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Abstract. We will consider linear equations in the abstract infinite-dimensional Hilbert space setting with bounded,

coercive and self-adjoint operators, which can represent, e.g., boundary value problems formulated via partial differential

equations. Efficient numerical solution procedures often incorporate transformation of the original problem using

preconditioning. Motivated, in particular, by the works of Faber, Manteuffel, Parter, Oswald, Dahmen, Kunoth and Rüde

published in the early 90’s, this text will present an abstract formulation of operator preconditioning based on the idea of

decomposition of a Hilbert space into a finite number of (infinite-dimensional) subspaces, by formulating the main results

using the concepts of norm equivalence and spectral equivalence of infinite-dimensional operators. Its goal is to describe

in a concise way the common principles behind various adaptive multilevel and domain decomposition techniques using

infinite-dimensional function spaces.

Key words. Decomposition into subspaces, operator preconditioning, stable splitting, norm and spectral equivalence of

operators, multilevel methods.

1. Introduction. Numerical solution of boundary value problems formulated via partial differential

equations (PDEs) consists of several tightly interconnected steps. First the mathematical model is

analyzed, which leads to the appropriate concept of solution of the infinite-dimensional problem, such

as the weak solution using the associated function spaces. Then the problem is discretized, giving a finite-

dimensional matrix-vector representation, and subsequently an approximate solution of the discretized

problem is computed. Although it is of no particular importance in this text, we on purpose emphasize

that the discretized problem is not solved exactly, apart from trivial cases. In solving large discretized

problems, an approximate solution is typically computed iteratively. In order to ensure computational

efficiency (in the sense of computing time or energy consumption), the discretized problem is typically

transformed into a problem that is easier to solve via the given iterative process. Such transformation is

historically called preconditioning.

In the recent book [30] it is argued that the formulation of the infinite-dimensional problem using

function spaces, its discretization, preconditioning and computation of an approximate solution should be

considered as a single problem. In particular, it is useful to link preconditioning considered in algebraic

matrix computations with the infinite-dimensional operator formulation of the problem and with its

discretization using the concept of operator preconditioning.

The ideas of operator preconditioning were developed in the 90’s independently by several authors;

see, e.g., Klawonn [25, 26] and Arnold, Falk and Winther [1, 2]. They were immediately used and further

developed by very many authors. Even before that, a seminal paper by Faber, Manteuffel and Parter [15]

analyzed closely related concepts of norm equivalence and spectral equivalence of operators, with references

to the early papers of D’Yakonov [13, 14] and Gunn [20, 21]. Another line of development can be represented

by the works of Oswald [34, 35, 36] and Dahmen and Kunoth [11], which are closely related to the multilevel

methods and multilevel preconditioning; see the summary and the list of references in the paper by Axelsson

and Karátson [5] and in the introduction to Chapter 2 of the book [38]. Classical related references are,

e.g., [6, 7, 8, 16, 19, 24, 31, 41]. This paper will build upon [30] and, motivated by [38, Chapter 2]

and [37, Section 3], it will present an abstract formulation of operator preconditioning based on the idea

of decomposition of a Hilbert space into a finite number of (infinite-dimensional) subspaces.

We will now outline the main ideas, with detailed descriptions (including references to the literature)
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provided further in the text. Using a real (infinite-dimensional) Hilbert space V and its dual V # consisting

of all linear bounded functionals from V to R, we will consider the functional equation in V #

Au = b, where A : V → V #, b ∈ V #, u ∈ V. (1.1)

We will assume that A is linear, bounded, coercive, and self-adjoint

〈Au, v〉 = 〈Av, u〉 for all u, v ∈ V.

Some statements given throughout the text allow for a more general setting. By the Lax-Milgram lemma

the solution u ∈ V of (1.1) always exists and it continuously depends on the right-hand side b ∈ V #.

The given setting represents, e.g., the weak formulation of linear second-order elliptic PDEs that generate

self-adjoint operators; see, e.g., [30, Chapters 1–3]. It is worth noting that although the original differential

operator is in the classical formulation typically unbounded, the representation (1.1) using the appropriate

Sobolev spaces uses bounded operators A : V → V # and bounded functionals b ∈ V #.

Operator preconditioning can in its general form be formulated using the Riesz representation theorem.

Considering any inner product (·, ·)∗ : V × V → R on V (that is, in general, different from the inner

product (·, ·)V that is associated with the definition of the Hilbert space V ) and the associated Riesz map

τ∗ : V # → V , it is possible to write the problem (1.1) as an equation in the solution space V :

τ∗Au = τ∗b, τ∗A : V → V, τ∗b ∈ V, u ∈ V. (1.2)

Since τ∗ represents an isometry, the operator τ∗A on V is bounded and coercive, and it is self-adjoint with

respect to the inner product (·, ·)∗.
Equivalently, operator preconditioning can be formulated using a linear, bounded, coercive, and self-

adjoint operator B : V → V # that defines the B-inner product

(·, ·)B : V × V → R, (w, v)B := 〈Bw, v〉 for all w, v ∈ V, (1.3)

where 〈·, ·〉 : V #×V is the duality pairing associated with V and V #. Using the Riesz map τB determined

by (·, ·)B and the easily derived equality τB = B−1 : V # → V , the problem (1.2) is written as

B−1Au = B−1b, B−1A : V → V, B−1b ∈ V, u ∈ V. (1.4)

The question to be addressed next is which relationship between the operators A and B can ensure

that the transformed (preconditioned) problem (1.4) can be easily solved by a particular iterative method.

This question is, in general, very difficult to handle. For stationary iterative methods (and, more

generally, for methods based on contraction) the question can be addressed by an appropriate single-

number characteristic, such as the condition number. This is also where the term preconditioning founds its

origin. For highly nonlinear iterations such as Krylov subspace methods, any single-number characteristic

is insufficient for describing convergence behavior and its use can be highly misleading; see, e.g., [30,

Chapter 11], [29, Chapter 5], and [18]. Nevertheless, a single-number characteristic can even in such cases

be useful as a first indicator, and for powerful preconditioners it can even provide the desired information

whenever the guaranteed number of the resulting iterations is very small. Therefore, while being well-aware

of the limitations of single-number characteristic descriptions, we will use the concepts related to them

throughout this paper. In particular, we will use the concepts of norm equivalence and spectral equivalence

of operators, and the related condition number and spectral number characteristics of the preconditioned

operators.

Consider the operators A, B given above. The operators A and B are called V #-norm equivalent on

V if there exist constants 0 < α ≤ β <∞ such that

α ≤ ‖Aw‖V #

‖Bw‖V #

≤ β, for all w ∈ V,w 6= 0, (1.5)
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and they are called spectrally equivalent on V if there exist constants 0 < γ ≤ δ <∞ such that

γ ≤ 〈Aw,w〉
〈Bw,w〉

≤ δ, for all w ∈ V,w 6= 0, (1.6)

see [15, Section 1.1, relation (1.16) and Section 1.2, relation (1.20)]. If α is close to β respectively γ is close

to δ, then (1.5) respectively (1.6) represent a strong (geometric) relationship between the operators A and

B, and we can expect that this will positively affect properties of the preconditioned operator B−1A. Such

properties are in literature on operator preconditioning typically characterized by the condition number

κ(B−1A) := ‖B−1A‖L(V,V )‖A−1B‖L(V,V ). (1.7)

Motivated by algebraic preconditioning of linear algebraic systems with finite matrices (see also [15, Section

1.1, in particular relations (1.12) and (1.13)]), we will introduce the spectral number of the pair A, B that is

linked with another view to preconditioning (1.1) using the operator B. With the Riesz map τ : V # → V

defined by the inner product (·, ·)V , τA and τB are linear, bounded and coercive operators on V that are

self-adjoint with respect to (·, ·)V . Taking the (uniquely determined) square root (see, e.g., [17, Theorem

6.6.4])

(τB)1/2 : V → V, (1.8)

the preconditioned system (1.4) can be rewritten as

(τB)−1/2 τA (τB)−1/2w = (τB)−1/2 τb, (1.9)

where w = (τB)1/2u. This substantiates the introduction of the spectral number of the pair A, B, related

to the preconditioned operator Q := (τB)−1/2τA(τB)−1/2 : V → V ,

κ̂(A,B) :=
supz∈V, ‖z‖V =1

(
(τB)−1/2τA(τB)−1/2z, z

)
V

infv∈V, ‖v‖V =1

(
(τB)−1/2τA(τB)−1/2v, v

)
V

(1.10)

that is determined by the shortest interval that contains the spectrum of Q, with more details given in

the next section. We will also prove that (1.10) can be rewritten in terms of norms as

κ̂(A,B) =
supz∈V, ‖z‖V =1 ‖(τB)−1/2τA(τB)−1/2z‖V
infv∈V, ‖v‖V =1 ‖(τB)−1/2τA(τB)−1/2v‖V

, (1.11)

which does not seem entirely obvious and present in the literature (see Theorem 2.1 in Section 2 and

its proof given in Appendix, in particular relations (7.4) and (7.6)). We point out that the condition

number κ(B−1A) should not be confused with the spectral number κ̂(A,B). Since B−1A is not generally

self-adjoint, there is no simple relationship between these two characteristics. In this paper we will not

investigate in full the relationship between (1.5), (1.6), (1.7), and (1.10). There seem to be much to be

done in that direction and therefore such investigation is beyond the scope of this text. We will use (1.5)

and (1.6) for stating some basic results about (1.7) and (1.10).

The outlined setting will be used for the description of preconditioners based on decomposing the

Hilbert spaces V and V # into a finite number of (infinite-dimensional) subspaces. This enables the

construction of preconditioners for each individual subspace by using them subsequently for assembling

the global preconditioner.

The paper is structured as follows. Section 2 presents the description of the basic setting and notation.

Section 3 recalls the concept of operator preconditioning and gives the bounds on the condition number

and the spectral number of the infinite-dimensional preconditioned operator. Here it is pointed out that

the condition number of the preconditioned problem should in general be distinguished from its spectral

number. Section 4 gives consequences for the matrix formulations of the discretized problem. Abstract

splitting-based preconditioning is constructed and investigated in Section 5. This section also presents error

3

N
E
Č
A
S
C
E
N
TE

R
FO

R
M
A
TH

E
M
A
TI
C
A
L
M
O
D
E
LI
N
G

Pr
ep

ri
nt

:
NC

MM
/2

01
7/

06
ht

tp
:/

/n
cm

m.
ka

rl
in

.m
ff

.c
un

i.
cz



bounds based on the residual of the preconditioned problem and on the locally preconditioned residuals.

The link to the well-known context of stable splitting is briefly outlined in Section 6. The paper closes

with conclusions. The appendix presents the proof of the characterization of the coercivity constant of the

operator via the norm of its inverse, which seems to be absent from the literature.

Within the paper we consider linear operators on real Hilbert spaces (i.e. real complete inner product

spaces). Whenever the results on the infinite-dimensional operators A and B presented in this paper are

linked with the results on their finite-dimensional analogues (matrices) that arise from discretization, it is

understood that within our setting A and B are bounded operators on infinite-dimensional Hilbert spaces

that have bounded inverses. Therefore, by standard functional analysis results (see, e.g. [30, p. 63], [3,

p. 282], [27], [10, p. 174], [12, p. 486], and [4, p. 98]), A and B cannot be considered as limits of their

discretized counterparts in any norm (a sequence of compact operators can converge in norm only to a

compact operator).

For algebraic vectors v respectively for matrices A we will always denote by ‖v‖ respectively ‖A‖ the

Euclidean norm respectively the associated induced (operator) matrix norm equal to the largest singular

value of the matrix A.

2. Basic setting. The following notation is mostly adopted from [30]. Let V be a real Hilbert space

with the inner product (·, ·)V : V × V → R and the associated norm ‖ · ‖V :=
√

(·, ·)V . Let further V #

denote the dual space of bounded (continuous) linear functionals on V with the duality pairing

〈·, ·〉 : V # × V → R (2.1)

and the dual norm

‖f‖V # = sup
v∈V, ‖v‖V =1

〈f, v〉.

The Riesz representation theorem associated with the inner product (·, ·)V provides an isometric

isomorphism between V and V # given through the Riesz map τ : V # → V . For each f ∈ V # there

exists a unique τf ∈ V such that

(τf, v)V := 〈f, v〉 for all v ∈ V, (2.2)

with

‖τf‖V = ‖f‖V # . (2.3)

Throughout this text we will consider the equation (1.1) or, equivalently,

to find u ∈ V : 〈Au, v〉 = 〈b, v〉 for all v ∈ V. (2.4)

In terms of an associated symmetric bounded (continuous) bilinear form

a(·, ·) : V × V → R, a(u, v) := 〈Au, v〉 for all u, v ∈ V (2.5)

the equation (2.4) is expressed as

to find u ∈ V : a(u, v) = 〈b, v〉 for all v ∈ V. (2.6)

As mentioned above, A is assumed to be linear, bounded, coercive and self-adjoint, with the associated

boundedness and coercivity constants defined as

CA := sup
v∈V, ‖v‖V =1

‖Av‖V # <∞, (2.7)

and

cA := inf
v∈V, ‖v‖V =1

〈Av, v〉 > 0; (2.8)
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note that under the given assumptions A represents an isomorfism between V and V # (by the Lax-Milgram

theorem) and therefore A−1 exists and represents an isomorfism between V # and V . Obviously

a(v, v) ≥ cA‖v‖2V for all v ∈ V,
|a(w, v)| ≤ CA‖w‖V ‖v‖V for all w, v ∈ V.

We will further use well known results from the spectral theory of self-adjoint operators in Hilbert

spaces; see, e.g. [17, Section 6.5]. Because they are formulated (using our notation) for the operators from

V to V , we will use them for the operator τA. From the self-adjointness of A with respect to the dual

map 〈·, ·〉 we deduce the self-adjointness of τA with respect to the inner product (·, ·)V , and from the fact

that τ is an isometric isomorfism from V # to V we have

sup
u∈V, ‖u‖V =1

‖τAu‖V = ‖τA‖L(V,V ) = ‖A‖L(V,V #) = sup
u∈V, ‖u‖V =1

‖Au‖V # . (2.9)

The coercivity of A allows us to restrict further considerations regarding the spectrum of τA to the positive

part of the real line. The spectrum of τA lies in the closed interval [mA,MA],

0 < mA := inf
u∈V, ‖u‖V =1

〈Au, u〉 ≤ 〈Au, u〉 = (τAu, u)V ≤MA := sup
u∈V, ‖u‖V =1

〈Au, u〉. (2.10)

Moreover, the lower bound mA and the upper bound MA belong to the spectrum of the operator τA but

they need not be eigenvalues of τA; see [17, Theorem 6.5.9].

It is worth noticing that while the coercivity constant cA in (2.8) is expressed as the lower extremal

point of the spectral interval determined by (2.10), i.e. cA = mA, the boundedness constant CA is expressed

in terms of the norms CA = ‖τA‖L(V,V ) = ‖A‖L(V,V #). We will therefore complete the description by

relating CA to the upper extremal point MA in (2.10) and by relating cA to the norm of the inverse

operator ‖A−1‖L(V #,V ). The statement is formulated as the following theorem that we were unable to

find in literature. Its full proof is therefore included in Appendix.

Theorem 2.1. Let A : V → V # be a linear, bounded, coercive and self-adjoint operator. Using the

standard definition of the operator norm, the boundedness constant CA and the coercivity constant cA can

be expressed as

CA = ‖A‖L(V,V #) = sup
u∈V, ‖u‖V =1

〈Au, u〉 = MA, (2.11)

cA = mA = inf
v∈V, ‖v‖V =1

〈Av, v〉 =
1

supf∈V #, ‖f‖
V #=1 ‖A−1f‖V

=
{
‖A−1‖L(V #,V )

}−1
. (2.12)

Using this result,

‖A−1‖−1L(V #,V )
‖v‖2V ≤ a(v, v) ≤ ‖A‖L(V,V #)‖v‖2V for all v ∈ V. (2.13)

Now consider a linear, bounded, coercive, and self-adjoint operator B : V → V # that will play

within our setting the role of a B-preconditioner for the functional equation (1.1), with CB and cB defined

analogously to (2.7) and (2.8), respectively. Using the operator B, we introduce the B-inner product (1.3)

(·, ·)B : V × V → R, (w, v)B := 〈Bw, v〉 for all w, v ∈ V

and the associated Riesz map

τB : V # → V, f ∈ V # 7→ τBf ∈ V

defined by

(τBf, v)B := 〈f, v〉 for all f ∈ V #, v ∈ V. (2.14)

Using this and the definition of the B-inner product,

(τBf, v)B = 〈BτBf, v〉 = 〈f, v〉
(

= (τf, v)V

)
,

and therefore the Riesz map τB associated with B is given simply by

τB = B−1 : V # → V. (2.15)
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3. Operator preconditioning with norm and spectral equivalence of operators. Operator

preconditioning can be introduced in several ways. We prefer using the relationship with the Riesz map.

Considering any inner product (., .)∗ : V × V → R and the associated Riesz map τ∗ : V # → V defined by

(τ∗f, v)∗ := 〈f, v〉 for all v ∈ V,

the formulation (2.4) of (1.1)

〈Au− b, v〉 = 0 for all v ∈ V

(the weak formulation of the PDE problem) can be equivalently written as

(τ∗(Au)− τ∗b, v)∗ = 0 for all v ∈ V,

and, consequently, as transformation of the equation Au = f in the space V # of bounded linear functionals

on V into the equation in the solution space V ,

τ∗Au = τ∗b, τ∗A : V → V, u ∈ V, τ∗b ∈ V. (3.1)

This transformation is called operator preconditioning. It can motivate or directly lead to the construction

of acceleration techniques used in order to improve the behavior of iterative methods for solving associated

discretized problems.

With the choice of the inner product (., .)∗ = (., .)B determined via the operator B as above, the

transformed problem (3.1) can simply be written as

B−1Au = B−1b, B−1A : V → V, u ∈ V, B−1b ∈ V, (3.2)

which resembles the standard algebraic preconditioning of linear algebraic systems. It is worth recalling

in this context the bounds on the condition number (1.7)1

κ(B−1A) := ‖B−1A‖L(V,V )‖A−1B‖L(V,V ).

Since

‖B−1A‖L(V,V ) = sup
z∈V, ‖z‖V =1

‖B−1Az‖V = sup
z∈V, ‖z‖V =1

∥∥∥∥B−1 Az
‖Az‖V #

‖Az‖V #

∥∥∥∥
V

≤ sup
f∈V #, ‖f‖

V #=1

‖B−1f‖V sup
z∈V, ‖z‖V =1

‖Az‖V # =
CA
cB

(3.3)

and, analogously,

‖A−1B‖L(V,V ) ≤
CB
cA

, (3.4)

we get an upper bound

κ(B−1A) ≤ CA
cB

CB
cA

= κ(A)κ(B). (3.5)

Theorem 3.1 (Norm equivalence and condition number). Assuming that the linear, bounded, coercive

and self-adjoint operators A and B are V #-norm equivalent on V , i.e. there exist 0 < α ≤ β < ∞ such

that

α ≤ ‖Aw‖V #

‖Bw‖V #

≤ β, for all w ∈ V,w 6= 0, (3.6)

1We point out that in the literature motivated by preconditioning, the condition number κ(B−1A) is often confused with

the spectral number κ̂(A,B); see (1.7) and (1.10).
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then

‖B−1A‖L(V,V ) ≤ β, (3.7)

‖A−1B‖L(V,V ) ≤
1

α
. (3.8)

Consequently,

κ(B−1A) := ‖B−1A‖L(V,V )‖A−1B‖L(V,V ) ≤
β

α
. (3.9)

Proof. For the Riesz map τ defined by (2.2) we have, using (3.6) and (2.3), that

α ≤ ‖τAw‖V
‖τBw‖V

≤ β, for all w ∈ V,w 6= 0. (3.10)

Substituting w = (τA)−1u and w = (τB)−1v, we get

α ≤ ‖u‖V
‖τB(τA)−1u‖V

≤ β and α ≤ ‖τA(τB)−1v‖V
‖v‖V

≤ β, (3.11)

respectively, for all u, v ∈ V , u 6= 0, v 6= 0, and thus

‖τB(τA)−1‖L(V,V ) ≤
1

α
and ‖τA(τB)−1‖L(V,V ) ≤ β. (3.12)

Denote by Q∗ the adjoint operator to Q : V → V ; and recall that ‖Q∗‖L(V,V ) = ‖Q‖L(V,V ). From the

self-adjointness of τA and (τB)−1 we have for all u, v ∈ V ,

(((τB)−1τA)∗u, v)V = ((τB)−1τAv, u)V = ((τB)−1u, τAv)V = (v, τA(τB)−1u)V = (τA(τB)−1u, v)V ,

and thus ((τB)−1τA)∗ = τA(τB)−1, which results in

‖(τB)−1τA‖L(V,V ) = ‖((τB)−1τA)∗‖L(V,V ) = ‖τA(τB)−1‖L(V,V ). (3.13)

Similarly,

‖(τA)−1τB‖L(V,V ) = ‖τB(τA)−1‖L(V,V ). (3.14)

Considering an arbitrary w ∈ V , w 6= 0, (3.13) and (3.11), we get

‖B−1Aw‖V
‖w‖V

=
‖B−1τ−1τAw‖V

‖w‖V
=
‖(τB)−1τAw‖V

‖w‖V
≤ β, (3.15)

which proves (3.7). Similarly, for arbitrary w ∈ V , w 6= 0, using (3.14) and (3.11) we get

‖A−1Bw‖V
‖w‖V

=
‖A−1τ−1τBw‖V

‖w‖V
=
‖(τA)−1τBw‖V

‖w‖V
≤ 1

α
, (3.16)

which proves (3.8). Relation (3.9) then trivially follows.

For β close to α the bound (3.9) proves that the condition number κ(B−1A) is small irrespectively of the

values of the constants cA, CA, cB and CB.

Corollary 3.2. Inequalities (3.7) and (3.8) in Theorem 3.1 mean

‖B−1Av‖V
‖v‖V

≤ β, ‖A−1Bw‖V
‖w‖V

≤ 1

α
, for all v, w ∈ V, v 6= 0, w 6= 0.

Substituting v = A−1f and w = B−1g, we get

‖B−1f‖V
‖A−1f‖V

≤ β, ‖A−1g‖V
‖B−1g‖V

≤ 1

α
, for all f, g ∈ V #, f 6= 0, g 6= 0
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or, equivalently

α ≤ ‖B
−1f‖V

‖A−1f‖V
≤ β, for all f ∈ V #, f 6= 0. (3.17)

We have just shown that (3.6) implies (3.17). Analogously, (3.17) implies (3.6). Thus the V #-norm

equivalence of A and B on V with constants α and β in the form (3.6) is equivalent to the V -norm

equivalence of B−1 and A−1 on V # with the same constants in the form (3.17).

Theorem 3.3 (Spectral equivalence and spectral number). Assuming that the operators A and B are

spectrally equivalent on V , i.e. there exist 0 < γ ≤ δ <∞ such that

γ ≤ 〈Aw,w〉
〈Bw,w〉

≤ δ, for all w ∈ V,w 6= 0, (3.18)

then

κ̂(A,B) :=
supz∈V, ‖z‖V =1

(
(τB)−1/2τA(τB)−1/2z, z

)
V

infv∈V, ‖v‖V =1

(
(τB)−1/2τA(τB)−1/2v, v

)
V

≤ δ

γ
. (3.19)

Proof. From (3.18) we have for all w ∈ V , w 6= 0

γ ≤ (τAw,w)V
(τBw,w)V

≤ δ. (3.20)

For τB : V → V consider the uniquely determined linear, bounded, coercive and self-adjoint square root

(τB)1/2 : V → V such that (τB)1/2(τB)1/2 = τB. Thus (τBw,w)V = ((τB)1/2w, (τB)1/2w)V for w ∈ V .

Substituting w = (τB)−1/2v in (3.20), we get for all v ∈ V , v 6= 0

γ ≤ (τA(τB)−1/2v, (τB)−1/2v)V
(v, v)V

≤ δ

and, using the self-adjointness of (τB)−1/2

γ ≤ ((τB)−1/2τA(τB)−1/2v, v)V
(v, v)V

≤ δ.

This leads to

sup
z∈V, ‖z‖V =1

(
(τB)−1/2τA(τB)−1/2z, z

)
V
≤ δ,

inf
v∈V, ‖v‖V =1

(
(τB)−1/2τA(τB)−1/2v, v

)
V
≥ γ,

which yields (3.19).

We note that within our setting we have trivially

cA
CB
≤ 〈Aw,w〉
〈Bw,w〉

≤ CA
cB

, for all w ∈ V, w 6= 0, (3.21)

which, however, does not consider a possible link between A and B, and it can be therefore impractical.

In the following section we will examine the condition and the spectral numbers of the preconditioned

discretized system matrix.

4. Condition and spectral numbers of the matrix representations of discretized operators.

In order to perform numerical computations, the problem (1.1) must first be discretized. Using an N -

dimensional subspace Vh ⊂ V , the abstract Galerkin discretization looks for the approximation uh ∈
Vh, uh ≈ u ∈ V satisfying

〈Auh − b, v〉 = 0 for all v ∈ Vh . (4.1)
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In other words, the discretized approximation uh gives the residual b − Auh ∈ V # that is orthogonal to

the subspace Vh with respect to the duality pairing 〈·, ·〉. This property is called Galerkin orthogonality.

The same residual restricted to V #
h is identically zero, which results in the discretized functional equation

below. Considering the restriction Ah : Vh → V #
h of the operator A such that

〈Ahw, v〉 = 〈Aw, v〉 for all w, v ∈ Vh, (4.2)

and the restriction bh : Vh → R of the functional b to V #
h , (4.1) is written as

〈Ahuh − bh, v〉 = 0 for all v ∈ Vh (4.3)

or, in the operator form, as the equation in the N -dimensional functional space

Ahuh = bh, uh ∈ Vh, bh ∈ V #
h , Ah : Vh → V #

h . (4.4)

Considering further the inner product (., .)B and the associated restricted Riesz map τB,h : V #
h → Vh, we

finally get the abstract form of the preconditioned discretized problem

τB,hAhuh = τB,hbh, uh ∈ Vh, bh ∈ V #
h , Ah : Vh → V #

h . (4.5)

We note that the subscript h is used for convenience of notation in possible mesh-based implementations

(using, e.g., the finite element method (FEM), where it characterizes the size of the mesh elements). The

abstract formulation used here is, however, more general and it is independent of any notion of mesh.

4.1. Matrix representations of the discretized problem. The matrix formulation of the

discretized problems is obtained in a standard way. Consider a basis Φh = (φ1, . . . , φN ) of Vh and the

canonical dual basis Φ#
h = (φ#1 , . . . , φ

#
N ) of V #

h ,2

〈φ#i , φj〉 = δij , i, j = 1, . . . , N, or, using matrix notation, (Φ#
h )∗Φh = IN ,

where IN denotes the N ×N identity matrix. We wish to construct a linear algebraic system

M−1h Ahxh = M−1h bh, Ah ∈ RN×N , Mh ∈ RN×N , xh ∈ RN , bh ∈ RN , (4.6)

where Ah represents the discretized operator Ah, M−1h the discretized preconditioner τB,h, bh the

discretized right-hand side functional bh, and xh the coordinates of the approximate solution uh in the

basis Φh, (recalling that z∗ means the transpose of the vector z)

xh = (〈φ#1 , uh〉, . . . , 〈φ
#
N , uh〉)

∗.

This algebraic system is obtained using the following equalities

Ahuh = AhΦhxh = Φ#
hAhxh,

where

AhΦh =: Φ#
hAh, Ah =

(
a(φ

(h)
j , φ

(h)
i )
)
i,j=1,...,N

=
(
〈Aφ(h)j , φ

(h)
i 〉
)
i,j=1,...,N

, (4.7)

or, using symbolic notation,

Ah = (AΦh)∗Φh, (4.8)

and

τB,hAhuh = τB,hAhΦhxh = τB,hΦ#
hAhxh = ΦhM

−1
h Ahxh,

τB,hbh = τB,hΦ#
h bh = ΦhM

−1
h bh,

2Here for simplicity of notation we omit the subscript h in the individual basis functions.
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where

τB,hΦ#
h = ΦhM

−1
h , Mh :=

(
〈Bφ(h)j , φ

(h)
i 〉
)
i,j=1,...,N

, (4.9)

or, using symbolic notation,

Mh = (BΦh)∗Φh. (4.10)

Here the representation of the restricted Riesz map τB,h is based on the equalities that hold for any

N -dimensional vectors v and f , with f = Φ#
h f , v = Φhv, τB,hΦ#

h = ΦhMτ for some Mτ ∈ RN×N ,

v∗f = 〈f, v〉 = (τB,hf, v)B = (τB,hΦ#
h f ,Φhv)B = (ΦhMτ f ,Φhv)B = 〈BΦhMτ f ,Φhv〉 = v∗MhMτ f ,

and therefore Mτ = M−1h ,

τB,hΦ#
h = ΦhM

−1
h . (4.11)

Finally, the preconditioned algebraic system can indeed be written in the form (4.6)

M−1h Ahxh = M−1h bh,

or, using the factorization Mh = M
1/2
h M

1/2
h , as

Mh
−1/2AhM

−1/2
h (M

1/2
h xh) = M

−1/2
h bh (4.12)

or

Ãt,hx̃
t
h = b̃th, (4.13)

where

Ãt,h := Mh
−1/2AhM

−1/2
h , x̃th := M

1/2
h xh, b̃th := M

−1/2
h bh.

It is worth noticing that the discretized form of the problem (4.6) allows many different factorizations

of Mh. Instead of the square root of the operator Mh, we can consider an arbitrary decomposition

Mh = LhL
∗
h, which can be more practical computationally. Then we can write

At,hx
t
h = bth, (4.14)

having in this case

Lh
−1Ah(L∗h)−1(L∗hxh) = L−1h bh, At,h := Lh

−1Ah(L∗h)−1, xth := L∗hxh, bth := L−1h bh.

Due to

L−1h Mh(L∗h)−1 = L−1h M
1/2
h

(
M

1/2
h (L∗h)−1

)
= IN (4.15)

we have (
L−1h M

1/2
h

)−1
=
(
L−1h M

1/2
h

)∗
i.e. L−1h M

1/2
h is an orthogonal matrix. For any given Lh there is therefore an orthogonal transformation

M
1/2
h →M

1/2
h

(
M
−1/2
h Lh

)
= Lh

from M
1/2
h to Lh.
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The transformed system (4.14) can moreover be obtained mathematically equivalently (this term is used

in order to indicate that mathematical equivalence does not necessarily mean equivalent computational

efficiency or accuracy in practical computations) by first orthogonalizing the discretization basis with

respect to the B-inner product

Φt,h = Φh(L∗h)−1, Φ#
t,h = Φ#

h Lh, Φt,h = (φt1, . . . , φ
t
N ), Φ#

t,h = (φt#1 , . . . , φt#N )

which indeed gives (using the symbolic notation Mh = (BΦh)∗Φh)

(BΦt,h)∗Φt,h = L−1h (BΦh)∗Φh(L∗h)−1 = L−1h Mh(L∗h)−1 = IN ,

and subsequently forming the matrix of the algebraic system (4.13) using (4.7) with the basis Φh replaced

by Φt,h; cf. [30, Chapter 8].

In summary, there is a deep connection between discretization of the infinite-dimensional problem

and preconditioning of the discretized algebraic system. In addition, any algebraic preconditioning can be

viewed as orthogonalization of the discretization basis with respect to the appropriate inner product; for

details see [30].

4.2. Conditioning of the preconditioned system matrix. The question of the rate of

convergence of an iterative method applied to the preconditioned algebraic system (4.13) is typically

reduced to estimates based on the condition number of the preconditioned system matrix. We will leave

aside the question when such an approach leads to descriptive results and which (more or less restrictive)

assumptions must be considered whenever it is applied to practical problems; for a detailed discussion of

these topics we refer to [30, Chapter 11] and [29, Chapter 5]. In the rest of this section we will describe

bounds on the condition and spectral numbers of the matrices At,h (that include also the special choice

Ãt,h) and M−1h Ah in terms of the properties of the operators A and B. The following theorem that

generalizes the results from [15, Section 3, in particular Theorem 3.10] is a finite-dimensional analogue to

Theorem 3.1.

Theorem 4.1 (Norm equivalence and condition number). Consider the assumptions of Theorem 3.1.

Let Sh be the Gram matrix of the discretization basis Φh = (φ1, . . . , φN ) of Vh ⊂ V , (Sh)ij = (φi, φj)V ,

and Ah, Mh be determined by (4.8) and (4.10), respectively. Then the condition number of the matrix

M−1h Ah is bounded as

κ(M−1h Ah) := ‖M−1h Ah‖ ‖A−1h Mh‖ ≤
β

α
κ(Sh). (4.16)

Proof. For w = Φhy, y ∈ RN , we have

‖Aw‖V # = ‖Φ#
hAhy‖V # = sup

u∈Vh, u 6=0

〈Φ#
hAhy, u〉
‖u‖V

= sup
z∈RN , z6=0

〈Φ#
hAhy,Φhz〉
‖Φhz‖V

= sup
z∈RN , z6=0

z∗Ahy

‖Φhz‖V
= sup

z∈RN , z6=0

z∗Ahy√
z∗Shz

.

Setting z = S
−1/2
h v and using (S

−1/2
h )∗ = S

−1/2
h leads to

‖Aw‖V # = sup
v∈RN ,v 6=0

v∗S
−1/2
h Ahy

‖v‖
= ‖S−1/2h Ahy‖.

Analogously

‖Bw‖V # = ‖Φ#
hMhy‖V # = ‖S−1/2h Mhy‖.
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Then

β

α
≥ sup
w∈V,w 6=0

‖Aw‖V #

‖Bw‖V #

sup
v∈V, v 6=0

‖Bv‖V #

‖Av‖V #

≥ sup
w∈Vh, w 6=0

‖Aw‖V #

‖Bw‖V #

sup
v∈Vh, v 6=0

‖Bv‖V #

‖Av‖V #

= sup
w∈RN ,w 6=0

‖S−1/2h Ahw‖
‖S−1/2h Mhw‖

sup
v∈RN ,v 6=0

‖S−1/2h Mhv‖
‖S−1/2h Ahv‖

= sup
y∈RN , y 6=0

‖S−1/2h AhM
−1
h S

1/2
h y‖

‖y‖
sup

z∈RN , z6=0

‖S−1/2h MhA
−1
h S

1/2
h z‖

‖z‖

= ‖S−1/2h AhM
−1
h S

1/2
h ‖ ‖S

−1/2
h MhA

−1
h S

1/2
h ‖. (4.17)

Since for any G ∈ RN×N we have

‖GS
1/2
h ‖ = sup

w∈RN ,w 6=0

‖GS
1/2
h w‖
‖w‖

= sup
w∈RN ,w 6=0

(λmin(Sh))1/2‖GS
1/2
h w‖

(λmin(Sh))1/2‖w‖

≥ (λmin(Sh))1/2 sup
w∈RN ,w 6=0

‖GS
1/2
h w‖

‖S1/2
h w‖

= (λmin(Sh))1/2‖G‖, (4.18)

and, using ‖S−1/2h G‖ = ‖G∗S−1/2h ‖, we get analogously

‖S−1/2h G‖ ≥ (λmax(S−1h ))1/2‖G∗‖ = (λmax(Sh))−1/2‖G‖. (4.19)

Finally, applying (4.18) and (4.19) to (4.17) yields

β

α
≥ ‖S−1/2h AhM

−1
h S

1/2
h ‖ ‖S

−1/2
h MhA

−1
h S

1/2
h ‖

≥ λmin(Sh)

λmax(Sh)
‖AhM

−1
h ‖ ‖MhA

−1
h ‖

=
λmin(Sh)

λmax(Sh)
‖M−1h Ah‖ ‖A−1h Mh‖

which finishes the proof.

Using the coordinates in the transformed basis Φt,h, for any z ∈ Vh we have the following useful

equality

‖z‖2B = (z, z)B = (Φt,hz,Φt,hz)B = ‖z‖2.

We will now turn to the spectral number

κ̂(Ah,Mh) :=
supz∈RN , ‖z‖=1

(
M
−1/2
h AhM

−1/2
h z, z

)
infv∈RN , ‖v‖=1

(
M
−1/2
h AhM

−1/2
h v,v

) =
λmax(M−1h Ah)

λmin(M−1h Ah)
= κ(At,h). (4.20)

Clearly, the spectra of the matrices M−1h Ah and L−1h Ah(L∗h)−1 are identical, and therefore the spectral

number κ̂(Ah,Mh) is determined via the extremal eigenvalues of L−1h Ah(L∗h)−1. While for the symmetric

positive definite matrix the condition number is given as a ratio of extremal eigenvalues, the same is not
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in general true for the nonsymmetric matrix. Analogously to the derivation in [30, Chapter 8],

κ̂(Ah,Mh) =
max‖u‖=1 u

∗At,hu

min‖v‖=1 v∗At,hv

=
max‖u‖=1 u

∗ (〈Aφtj , φti〉)i,j=1,...,N u

min‖v‖=1 v∗ (〈Aφtj , φti〉)i,j=1,...,N v

=
maxu∈Vh, ‖u‖B=1〈Au, u〉
minv∈Vh, ‖v‖B=1〈Av, v〉

=
〈Aũ, ũ〉
〈Aṽ, ṽ〉

, (4.21)

where ũ, ‖ũ‖B = 1 gives the maximum and ṽ, ‖ṽ‖B = 1 the minimum, respectively. Since

‖ṽ‖2B = 〈Bṽ, ṽ〉 ≤ CB‖ṽ‖2V ,
‖ũ‖2B = 〈Bũ, ũ〉 ≥ cB‖ũ‖2V ,

we get

κ̂(Ah,Mh) = κ(At,h) =
〈Aũ, ũ〉
〈Aṽ, ṽ〉

=
‖ũ‖2V
‖ṽ‖2V

〈Aũ/‖ũ‖V , ũ/‖ũ‖V 〉
〈Aṽ/‖ṽ‖V , ṽ/‖ṽ‖V 〉

≤ CB
cB

〈Az, z〉
〈Aw,w〉

≤ CB
cB

CA
cA

, (4.22)

where z = ũ/‖ũ‖V , ‖z‖V = 1, w = ṽ/‖ṽ‖V , ‖w‖V = 1. Summarizing, we get independently of the

discretization parameter h the following analogue of (3.5):

κ̂(Ah,Mh) = κ(At,h) ≤ κ(B)κ(A). (4.23)

For related statements (in a more general setting) we refer, e.g., to [22, Theorem 2.1 and relation (3.2)].

The following theorem is a finite-dimensional analogue to Theorem 3.3.

Theorem 4.2 (Spectral equivalence and spectral number). Consider the assumptions of Theorem 3.3,

and Ah, Mh determined by (4.8) and (4.10), respectively. Then the spectral number κ̂(Ah,Mh), which

is equal to the condition number of the symmetric matrix At,h = L−1h Ah(L∗h)−1 for any Lh such that

Mh = LhL
∗
h, is bounded as

κ̂(Ah,Mh) = κ(At,h) ≤ δ

γ
. (4.24)

Proof. From (4.21) and (4.15), considering ‖ũ‖B = 1, ‖ṽ‖B = 1,

κ̂(Ah,Mh) = κ(At,h) =
〈Aũ, ũ〉
〈Bũ, ũ〉

〈Bṽ, ṽ〉
〈Aṽ, ṽ〉

≤ δ

γ
, (4.25)

yielding the assertion.

This can give a much stronger bound than (4.23). For related early results that can further illustrate the

difference between (4.23) and (4.25) we refer, e.g., to [15] and [42, Sections 4.1 and 4.2].

5. Abstract description of the splitting-based preconditioning. We will now use the operator

preconditioning framework of the previous sections in order to describe splitting-based preconditioning.

Here we will not consider particular approaches developed for particular problems using various specific

assumptions. Following the ideas in [38, Section 2.1] and [37, 19], the goal is to present an abstract

framework that will underline the common basic principles for a variety of different approaches published
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in literature. For specific problems and using specific assumptions, the abstract framework can be used for

deriving properties of specific methods. This can contribute towards easier description of the relationship

between various methods and towards their easier comparison.

We will use the setting of the problem (1.1) and (2.4)–(2.6), i.e.

Au = b (5.1)

in the functional space V #, or, using the bilinear form,

a(u, v) = 〈b, v〉 for all v ∈ V, 〈Au, v〉 = a(u, v).

We are now going to transform (5.1) into the form (cf. (3.2))

M−1Au =M−1b, M−1A : V → V, u ∈ V, M−1b ∈ V, (5.2)

where the preconditioning M is constructed using a decomposition (splitting) of the space V into a finite3

collection of (nontrivial) subspaces {Vj}j∈J that are not necessarily nested, Vj ⊂ V , each complete with

respect to its own inner product (·, ·)j : Vj × Vj → R and the associated norm ‖ · ‖j , such that

V =
∑
j∈J

Vj , i.e., v =
∑
j∈J

vj , vj ∈ Vj , for all v ∈ V. (5.3)

For each Vj we can consider its dual V #
j with the duality pairing identical to (2.1) and the norm ‖ · ‖#j

induced by ‖ · ‖j . We will assume the continuous embedding Vj ↪→ V , see, e.g., [9, Section 6.6]

cVj
‖u‖2V ≤ ‖u‖2j for all u ∈ Vj , 0 < cVj

, j ∈ J. (5.4)

For Vj finite-dimensional, (5.4) always holds true (all norms on finite-dimensional Vj are trivially

topologically equivalent). Thus (5.4) is nontrivial only in the case of Vj (and thus V ) infinite-dimensional.

Then the assumption (5.4) avoids a possible pathological situation when a converging sequence of elements

from Vj ⊂ V may diverge in V . Moreover, the assumption (5.4) guarantees that any functional from V #

restricted to Vj belongs to V #
j . Indeed, let f ∈ V #, then

‖f‖#j = sup
u∈Vj , u 6=0

〈f, u〉
‖u‖j

= sup
u∈Vj , u 6=0

〈f, u〉
‖u‖V

‖u‖V
‖u‖j

≤ 1
√
cVj

sup
u∈V, u6=0

〈f, u〉
‖u‖V

≤ 1
√
cVj

‖f‖V # . (5.5)

The necessity of (5.4) for V # ⊂ V #
j is an open question.

The splitting-based preconditioning M will be composed of the individual preconditionings at the

subspaces Vj , j ∈ J . Let Bj be a linear, bounded, coercive, and self-adjoint operator

Bj : Vj → V #
j , 〈Bju, v〉 = 〈Bjv, u〉 for all u, v ∈ Vj , (5.6)

with the associated bilinear form ßj : Vj × Vj → R

ßj(u, v) := 〈Bju, v〉, for all u, v ∈ Vj .

Analogously to (2.7), (2.8) and Theorem 2.1, for j ∈ J

CBj
:= sup

v∈Vj , ‖v‖j=1

‖Bjv‖#j <∞, (5.7)

cBj := inf
v∈Vj , ‖v‖j=1

〈Bjv, v〉 =
1

supf∈V #
j , ‖f‖#j =1 ‖B

−1
j f‖j

> 0, (5.8)

3Since this text is motivated by numerical methods and, in particular, by the construction of preconditioning, with no loss

of generality it is sufficient to consider splitting of the Hilbert space V into a finite number of subspaces that can be infinite-

dimensional. This setting is convenient since it simplifies the exposition of the abstract splitting-based preconditioning.
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and

cBj
‖u‖2j ≤ ßj(u, u) ≤ CBj

‖u‖2j . (5.9)

In other words, Bj is coercive and bounded on Vj , j ∈ J . The operator Bj (the bilinear form ßj) defines

on Vj the inner product4

(·, ·)Bj
: Vj × Vj → R, (w, v)Bj

:= ßj(w, v) = 〈Bjw, v〉 for all w, v ∈ Vj , (5.10)

with the corresponding Riesz map

τBj
: V #

j → Vj , f ∈ V #
j 7→ τBj

f ∈ Vj

defined by

(τBj
f, v)Bj

:= 〈f, v〉 for all f ∈ V #
j , v ∈ Vj . (5.11)

Clearly, analogously to the construction presented in Section 2,

(τBj
f, v)Bj

= 〈BjτBj
f, v〉 = 〈f, v〉, for all f ∈ V #

j , v ∈ Vj

and therefore

τBj
= Bj−1 : V #

j → Vj . (5.12)

We will now construct a splitting-based preconditioning M−1 in (5.2). For any u ∈ V and j ∈ J we

have

〈Au, v〉 = (B−1j Au, v)Bj
for all v ∈ Vj ,

and

〈b, v〉 = (B−1j b, v)Bj
for all v ∈ Vj ;

under the assumption (5.4) we have V # ⊂ V #
j and therefore B−1j Au and B−1j b are well-defined. Combining

the last two equations gives

〈Au− b, v〉 = (B−1j Au− B
−1
j b, v)Bj

for all v ∈ Vj ,

and therefore on each subspace Vj , j ∈ J , we can formulate the preconditioned equation

B−1j Au = B−1j b, (5.13)

that must be satisfied by the solution u ∈ V of Au = b. Consequently, from Au = b we get∑
j∈J
B−1j

Au =

∑
j∈J
B−1j

 b,

or, equivalently,

M−1Au =M−1b, M−1 :=
∑
j∈J
B−1j . (5.14)

Using the properties of the operator A, of the particular decomposition V =
∑
j∈J Vj , and of the particular

preconditioning operators Bj , j ∈ J , the goal is to prove the equivalence of (5.14) and (5.1) and, in

4Here we do not need the form ßi(·, ·). We introduce this notation for convenience. Part of the literature uses the bilinear

form formulation instead of the operator formulation.
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addition, prove results that are as strong as possible on the conditioning and other relevant properties of

the preconditioned problem (5.14) and of its matrix representations obtained by discretization.5

We start with proving the equivalence of (5.14) and (5.1). By construction, the unique solution

u = A−1b of (5.1) solves also (5.14). It remains to prove that u = A−1b is the only solution of (5.14).

Theorem 5.1. Let the splitting of the Hilbert space V satisfy (5.3) and (5.4), and let the splitting-

based preconditioning M−1 be defined by (5.6)–(5.14). Then (5.14) has the unique solution u = A−1b,
and for M−1 we have

‖M−1f‖V ≤
∑
j∈J

1

cBj
cVj

‖f‖V # for all f ∈ V #.

Proof. Let (5.14) have two different solutions, i.e., there exists g ∈ V #, g 6= 0, such that M−1g = 0.

Then

0 =
〈
g,M−1g

〉
=

〈
g,
∑
j∈J
B−1j g

〉
=
∑
j∈J

〈
g,B−1j g

〉
=
∑
j∈J

(
B−1j g,B−1j g

)
Bj

=
∑
j∈J
‖B−1j g‖2Bj

,

i.e.,

‖B−1j g‖2Bj
= 0 for all j ∈ J. (5.15)

Since g 6= 0, there exists a z ∈ V such that 〈g, z〉 6= 0. Consider a decomposition z =
∑
j∈J zj , zj ∈ Vj ,

j ∈ J . Then

0 6=

〈
g,
∑
j∈J

zj

〉
=
∑
j∈J
〈g, zj〉 =

∑
j∈J

(
B−1j g, zj

)
Bj
,

and thus at least one term in the last sum, say
(
B−1k g, zk

)
Bk

, must be non-zero. This contradicts (5.15)

and completes the proof of the first statement. Using (5.8) and (5.4) (and thus (5.5)), we have

‖Bj−1f‖j ≤
1

cBj

‖f‖#j ≤
1

cBj

√
cVj

‖f‖V # ,

and thus,

‖M−1f‖V =

∥∥∥∥∥∥
∑
j∈J
B−1j f

∥∥∥∥∥∥
V

≤
∑
j∈J

1
√
cVj

‖B−1j f‖j ≤
∑
j∈J

1

cBjcVj

‖f‖V # ,

which completes the proof.

Theorem 5.1 proves that M−1 is bounded with

‖M−1‖L(V #,V ) = sup
f∈V #, ‖f‖

V #=1

‖M−1f‖V ≤ CM−1 :=
∑
j∈J

1

cBjcVj

<∞. (5.16)

We will now show that M−1 is also coercive and define its bounded and coercive inversion

M :=
(
M−1

)−1
: V → V # (5.17)

(see the analogy with the operator B in Sections 2 and 3). In order to accomplish this, we will assume

there exists a CS <∞ such that6

‖u‖2S := inf
uj∈Vj , u=

∑
j∈J uj

∑
j∈J
‖uj‖2j

 ≤ CS ‖u‖2V for all u ∈ V. (5.18)

5This text does not deal with particular matrix representations that are in practice based on further specific assumptions.
6In, e.g., [38, Definition 2.1.1], [19, 37] the norm ‖u‖S defined in (5.18) is called the additive Schwarz norm in V with

respect to the splitting (5.3); see Section 6 below.
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Remark 5.1. Let (5.18) be replaced by a stronger assumption that there exists a positive constant C

such that ∑
j∈J
‖uj‖2j ≤ C ‖u‖

2
V , for all u =

∑
j∈J

uj , uj ∈ Vj , j ∈ J. (5.19)

Then for any u ∈ V the decomposition u =
∑
j∈J uj, uj ∈ Vj, j ∈ J , is unique. Indeed, let u =

∑
j∈J uj =∑

j∈J vj, uj , vj ∈ Vj, and let there exist at least one m ∈ J such that um 6= vm. Then 0 =
∑
j∈J(uj − vj),

and one has

0 <
∑
j∈J
‖uj − vj‖2j ≤ C

∥∥∥∥∥∥
∑
j∈J

(uj − vj)

∥∥∥∥∥∥
2

V

= C

∥∥∥∥∥∥
∑
j∈J

uj −
∑
j∈J

vj

∥∥∥∥∥∥
2

V

= 0,

which contradicts um 6= vm. The assumption (5.19) is, however, too strong and in the consequence too

restrictive. Therefore it is not further considered.

Theorem 5.2. Let the splitting of the Hilbert space V satisfy (5.3), (5.4) and (5.18), and let the

splitting-based preconditioning M−1 be defined by (5.6)–(5.14). Then

‖f‖2V # ≤ CS

∑
j∈J

(
‖f‖#j

)2
for all f ∈ V #,

and for M−1 we have

〈f,M−1f〉 ≥ 1

CS maxj∈J CBj

‖f‖2V # for all f ∈ V #.

Proof. In order to prove the first statement, we consider for u ∈ V its arbitrary fixed decomposition

u =
∑
j∈J uj , uj ∈ Vj , j ∈ J . Then

〈f, u〉2 =

〈
f,
∑
j∈J

uj

〉2

=

∑
j∈J
〈f, uj〉

2

≤

∑
j∈J
| 〈f, uj〉 |

2

≤

∑
j∈J
‖f‖#j ‖uj‖j

2

≤
∑
k∈J

(
‖f‖#k

)2∑
j∈J
‖uj‖2j .

This must hold for any decomposition of u, therefore also for those with
∑
j∈J ‖uj‖2j arbitrarily close to

‖u‖2S. Consequently, for all u ∈ V ,

〈f, u〉2 ≤ CS

∑
k∈J

(
‖f‖#k

)2
‖u‖2V ,

and

‖f‖2V # = sup
u∈V, ‖u‖V =1

〈f, u〉2 ≤ CS

∑
k∈J

(
‖f‖#k

)2
.

For proving the second statement we use the inequality〈
f,B−1j f

〉
≥ 1

CBj

(
‖f‖#j

)2
, for all f ∈ V #. (5.20)

It follows from

sup
f∈V #

j , f 6=0

(
‖f‖#j

)2
〈
f,B−1j f

〉 = sup
u∈Vj , u 6=0

(
‖Bju‖#j

)2
〈Bju, u〉

= sup
u∈Vj , u 6=0

(
1

〈Bju, u〉
sup

v∈Vj , v 6=0

〈Bju, v〉2

‖v‖2j

)

≤ sup
u∈Vj , u 6=0

sup
v∈Vj , v 6=0

〈Bju, u〉〈Bjv, v〉
〈Bju, u〉 ‖v‖2j

= sup
v∈Vj , v 6=0

〈Bjv, v〉
‖v‖2j

= CBj
,
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where we used the Cauchy-Schwarz inequality 〈Bju, v〉2 = (u, v)2Bj
≤ ‖u‖2Bj

‖v‖2Bj
. With (5.20)

〈f,M−1f〉 =

〈
f,
∑
j∈J
B−1j f

〉
=
∑
j∈J

〈
f,B−1j f

〉
≥
∑
j∈J

1

CBj

(
‖f‖#j

)2
≥ 1

maxj∈J CBj

∑
j∈J

(
‖f‖#j

)2
≥ 1

CS maxj∈J CBj

‖f‖2V # ,

which finishes the proof.

Theorem 5.2 proves that M−1 is coercive with

inf
f∈V #, ‖f‖

V #=1
〈f,M−1f〉 ≥ cM−1 :=

1

CS maxj∈J CBj

> 0. (5.21)

We note the little ambiguity in notation. Here the definition of CM−1 (see (5.16)) and cM−1 (see (5.21))

anticipate the particular construction ofM−1 and they are not defined as the boundedness and coercivity

constants for a general operatorM−1. For simplicity of notation we use this and do not introduce another

symbols.

Corollary 5.3. Let the splitting of the Hilbert space V satisfy (5.3), (5.4) and (5.18), and let the

splitting-based preconditioning M−1 be defined by (5.6)–(5.14). Then the operator

M :=
(
M−1

)−1
: V → V # (5.22)

is bounded and coercive with

CM := sup
v∈V, ‖v‖V =1

‖Mv‖V # ≤ 1

cM−1

, (5.23)

cM := inf
v∈V, ‖v‖V =1

〈Mv, v〉 ≥ 1

CM−1

. (5.24)

Proof. The existence of the bounded operator M follows from the Lax-Milgram lemma applied to

M−1. The bound (5.23) follows from (5.21) using the substitution f =Mv/‖Mv‖V # ,

cM−1 ≤ inf
f∈V #, ‖f‖

V #=1
〈f,M−1f〉 = inf

v∈V, v 6=0

〈Mv, v〉
‖Mv‖2

V #

≤ inf
v∈V, v 6=0

‖Mv‖V #‖v‖V
‖Mv‖2

V #

= inf
v∈V, v 6=0

‖v‖V
‖Mv‖V #

=
1

supv∈V, v 6=0
‖Mv‖

V #

‖v‖V

=
1

‖M‖L(V,V #)

.

The bound (5.24) is a consequence of (2.12) used for M, and of (5.16); see also Theorem 5.1.

Up to now, we have studied the properties ofM−1 and ofM that plays the role of the preconditioning

operator B from Sections 2 and 3. In the following, our aim is to prove the norm and spectral equivalence,

and some two-sided error bounds using the properties of M−1A. We will use the norms of M−1A and

A−1M defined in the standard way

‖M−1A‖L(V,V ) = sup
u∈V, ‖u‖V =1

‖M−1Au‖V , ‖A−1M‖L(V,V ) = sup
u∈V, ‖u‖V =1

‖A−1Mu‖V .

Obviously,

‖M−1A‖L(V,V ) ≤ ‖M−1‖L(V #,V )‖A‖L(V,V #), ‖A−1M‖L(V,V ) ≤ ‖A−1‖L(V #,V )‖M‖L(V,V #),

and correspondingly to (3.3), (3.4) and (3.5), we have the V -norm equivalence of A−1 and M−1 on

V # stated in the following theorem. Corollary 3.2 shows that within our setting the lower and upper

bounds on ‖Aw‖V #/‖Mw‖V # for w ∈ V , w 6= 0, and on ‖M−1f‖V /‖A−1f‖V for f ∈ V #, f 6= 0, hold

simultaneously. In other words, the V #-norm equivalence of A and M on V and the V -norm equivalence
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ofM−1 and A−1 on V # represent equivalent properties of the pair of operators A andM. This allows to

consider any of these two forms of norm equivalence appropriately to the specific context. In the case of the

splitting-based preconditioning the form usingM−1 seems more appropriate, becauseM−1 is constructed

as the primary object using the operators B−1j , j ∈ J ; see (5.14). The following theorem just reformulates

the inequality (3.5).

Theorem 5.4 (Norm equivalence). Let the linear operator A satisfy (2.7) and (2.8). Let the splitting

of the Hilbert space V satisfy (5.3), (5.4) and (5.18), and let the splitting-based preconditioning M−1 be

defined by (5.6)–(5.14). Then A−1 and M−1 are V -norm equivalent on V #,

‖M−1A‖L(V,V ) = sup
f∈V #, f 6=0

‖M−1f‖V
‖A−1f‖V

≤ CA
cM

, (5.25)

‖A−1M‖L(V,V ) = sup
f∈V #, f 6=0

‖A−1f‖V
‖M−1f‖V

≤ CM
cA

, (5.26)

κ(M−1A) ≤ CA
cM

CM
cA

= κ(A)κ(M) (5.27)

and CA∑
j∈J

1

cBj
cVj

−1 ≤ cM
CA
≤ ‖A

−1f‖V
‖M−1f‖V

≤ CM
cA
≤ CS

cA
max
j∈J

CBj
for all f ∈ V #, f 6= 0. (5.28)

Proof. The statement follows from the previous considerations; see also Theorem 3.1.

The two-sided error bounds introduced in the next theorem hold for an arbitrary approximate solution

v ∈ V of (5.1), (5.14); see also [38, Theorem 2.6.1] that uses the finite-dimensional setting.

Theorem 5.5. Let the splitting of the Hilbert space V satisfy (5.3), (5.4) and (5.18), and let the

splitting-based preconditioning M−1 be defined by (5.6)–(5.14). Let u be the solution of (5.1), (5.14).

Then for any v ∈ V we haveCA∑
j∈J

1

cBj
cVj

−1 ∥∥∥∥∥∥
∑
j∈J

(B−1j Av − B
−1
j b)

∥∥∥∥∥∥
V

≤ ‖v − u‖V ≤
CS

cA
max
j∈J

CBj

∥∥∥∥∥∥
∑
j∈J

(B−1j Av − B
−1
j b)

∥∥∥∥∥∥
V

.

Proof. The statement follows from

‖M−1(Av − b)‖V = ‖M−1A(v − u)‖V ≤ ‖M−1A‖L(V,V ) ‖v − u‖V , for all v ∈ V

and

‖v − u‖V = ‖A−1M(M−1A(v − u))‖V ≤ ‖A−1M‖L(V,V )‖(M−1(Av − b))‖V ,

which give

1

‖M−1A‖L(V,V )

∥∥∥∥∥∥
∑
j∈J

(B−1j Av − B
−1
j b)

∥∥∥∥∥∥
V

≤ ‖v − u‖V ≤ ‖A−1M‖L(V,V )

∥∥∥∥∥∥
∑
j∈J

(B−1j Av − B
−1
j b)

∥∥∥∥∥∥
V

.

Using (5.25), (5.26), and (5.28) finishes the proof.

The following theorem states the spectral equivalence of A and M without using any specific

relationship between A and M. The result therefore reduces to (3.21) in Section 3.

Theorem 5.6 (Spectral equivalence). Let the linear self-adjoint operator A satisfy (2.7) and (2.8). Let

the splitting of the Hilbert space V satisfy (5.3), (5.4) and (5.18), and let the splitting-based preconditioning

M−1 be defined by (5.6)–(5.14). Then A and M are spectrally equivalent and

cA
CS maxj∈J CBj

≤ 〈Az, z〉
〈Mz, z〉

≤ CA
∑
j∈J

1

cBjcVj

for all z ∈ V, z 6= 0. (5.29)
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Proof. The statement follows from (3.21) using (5.16), (5.21), (5.23), and (5.24).

Let u be the solution of (5.1), (5.14). Motivated by [38, Chapter 2], we consider the locally

preconditioned residual associated with v ∈ V

r̄j := B−1j Av − B
−1
j b = B−1j A(v − u) ∈ Vj , j ∈ J. (5.30)

Clearly, for all vj ∈ Vj ,

(r̄j , vj)Bj = 〈A(v − u), vj〉 = a(v − u, vj) = a(v, vj)− 〈b, vj〉. (5.31)

As a consequence of splitting the problem (5.1) into the set of problems (5.13)–(5.14), we have an

(a posteriori) error estimate based on the norms of the locally preconditioned residuals, which is motivated

by [38, Theorem 2.6.2]. Before introducing the theorem, we prove a useful lemma.

Lemma 5.7. Let the linear self-adjoint operator A satisfy (2.7) and (2.8). Let the splitting of the

Hilbert space V satisfy (5.3), (5.4) and (5.18), and let the splitting-based preconditioning M−1 be defined

by (5.6)–(5.14). Then

a(M−1Az,M−1Az) ≤ CA
∑
k∈J

1

cBk
cVk

a(M−1Az, z), (5.32)

and

cA
CS maxj∈J CBj

a(z, z) ≤ a(M−1Az, z). (5.33)

Proof. We have

a
(
M−1Az,M−1Az

)
≤ CA‖M−1Az‖2V = CA

∥∥∥∥∥∥
∑
j∈J
B−1j Az

∥∥∥∥∥∥
2

V

≤ CA

∑
j∈J

∥∥B−1j Az∥∥V
2

≤ CA

∑
j∈J

1
√
cVj

∥∥B−1j Az∥∥j
2

≤ CA

∑
j∈J

1
√
cBj

cVj

∥∥B−1j Az∥∥Bj

2

≤ CA
∑
k∈J

1

cBk
cVk

∑
j∈J

(B−1j Az,B
−1
j Az)Bj

= CA
∑
k∈J

1

cBk
cVk

∑
j∈J
〈Az,B−1j Az〉 = CA

∑
k∈J

1

cBk
cVk

〈
Az,

∑
j∈J
B−1j Az

〉

= CA
∑
k∈J

1

cBk
cVk

〈
Az,M−1Az

〉
= CA

∑
k∈J

1

cBk
cVk

a(z,M−1Az),

which yields (5.32). For proving (5.33) we consider an arbitrary decomposition of z ∈ V , z =
∑
j∈J zj ,
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zj ∈ Vj , j ∈ J . Then

a(z, z) = a

z,∑
j∈J

zj

 =
∑
j∈J

a (z, zj) =
∑
j∈J
〈Az, zj〉 =

∑
j∈J

(B−1j Az, zj)Bj

≤

∑
j∈J

(B−1j Az,B
−1
j Az)Bj

1/2∑
j∈J

(zj , zj)Bj

1/2

≤

∑
j∈J
〈Az,B−1j Az〉

1/2∑
j∈J

CBj‖zj‖2j

1/2

≤ max
j∈J

√
CBj
〈Az,M−1Az〉1/2

∑
j∈J
‖zj‖2j

1/2

.

Considering
∑
j∈J ‖zj‖2j arbitrarily close to its infimum over all possible decompositions of z,

a(z, z) ≤ max
j∈J

√
CBj a(z,M−1Az)1/2‖z‖S ≤

√
CS max

j∈J

√
CBj a(z,M−1Az)1/2‖z‖V

≤
√
CS maxj∈J

√
CBj√

cA
a(z,M−1Az)1/2a(z, z)1/2,

which yields (5.33).

Theorem 5.8. Let the splitting of the Hilbert space V satisfy (5.3), (5.4) and (5.18). Let the linear

self-adjoint operator A satisfy (2.7) and (2.8), and let the splitting-based preconditioning M−1 be defined

by (5.6)–(5.14). Let u be the solution of (5.1), (5.14). Then

a
(
v − u,M−1A(v − u)

)
=
∑
j∈J
‖r̄j‖2Bj

and

minj∈J cBj

C2
A

(∑
k∈J

1

cBk
cVk

)−1 ∑
j∈J
‖r̄j‖2j ≤ ‖v − u‖2V ≤

CS maxj∈J C
2
Bj

c2A

∑
j∈J
‖r̄j‖2j .

Proof. We have for v ∈ V , r̄j = B−1j A(v − u),

‖r̄j‖2Bj
= (r̄j , r̄j)Bj

= 〈A(v − u), r̄j〉 = a(v − u,B−1j A(v − u))

and thus ∑
j∈J
‖r̄j‖2Bj

= a
(
v − u,M−1A(v − u)

)
.

Then, using (5.33),

‖v − u‖2V ≤
1

cA
a(v − u, v − u) ≤

CS maxj∈J CBj

c2A
a(v − u,M−1A(v − u))

=
CS maxj∈J CBj

c2A

∑
j∈J
‖r̄j‖2Bj

≤
CS maxj∈J CBj

c2A

∑
j∈J

CBj
‖r̄j‖2j

≤
CS maxj∈J C

2
Bj

c2A

∑
j∈J
‖r̄j‖2j ,
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which gives the upper bound. A straightforward calculation gives

L :=
minj∈J cBj

C2
A

(∑
k∈J

1

cBk
cVk

)−1 ∑
j∈J
‖r̄j‖2j ≤

minj∈J cBj

C2
A

(∑
k∈J

1

cBk
cVk

)−1 ∑
j∈J

1

cBj

‖r̄j‖2Bj

≤ 1

C2
A

(∑
k∈J

1

cBk
cVk

)−1 ∑
j∈J
‖r̄j‖2Bj

=
1

C2
A

(∑
k∈J

1

cBk
cVk

)−1
a(v − u,M−1A(v − u)).

Using

a(v − u,M−1A(v − u))2 ≤ a(M−1A(v − u),M−1A(v − u)) a(v − u, v − u)

and (5.32) gives

a(v − u,M−1A(v − u)) ≤ CA
∑
k∈J

1

cBk
cVk

a(v − u, v − u)

and finally

L ≤ 1

CA
a(v − u, v − u) ≤ ‖v − u‖2V ,

which completes the proof.

The bound for ‖v − u‖V of Theorem 5.5 is given in terms of the norm of the sum of the locally

preconditioned residuals
∥∥∥∑j∈J r̄j

∥∥∥
V

, while the bound of Theorem 5.8 is in terms of the sum of squares

of the local norms
∑
j∈J ‖r̄j‖2j . In particular, from Theorem 5.5 we have

L1 :=

CA∑
j∈J

1

cBjcVj

−2 ∥∥∥∥∥∥
∑
j∈J

r̄j

∥∥∥∥∥∥
2

V

≤ ‖v − u‖2V ≤
C2

S

c2A
max
j∈J

C2
Bj

∥∥∥∥∥∥
∑
j∈J

r̄j

∥∥∥∥∥∥
2

V

=: R1,

while from Theorem 5.8 we obtain

L2 :=
minj∈J cBj

C2
A

(∑
k∈J

1

cBk
cVk

)−1 ∑
j∈J
‖r̄j‖2j ≤ ‖v − u‖2V ≤

CS maxj∈J C
2
Bj

c2A

∑
j∈J
‖r̄j‖2j =: R2.

For the upper bounds R1 and R2 we get

R1

R2
=
CS

∥∥∥∑j∈J r̄j

∥∥∥2
V∑

j∈J ‖r̄j‖2j
≤
CS

(∑
j∈J ‖r̄j‖V

)2
∑
j∈J ‖r̄j‖2j

≤
CS

(∑
j∈J ‖r̄j‖j/

√
cVj

)2
∑
j∈J ‖r̄j‖2j

≤ CS

∑
j∈J

1

cVj

,

and R1 ≥ R2, i.e. Theorem 5.8 gives at least as good an upper bound as Theorem 5.5, if and only if

∑
j∈J
‖r̄j‖2j ≤ CS

∥∥∥∥∥∥
∑
j∈J

r̄j

∥∥∥∥∥∥
2

V

; (5.34)

cf. (5.18). For the lower bounds L1 and L2 we get

L1

L2
=

1

minj∈J cBj

(∑
k∈J

1

cBk
cVk

)−1 ∥∥∥∑j∈J r̄j

∥∥∥2
V∑

j∈J ‖r̄j‖2j
≤ 1

minj∈J cBj

(∑
k∈J

1

cBk
cVk

)−1 (∑
j∈J ‖r̄j‖V

)2
∑
j∈J ‖r̄j‖2j

≤ 1

minj∈J cBj

(∑
k∈J

1

cBk
cVk

)−1 (∑
j∈J ‖r̄j‖j /

√
cVj

)2
∑
j∈J ‖r̄j‖2j

≤ 1

minj∈J cBj

(∑
k∈J

1

cBk
cVk

)−1∑
j∈J

1

cVj

≤ maxk∈J cBk

minj∈J cBj

(∑
k∈J

1

cVk

)−1∑
j∈J

1

cVj

=
maxk∈J cBk

minj∈J cBj

.

22

N
E
Č
A
S
C
E
N
TE

R
FO

R
M
A
TH

E
M
A
TI
C
A
L
M
O
D
E
LI
N
G

Pr
ep

ri
nt

:
NC

MM
/2

01
7/

06
ht

tp
:/

/n
cm

m.
ka

rl
in

.m
ff

.c
un

i.
cz



If the residual splitting satisfies (5.34), then

L1

L2
≥ 1

minj∈J cBj

(∑
k∈J

1

cBk
cVk

)−1
1

CS
≥

(
CS

∑
k∈J

1

cVk

)−1
.

Finally, (
R1

L1

)/(R2

L2

)
=
R1L2

L1R2
= CS min

j∈J
cBj

∑
j∈J

1

cBjcVj

.

Summarizing, comparison of the bounds of Theorem 5.5 and Theorem 5.8 is problem- and mesh-dependent.

6. Stable splitting. The splitting of V defined by (5.3) is in literature called stable providing that

there are constants cS > 0 and CS > 0 such that

cS‖u‖2V ≤ ‖u‖2S ≤ CS‖u‖2V for all u ∈ V. (6.1)

As pointed out in [38, Remark 2.1.3], for V finite-dimensional all its splittings are trivially stable.

The issue is then not the existence but the value of the constants cS and CS. The stable splitting

assumption (6.1) can be easily linked with the assumptions (5.4) and (5.18) above (the last one coincides

with the right inequality in (6.1)). This gives unique solvability of (5.14)7 and it will allow to apply results

formulated in the previous sections.

Lemma 6.1. The left inequality of (6.1) is fulfilled if and only if (5.4) holds.

Proof. Assuming cS‖u‖2V ≤ ‖u‖2S for u ∈ V , we have for uj ∈ Vj , j ∈ J ,

‖uj‖2V ≤
1

cS
‖uj‖2S ≤

1

cS
‖uj‖2j . (6.2)

Thus setting cVj := cS, j ∈ J , we get (5.4). Here (6.2) shows that if cS‖u‖2V ≤ ‖u‖2S for all u ∈ V ,

then (5.4) is satisfied with the same universal constant cS valid for all j ∈ J , which does not exclude the

option that (5.4) is also satisfied for some constants cVj
larger than cS. On the other hand, assuming (5.4),

we get for any u ∈ V and for any decomposition u =
∑
j∈J uj , uj ∈ Vj , j ∈ J ,

‖u‖2V =

∥∥∥∥∥∥
∑
j∈J

uj

∥∥∥∥∥∥
2

V

≤

∑
j∈J
‖uj‖V

2

≤

∑
j∈J

1
√
cVj

‖uj‖j

2

≤
∑
j∈J

1

cVj

∑
k∈J

‖uk‖2k. (6.3)

Since (6.3) holds for any decomposition of u, we get by considering
∑
k∈J ‖uk‖2k arbitrarily close to its

infimum

‖u‖2V ≤
∑
j∈J

1

cVj

inf
uk∈Vk, u=

∑
k∈J uk

∑
k∈J

‖uk‖2k =
∑
j∈J

1

cVj

‖u‖2S. (6.4)

Thus setting cS :=
(∑

j∈J c
−1
Vj

)−1
yields the first inequality of (6.1). It is worth noting that if for some

constant c we have cVj = c, j ∈ J in (5.4), then the value of cS derived for (6.4) is c/|J |, and we are unable

to deduce (5.4) from the left inequality of (6.1) with the same constant c but with the much weaker c/|J |.
Here we denote by |J | the size of the index set J .

Using (6.1) instead of (5.4) and (5.18), the statements of Theorems 5.1, 5.4, 5.6, and 5.8 can be easily

modified.

Remark 6.1. In some published works the setting corresponds to that used above, and the subspaces

Vj, j ∈ J , are not required to be nested. In most of the hierarchical approaches, however, it is additionally

assumed that the splitting is based on nested subspaces

V1 ⊂ V2 ⊂ · · · ⊂ Vk−1 ⊂ Vk = V, J = {1, 2, . . . , k}. (6.5)

7Using our notation, the operator equation (2.18) from [38, Theorem 2.1.1] is identical to the transformed system (5.14)

from Section 5.
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In addition to that, some works define also the subspaces Wj, j ∈ J such that (with V0 := {0})

Vj−1 ⊕Wj := Vj , j ∈ J, j 6= 0, (6.6)

giving an equivalent splitting representation

V =
∑
j∈J

Vj =
∑
j∈J

Wj . (6.7)

The individual preconditioners can then be constructed by the subtraction of projectors onto the individual

hierarchical levels; see, e.g. [40, Section 13.2.2] and the references given there.

7. Conclusions. In the presented construction of the splitting-based preconditioningM we have not

used any specific information about the operator A except of being bounded, coercive and self-adjoint.

As in the large variety of approaches, methods and theoretical results published in literature, we therefore

can not expect to prove, in general, that the condition number κ(M−1A) of the operator M−1A in the

operator equation (5.14) (see Theorem 5.4) is small. Similarly, we can not expect to prove that the

constants determining the spectral equivalence of the operators A and M are close to each other (see

Theorem 5.6), with implications to the discretized problem, cf. Section 4.2. Apart from the condition

number of the Gram matrix Sh in (4.16), Theorems 4.1 and 4.2 give the bounds for the condition number

and the spectral number of the discretized preconditioned operator, respectively, that are independent of

the discretization, but not more.

The presented generally formulated results can serve as a basis for an easier comparison of existing

approaches that can be put into the given framework. Incorporating an appropriate information about the

operator A into the construction of the preconditioning M can lead to stronger results on the condition

number and/or the spectral number of the preconditioned operators and of their discretizations; for recent

examples see, e.g. [23, 28, 32, 33, 39]. Results of further work in this direction will be reported elsewhere.

Within the given framework we concentrate on the condition number κ(M−1h Ah) and the spectral

number κ̂(Ah,Mh) defined by (4.16) and (4.20), respectively; see also (4.24). As emphasized in the

introduction, one should always be aware that, in general, these single number characteristics are (as any

other single number characteristics) insufficient for describing convergence behavior of Krylov subspace

methods. In this context we note that an arbitrary decomposition Mh = LhL
∗
h leads to the uniquely

determined spectral number κ̂(Ah,Mh), and different choices of Lh, which are all related via orthogonal

transformations, see Section 4.1, result in the same convergence behavior of the preconditioned conjugate

gradient method despite the fact that they can be associated with different transformations of the

discretization bases.

Appendix. In the Appendix we give the proof of the following theorem.

Theorem 2.1. Let A : V → V # be a linear, bounded, coercive and self-adjoint operator. Using the

standard definition of the operator norm, the boundedness constant CA and the coercivity constant cA can

be expressed as

CA = ‖A‖L(V,V #) = sup
u∈V, ‖u‖V =1

〈Au, u〉 = MA, (7.1)

cA = mA = inf
v∈V, ‖v‖V =1

〈Av, v〉 =
1

supf∈V #, ‖f‖
V #=1 ‖A−1f‖V

=
{
‖A−1‖L(V #,V )

}−1
. (7.2)

Proof. The equality (7.1) is well known. It follows from the following sequence of equalities

CA = ‖A‖L(V,V #) = ‖τA‖L(V,V ) = sup
u∈V, ‖u‖V =1

(τAu, u)V = sup
u∈V, ‖u‖V =1

〈Au, u〉 = MA. (7.3)

Here we used the fact that for any self-adjoint operator S in a Hilbert space V

‖S‖L(V,V ) = sup
z∈V, ‖z‖V =1

‖Sz‖V = sup
z∈V, ‖z‖V =1

(Sz, Sz)
1/2
V = sup

z∈V, ‖z‖V =1

|(Sz, z)V |; (7.4)
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see [9, Theorem 4.10.1, p. 220], [17, Theorem 6.5.1]. The second statement (7.2) was published without

proof in [30, Section 3.3]. Since cA = mA, it remains to prove that

mA =
1

supf∈V #, ‖f‖
V #=1 ‖A−1f‖V

= inf
u∈V, ‖u‖V =1

‖Au‖V # , (7.5)

where the second equality results from the substitution f = Au/‖Au‖V # , u ∈ V . Equivalently, it remains

to prove that

mA := inf
u∈V, ‖u‖V =1

(τAu, u)V = inf
u∈V, ‖u‖V =1

‖τAu‖V . (7.6)

Clearly (τAu, u)V ≤ ‖τAu‖V ‖u‖V , therefore the inequality

mA ≤ inf
u∈V, ‖u‖V =1

‖τAu‖V

is trivial. In order to prove the opposite inequality

mA ≥ inf
u∈V, ‖u‖V =1

‖τAu‖V ,

we use the fact that mA belongs to the spectrum of τA and therefore there exists a sequence {vk}k=1,2,...

in V , ‖vk‖V = 1, such that

lim
k→∞

‖τAvk −mAvk‖V = 0; (7.7)

see [17, Corollary 6.5.6]. We will finish the proof by contradiction. Assume that

mA < inf
u∈V, ‖u‖V =1

‖τAu‖V −4

for some 4 > 0. Using the Cauchy-Schwarz inequality,

‖τAvk −mAvk‖2V = ‖τAvk‖2V +m2
A − 2mA(τAvk, vk)V

≥ ‖τAvk‖2V +m2
A − 2mA‖τA‖V = (‖τAvk‖V −mA)2.

Then

‖τAvk −mAvk‖2V ≥ 42 for all k = 1, 2, . . . ,

which gives the contradiction with (7.7) and completes the proof.

Acknowledgement. The authors thank Miroslav Buĺıček, Vı́t Doleǰśı, Josef Málek, Endre Süli, and
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