ε) = ε2(m−n)%̃ε∇xG in Ω. (1.8)

In particular, since n ≥ 1, the centrifugal force, parallel to the vertical axis, is dominated by gravi-
tation (cf. Durran [7]).

2



Formally, it is not difficult to identify the limit problem. Indeed fast rotation is expected to
eliminate the vertical motion, the vanishing viscosity (high Reynolds number) makes the limit system
inviscid (hyperbolic), while the low Mach number regime drives the fluid to incompressibility. The
limit problem is therefore expected to be the incompressible Euler system for the planar velocity
field v = [v1, v2],

∂tv + divx(v ⊗ v) +∇xΠ = 0, divxv = 0 in (0, T )×R2. (1.9)

Our main goal is to put these formal arguments on rigorous grounds.
The phenomena discussed above have been investigated by many authors. The fact that highly

rotating fluids become planar (two-dimensional), and, accordingly, fast rotation has a regularizing
effect, was observed by Babin, Mahalov, and Nicolaenko [1], [2], Bresch, Desjardins, and Gerard-
Varet, [3], Chemin et al. [4], among others. The inviscid limit is a well studied and partially still
open challenging problem, see Clopeau, Mikelic, Robert [5], Kato [17], Masmoudi [23], [24], [25],
Sammartino and Caflisch [27], [28], Swann [31], Temam and Wang [32], [33], to name only a few.
The low Mach number limits were proposed in the pioneering papers by Ebin [8], and Klainerman
and Majda [19], and later reexamined in the context of weak solutions by Lions and Masmoudi [22],
see also the survey by Danchin [6], Gallagher [14], and Schochet [29]. To the best of our knowledge,
the simultaneous effects of these three mechanisms has not yet been treated in the literature.

The present paper may be viewed as complementary to our previous study [11], where we exam-
ined the “single-scale” limit corresponding to

n = 0, m = 1, α > 0. (1.10)

Although this problem looks formally very similar to the present setting, the methods employed as
well as the limit system are different, cf. [11]. The central issue to be discussed is the behavior of the
oscillatory part of solutions to the scaled system. These are described in the case (1.10) by a system
of linear equations with constant coefficients, while the situation (1.6) gives rise to a problem with
coefficients depending on the scaling parameter ε.

Similarly to [11], our approach is based on the concept of finite energy weak solutions satisfying the
relative entropy inequality identified in [13], see Section 2. After collecting the necessary preliminary
material, we state the main result in Section 3. Section 4 reviews the basic estimates, independent
of ε ↘ 0, for solutions of the family of scaled problems. Section 5 is the heart of the paper. We
establish decay estimates on the oscillatory part of solutions to the scaled problems by means of
careful analysis of certain oscillatory integrals. Here, inspired by the analysis of Guo, Peng, and
Wang [16], we make use of frequency cut-off operators and estimates based on van Corput’s lemma.
The proof of convergence towards the limit system is completed in Section 6.
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2 Preliminaries, weak solutions, relative entropy inequality

We suppose that the pressure p ∈ C[0,∞)∩C3(0,∞) is a given function of the density enjoying the
following property

p(0) = 0, p′(%) > 0 for all % > 0, lim
%→∞

p′(%)

%γ−1
, γ >

3

2
. (2.1)

In addition, without loss of generality, we assume that p is “normalized” setting

p′(1) = 1. (2.2)

Finally, we introduce the pressure potential H,

H(%) = %
∫ %

1

p(z)

z2
dz, (2.3)

noting that

H ′′(%) =
p′(%)

%
, H ′′(1) = 1.

2.1 Static solutions

As already mentioned above, the static solutions %̃ε solve the problem (1.8), specifically, we take

H ′(%̃ε) = ε2(m−n)G+H ′(1), where G(x) = −x3; (2.4)

whence
%̃ε(x) = %̃ε(x3), sup

x3∈[0,1]
|%̃ε(x3)− 1| ≤ cε2(m−n). (2.5)

As indicated by our choice of the initial data (1.7), the solutions of the evolutionary problem (1.1
- 1.3), (1.5), (1.7) satisfy far field conditions in the form

%→ %̃ε, u→ 0 as |x| → ∞. (2.6)

2.2 Finite energy weak solutions

We say that [%,u] is a finite energy weak solution of the problem (1.1 - 1.3), (1.5), (1.7), (2.6) on the
space-time cylinder (0, T )× Ω if the following holds:

• Regularity. The functions %, u belong to the class

% ≥ 0, (%− %̃ε) ∈ L∞(0, T ;L2 + Lγ(Ω)), u ∈ L2(0, T ;W 1,2(Ω;R3)), u · n = u3|∂Ω = 0. (2.7)
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• Equations. The equation of continuity (1.1) and the momentum equation (1.2) are replaced
by integral identities ∫ T

0

∫
Ω

(%∂tϕ+ %u · ∇xϕ) dx dt = −
∫

Ω
%0,εϕ(0, ·) dx (2.8)

for any ϕ ∈ C∞c ([0, T )× Ω), and∫ T

0

∫
Ω

(
%εuε · ∂tϕ+ (%u⊗ u) : ∇xϕ−

1

ε
%(f × u)·ϕ+

1

ε2m
p(%)divxϕ

)
dx dt (2.9)

=
∫ T

0

∫
Ω

(
εαS(∇xu) : ∇xϕ−

1

ε2n
%∇xG · ϕ

)
dx dt−

∫
Ω
%0,εu0,ε · ϕ(0, ·) dx

for any ϕ ∈ C∞c ([0, T )× Ω;R3), ϕ · n|∂Ω = 0.

• Energy. The energy inequality∫
Ω

[
1

2
%|u|2 +

1

ε2m
(H(%)−H ′(%̃ε)(%− %̃ε)−H(%̃ε))

]
(τ, ·) dx+ εα

∫ τ

0

∫
Ω
S(∇xu) : ∇xu dx dt

(2.10)

≤
∫

Ω

[
1

2
%0,ε|u0,ε|2 +

1

ε2m
(H(%0,ε)−H ′(%̃ε)(%0,ε − %̃ε)−H(%̃ε))

]
dx

holds for a.a. τ ∈ (0, T ).

Note that the existence theory in the class of finite energy weak solutions was developed by Lions
[21] and later extended in [12] to the sofar “critical” adiabatic exponent γ > 3

2
.

2.3 Relative entropy

For future analysis, it is convenient to replace the energy inequality (2.10) by the relative entropy
inequality containing more transparent piece of information on the asymptotic behavior of solutions
for ε→ 0. To this end, we introduce the relative entropy functional

Eε
(
%,u

∣∣∣r,U) =
∫

Ω

[
1

2
%|u−U|2 +

1

ε2m

(
H(%)−H ′(r)(%− r)−H(r)

)]
dx, (2.11)

cf. [10], [13], Germain [15].
It can be shown, see [10], that any finite energy weak solution [%,u] specified in Section 2.2

satisfies the relative entropy inequality :

Eε
(
%,u

∣∣∣ r,U) (τ) + εα
∫ τ

0

∫
Ω

(
S(∇xu)− S(∇xU)

)
:
(
∇xu−∇xU

)
dx dt ≤ (2.12)
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Eε
(
%0,ε,u0,ε

∣∣∣ r(0, ·),U(0, ·)
)

+
∫ τ

0

∫
Ω
% (∂tU + u · ∇xU) · (U− u) dx dt

+εα
∫ τ

0

∫
Ω
S(∇xU) : ∇x(U− u) dx dt+

1

ε

∫ τ

0

∫
Ω
%(f × u) · (U− u) dx dt

+
1

ε2m

∫ τ

0

∫
Ω

[
(r − %)∂tH

′(r) +∇x

(
H ′(r)−H ′(%̃ε)

)
· (rU− %u)

]
dx dt

− 1

ε2m

∫ τ

0

∫
Ω

divxU
(
p(%)− p(r)

)
dx dt− 1

ε2n

∫ τ

0

∫
Ω

(%− r)∇xG ·U dx dt

for all sufficiently smooth “test functions” r, U satisfying

U · n|∂Ω = 0, r > 0, U, (r − %̃ε) compactly supported in Ω.

Note the assumptions concerning the decay and regularity can be relaxed to basically any couple
[r,U] for which (2.12) makes sense via the standard density argument, see [10].

3 Main result

For a vector field b = [b1, b2, b2], we introduce the horizontal component bh = [b1, b2] writing b =
[bh, b3]. Similarly, we use the symbols ∇h, divh to denote the differential operators acting on the
horizontal variables only. Finally, the symbol H denotes the Helmholtz projection onto the space of
solenoidal functions in Ω, while Hh is the Helmholtz projection in R2.

Let
v0 ∈ W k,2(R2;R2), k ≥ 3, divv0 = 0,

be given. It is well known (see for instance Kato and Lai [18]) that the Euler system (1.9) supple-
mented with the initial data

v(0) = v0

admits a regular solution (v,Π), unique in the class

v ∈ C([0, T ];W k,2(R2;R2)), ∂tv ∈ C([0, T ];W k−1,2(R2;R2)), Π ∈ C([0, T ];W k,2(R2)).

We are ready to formulate our main result.
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Theorem 3.1 Let the pressure p = p(%) satisfy the hypotheses (2.1), (2.2). Suppose that the
exponents α, m, n are given such that

α > 0,
m

2
> n ≥ 1.

Let the initial data [%0,ε,u0,ε] be given by (1.7), where the stationary states %̃ε satisfy (2.4),

‖%(1)
0,ε‖L2∩L∞(Ω) ≤ c, %

(1)
0,ε → %

(1)
0 in L2(Ω), u0,ε → u0 in L2(Ω;R3), (3.1)

with
%

(1)
0 ∈ W k−1,2(Ω), u0 ∈ W k,2(Ω;R3) for a certain k ≥ 3. (3.2)

Let [%ε,uε] be a finite energy weak solution of the problem (1.1 - 1.3), (1.5), (1.7), (2.6) in the
space-time cylinder (0, T )× Ω.

Then
ess sup

t∈(0,T )

‖%ε(t, ·)− %̃ε‖(L2+Lγ)(Ω) ≤ εmc (3.3)

√
%εuε → v


weakly-(*) in L∞(0, T ;L2(Ω;R3)),

strongly in L1
loc((0, T )× Ω;R3),

(3.4)

where v = [vh, 0] is the unique solution of the Euler system (1.9), with the initial data

v(0, ·) = Hh

[∫ 1

0
u0(xh, x3) dx3

]
.

The rest of the paper is devoted to the proof of Theorem 3.1.

4 Uniform bounds

We start with the nowadays standard estimates that follow directly from the energy inequality (2.10).
These are conveniently formulated in terms of the essential and residual components of a measurable
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function h,
h = hess + hres,

hess = χ(%ε)h, χ ∈ C∞c (0,∞), 0 ≤ χ ≤ 1, χ = 1 in an open interval contaning 1,

hres = (1− χ(%ε))h.

Since the initial data are given by (1.7), where the functions %
(1)
0,ε, u0,ε satisfy the hypotheses (3.1),

(3.2), the integral on the right-hand side of (2.2) is bounded uniformly for ε↘ 0. As the stationary
states %̃ε are chosen to satisfy (2.5), we deduce the following bounds independent of ε:

ess sup
t∈(0,T )

‖√%εuε‖L2(Ω;R3) ≤ c, (4.1)

ess sup
t∈(0,T )

∥∥∥∥[%ε − %̃εεm

]
ess

∥∥∥∥
L2(Ω)

≤ c, (4.2)

ess sup
t∈(0,T )

‖[%ε]res‖γLγ(Ω) + ess sup
t∈(0,T )

‖[1]res‖L1(Ω) ≤ ε2mc, (4.3)

and

εα
∫ T

0

∫
Ω

∣∣∣∣∇xuε +∇xu
t
ε −

2

3
divxuεI

∣∣∣∣2 dx dt ≤ c, (4.4)

cf. [9, Section 2].
Obviously, the estimates (4.1), (4.2) yield (3.3), which, combined with (2.5) gives rise to

%ε → 1 in L∞(0, T ;Lqloc(Ω)) for any 1 ≤ q < γ. (4.5)

Moreover, combining (4.5) with (4.1 - 4.3) we obtain

√
%εuε → u weakly-(*) in L∞(0, T ;L2(Ω;R3)), (4.6)

and
%εuε → u weakly-(*) in L∞(0, T ;L2 + L2γ/(γ+1)(Ω;R3)), (4.7)

passing to suitable subsequences as the case may be.
Finally, we may let ε→ 0 in the equation of continuity to deduce that

divxu = 0, u · n|∂Ω = 0 in the sense of distributions in (0, T )× Ω. (4.8)
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5 Decay estimates and oscillatory integrals

With our convention (2.2), the equation describing the oscillatory part of solutions reads

εm∂ts+ divxV = 0, (5.1)

εm∂tV + ωf ×V +∇xs = 0, ω = εm−1, V · n|∂Ω = 0, (5.2)

cf. [11]. Re-scaling in the time we arrive at

∂ts+ divxV = 0, (5.3)

∂tV + ωb×V +∇xs = 0, V · n|∂Ω = 0, (5.4)

with the operator

B(ω) :

[
s
V

]
7→
[

divxV
ωf ×V +∇xs

]
.

The operator B is skew symmetric in the space L2(Ω)×L2(Ω;R3), with the domain of definition

D[B(ω)] =
{

[r,V]
∣∣∣ r ∈ W 1,2(Ω),V ∈ L2(Ω;R3), divxV ∈ L2(Ω),V · n = V3|∂Ω = 0

}
,

and the kernel

N (B(ω)) =
{

[q,v]
∣∣∣ q = q(xh), q ∈ W 1,2(R2), v = [vh(xh), 0], divhvh = 0, ωf × v +∇xq = 0

}
.

Let P(ω) denote the projection

P(ω) : L2(Ω)× L2(Ω;R3)→ N (B(ω)).

Exactly as in [11, Section 4.1.1] we can show that

P(ω)[r,U] = [q,v]

if

−∆hq+ω2q = ω
∫ 1

0
curlhUh dx3+ω2

∫ 1

0
r dx3 in R2, v = [v1, v2, 0], ωv1 = −∂x2q, ωv2 = ∂x1q. (5.5)
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5.1 Spectral analysis

Thanks to our special choice of the geometry of the spatial domain Ω, we may reformulate the
problem (5.3), (5.4) in terms of the Fourier variables. To this end, we observe, exactly as in [11],
that the underlying spatial domain Ω may be equivalently replaced by

Ω̃ = R2 × T 1,

where
T 1 = [−1, 1]{−1,1}

is a “flat” sphere, and where s, Vh were extended as even functions of the vertical variable x3, while
V3 was extended as odd in x3. In other words, all quantities are understood as 2−periodic functions
in the vertical x3 variable.

Accordingly, for each function g ∈ L2(Ω̃), we introduce its Fourier representation

ĝ(ξ, k), ξ = [ξ1, ξ2] ∈ R2, k ∈ Z,

where

ĝ(ξ, k) =
1√
2

∫ 1

−1

∫
R2

exp (−iξ · xh) g(xh, x3) exp (−ikx3) dxh dx3.

We have
g(xh, x3) =

∑
k∈Z
F−1
ξ→xh [ĝ(ξ, k)] exp (ikx3) ,

where the symbol Fxh→ξ denotes the standard Fourier transform on R2.
Thus the problem (5.3), (5.4) can be written in the form

d

dt


ŝ(t, ξ, k)

V̂1(t, ξ, k)

V̂2(t, ξ, k)

V̂3(t, ξ, k)

+ i


0 ξ1 ξ2 k
ξ1 0 ωi 0
ξ2 −ωi 0 0
k 0 0 0



ŝ(t, ξ, k)

V̂1(t, ξ, k)

V̂2(t, ξ, k)

V̂3(t, ξ, k)

 = 0,

[
ŝ(0, ξ, k)

V̂(0, ξ, k)

]
=

[
ŝ0(ξ, k)

V̂0(ξ, k)

]
; (5.6)

with the Hermitian matrix

A(ξ, k, ω) =


0 ξ1 ξ2 k
ξ1 0 ωi 0
ξ2 −ωi 0 0
k 0 0 0

 .
Of course, solutions of (5.6) depend also on the parameter ω = εm−1.
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5.1.1 Spectral properties of the matrix A

After a bit tedious but straightforward manipulation (see [9]), we can check that A(ξ, k, ω) possesses
four eigenvalues

λ1(|ξ|2, k, ω) =
[
ω2+|ξ|2+k2+

√
(ω2+|ξ|2+k2)2−4ω2k2

2

]1/2

, λ2(|ξ|2, k, ω) = −λ1(|ξ|2, k, ω),

λ3(|ξ|2, k, ω) =
[
ω2+|ξ|2+k2−

√
(ω2+|ξ|2+k2)2−4ω2k2

2

]1/2

, λ4(|ξ|2, k, ω) = −λ3(|ξ|2, k, ω).

(5.7)

Note that λ3(|ξ|2, 0, ω) = λ4(|ξ|2, 0, ω) = 0 are the zero eigenvalues corresponding to the non-void
kernel of the matrix A- the Fourier image of the null-space of the operator B(ω), see [9].

As for the eigenvectors [q, v1, v2, v3], we have

ξ1v1 + ξ2v2 + kv3 = λq, ξ1q + iωv2 = λv1, ξ2q − iωv1 = λv2, kq = λv3, (5.8)

from which we immediately deduce

v1 = µ(λξ1 + iωξ2), v2 = µ(λξ2 − iωξ1), µλ|ξ|2 = λq − kv3, , kq = λv3, (5.9)

where µ is a free parameter that is fixed to normalize the norm of the eigenvector to be one.

5.1.2 Eigenvectors

We denote by E = E(ξ, k, ω) = [q, v1, v2, v3] the normalized eigenvectors. Our goal is to show
that diagonalizing matrices Q, QT , formed by the eigenvectors, are Lp−multipliers in the ξ variable
restricted to compact subsets of R2 \ {0}. This amounts to showing that

sup
ω∈(0,1)

max
0<a≤|ξ|≤b<∞

∣∣∣∇A
ξ Ej(ξ, k, ω)

∣∣∣ ≤ c = c(A, a, b, k), j = 1, 2, 3, 4, k ∈ Z (5.10)

with any multi-index A = (A1, A2).
We distinguish two cases:

Case λ = 0:

In this case, we necessarily have k = 0 and λ = ±λ3, and the orthonormal basis of eigenvectors
can be taken in the form

E1 = µ
[
− iω,−ξ2, ξ1, 0

]
, µ =

(
|ξ|2 + ω2

)−1/2
, E2 = [0, 0, 0, 1].

Clearly (5.10) holds.
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Case λ 6= 0 :

We find that

v1 = µ(λξ1 + iωξ2), v2 = µ(λξ2 − iωξ1),
λ2 − k2

λ2
q = µ(ξ2

1 + ξ2
2), v3 =

k

λ
q.

Thus, the corresponding normalized eigenvector has the form

E = µ

[
λ2|ξ|2

λ2 − k2
, λξ1 + iωξ2, λξ2 − iωξ1,

kλ|ξ|2

λ2 − k2

]
,

with

µ =

[
λ4 + |k|2λ2

(λ2 − k2)2
|ξ|4 + (λ2 + ω2)|ξ|2

]−1/2

.

We consider first the case λ = ±λ1. We check that

λ2
1 ≥ |ξ|2/2, (ω2 + |ξ|2 + k2)2 − 4ω2k2 ≥ |ξ|4, (5.11)

λ2
1 − k2 =

ω2 − k2 + |ξ|2 +
√

(ω2 − k2)2 + |ξ|2 (|ξ|2 + 2(ω2 + k2))

2
≥ |ξ|

2

2
.

Consequently (5.10) is satisfied.
Finally, if 0 6= λ = ±λ3, we note that

λ3(|ξ|2, k, ω) = ω|k| 1

λ1(|ξ|2, k, ω)
, λ2

3 − k2 =
k2(ω2 − λ2

1)

λ2
1

, (5.12)

λ2
1 − ω2 =

−ω2 + |ξ|2 + |k|2 +
√

(ω2 + |ξ|2 + k2)2 − 4k2ω2

2
≥ |ξ|2/2.

Using identity (5.12)1, we write E in terms of λ1 and verify (5.10) employing this explicit formula
and estimates (5.11), (5.12).

5.2 Frequency cut-off

As we shall see below, it will be convenient to approximate the initial data for the problem (5.3),
(5.4) by a frequency truncation represented by a function ψ ∈ C∞c (0,∞).

Accordingly, solutions of the problem (5.3), (5.4) will be, in a certain way, composed of the
quantities

Z(t, xh, k, ω) = F−1
ξ→xh

[
exp

(
± iλj(|ξ|2, k, ω)t

)
ψ(|ξ|)ĥ(ξ)

]
, j = 1, 2, 3, 4, k ∈ Z, ω ∈ (0, 1), (5.13)
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where ĥ stands for the Fourier transform of the “initial data”. Our goal will be to derive suitable
dispersive estimates for the mapping h 7→ Z.

We start with the L1 − L∞ decay estimates. To this end, write

‖Z(t, ·, k, ω)‖L∞(R2) ≤
∥∥∥F−1

ξ→xh

[
exp

(
± iλj(|ξ|2, k, ω)t

)
ψ(|ξ|)

]∥∥∥
L∞(R2)

‖h‖L1(R2). (5.14)

Consequently,
F−1
ξ→xh

[
exp

(
± iλj(|ξ|2, k, ω)t

)
ψ(|ξ|)

]
(xh) (5.15)

= π
√

2
∫ 2π

0

∫ ∞
0

exp
(
± iλj(|ξ|2, k, ω)t

)
ψ(|ξ|) exp

(
i|ξ||xh| sin θ

)
|ξ| d|ξ|dθ

= π
√

2
∫ ∞

0
exp

(
± iλj(r

2, k, ω)t
)
ψ(r)rJ0(r|xh|) dr,

where the symbols Jm, m = 0, 1, . . . denote the Bessel functions, cf. Guo, Peng, and Wang [16].
Finally, performing a simple change of variables, we get

F−1
ξ→xh

[
exp

(
± iλj(|ξ|2, k, ω)t

)
ψ(|ξ|)

]
(xh) =

π
√

2

2

∫ ∞
0

exp
(
± iλj(z, k, ω)t

)
ψ(
√
z)J0(

√
z|xh|) dz.

(5.16)

5.3 Decay estimates

Supposing λj 6= 0 we derive the desired decay estimates. To this end, we use van Corput’s lemma,
see Stein [30, Chapter 8.1.2, Proposition 2 and Corollary]:

Lemma 5.1 Let Λ = Λ(z) be a smooth function away from the origin,

∂zΛ(z) monotone, |∂zΛ(z)| ≥ Λ0 > 0

for all z ∈ [a, b], 0 < a < b <∞. Let Φ be a smooth function on [a, b].

Then ∣∣∣∣∣
∫ b

a
exp (iΛ(z)t) Φ(z) dz

∣∣∣∣∣ ≤ c
1

tΛ0

[
|Φ(b)|+

∫ b

a
|∂zΦ(z)| dz

]
,

where c is an absolute constant independent of Λ and Φ.
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Going back to the oscillatory integral (5.16), we distinguish two cases.

5.3.1 Case |xh| > tβ

Using the decay properties of J0 and the fact that ψ is compactly supported away from zero, we get∣∣∣F−1
ξ→xh

[
exp

(
± iλj(|ξ|2, k, ω)t

)
ψ(|ξ|)

]
(xh)

∣∣∣ ≤ c(ψ)t−β/2 whenever |xh| > tβ. (5.17)

5.3.2 Case |xh| ≤ tβ

The idea is to use van Corput’s lemma. Let [a, b] be a closed interval, a > 0, containing the support
of ψ(

√
z). In accordance with the hypotheses of Lemma 5.1, we have to verify that

•

|∂zλj(z, k, ω)| ≥ Λ0(a, b, ω, k) > 0 for all z ∈ [a, b], ω ∈ (0, 1);

• ∂zΛj is monotone on [a, b].

If the two conditions are satisfied, we get∣∣∣F−1
ξ→xh

[
exp

(
± iλj(|ξ|2, k, ω)t

)
ψ(|ξ|)

]
(xh)

∣∣∣ ≤ c(ψ)
1

Λ0(a, b, k, ω)t

(
1 + tβ/2

)
for |xh| ≤ tβ, (5.18)

where again we have used the properties of the Bessel functions, namely,

J ′0(z) = −J1(z).

Now, our goal is to verify the hypotheses of Lemma 5.1. We have

∂zλ1(z, k, ω) =
1

2

1

λ1(z, k, ω)
β1(z, k, ω), β1(z, k, ω) =

1

2

1 +
ω2 + z + k2√

(ω2 + z + k2)2 − 4ω2k2

 ,
and, similarly,

∂zλ3(z, k, ω) =
1

2

1

λ3(z, k, ω)
β3(z, k, ω), β3(z, k, ω) =

1

2

1− ω2 + z + k2√
(ω2 + z + k2)2 − 4ω2k2

 , k 6= 0.

Furthermore,

∂zβ1(z, k, ω) = − 2ω2k2

[(ω2 + z + k2)2 − 4ω2k2]3/2
, ∂zβ3(z, k, ω) =

2ω2k2

[(ω2 + z + k2)2 − 4ω2k2]3/2
.
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Summing up the previous relations, we conclude that

∂zλ1(z, k, ω) is a decreasing functions of z,

while
∂zλ3(z, k, ω) is an increasing functions of z for k 6= 0.

Consequently, we deduce that

∂zλ1(z, k, ω) ≥ ∂zΛ1(b, k, ω) ≥ Λ(ψ, k) for z ∈ [a, b], ω ∈ (0, 1). (5.19)

Finally, we have
∂zλ3(z, k, ω) < 0, |∂zλ3(z, k, ω)| ≥ |∂zλ3(b, k, ω)|,

where

|∂zλ3(b, k, ω)| ≥ 1

2

 ω2 + b+ k2√
(ω2 + b+ k2)2 − 4ω2k2

− 1

ω2 + b+ k2 −
√

(ω2 + b+ k2)2 − 4ω2k2

2

−1/2

=
√

2ω|k|
(
(ω2 + b+ k2)2 − 4ω2k2

)−1/2
(
ω2 + b+ k2 +

√
(ω2 + b+ k2)2 − 4ω2k2

)−1/2

≥ c(ψ, k)ω for k 6= 0, ω ∈ (0, 1).

Thus, reviewing (5.17), (5.18) we may infer that∥∥∥F−1
ξ→xh

[
exp

(
± iλj(|ξ|2, k, ω)t

)
ψ(|ξ|)

]∥∥∥
L∞(R2)

≤ c(ψ, k) max
{

1

ωt1−β/2
;

1

tβ/2

}
, t > 0, (5.20)

as soon as λj 6= 0, which gives rise to the decay estimates

‖Z(t, ·, k, ω)‖L∞(R2) ≤ c(ψ, k) max
{

1

ωt1−β/2
;

1

tβ/2

}
‖h‖L1(R2). (5.21)

Next, seeing that the mapping h 7→ exp
(
iλj(ξ, k, ω)t

)
h is an isometry on L2(R2), we deduce

‖Z(t, ·, k, ω)‖L2(R2) ≤ c‖h‖L2(R2) (5.22)

Finally, interpolating (5.21) and (5.22), we obtain the Lp − Lq estimates

‖Z(t, ·, k, ω)‖Lp(R2) ≤ c(ψ, p, k) max
{

1

ωt1−β/2
;

1

tβ/2

}1− 2
p

‖h‖Lp′ (R2) for p ≥ 2,
1

p
+

1

p′
= 1, λj 6= 0.

(5.23)
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Keeping in mind that ω scales like εm−1 while the time t is proportional to ε−m we observe that
taking

0 < β <
2

m

yields the effective decay of Zε = Z(t/εm, k, ω) on any compact subinterval of (0, T ]. In particular,
the optimal choice β = 1/m gives rise to

∥∥∥∥Z ( t

εm
, ·, k, ω

)∥∥∥∥
Lp(R2)

≤ c ε
1
2
− 1
p max

{
1

t1−1/2m
;

1

t1/2m

}1− 2
p

‖h‖Lp′ (R2), p ≥ 2, λj 6= 0, t ∈ (0, T ].

(5.24)

6 Convergence

In this final part, we complete the proof of Theorem 3.1. The basic idea is to use the relative entropy
inequality (2.12) for a suitable choice of test functions r and U.

6.1 Initial data decomposition

We start be introducing suitable smoothing operators imposed on the initial data. Taking a family
of smooth functions

ψδ ∈ C∞c (0,∞), 0 ≤ ψδ ≤ 1, ψδ ↗ 1 as δ → 0,

and
φδ = φδ(xh) ∈ C∞c (R2), 0 ≤ φδ ≤ 1, φδ ↗ 1 as δ → 0,

we introduce [
%

(1)
0

]
δ

(xh, x3) =
1√
2

∑
|k|≤1/δ

F−1
ξ→xh

[
ψδ(|ξ|)

̂(
%

(1)
0 φδ

)
(ξ, k)

]
exp (−ikx3) , (6.1)

and, similarly,

[u0,j]δ (xh, x3) =
1√
2

∑
|k|≤1/δ

F−1
ξ→xh

[
ψδ(|ξ|) ̂(u0,jφδ)(ξ, k)

]
exp (−ikx3) , j = 1, 2, 3. (6.2)

Now, we write the initial data in the form[
%

(1)
0

]
δ

= s0,ε,δ + q0,ε,δ, where−∆hq0,ε,δ + ω2q0,δ = ω
∫ 1

0
curlh [[u0]h]δ dx3 + ω2

∫ 1

0

[
%

(1)
0

]
δ

dx3 (6.3)

[u0]δ = V0,ε,δ + v0,ε,δ, with ω[v0,ε,δ]1 = −∂x2q0,ε,δ, ω[v0,ε,δ]2 = ∂x1q0,ε,δ. (6.4)
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Finally, we choose the functions r, U in the relative entropy inequality as

r = rε,δ = %̃ε + εm(qε,δ + sε,δ), U = Uε,δ = vε,δ + Vε,δ, (6.5)

where [sε,δ,Vε,δ] is the unique solution of the acoustic-Rossby system (5.1), (5.2), emanating from
the initial data

sε,δ(0, ·) = s0,ε,δ, Vε,δ(0, ·) = V0,ε,δ,

while the functions qε,δ, vε,δ are interrelated through

ωf × vε,δ +∇xqε,δ = 0, (6.6)

where qε,δ is the unique solution of the problem

∂t
(
∆hqε,δ − ω2qε,δ

)
+

1

ω
∇⊥h qε,δ · ∇x

(
∆hqε,δ − ω2qε,δ

)
= 0, qε,δ(0, ·) = q0,ε,δ. (6.7)

6.2 Decay of the oscillatory component

First we claim that, in view of the dispersive estimates (5.24) (with 0 < β < 2/m), and the properties
of the eigenvectors of the matrix A, discussed in detail in Section 5.1.2, we get

sε,δ → 0 in Lp(0, T ;W l,q(Ω)),Vε,δ → 0 in Lp(0, T ;W l,q(Ω)) as ε→ 0 (6.8)

for any fixed δ > 0, 1 ≤ p <∞, 2 < q ≤ ∞ and l = 0, 1, . . .
We note that

 sε,δ(t, xh, k)

Vε,δ(t, xh, k

 = F−1
ξ→xh


QT (ξ, ω, k)



exp
(
iλ1(ξ, ω, k) t

εm

)
, 0, 0, 0

0, exp
(
iλ2(ξ, ω, k) t

εm

)
, 0, 0

0, 0, exp
(
iλ3(ξ, ω, k) t

εm

)
, 0

0, 0, 0, exp
(
iλ4(ξ, ω, k) t

εm

)


Q(ξ, ω, k)ψ(|ξ|)ĥ0(ξ)



= F−1
ξ→xh


ψ̃(|ξ|)QT (ξ, ω, k)



exp
(
iλ1(ξ, ω, k) t

εm

)
, 0, 0, 0

0, exp
(
iλ2(ξ, ω, k) t

εm

)
, 0, 0

0, 0, exp
(
iλ3(ξ, ω, k) t

εm

)
, 0

0, 0, 0, exp
(
iλ4(ξ, ω, k) t

εm

)


ψ̃(|ξ|)Q(ξ, ω, k)ψ(|ξ|)ĥ0(ξ)


, ω = εm−1,
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where ψ̃ ∈ C∞c (0,∞) has been chosen so that ψψ̃ = ψ.
In accordance with Section 5.1.2, the quantities ψ̃Q, ψ̃QT are Lp− Fourier multipliers with norm

independent of ω. Thus the desired decay estimates (6.8) follow from (5.24).

6.3 Convergence of the non-oscillatory component

We introduce the scaled function q̃ε,δ = qε,δ/ω and observe that

∂t
(
∆hq̃ε,δ − ω2q̃ε,δ

)
+∇⊥h q̃ε,δ · ∇h

(
∆hq̃ε,δ − ω2q̃ε,δ

)
, qε,δ(0) = q0,ε,δ, (6.9)

∆hq̃0,ε,δ − ω2q̃0,δ =
∫ 1

0
curlh [[u0]h]δ dx3 + ω

∫ 1

0

[
%

(1)
0

]
δ

dx3.

Since the initial data are regular, we may use the result of Oliver [26, Theorem 3] to deduce that

{∆q̃ε,δ + ε2q̃ε,δ}ε>0 is bounded in Cr([0, T ];W l,2(Ω)), r ≥ 0, l = 0, 1, . . . (6.10)

Moreover, as ∆q̃ε,δ satisfies that transport equation (6.9) with the initial data in Lp(R2), we get

{∆q̃ε,δ + ω2q̃ε,δ}ε>0 is bounded in L∞([0, T ];Lp(Ω)) for any 1 < p <∞. (6.11)

Next, we recall the “energy estimates” that can be obtained multiplying (6.9) on q̃ε,δ and inte-
grating by parts:∫

R2

(
|∇xq̃ε,δ|2 + ω2|q̃ε,δ|2

)
(τ, ·) dx =

∫
R2

(
|∇xq̃0,ε,δ|2 + ω2|q̃0,ε,δ|2

)
dx. (6.12)

Note that ∫
R2
∇⊥h q̃ε,δ · ∇h∆hq̃ε,δ q̃ε,δdx = −

∫
R2
∇⊥h q̃ε,δ · ∇hq̃ε,δ∆hq̃ε,δdx = 0.

Since
vε,δ = ∇⊥h q̃ε,δ,

we get
{vε,δ}ε>0 is bounded in Cr([0, T ];W l,2(R2)), r ≥ 0, l = 0, 1, . . . (6.13)

Finally, we compute
∂tq̃ε,δ = (∆h − ω2)−1 [∇h (vε,δcurlvε,δ)] ,

where, furthermore,
vcurlhv =

[
v1 (∂x1v2 − ∂x2v1) ; v2 (∂x1v2 − ∂x2v1)

]
,

with

v1∂x1v2 = ∂x1(v1v2) +
1

2
∂x2v

2
2, v2∂x2v1 = ∂x2(v1v2) +

1

2
∂x1v

2
1.
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Consequently, we may infer that

{∂tq̃ε,δ}ε>0 is bounded in Cr([0, T ];W l,q(R2)), r ≥ 0, q > 1, l = 0, 1, . . . (6.14)

All the above estimates may depend on δ but are uniform with respect to ε↘ 0.
In view of the above estimates, it is easy to pass to the limit for ε→ 0 in order to get

vε,δ → vδ, ∂tvε,δ → ∂tvδ weakly-(*) in L∞(0, T ;W l,2(R2)), l = 0, 1, . . . , (6.15)

where
vδ, ∂tvδ ∈ C([0, T ];W l,2(R2)), l = 0, 1, 2, . . . . (6.16)

We have, in particular,

vε,δ → vδ in Lq(0, T ;Lqloc(Ω)), 1 ≤ q <∞;

whence, by virtue of (6.9),
∂tcurlhvδ + vδ · ∇hcurlhvδ = 0.

Seeing that
curlhdivh(vδ ⊗ vδ) = curlh(vδ · ∇hvδ) = vδ · ∇hcurlhvδ,

we deduce existence of
Πδ ∈ C([0, T ];W l,2(R2)), l = 0, 1, 2, . . . , (6.17)

where the couple (vδ,Πδ) is the unique solution of the Euler system (1.9), emanating from the initial
data

vδ(0, ·) =
∫ 1

0
Hh [[u0]δ] dx3. (6.18)

6.4 Relative entropy inequality

We return to the relative entropy inequality (2.12), where % = %ε, u = uε and the test functions r
and U are given by (6.5). In what follows, we examine step by step all terms on the right-hand side
of (2.12) and perform the limits; first for ε→ 0, then for δ → 0.
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6.4.1 Initial data

We have
Eε
(
%0,ε,u0,ε

∣∣∣ r(0, ·),U(0, ·)
)

(6.19)

=
∫

Ω

1

2
%0,ε|u0,ε − [u0]δ|2 dx

+
∫

Ω

[
1

ε2m

(
H
(
1 + εm%

(1)
0,ε

)
−H ′(1 + εm[%

(1)
0 ]δ)

(
(%

(1)
0,ε − [%

(1)
0 ]δ

)
−H(1 + εm[%

(1)
0 ]δ)

)]
dx

≤ c
(
‖u0,ε − [u0]δ‖2

L2(Ω;R3) + ‖%(1)
0,ε − [%

(1)
0 ]δ‖2

L2(Ω;R3)

)
→ c

(
‖u0 − [u0]δ‖2

L2(Ω;R3) + ‖%(1)
0 − [%

(1)
0 ]δ‖2

L2(Ω;R3)

)
as ε→ 0.

The most left quantity obviously tends to zero as δ ↘ 0.

6.4.2 Viscosity

We write

εα
∣∣∣∣∫ τ

0

∫
Ω
S(∇xUε,δ) : ∇x(Uε,δ − uε) dx dt

∣∣∣∣ ≤ εαc1(δ)
∫ τ

0

∫
Ω
|∇x(Uε,δ − uε)| dx dt, (6.20)

and, by Korn’s inequality,

εα
∫ τ

0

∫
Ω
|∇x(Uε,δ − uε)| dx dt ≤ εα

2

∫ τ

0

∫
Ω

(Sε(∇xuε)− Sε(∇xUε,δ) : ∇x (Uε,δ − uε) dx dt+ c2ε
α.

6.4.3 Forcing term

We have
1

ε2m

[
(rε,δ − %ε)∂tH ′(rε,δ) +∇x

(
H ′(rε,δ)−H ′(%̃ε)

)
· (rε,δUε,δ − %εuε)

]
(6.21)

+
1

ε2m
divxUε,δ

(
p(rε,δ)− p(%ε)

)
+

1

ε2n
(rε,δ − %ε)∇xG ·Uε,δ

=
1

ε2m

[
p(rε,δ)− p′(rε,δ)(rε,δ − %ε)− p(%ε)

]
divxUε,δ +

1

ε2m
(rε,δ − %ε)H ′′(rε,δ)

[
∂trε,δ + divx(rε,δUε,δ)

]
+

1

ε2m

[
%ε∇xH

′(rε,δ) · (Uε,δ − uε)−∇xH
′(%̃ε) · (rε,δUε,δ − %εuε)

]
+

1

ε2n
(rε,δ − %ε)∇xG ·Uε,δ,

where
∂trε,δ + divx(rε,δUε,δ) = (%̃ε − 1)divxVε,δ +∇x%̃ε ·Uε,δ+ (6.22)

εm∂tqε,δ + εmdivx ((sε,δ + qε,δ)(vε,δ + Vε,δ)) .
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and
%ε∇xH

′(rε,δ) · (Uε,δ − uε)−∇xH
′(%̃ε) · (rε,δUε,δ − %εuε) (6.23)

= %ε∇x

[
H ′(rε,δ)−H ′′(%̃ε)(rε,δ − %̃ε)−H ′(%̃ε)

]
· (Uε,δ − uε)

+%ε∇xH
′′(%̃ε) · (Uε,δ − uε)(rε,δ − %̃ε) + %εε

mH ′′(%̃ε)
(
∇xsε,δ +∇xqε,δ

)
· (Uε,δ − uε)

+(%ε − rε,δ)∇xH
′(%̃ε) ·Uε,δ.

Here we have used the fact that the term %ε∇xH
′(%̃ε) · (Uε,δ − uε) in the expansion of %ε∇xH

′(rε,δ) ·
(Uε,δ − uε) cancels with the same term in the expansion of ∇xH

′(%̃ε) · (rε,δUε,δ − %εuε).
Now we use formula (6.21) with the second and third terms at the right hand side expressed

through formulas (6.22) and (6.23): we keep the terms 1
εm
%εH

′′(%̃ε)
(
∇xsε,δ +∇xqε,δ

)
· (Uε,δ−uε) and

1
εm

(rε,δ−%ε)∇xH
′(rε,δ) [∂tqε,δ + divx ((sε,δ + qε,δ)(vε,δ + Vε,δ))] as they are, and estimate the decay of

all remaining terms as ε→ 0.
We observe that, thanks to (6.9), (6.12),

sup
t∈(0,T )

‖qε,δ(t, ·)‖L2(R2) ≤ c, sup
t∈(0,T )

‖∆qε,δ(t, ·)‖L2(R2) ≤ cεm−1, sup
t∈(0,T )

‖∂tqε,δ(t, ·)‖L2(R2) ≤ cεm−1.

(6.24)
Now, we use (2.4–2.5), (4.1–4.4), (6.5), (6.8), (6.13), (6.24) to deduce the following estimates:

1

ε2n

∣∣∣ ∫ τ

0

∫
Ω

(rε,δ − %ε)∇xG ·Uε,δ dxdt
∣∣∣ ≤ cεm−2n, (6.25)

1

ε2m

∫ τ

0

∫
Ω

[
p(rε,δ)− p′(rε,δ)(rε,δ − %ε)− p(%ε)

]
divxUε,δ dxdt (6.26)

=
1

ε2m

∫ τ

0

∫
Ω

[
p(rε,δ)− p′(rε,δ)(rε,δ − %ε)− p(%ε)

]
res

divxVε,δ dxdt

+
1

ε2m

∫ τ

0

∫
Ω

[
p(rε,δ)− p′(rε,δ)(rε,δ − %ε)− p(%ε)

]
ess

divxVε,δ dxdt = h(ε, δ),

1

ε2m

∣∣∣ ∫ τ

0

∫
Ω

(rε,δ − %ε)H ′′(rε,δ)
(
(%̃ε − 1)divxVε,δ +∇x%̃ε ·Uε,δ

)
dxdt

∣∣∣ ≤ cεm−2n, (6.27)

1

ε2m

∫ τ

0

∫
Ω
%ε∇x

[
H ′(rε,δ)−H ′′(%̃ε)(rε,δ − %̃ε)−H ′(%̃ε)

]
· (Uε,δ − uε) dxdt = h(ε, δ), (6.28)
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1

ε2m

(∣∣∣ ∫
Ω
%ε∇xH

′′(%̃ε) · (Uε,δ − uε)(rε,δ − %̃ε) dxdt
∣∣∣+ ∣∣∣ ∫ τ

0

∫
Ω

(%ε− rε,δ)∇xH
′(%̃ε) ·Uε,δ dxdt

∣∣∣ ≤ cεm−2n.

(6.29)
Here and hereafter, h(ε, δ) denotes a generic function having the property

h(ε, δ)→ h̃(δ) as ε→ 0, h̃(δ)→ 0 as δ → 0. (6.30)

Note that the dispersive decay estimates (6.8) play a crucial role in the analysis.
Taking into account (6.19), (6.20), using the identity (6.21) with the third and fourth terms

expressed through (6.22–6.23), and employing the asymptotic behavior from formulas (6.25–6.29),
we may rewrite the relative entropy inequality (2.12) in the form

Eε
(
%ε,uε

∣∣∣ rε,δ,Uε,δ

)
(τ) ≤

∫ τ

0

∫
Ω
%ε (∂tUε,δ + uε · ∇xUε,δ) · (Uε,δ − uε) dx dt (6.31)

+
1

ε

∫ τ

0

∫
Ω
%ε(f × uε) · (Uε,δ − uε) dx dt

+
1

εm

∫ τ

0

∫
Ω

(rε,δ − %ε)H ′′(rε,δ)
[
∂tqε,δ + divx ((sε,δ + qε,δ)Uε,δ)

]
dx dt

+
1

εm

∫ τ

0

∫
Ω
%εH

′′(%̃ε)
(
∇xsε,δ +∇xqε,δ

)
· (Uε,δ − uε) dx dt+ h(ε, δ).

6.4.4 Coriolis force

We may write
%εH

′′(%̃ε)
(
∇xsε,δ +∇xqε,δ

)
· (Uε,δ − uε) (6.32)

= %ε(H
′′(%̃ε)−H ′′(1))

(
∇xsε,δ +∇xqε,δ

)
· (Uε,δ − uε) + %εH

′′(1)
(
∇xsε,δ +∇xqε,δ

)
· (Uε,δ − uε),

where, by the same reasoning as in estimates (6.25–6.29),

1

ε2m

∣∣∣ ∫ τ

0

∫
Ω
%ε(H

′′(%̃ε)−H ′′(1))
(
∇xsε,δ +∇xqε,δ

)
· (Uε,δ − uε) dxdt

∣∣∣ ≤ cεm−2n

Recalling our convention H ′′(1) = 1 we get for the second term in (6.32),

1

εm
%εH

′′(1)
(
∇xsε,δ +∇xqε,δ

)
· (Uε,δ − uε) =

%ε
(
− ∂tVε,δ −

1

ε
f ×Vε,δ −

1

ε
f × vε,δ

)
· (Uε,δ − uε)

= −∂tVε,δ −
1

ε
(f ×Uε,δ) · uε,
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where the last term cancels out with the Coriolis force term 1
ε
f × uε · (Uε,δ − uε) = 1

ε
(f × uε) ·Uε,δ.

Thanks to formula (6.32) the relative entropy inequality (6.31) reduces to

Eε
(
%ε,uε

∣∣∣ rε,δ,Uε,δ

)
(τ) ≤

∫ τ

0

∫
Ω
%ε (∂tvε,δ + uε · ∇xUε,δ) · (Uε,δ − uε) dx dt (6.33)

+
1

εm

∫ τ

0

∫
Ω

(rε,δ − %ε)H ′′(rε,δ)
[
∂tqε,δ + divx ((sε,δ + qε,δ)Uε,δ)

]
dx dt+ h(ε, δ).

6.4.5 Estimating the remaining terms

We observe that∫ τ

0

∫
Ω
%ε (∂tvε,δ + uε · ∇xUε,δ) · (Uε,δ − uε) dx dt =

∫ τ

0

∫
Ω
%ε (vε,δ + Uε,δ · ∇xUε,δ) · (Uε,δ − uε) dx dt

−
∫ τ

0

∫
Ω
%ε(Uε,δ − uε) · ∇xUε,δ · (Uε,δ − uε) dx dt,

where the terms in the first expression at the right hand side containing the quantities sε,δ, Vε,δ tend
to 0 in the limit limδ→0 limε→0 thanks to dispersive estimates (6.8). Consequently, employing (2.5),
we obtain ∫ τ

0

∫
Ω
%ε (∂tvε,δ + uε · ∇xUε,δ) · (Uε,δ − uε) dx dt

≤
∫ τ

0

∫
Ω

(∂tvε,δ + vε,δ · ∇xvε,δ) · (vε,δ − uε) dx dt+ c
∫ τ

0
Eε
(
%ε,uε

∣∣∣ rε,δ,Uε,δ

)
dt+ h(ε, δ).

Similarly, we deduce

1

εm

∫ τ

0

∫
Ω

(rε,δ − %ε)H ′′(rε,δ)
[
∂tqε,δ + divx ((sε,δ + qε,δ)Uε,δ)

]
dx dt

=
∫ τ

0

∫
Ω
qε,δ∂tqε,δ dx dt+ h(ε, δ),

where we have used (4.1–4.3),(6.6), (6.24).
Now, we employ the energy equality (6.12) to observe that∫ τ

0

∫
Ω

(
vε,δ · ∂tvε,δ + qδ,ε · ∂tqε,δ

)
dx dt = 0.

Consequently, ∫ τ

0

∫
Ω

(∂tvε,δ + vε,δ · ∇xvε,δ) · (vε,δ − uε) dxdt

+
∫ τ

0

∫
Ω
qε,δ∂tqε,δ dx dt = −

∫ τ

0

∫
Ω

(∂tvε,δ + vε,δ · ∇xvε,δ) · uε dxdt,
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where we have used the identity
∫ τ

0

∫
Ω vε,δ · ∇xvε,δ · vε,δ dxdt = 0.

We remark that∫ τ

0

∫
Ω

(∂tvε,δ + vε,δ · ∇xvε,δ) · uε dx dt→
∫ τ

0

∫
Ω

(∂tvδ + vδ · ∇xvδ) · u dx dt

=
∫ τ

0

∫
Ω
∇xΠδ · u dx dt = 0,

where we have used (4.7–4.8), (6.15) and equations (1.9) with (v,Π) replaced by (vδ,Πδ). Conse-
quently, the entropy inequality (6.33) takes the form

Eε
(
%ε,uε

∣∣∣ rε,δ,Uε,δ

)
(τ) ≤ h(ε, δ),

where the function h satisfies (6.30). This finishes the proof of Theorem 3.1
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