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Paper dedicated to Professor Philippe G. Ciarlet

Abstract. We deal with nonlinear elliptic and parabolic systems
that are the Bellman like systems associated to stochastic differen-
tial games with mean field dependent dynamics. The key novelty of
the paper is that we allow heavily mean field dependent dynamics.
This in particular leads to a system of PDE’s with critical growth,
for which it is rare to have an existence and/or regularity result. In
the paper, we introduce a structural assumptions that cover many
cases in stochastic differential games with mean filed dependent dy-
namics for which we are able to establish the existence of a weak
solution. In addition, we present here a completely new method
for obtaining the maximum/minimum principles for systems with
critical growths, which is a starting point for further existence and
also qualitative analysis.

1. Introduction

In recent literature, mainly scalar Bellman equations which are cou-
pled with a Fokker–Planck equation are studied ad we refer to starting
paper [9] or to a survey [6], se also [7]. These equations model a Nash
game with a large number of players behaving similarly, so that the de-
cision can be approximate by a single decision make (a representative
agent). So we have a scalar Bellman equation. The present paper con-
siders a model suggested by Bensoussan, accompanied by co-authors,
[3], where the decision of finite number of N players of large population
of Nash-game-players are approximated by N representative agents. So
the Bellman system is a system of parabolic equations coupled with a
forward backward mean field equation.
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In principle, the dependence of the coefficients of the data in the
nonlinearities of the equation may be a functional one. But in order
to have a first insight in the difficulties and in order to simplify the
presentation, we confine to a point-wise dependence of Hamiltonians
with respect to the mean field variable here. Generally, the obtaining
the existence of solution of the Bellman mean field dependent system
with growth with respect to the mean field variable in nonlinearities
is the critical subject. Without additional assumptions only the poor
growth behaviour is permitted. For the case of scalar Bellman equati-
ons, for obtaining the global solvability, [10, 11] gives a quite exhaustive
analysis of the growth conditions for the Hamiltonians concerning the
dependence of ∇u (u is a generalized value function) and the mean
field m, which appears in the pay off functional.

In comparison, in the present paper, we restrict ourselves to Hamil-
tonians which grow quadratically with respect to ∇u, which is from
the point of view of PDE analysis the most interesting case. A related
paper [1], where a mean field dependence of the pay off functional is
assumed, but no such a dependence of m in the dynamics of the sy-
stem is considered. Also in [1], the growth properties of the data with
respect to m, were crucial to obtain global solvability of the problem.

In this paper we goes much beyond the scalar theory and the theory
developed in [1] and obtain the existence result for much larger class of
problems. As a key tool for the existence of a solution we use the met-
hod of sub and super solution used in the context of Bellman systems
in [2].

2. Derivation of the system

In this paper we study a system of partial differential equations which
arises as a necessary condition of a Nash–Point–problem for Vlasov–
McKean–functionals

(2.1) J i(v) =

∫ T

0

∫
Ω

m(v)f i(·,v,m(v)) dx dt+

∫
Ω

uiTm(T, ·) dx,

where (0, T ) is a given time interval, Ω ⊂ Rd is a cube (0, 1)d and
Q := (0, T )×Ω is a space-time cylinder. The function v := (v1, . . . , vN)
with N ∈ N is the vector of the control functions, i.e.,

vi : Q→ RM

is the control of the i-th player, where i = 1, . . . , N and M ∈ N is
given. For every i = 1, . . . , N the function

f i : Q× RMN × R→ R
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is the so-called pay off function of the i-th player. Finally, the function

m : Q→ R,
is the so-called mean field variable. This means that for a given v,
it is a weak nonnegative solution of the following parabolic equation
(“mean field equation”)

(2.2) ∂tm−∆m+ div (mg(·,v,m)) = 0

that is supposed to be satisfied in the space-time cylinder Q, is com-
pleted be spatially periodic boundary conditions (with respect to the
unit cube Ω) and by the initial data

(2.3) m(0) = m0 ≥ 0 in Ω.

Here,
g : Q× RNM × R→ Rd

is a given mapping and we postpone the discussion about its structure
to the end of the section.

For a bounded v, under natural assumptions on the mapping g, the
problem (2.2)–(2.3) has a unique solution
(2.4)
m ∈ L∞(0, T ;L∞(Ω)) ∩ L2(0, T ;W 1,2

per(Ω)) ∩W 1,2(0, T ; (W 1,2
per(Ω))∗),

which allows us to define (2.1). Since the mean field variable depends
on the choice of v, we will frequently also write m = m(v) whenever
the couple (m,v) solves (2.2), which should not be understood as an
algebraic relation.

In (2.4) we use the standard notation for Bochner, Sobolev and Le-
besgue spaces and the subscript “per” indicating the periodicity with
respect to Ω and this notation will be kept through the whole paper. In
what follows, we also omit writing the dependence of function on (t, x)
explicitly to shorten all formulae, i.e., we use the following abbrevia-
tion f(m,v) for f(t, x,m(t, x),v(t, x)) or for f(·,m,v) in what follows,
where f := (f 1, . . . , fN).

Having the mean field variable m and the control function v, we
can define a “pre-version” of the so-called Bellman system for a furt-
her function u = (u1, . . . , uN) : Q → RN via the backward parabolic
system

−∂tu−∆u = f(v,m) +mfm(v,m)

∇u [g(v,m) +mgm(v,m)] =: L(m,v,∇u),
(2.5)

which is supposed to be satisfied in Q, equipped with the Ω-periodic
boundary conditions and completed by the initial condition

u(T ) = uT in Ω.
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We call this system the “pre-Bellman equation” since v has not been
replaced by a feed back formula

(2.6) v(t, x) := ω(t, x,∇u(t, x),m(t, x))

yet and we introduce the meaning of (2.6) in the next subsection. Mo-
reover, L = (L1, . . . , LN) are the so-called modified Lagrangians1.

It is evident, that (2.2) and (2.5) does not form a closed problem
and one needs to connect v with m and ∇u via some relationship. It
will be shown in the next subsection that the necessary condition for
classical Nash–Point problem may serve as such constraint. In addition
assuming further certain qualitative properties of f , we will be able to
give a good meaning to the feed back formula (2.6) and thus to avoid
the presence of the control variable v in the analysis. The main goal
of the paper is to introduce certain structural assumptions on f and
g such that they describe very general mean field dependent Bellman
system on one hand, and for which we can establish the existence of a
weak solution on the other hand.

2.1. Derivation of the full system. Finally, we need to close the
problem (2.2) and (2.5) by an algebraic condition which is necessary
condition for the Nash point of functionals J ’s. The classical Nash–
Point problem reads: For given uT , find v ∈ L∞(0, T ;L∞(Ω;RMN))
such that

(2.7) J i(v) ≤ J i(v1, . . . , vi−1, z, vi+1, . . . , vN)

for all z ∈ L∞(0, T ;L∞(Ω;RM)) and corresponding m’s, the solutions2

to (2.2) with v replaced by z := (v1, . . . , vi−1, z, vi+1, . . . , vN).
The classical version treats the case where f i and g do not depend

on m. In that case, the problem (2.7) is purely analytical (meaning
stochastic free) formulation of a stochastic differential game driven by
the dynamics

d

dt
x = g(t,x,v).

In recent years, interest came up to study cases with m-dependence of
the pay-off f i and/or the dynamics g. From PDE’s point of view, this
leads to new interesting version of the Bellman system.

Although, it is not know whether the problem (2.1) admits a Nash–
point, we derive in what follows certain necessary conditions that must

1We use here the word modified since they differs from standard Lagrangians in
Bellman systems, which is however here caused by the fact that f and g depend
on m.

2We may define this also for other Lp(Lq) spaces once the uniqueness of m(v) is
guaranteed.
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be fulfilled by the hypothetical Nash–point, which finally allow us to
connect the pre-Bellman system (2.5) with the mean field equation
(2.2) via the feed back formula (2.6) or its “equivalent”.

Under natural assumption on the data (cf. Section 2.2) and, say,
v ∈ L∞(0, T ;L∞(Ω;RNM)), it is easy to see that the Gateux derivatives
of the J i and of m(v) exist. For

zi := (0, . . . , 0︸ ︷︷ ︸
i−1

, z, 0, . . . , 0︸ ︷︷ ︸
N−i

)

with arbitrary smooth Ω-periodic function z : Q→ RM , we obtain that

M i :=
d

ds
m(v + sz)

∣∣∣∣
s=0

with i = 1, . . . , N satisfies

(2.8)
∂tM

i −∆M i =

− div
(
M ig(v,m) +mgvi(v,m) · z +mM igm(v,m)

)} in Q

and is completed by the initial condition

M i(0, x) = 0 a.e. in Ω.

Here, we use the subscript to abbreviate the notion of partial derivative,
i.e., gv(v,m) := ∂vg(v,m) and gm(v,m) := ∂mg(v,m). Furthermore,
assuming that v is the Nash–equilibrium, we have for all i = 1, . . . N
that

0 =
d

ds
J i(v + szi)

∣∣∣∣
s=0

=

∫
Q

(
mf ivi(v,m) · z +M if i(v,m) +mM if im(v,m)

)
dx dt

+

∫
Ω

M i(T )ui(T ) dx

(2.9)

for arbitrary smooth Ω–periodic function z. Notice that here m :=
m(v), i.e., m solves (2.2) with v. To evaluate the terms not involving
explicitly z, we use the equations (2.5) and (2.8). First, multiplying
(2.8) by ui, integrating over Q and using integration by parts (note
that M i(0) = 0), we deduce
(2.10)∫

Ω

M i(T )ui(T ) dx+

∫
Q

∇M i · ∇ui dx dt−
∫
Q

M i∂tu
i dx dt

=

∫
Q

(M ig(v,m) +mgvi(v,m) · z +mMgm(v,m)) · ∇ui dx dt.
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Next, multiplying the i-th equation in (2.5) by M i, we observe

−
∫
Q

∂tu
iM i dx dt+

∫
Q

∇ui · ∇M i dx dt

=

∫
Q

M i(f i(v,m) +mf im(v,m)) dx dt

+

∫
Q

M i(g(v,m) +mgm(v,m)) · ∇ui dx dt.

(2.11)

Finally, subtracting (2.11) from (2.10), we obtain the following identity

(2.12)

∫
Ω

M i(T )ui(T ) dx = −
∫
Q

M i(f i(v,m) +mf im(v,m)) dx dt

+

∫
Q

mgvi(v,m) · z dx dt.

Thus, using this relation in the necessary condition (2.9), we see that∫
Q

f ivi(v,m) · z + (∇ui ⊗ z) · gvi(v,m) dx dt = 0

for all i = 1, . . . , N and all smooth Ω-periodic z. This consequently
leads to the necessary compatibility condition

(2.13) f ivi(v,m) +∇ui · gvi(v,m) = 0 in Q.

Thus, now we have a closed system od equations. Namely, (2.2),
(2.5) and (2.13) forms a well-defined problem for which we want to
establish our analytical result. Indeed, the first one will deal just with
(2.2), (2.5) and (2.13) and lead to the uniform a priori estimate for
(m,v,u). However, to obtain also the existence result, we shall require
that for a given (m,∇u), we can find a unique v solving (2.13). For
such a solution we define the feed back formula (2.6) as

ω(m,∇u) := v

and replacing v in (2.5) by the feed back formula, we obtain

(2.14) −∂tu−∆u = H(∇u,m) := L(m,ω(m,∇u),∇u),

Similarly, we replace v in the mean field equation (2.2) and obtain the
backward forward system

∂tm−∆m = − div (mg(ω(m,∇u),m)) ,

−∂tu−∆u = H(∇u,m),
(2.15)

which does not contain a control function v. Nevertheless, this system
is equivalent to (2.2) and (2.5) provided that v is defined such that
it satisfies (2.13). The second result of the paper will be therefore
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established for (2.15), provided that the feed back formula ω is well
defined.

2.2. Structural assumptions on f and g. We keep the notation
from the introduction here. Through the whole text, we assume that
all partial derivatives fv, gv, fm and gm with respect to v and m, re-
spectively, exist and together with f and g are Carathéodory mappings,
i.e., are measurable with respect to (t, x) for all (v,m) and for almost
all (t, x) they are continuous with respect to (v,m). This assumption
will not be mentioned explicitly in what follows but we rather assume it
implicitly in all statements. In what follows we also assume that K and
Ci are positive constants and the same for constants r, s ≥ 0 which will
be used to denote certain powers. Furthermore, we will frequently use
C to denote a generic constant that may change from line to line but
will depend only on data. In case, it will depend on some important
quantity, it will be clearly denoted in the text.

First, we state the assumptions for f : Q × RNM × R → RN . We
assume that f and fv satisfies the following growth condition

|f(m,v)|+m|fm(m,v)| ≤ K(mr + 1)|v|2 +Km2s0 ,

|fv(m,v)| ≤ K(mr + 1)|v|+Kms0 .
(2.16)

for all v and all m ≥ 0. In addition, we assume the following one sided
estimate for f i: There exists α ∈ [0, 1) such that for all i = 1, . . . , N
there holds

(2.17) f i(m,v) +mf im(m,v) ≤ K
(
1 + f i(m,v) + |v|α+1 +m2s0

)
and also one sided sum coerciveness, i.e., we assume

(2.18)
N∑
i=1

f i(m,v) +mf im(m,v) ≥ C0(mr + 1)|v|2 −K(m2s0 + 1).

Concerning the structural assumptions on f we just assume that

(2.19) For all i the function f i is convex with respect to vi.

We also prescribe the behaviour of f at 0, i.e., for all i = 1, . . . , N we
assume that

(2.20) f i(m,v)|vi=0 ≤ K(1 +m2s0 + |v|α+1)

and finally the coerciveness of f ivi , i.e., we assume that

(2.21) C0(mr + 1)|vi|2 ≤ f ivi(m,v) · vi +K(1 +m2s0 + |v|α+1).



8 A. BENSOUSSAN, M. BULÍČEK, AND J. FREHSE

Next, we focus on the assumptions on g. The standard ones are
related to the growth estimates, which will be supposed to be given by

m|gm(m,v)|+ |g(m,v)| ≤ K((ms + 1)|v|+ms0 + 1),

|gv(m,v)| ≤ K(ms + 1).
(2.22)

The forthcoming structural assumptions on g and also on fv are in
fact the key restrictions of the paper. First, to simplify the further
analysis, we shall assume that3

(2.23) g =
N∑
j=1

b1(m)Aj(·)vj + b0(m),

where b0 does not depend on (t, x). The matrices Aj : Q → Rd×M

are given functions of (t, x), i.e., (Aj)ik := Ajik with i = 1, . . . , d and
k = 1, . . . ,M and the meaning of Ajvj is

(Ajvj)i :=
M∑
k=1

Ajikv
j
k.

Hence, as it is assumed we have a d-dimensional vector function g =
(g1, . . . , gd). The inhomogeneities b0 : R → Rd and b1 : R → R are
given. Concerning the assumptions on functions b1 and b2, we require
that

(2.24) |b1(m)| ≤ K(ms + 1), |b0(m)| ≤ K(ms0 + 1)

and for matrices Aj we assume that

(2.25) |Aj(·)| ≤ K.

Furthermore, one of the essentially required properties of Aj is that
they have the same range, i.e., we assume that for all i, j = 1, . . . , N ,
almost all (t, x) and all z ∈ RNd there holds

(2.26) |zAj(t, x)| ≤ C1|zAi(t, x)|.

For derivatives of b0, we need that

|m∂mb0(m)| ≤ Km(m+ 1)s0−1,

|m2∂mmb0(m)| ≤ Km2(m+ 1)s0−2.
(2.27)

Finally, for the derivative of b1 with respect to m, we introduce a certain
“smallness assumption”: There exists δ ∈ [0, 1) such that for all b ∈ R+

3The linearity of g with respect to v is in fact not a necessary assumption. A
more delicate here is just behaviour of g with respect to m.
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and all v ∈ RNM there holds

C1

√
N
|m∂mb1(m)|
|b1(m)|

|v|
M∑
i=1

|f ivi |

≤
N∑
i=1

(f i(m,v) +m∂mf
i(m,v)) +K(1 +m2s0).

(2.28)

Although the above assumption seems to be complicated, it naturally
appears in the first a priori estimate of the problem. In the next sub-
section, we shall show that in many cases, the assumption (2.28) still
allows very general behaviour of all quantities with respect to m, na-
mely, the case when can dominate the function g in certain sense. In
addition, since (2.28) may seem to be complicated, we can replace it
by

(2.29) |m∂mb1(m)| ≤ γ|b1(m)| with γ ≤ C0

2(C2
1 +N2)

since then (2.28) follows easily from the previous assumptions.
Please, observe here that if g is given by (2.23), then (2.13) reduces

to

(2.30) f ivij
(v,m) + b1(m)

d∑
k=1

∂xku
iAikj = 0 in Q

which must be valid for all i = 1, . . . , N and all j = 1, . . . ,M .
The above assumptions are sufficient for establishing formal a priori

estimates. However, for getting also the existence of a weak solution,
we need to give a well meaning to the feed back formula, or in other
words, we need to guarantee the unique solvability of (2.30) for given
m and ∇u. There can be introduced many assumptions that wold lead
to such a goal but we follow here the most standard one, which is the
monotone operator approach. For a given m, we define the mapping
T : RNM → RNM defined by

T (v) =

(
∂

∂v1
f 1(v,m), . . . ,

∂

∂vN
fN(v,m)

)
and assume that it is continuous with respect to (m,v) and measurable
with respect to (t, x) and the strictly monotone, i.e., for all v 6= ṽ

(2.31) (T (v)− T (ṽ) · (v − ṽ) > 0.

Then using also the assumption (2.21), we see that it satisfies

(2.32)
T (ν) · ν
|ν|

→ ∞ as |ν| → ∞
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and from the standard monotone operator theory, we can conclude the
existence of a unique v solving (2.30) and also consequently, we obtain
that the feed back law (2.6) is well defined.

2.3. Prototypical example. Our prototype example is the following.
For f , we assume a structure

(2.33) f i(m,v) := (m+ 1)r|vi|2 +Bi · v +K(1 +m2s0),

where Bi’s are arbitrary bounded measurable matrices. Next, for b1

we consider

(2.34) b1(m) := (m+ 1)s

and for b2 and matrices Ai, we just require that (2.25), (2.26) and
(2.27). With such a choice, all assumptions (2.16)–(2.27) and also
(2.31) are satisfied ad we shall just to show what is the meaning of
(2.28). A very direct computation leads to the necessary condition

sm ≤ γ

2N
(1 + (r + 1)m) ,

which is surely satisfied whenever

(2.35) s <
r

2N
.

2.4. Statement of main results. The main result of the paper is
twofold. First, we give the uniform a priori estimate result which holds
for all sufficiently smooth solutions provided that parameters satisfy
the assumptions stated above.

Theorem 2.1. Let g and f satisfy (2.16)–(2.28). Then any suffi-
ciently regular solution (m,v,u) to (2.2), (2.5) and (2.13) satisfies the
following estimate

sup
t∈(0,T )

(‖m(t)‖σ + ‖u(t)‖∞) +

∫
Q

|∇u|2 + (m+ 1)σ−2|∇m|2 dx dt

+

∫
Q

m2s0+1 + (m+ 1)(mr + 1)|v|2 dx dt ≤ C(‖uT‖∞, ‖m0‖σ).

(2.36)

where

(2.37) σ := r − 2s+ 1

provided that
(2.38)

0 ≤ min

{
4(2s0(d+ 2)− 1)+

σ(d+ 2)− d− (2s0 − σ + 1)+(d+ 2)
,

2s0(d+ 2)

σ(d+ 2)− d

}
< 1.
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and

(2.39) r ≥ 2s.

Next, we state the second main theorem of the paper, which is the
existence result.

Theorem 2.2. Let g and f satisfy (2.16)–(2.28) and (2.31). Assume
that (2.38)–(2.39) is fulfilled. Then for arbitrary uT ∈ L∞ and nonne-
gative m0 ∈ Lσ(Ω) with σ fulfilling (2.37) there exists a weak solution
satisfying the estimate (2.36) and fulfilling or almost all t ∈ (0, T )

(2.40) 〈∂tm,ϕ〉+

∫
Ω

∇m · ∇ϕ− (mg(v,m) · ∇ϕ = 0

−〈∂tu, z〉+

∫
Ω

∇u · ∇z dx =

∫
Ω

(f(v,m) +mfm(v,m)) · z dx

+

∫
Ω

∇u [g(v,m) +mgm(v,m)] · z dx

(2.41)

and completed by the relationship between v and (m,∇u)

(2.42) f ivij
(v,m) + b1(m)

d∑
k=1

∂xku
iAikj = 0 in Q.

To lustrate the power of the result, we just consider our prototypical
example. First in case that s0 = 0, we see that the only restriction is

2Ns < r.

In the opposite extreme case, i.e., if r = s = 0, then

s0 <
1

2(d+ 2)
.

3. Algebraic estimates for Lagrangians and Hamiltonians

In this section, we derive basic algebraic inequalities that are satisfied
for Lagrangians and consequently also for Hamiltonians provided that
f and g satisfy the assumption introduced in Section 2.2, namely the
assumptions (2.16)–(2.28). The key observation is that under these
assumptions, the Lagrangians satisfy the the lower sum corecivness and
the proper upper estimates. It will be also evident from the estimates
below why we require 2s ≤ r in main results of the paper.

Lemma 3.1. Let f and g satisfy (2.16)–(2.28). Then there exists a
constant C > 0 and an ε0 ∈ (0, 1/(2N)) such that for almost all (t, x),
all (m,v,∇u) fulfilling (2.13) and all all i = 1, . . . , N there hold:
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i) sum coerciveness

N∑
i=1

Li(m,v,∇u) ≥ C0

2
(mr + 1)|v|2 − C(m2s0 + 1)

− C

∣∣∣∣∣∇
N∑
i=1

ui

∣∣∣∣∣
2(

1 +
m2s + 1

mr + 1

)
;

(3.1)

ii) upper bound

Li(m,v,∇u)− ε0

N∑
j=1

Lj(m,v,∇u)

≤ C(1 +m2s0) + C

∣∣∣∣∣∇
(
ui − ε0

N∑
i=j

uj

)∣∣∣∣∣
2(

1 +
m2s + 1

mr + 1

)
;

(3.2)

iii) global bound

|Li(m,v,∇u)|

≤ C

(
1 +m2s0 + (1 +mr)|v|2 + |∇u|2

(
1 +

m2s + 1

mr + 1

))
.

(3.3)

Proof. We start with the proof of (3.1). Using the definition of L in
(2.5) we get the identity

N∑
i=1

Li(m,v,∇u) =
N∑
i=1

(
f i(v,m) +mf im(v,m)

)
+

N∑
i=1

∇ui · (g(v,m) +mgm(v,m)).

Hence, using (2.18) for the first part and (2.22) for the second part, we
observe that

N∑
i=1

Li(m,v,∇u) ≥ C0(mr + 1)|v|2 −K(m2s0 + 1)

−K

∣∣∣∣∣∇
N∑
i=1

ui

∣∣∣∣∣ ((ms + 1)|v|+ms0 + 1)

≥ C0

2
(mr + 1)|v|2 − C(m2s0 + 1)

− C

∣∣∣∣∣∇
N∑
i=1

ui

∣∣∣∣∣
2(

1 +
m2s + 1

mr + 1

)
,
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where for the second estimate we used the Young inequality. This
finishes the proof of (3.1).

Next, we look for (3.2). Using the definition of Lagrangians, we
directly obtain for arbitrary ε > 0 the following identity

I := Li(m,v,∇u)− ε

(
N∑
i=1

Li(m,v,∇u)

)

= f i(m,v) +mf im(m,v)− ε

(
N∑
j=1

f j(m,v) +mf jm(m,v)

)

+∇

(
ui − ε

N∑
j=1

uj

)
· (g(m,v) +mgm(m,v)) .

Next, using (2.17), (2.18), (2.22) and the Young inequality, we have

(3.4)

I ≤ C(1 +m2s0 + |v|α+1) +Kf i(m,v)− εC0(mr + 1)|v|2

+K

∣∣∣∣∣∇
(
ui − ε

N∑
i=1

ui

)∣∣∣∣∣ (1 +ms0 + (ms + 1)|v|)

≤ C(ε)(1 +m2s0) +Kf i(m,v)− εC0

2
(mr + 1)|v|2

+ C(ε)

(
1 +

m2s + 1

mr + 1

) ∣∣∣∣∣∇
(
ui − ε

N∑
i=1

ui

)∣∣∣∣∣
2

.

It remains to estimate the term with f i. We use the convexity of f i

with respect to vi and the assumption (2.20). Then to evaluate f ivi we
also use the constraint (2.13), which however in our case reduces to
(2.30) due to the structural assumptions (2.23). Doing so, we get

Kf i(m,v) ≤ Kf i(m,v)|vi=0 +Kf ivi(m,v) · vi

≤ C(1 +m2s0 + |v|α+1)− Cb1(m)
d∑

k=1

N∑
j=1

∂xku
iAikjv

i
j

= C(1 +m2s0 + |v|α+1)− Cb1(m)
d∑

k=1

N∑
j=1

∂xk

(
ui − ε

N∑
`=1

u`

)
Aikjv

i
j

− εCb1(m)
d∑

k=1

N∑
j=1

N∑
`=1

∂xku
`Aikjv

i
j.
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Then we estimate terms involving A`∇ui with the help of (2.24), (2.26)
and (2.30) as follows

(3.5)

Kf i(m,v)

≤ C(1 +m2s0 + |v|α+1) + C(ms + 1)

∣∣∣∣∣∇(ui − ε
N∑
`=1

u`)

∣∣∣∣∣ |v|
+ εC|vi|

N∑
`=1

|∇u`A`||b1(m)|

≤ C(1 +m2s0 + |v|α+1) + C(ms + 1)

∣∣∣∣∣∇(ui − ε
N∑
`=1

u`)

∣∣∣∣∣ |v|
+ εC|vi||fv(m,v)|.

Finally, we focus on estimate of vi. It follows from (2.21), (2.26), (2.24)
and (2.30) that

C0(mr + 1)|vi|2 ≤ f ivi · vi +K(1 +m2s0 + |v|1+α)

= −b1(m)∇uiAi · vi +K(1 +m2s0 + |v|1+α)

= −b1(m)∇

(
ui − ε

N∑
`=1

u`

)
Ai · vi

− εb1(m)
N∑
`=1

∇u`Ai · vi +K(1 +m2s0 + |v|1+α)

≤ C(ms + 1)

∣∣∣∣∣∇
(
ui − ε

N∑
`=1

u`

)∣∣∣∣∣ |vi|
+ εC|vi||b1(m)|

N∑
`=1

|∇u`A`|+K(1 +m2s0 + |v|1+α)

≤ C
m2s + 1

mr + 1

∣∣∣∣∣∇
(
ui − ε

N∑
`=1

u`

)∣∣∣∣∣
2

+ C0
mr + 1

2
|vi|2

+ εC|v||fv(m,v)|+K(1 +m2s0 + |v|1+α),

where for the last inequality, we used the Young inequality and the
structural constraint (2.30). Hence absorbing the corresponding term
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to the left hand side, using (2.16) and the Young inequality, we get

(mr + 1)|vi|2 ≤ C
(m2s + 1)

mr + 1

∣∣∣∣∣∇
(
ui − ε

N∑
`=1

u`

)∣∣∣∣∣
2

+ εC(mr + 1)|v|2 + C(1 +m2s0 + |v|1+α).

(3.6)

Next, using the Young inequality in (3.5), we find

(3.7)

Kf i(m,v)

≤ C(ε)(1 +m2s0) + C
m2s + 1

ε2(mr + 1)

∣∣∣∣∣∇(ui − ε
N∑
`=1

u`)

∣∣∣∣∣
2

+ Cε2(mr + 1)|v|2 + εC|vi||fv(m,v)|

≤ C(ε)(1 +m2s0) + C
m2s + 1

ε2(mr + 1)

∣∣∣∣∣∇
(
ui − ε

N∑
`=1

u`

)∣∣∣∣∣
2

+ Cε2(mr + 1)|v|2 + ε
1
2 (mr + 1)|vi|2 + Cε

3
2
|fv(m,v)|2

mr + 1
.

Finally, we substitute (3.6) into (3.7) to estimate term with vi and with
the help of the assumption (2.16) we obtain

(3.8)

Kf i(m,v)

≤ C(ε)

1 +m2s0 +
m2s + 1

mr + 1

∣∣∣∣∣∇
(
ui − ε

N∑
`=1

u`

)∣∣∣∣∣
2


+ Cε
3
2 (mr + 1)|v|2.

Consequently, (3.8) combined with (3.4) directly implies

(3.9)

I ≤ C(ε)(1 +m2s0)− C0

2
(ε− Cε

3
2 )(mr + 1)|v|2

+ C(ε)
m2s + 1

mr + 1

∣∣∣∣∣∇
(
ui − ε

N∑
i=1

ui

)∣∣∣∣∣
2

.

Thus, if we choose ε =: ε0 ∈ (0, 2/N) such that

ε0 − Cε
3
2
0 ≥ 0,

which is always possible and the maximal value of such ε0 depends only
od the generic constant C, we obtain the desired estimate (3.2).

The estimate (3.3) is then a simple combination of (3.1) and (3.2).
The proof is finished. �
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4. Uniform a priori estimates - Proof of Theorem 2.1

This section is devoted to the estimates for solution (m,u,v) of
(2.2), (2.5) and (2.13) that depend only on data of the problem provi-
ded that the assumptions (2.16)–(2.28) are satisfied. Here, we proceed
rather formally, considering that the solution is sufficiently regular.
The justification of such a procedure then will be provided in the proof
of the existence result, i.e., in the proof of Theorem 2.2.

4.1. Estimates for m. We start with estimates for m. First, if m0 ≥
0 almost everywhere in Ω, then the standard minimum principle for
parabolic equations implies that (sufficiently smooth) solution satisfies
m ≥ 0 almost everywhere in Q as well. Next, setting ϕ := 1 in (2.40),
we get with the help of nonnegativity of m that

d

dt
‖m(t)‖1 = 0.

Consequently, we have

(4.1) sup
t∈(0,T )

‖m(t)‖1 ≤ ‖m0‖1 ≤ C.

Next, in order to obtain estimates on (u,v) we need to improve the
information about m since the Lagrangians (or Hamiltonians) depend
heavily on m. Our goal is to prove the starting point inequality

E := sup
t∈(0,T )

‖m(t) + 1‖σσ +

∫
Q

(m+ 1)σ−2|∇m|2 dx dt

≤ C

∫
Q

(m+ 1)2s0+1 dx dt

+ C‖u‖2
L∞(Q)

(
1 +

∫
Q

(m+ 1)2s0−σ+2 dx dt

)
,

(4.2)

where the constant C depends only on data given by assumptions on
f and g.

Proof of (4.2). We first set ϕ := (m+ 1)σ−1 in (2.40), where σ is given
by (2.37), i.e.,

σ := r + 1− 2s ≥ 1.
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With such a choice of ϕ, we get the identity

1

σ

d

dt
‖m(t) + 1‖σσ + (σ − 1)

∫
Ω

(m+ 1)σ−2|∇m|2 dx

= (σ − 1)

∫
Ω

m(m+ 1)σ−2g(m,v) · ∇m dx

= (σ − 1)

∫
Ω

m(m+ 1)σ−2b1(m)
M∑
j=1

Ajvj · ∇m dx

+ (σ − 1)

∫
Ω

m(m+ 1)σ−2b0(m) · ∇m dx,

where the second equality follows from the structural assumption on g,
see (2.23). Clearly, the second term on the right hand side vanishes due
to the integration by parts and spatially periodic boundary conditions.
For the first integral we use the Young inequality to conclude

1

σ

d

dt
‖m(t) + 1‖σσ +

(σ − 1)

2

∫
Ω

(m+ 1)σ−2|∇m|2 dx

≤ (σ − 1)

2

∫
Ω

m2(m+ 1)σ−2b2
1(m)

∣∣ N∑
j=1

Ajvj
∣∣2 dx.

Thus, using the bounds for b1 and Aj, namely (2.24) and (2.25), we
obtain after integration over (0, T )

sup
t∈(0,T )

‖m(t) + 1‖σσ +

∫
Q

(m+ 1)σ−2|∇m|2 dx dt

≤ C(σ, ‖m0‖q,Ω)

(
1 +

∫
Q

m(m+ 1)2s+σ−1|v|2 dx dt

)
.

(4.3)

Next, we set ϕ := ui in (2.40) and z := m in the i-th equation in
(2.41), integrate the result with respect to time and use integration by
parts to obtain the following two identities∫

Ω

m(T )ui(T )−m(0)ui(0) dx−
∫
Q

m∂tu
i dx dt

+

∫
Q

∇m · ∇ui −mg(v,m) · ∇ui dx dt = 0

(4.4)
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and

−
∫
Q

∂tu
im dx dt+

∫
Q

∇ui · ∇m dxdt

=

∫
Q

m(f i(v,m) +mf im(v,m)) dx dt

+

∫
Q

m∇ui · g(v,m) +m2gm(v,m) · ∇ui dx dt.

(4.5)

Subtracting (4.4) from (4.5) we arrive at identity

∫
Q

m(f i(v,m) +mf im(v,m)) dx dt

= −
∫

Ω

m(T )ui(T )−m(0)ui(0) dx−
∫
Q

m2gm(v,m) · ∇ui

≤ C‖u‖L∞(Q) −
∫
Q

m2gm(v,m) · ∇ui dx dt,

(4.6)

where for the last inequality we used the Hölder inequality and the
uniform bound (4.1). Next, we evaluate the last integral. Using the
structural assumption (2.23) and the growth assumptions (2.24)–(2.27),
we see that

−
∫
Q

m2gm(v,m) · ∇ui dx dt

= −
∫
Q

m2∂mb0(m) · ∇ui dx dt−
N∑
j=1

∫
Q

m2∂mb1(m)Ajvj · ∇ui dx dt

=

∫
Q

ui∂m(m2∂mb0(m)) · ∇m dx dt

−
N∑
j=1

∫
Q

m2∂mb1(m)Ajvj · ∇ui dx dt

≤
∫
Q

K|u|m(m+ 1)s0−1|∇m|+m2|∂mb1(m)||v|

(
N∑
j=1

|∇uiAj|2
) 1

2

dx dt

=: I1 + I2.
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To estimate I2 we use (2.26) and the constraint (2.30) to get

I2 ≤ C1

∫
Q

m2|∂mb1(m)|
b1(m)

|v|

(
N∑
j=1

|b1(m)∇uiAi|2
) 1

2

dx dt

= C1

√
N

∫
Q

m2|∂mb1(m)|
b1(m)

∣∣f ivi∣∣ |v| dx dt.

For the term I1 we use the Young and the Hölder inequalities to obtain
for arbitrary ε > 0

I1 ≤ ε

∫
Q

(m+1)σ−2|∇m|2 dx dt+C(ε)‖u‖2
L∞(Q)

∫
Q

(m+1)2s0−σ+2 dx dt.

Finally, substituting these estimates into (4.6), summing the result over
i = 1, . . . , N and using (2.28), we obtain

∫
Q

N∑
i=1

m(f i(v,m) +mf im(v,m)) dx dt

≤ Nε

∫
Q

(m+ 1)σ−2|∇m|2 dx dt

+ C(ε)‖u‖2
L∞(Q)(1 +

∫
Q

(m+ 1)2s0−σ+2 dx dt)

+ C1

√
N

∫
Q

m2|∂mb1(m)|
b1(m)

|v|
N∑
i=1

∣∣f ivi∣∣ dx dt

≤ Nε

∫
Q

(m+ 1)σ−2|∇m|2 dx dt

+ C(ε)‖u‖2
L∞(Q)(1 +

∫
Q

(m+ 1)2s0−σ+2 dx dt)

+

∫
Q

δ
N∑
i=1

m(f i(v,m) +mf im(v,m)) +K(1 +m2s0) dx dt.

(4.7)

Consequently, since δ < 1 we can absorb the last term by the left hand
side. Therefore, we can use the sum coerciveness, i.e., the assumption
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(2.18), to deduce that∫
Q

m(mr + 1)|v|2 dx dt

≤ C‖u‖L∞(Q) + C(ε)‖u‖2
L∞(Q)

∫
Q

(m+ 1)2s0−σ+2 dx dt

+ C

∫
Q

(m+ 1)2s0+1 dx dt+ Cε

∫
Q

(m+ 1)σ−2|∇m|2 dx dt.

(4.8)

Finally, using the estimate (4.8) in (4.3), we see that (recalling (2.37))

sup
t∈(0,T )

‖m(t) + 1‖σσ +

∫
Q

(m+ 1)σ−2|∇m|2 dx dt

≤ C

(
1 +

∫
Q

m(mr + 1)|v|2 dx dt

)
≤ C

∫
Q

(m+ 1)2s0+1 + ε(m+ 1)σ−2|∇m|2 dx dt

+ C(ε)‖u‖2
L∞(Q)

(
1 +

∫
Q

(m+ 1)2s0−σ+2 dx dt

)
.

Thus, setting ε > 0 sufficiently small, we obtain the desired inequa-
lity (4.2). �

Our next goal is to improve the information coming from (4.2) such
that the estimate on E depends only o u and not on m. It means that
we want to show that

E ≤ C

(
1 + ‖u‖

2(σ(d+2)−d)
σ(d+2)−d−((2s0−σ+1)+(d+2))

L∞(Q)

)
,(4.9)

provided that

2s0 + 2s < r +
2

d+ 2
.(4.10)

s0 + 2s < r +
1

d+ 2
.(4.11)

The estimate (4.9) will be shown by a certain interpolation of (4.1) and
(4.2).



MEAN FIELD DEPENDENT DYNAMICS 21

Proof of (4.9). First, we recall the following parabolic interpolation
inequality ∫ T

0

‖u‖
2(d+2)
d

2(d+2)
d

≤
∫ T

0

‖u‖
4
d
2 ‖u‖2

1,2 dt

≤ C

(
sup
t∈(0,T )

‖u(t)‖2
2 +

∫ T

0

‖∇u‖2
2 dt

) d+2
d

.

(4.12)

Next, we apply (4.12) onto the function u := (m+ 1)
σ
2 with σ given by

(2.37) to get∫
Q

(m+ 1)
σ(d+2)
d dx dt =

∫ T

0

‖(m+ 1)
σ
2 ‖

2(d+2)
d

2(d+2)
d

dt

≤ C

(
sup
t∈(0,T )

‖(m(t) + 1)
σ
2 ‖2

2 +

∫ T

0

‖∇(m+ 1)
σ
2 ‖2

2 dt

) d+2
d

≤ C

(
sup
t∈(0,T )

‖(m(t) + 1)‖σσ +

∫
Q

(m+ 1)σ−2|∇m|2 dx dt

) d+2
d

= CE
d+2
d .

(4.13)

Finally, we also use the a priori estimate (4.1) and the interpolation
inequality

‖ · ‖q ≤ ‖ · ‖
1− q−1

q
σ(d+2)
σ(d+2)−d

1 ‖ · ‖
q−1
q

σ(d+2)
σ(d+2)−d

σ(d+2)
d

,

which is valid for all 1 ≤ q ≤ σ(d+ 2)/d, to obtain∫
Q

(m+ 1)q dx dt ≤ ‖m+ 1‖
q−σ(d+2)(q−1)

σ(d+2)−d
L1(Q) ‖m+ 1‖

σ(d+2)(q−1)
σ(d+2)−d

L
σ(d+2)
d (Q)

≤ C

(∫
Q

(m+ 1)
σ(d+2)
d dx dt

) d(q−1)
σ(d+2)−d

≤ E
(q−1)(d+2)
σ(d+2)−d ,

(4.14)

where for the last inequality we used (4.13).
Next, we use (4.14) to handle the right hand side of (4.2). Assuming

that

(4.15) 2s0 + 1 ≤ σ(d+ 2)

d
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we get from (4.14)

(4.16)

∫
Q

(m+ 1)2s0+1 dx dt ≤ CE
2s0(d+2)
σ(d+2)−d ≤ C

(
1 +

1

4
E

)
,

provided that

(4.17)
2s0(d+ 2)

σ(d+ 2)− d
< 1,

which by using of (2.37) can be shown to be equivalent to (4.10). Notice
that (4.17) directly implies the validity of (4.15). Hence, we can absorb
the first term on the right hand side of (4.2) to get

E ≤ C

(
1 + ‖u‖2

L∞(Q)

(
1 +

∫
Q

(m+ 1)2s0−σ+2 dx dt

))
(4.18)

In case that

(4.19) 2s0 − σ + 2 ≤ 1 ⇐⇒ 2(s0 + s) ≤ r,

we can use (4.1) to conclude (4.9) directly. If (4.19) is not true, we
again use (4.14) to get from (4.18)

E ≤ C
(

1 + ‖u‖2
L∞(Q)E

(2s0−σ+1)(d+2)
σ(d+2)−d

)
which after using the Young inequality leads to (4.9), provided that

(4.20)
(2s0 − σ + 1)(d+ 2)

σ(d+ 2)− d
< 1.

Note that (4.20) is a stronger assumption that (4.19) and it can be
shown by using (2.37) that (4.20) is equivalent to (4.11). Hence the
proof of (4.9) is complete. �

4.2. Estimates for u. This subsection is devoted to the uniform es-
timates on u, which will still depend on m. To be more precise, we
want to show that for arbitrary p > d+ 2 we have the estimate

(4.21) ‖u‖L∞(Q) ≤ C + C(p)‖m2s0‖2
Lp(Q).

Proof of (4.21). We start with the estimates for below for the quantity

w :=
N∑
i=1

ui.

It is not difficult to observe from (2.5), (3.1) and the fact that 2s ≤ r,
that w satisfies almost everywhere in Q

(4.22) −∂tw −∆w =
N∑
i=1

Li(v,m,∇u) ≥ −C
(
|∇w|2 +m2s0 + 1

)
.
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Next, let us consider w1 a solution to

(4.23) −∂tw1 −∆w1 = −Cm2s0

completed by zero initial condition, i.e., w1(T ) = 0. Then by a standard
parabolic estimate, we obtain that

(4.24) ‖w1‖L∞(Q) + ‖∇w1‖L∞(Q) ≤ C(p)‖m2s0‖Lp(Q)

whenever p > d+ 2. Then subtracting (4.23) from (4.22), we obtain

−∂t(w − w1)−∆(w − w1) ≥ −C
(
|∇w|2 + 1

)
≥ −C|∇(w − w1)|2 − C(1 + ‖∇w1‖2

∞).
(4.25)

Hence from the theory for subsolutions to parabolic equation, see [8],
we obtain

w − w1 ≥ −C(T ) max{‖w(T )‖∞, (1 + ‖∇w1‖2
L∞(Q))},

which together with (4.24) and the assumption that u(T ) ∈ L∞ leads
to the final estimate from below

(4.26) w ≥ −C − C(p)‖m2s0‖2
Lp(Q),

which is valid for arbitrary p > d+ 2.
Next, we focus on estimates from above. Keeping the notation for

w, we can derive from (2.5) that

−∂t(ui − ε0w)−∆(ui − ε0w) = Li(m,v,∇u)− ε0

N∑
j=1

Lj(m,v,∇u).

Hence, using (3.2), we get

− ∂t(ui − ε0w)−∆(ui − ε0w) ≤ C(1 +m2s0)

+ C

(
1 +

m2s + 1

mr + 1

) ∣∣∇ (ui − ε0w
)∣∣2

≤ C(1 +m2s0) + C
∣∣∇ (ui − ε0w

)∣∣2 ,
(4.27)

where the second inequality follows from the assumption 2s ≤ r. Thus,
we can repeat step by step the procedure for w and using the fact that
u(T ) ∈ L∞(Ω), we obtain

(4.28) ui − ε0w ≤ C + C(p)‖m2s0‖2
Lp(Q).

Finally, we derive the uniform bound (4.21). First, summing (4.28)
over i = 1, . . . , N we have

(1−Nε0)w ≤ CN + C(p)N‖m2s0‖2
Lp(Q).
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Since ε0 < 1/(2N), we can combine this estimate with (4.26) to get

(4.29) |w| ≤ C + C(p)‖m2s0‖2
Lp(Q).

Consequently, it follows from (4.28) that

(4.30) ui ≤ C + C(p)‖m2s0‖2
Lp(Q).

Finally to obtain also estimate from below for ui, we use (4.29) and
(4.30) and get

ui = w −
∑
j 6=i

uj
(4.29),(4.30)

≥ C + C(p)‖m2s0‖2
Lp(Q),

which together with (4.30) implies the desired estimate (4.21). Hence
the proof is complete. �

4.3. Uniform L∞ bounds. This subsection is devoted to the uniform
bound for u, which directly implies the part of uniform estimates sta-
ted in (2.36). Here, we combine (4.14), (4.9) and (4.21) to obtain the
final bound. We go back to (4.21) and estimate the right hand side.
Although we need to choose p > d+ 2, we formally provide all compu-
tation for p = d+ 2 and in the final restriction on the size of s0 (or σ)
we just use the strict inequality sign. Hence, we need to estimate the
term on the right hand side of (4.21), i.e., the integral

‖m2s0‖2
d+2 =

(∫
Q

m2s0(d+2) dx dt

) 2
d+2

.(4.31)

If 2s0(d + 2) < 1 then the integral on the right hand side of (4.21) is
bounded due to (4.1) and therefore we immediately get

(4.32) ‖u‖L∞(Q) ≤ C(‖u0‖∞, ‖m0‖∞).

Hence, in what follows, we assume the opposite case. Assuming that

(4.33) 2s0(d+ 2) < σ(d+ 2)/d⇔ r + 1 > 2ds0 + 2s,

we can use (4.14) with q := 2s0(d+ 2) and we deduce(∫
Q

(m+ 1)2s0(d+2) dx dt

) 2
d+2

≤ CE
(2s0(d+2)−1)+2

σ(d+2)−d(4.34)

and it follows from (4.21) that

‖u‖L∞(Q) ≤ C

(
1 + E

(2s0(d+2)−1)+2

σ(d+2)−d

)
.(4.35)
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Inserting this estimate into the right hand side of (4.9), we also deduce

‖u‖L∞(Q) ≤ C

(
1 + ‖u‖

4(2s0(d+2)−1)+
σ(d+2)−d−(2s0−σ+1)+(d+2)

L∞(Q)

)
.(4.36)

Hence, in case

(4.37)
4(2s0(d+ 2)− 1)+

σ(d+ 2)− d− (2s0 − σ + 1)+(d+ 2)
< 1

we can absorb the right hand side by left hand side and to obtain

‖u‖L∞(Q) ≤ C(‖u(T )‖∞, ‖m0‖∞),(4.38)

which implies a part of (2.36). Notice that (4.37) is a stronger as-
sumption than (4.20) and therefore all needed assumptions, i.e., the
assumptions (4.17) and (4.37), are already encoded in (2.38). Further-
more, using (4.2) and (4.9), we obtain also the bound for m and ∇m
stated in (2.36). Finally, from (4.8), we deduce the bound for term
with m(mr + 1)|v|2 in (2.36).

4.4. Uniform estimates for ∇u. This subsection is devoted to the
last remaining part of (2.36), i.e., the part of the estimate with ∇u.
Keeping the notation from the previous sections, we start with estima-
tes for ∇w. Using (3.1) andt the fact that 2s ≤ r we have

(4.39) −∂tw −∆w ≥ (mr + 1)|v|2 − C
(
|∇w|2 +m2s0 + 1

)
.

Next, we multiply (4.39) by e−2Cw ≥ 0, integrate over Q and use inte-
gration by parts to obtain∫

Q

(mr + 1)|v|2e−2Cw + 2Ce−2Cw|∇w|2 dx dt

≤ 1

2C

∫
Q

∂te
−2Cw + C

(
|∇w|2 +m2s0 + 1

)
e−2Cw dx dt.

(4.40)

Thus, we see that we can absorb the term with ∇w by the left hand
side and due to the L∞ bound for u, see (4.38), and L2s0(d+2) bound
for m, see (4.34), we deduce from (4.40) that∫

Q

(mr + 1)|v|2 + |∇w|2 dx dt ≤ C(‖uT‖∞, ‖m0‖σ).(4.41)

Notice that the first in (4.41) together with (4.8) leads to the estimate
(2.36) for term involving |v|2.

Next, we use the inequality (4.27), i.e.,

− ∂t(ui − ε0w)−∆(ui − ε0w) ≤ C(1 +m2s0) + C
∣∣∇ (ui − ε0w

)∣∣2 ,(4.42)
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which we multiply by e2C(ui−ε0w) and integrate over Q. Repeating step
by step the procedure (4.40)–(4.41) and using uniform bounds on u
and m, we get

(4.43)

∫
Q

|∇(ui − ε0w)|2 dx dt ≤ C(‖uT‖∞, ‖m0‖σ).

Finally, combining (4.41) and (4.43), we have for all i = 1, . . . , N∫
Q

|∇ui|2 dx dt ≤ 2

∫
Q

|∇(ui − ε0w)|2 + ε2
0|∇w|2 dx dt

≤ C(‖uT‖∞, ‖m0‖σ),

which finishes the proof of (2.36).

5. Existence of solution - Proof of Theorem 2.2

This section is devoted to the proof of the existence of a solution to
(2.2), (2.5) and (2.30). Notice that due to the assumption (2.31) and
(2.32), we know that (2.32) is equivalent to

v = ω(m,∇u)

with a Carathéodory mapping ω. Therefore we can omit (2.30) and
replace v by ω(m,∇u) in (2.2) and (2.5) and solve the problem only
for unknowns (m,u). In fact, this is also the way how one can get the
existence of a solution to an approximative problem. Nevertheless, for
sake of simplicity and to simplify the notation, we keep writing v in
what follows.

Second, we do not provide the complete and rigorous proof here.
We rather emphasize those steps that are different from the known
procedure for Bellman systems. To be more specific, we provide here
the proof of weak sequential stability, which is the key property of the
system of equations we have in mind. It means that we shall consider a
sequence of (mn,un,vn) of smooth solutions to (2.2), (2.5) and (2.30)
(which is however equivalent to (2.15), once the mapping ω is well
defined) and corresponding sequence of initial data

(5.1)

unT → uT strongly in L1(Ω;RN),

unT ⇀
∗ uT weakly∗ in L∞(Ω;RN),

mn
0 → m0 stongly in Lσ(Ω)

with nonnegative mn
0 . Our goal is to show that

(5.2) (mn,un,vn)→ (m,u,v),

strongly in L1(Q) × L1(0, T ;W 1,2(Ω;RN)) × L1(Q;RNM), where the
triple (m,u,v) solves again (2.2), (2.5) and (2.30) with initial data
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(uT ,m0). Indeed such a result the suggest that the rigorous existence
proof is doable. Indeed, approximating Hamiltonians H by a sequence
of bounded functions {Hn}∞n=1 and similarly g by a sequence of boun-
ded {gn}∞n=1, one may consider that for a such approximative system
it is classical to obtain the existence of solution (mn,un,vn) and the
only remaining part of the proof is then the weak sequential stability.
For details, how one can approximate Hamiltonians properly, we refer
to [2].

5.1. Uniform a priori estimates. I this part we just use the result
of Theorem 2.1, which holds for sufficiently smooth solutions. Indeed,
we may assume that

sup
t∈(0,T )

(‖mn(t)‖σ + ‖un(t)‖∞) +

∫
Q

|∇un|2 + (mn + 1)σ−2|∇mn|2 dx dt

+

∫
Q

((mn)r+1 + 1)|vn|2 + (mn)2s0(d+2) dx dt

≤ C(‖unT‖∞, ‖mn
0‖σ) ≤ C

(5.3)

such that (mn,un,vn) satisfies for all ϕ ∈ C∞0 (−∞;T ;W 1,∞
per (Ω))

(5.4)∫
Q

−mn∂tϕ+∇mn · ∇ϕ−mng(vn,mn) · ∇ϕ dx dt =

∫
Ω

mn
0ϕ(0) dx,

for all ϕ ∈ C∞0 (0;∞;W 1,∞(Ω))∫
Q

un∂tϕ+∇un · ∇ϕ dx dt−
∫

Ω

unTϕ(T ) dx

=

∫
Q

L(mn,vn,∇un)ϕ dx dt

(5.5)

and almost everywhere in Q

(5.6) f ivij
(vn,mn) + b1(mn)

d∑
k=1

∂xk(u
n)iAikj = 0 in Q

with g given as

(5.7) g(vn,mn) :=
N∑
j=1

b1(mn)Aj(vn)j + b0(mn).

and L(mn,vn,un) given as

L(mn,vn,∇un) := f(vn,mn) +mnfm(vn,mn)

+∇un [g(vn,mn) +mngmn(vn,mn)] .
(5.8)
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Next, we focus on the estimate for the time derivatives. First, using
(3.3) and uniform bounds (2.36), we see that

(5.9)

∫
Q

|L(mn,vn,∇un)| dx dt ≤ C.

Consequently, we can deduce from (5.5) and also from (5.3) that for
some q > d

(5.10)

∫ T

0

‖∂tu‖(W 1,q
per(Ω;RN ))∗ dt ≤ C.

Similarly, using (2.22) and (5.3), we see that for some q ∈ (1,∞)

(5.11)

∫ T

0

‖∂tm‖q
′

(W 1,q
per(Ω))∗

dt ≤ C.

5.2. Limit n → ∞. Having (5.3), (5.1) and (5.10)–(5.11) and using
the Aubin–Lions lemma, we can find subsequences that we do not re-
label, such that for some q > d

un ⇀ u weakly in L2(0, T ;W 1,2
per(Ω;RN)),(5.12)

un ⇀∗ u weakly∗ in L∞(Q;RN),(5.13)

un → u strongly in L1(Q;RN),(5.14)

∂tu
n ⇀∗ ∂tu weakly∗ in M(0, T ; (W 1,q

per(Ω;RN))∗),(5.15)

mn ⇀ m weakly in L2(0, T ;W 1,2
per(Ω)),(5.16)

mn → m strongly in L1(Q),(5.17)

mn ⇀ m weakly in L
σ(d+2)
d (Q),(5.18)

∂tm
n ⇀ ∂tm weakly in Lq

′
(0, T ; (W 1,q

per(Ω)∗),(5.19)

L(mn,vn,∇un) ⇀∗ L weakly∗ in M(Q),(5.20)

where M(K) denotes the space of Radon measures on K. Having
(5.12)–(5.20), we can use the theory for parabolic equations with L1 or
measure right hand side, see [5, 4], and to conclude that

(5.21) ∇un → ∇u a.e. in Q.

Consequently, since the operator T in (2.31)–(2.32) is strictly mono-
tone, it follows from (5.17) and (5.21) that

(5.22) vn → v a.e. in Q,

which in particular also implies (note that L and g are Carathéodory)

L(mn,vn,∇un)→ L(m,v,∇u) a.e. in Q,(5.23)

g(vn,mn)→ g(v,m) a.e. in Q.(5.24)
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Thus, the convergence results (5.12)–(5.24) allows us to let n→∞ in
(5.4)–(5.7) to obtain that (m,v,u) solves (2.40), (2.40) and∫

Q

u∂tϕ+∇u · ∇ϕ dx dt−
∫

Ω

uTϕ(T ) dx =

∫
Q

Lϕ dx dt(5.25)

for all ϕ ∈ C∞0 (0,∞;W 1,∞(Ω)). Thus, to finish the proof of Theo-
rem 2.2, we need to show that

(5.26) L = L(m,v,∇u) a.e. in Q.

Indeed, having (5.26), we can read from the equation that the time
derivative of u is better, i.e., that

u ∈ L1(0, T ; (W 1,q
per(Ω;RN))∗)

for some q > d and integrating by parts with respect to the time
variable t in (5.25), we find that (2.41) holds true.

5.3. Identification of L - proof of (5.26). This last part is devoted
to the proof of (5.26). We follow the procedure developed in [2] with
the necessary changes due to the presence of the mean field variable m.
We also proceed here slightly formally ad refer the interested reader to
[2], where the very similar procedure is made rigorously. Defining

wn :=
N∑
i=1

(un)i,

it follows from (5.5) that in the sense of distributions we have

− ∂twn −∆wn =
N∑
i=1

L(mn,vn,∇un).(5.27)

Next, we multiply (5.27) by

e−2Cwn

and obtain

1

2C
∂te
−2Cwn +

1

2C
∆e−2Cwn

=
N∑
i=1

L(mn,vn,∇un)e−2Cwn + 2Ce−2Cwn|∇wn|2.
(5.28)

Consequently, multiplying the resulting identity by arbitrary nonnega-
tive ϕ ∈ W 1,1

0 (0, T : L∞(Ω) ∩W 1,2
per(Ω)) and integrating the result over
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Q, we get by using integration by parts that

− 1

2C

∫
Q

e−2Cwn∂tϕ+∇e−2Cwn · ∇ϕ dx dt

=

∫
Q

ϕ(
N∑
i=1

L(mn,vn,∇un)e−2Cwn + 2Ce−2Cwn|∇wn|2).

(5.29)

Next, we let n→∞. Thanks to (5.12), (5.13) and (5.14), it is easy to
deduce that

lim
n→∞

∫
Q

e−2Cwn∂tϕ+∇e−2Cwn · ∇ϕ dx dt

=

∫
Q

e−2Cw∂tϕ+∇e−2Cw · ∇ϕ dx dt

(5.30)

Next, using (3.1), we see that

N∑
i=1

L(mn,vn,∇un)e−2Cwn + 2Ce−2Cwn|∇wn|2 ≥ −C((mn)2s0 + 1).

Consequently, we see that the right hand side of (5.29) is bounded
from below by a strongly convergent function, so using the point-wise
convergence result (5.23) and the Fatou lemma, we get

lim inf
n→∞

∫
Q

ϕ(
N∑
i=1

L(mn,vn,∇un)e−2Cwn + 2Ce−2Cwn|∇wn|2)

≥
∫
Q

ϕ(
N∑
i=1

L(m,v,∇u)e−2Cw + 2Ce−2Cw|∇w|2).

(5.31)

Hence, combining (5.30) and (5.31), we see that for all nonnegative
ϕ ∈ W 1,1

0 (0, T : L∞(Ω) ∩W 1,2
per(Ω)) there holds

− 1

2C

∫
Q

e−2Cw∂tϕ+∇e−2Cw · ∇ϕ dx dt

≥
∫
Q

ϕ(
N∑
i=1

L(m,v,∇u)e−2Cw + 2Ce−2Cw|∇w|2).

(5.32)
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Finally, taking ϕ := e2Cwψ with arbitrary ψ ∈ W 1,1
0 (0, T ;L∞(Ω) ∩

W 1,2
per(Ω)), we deduce that4∫

Q

w∂tψ +∇w · ψ dx dt ≥
∫
Q

ψ(
N∑
i=1

L(m,v,∇u))ψ dx dt,(5.33)

which implies that in the sense of distributions

− ∂tw −∆w ≥
N∑
i=1

L(m,v,∇u).(5.34)

Similarly, we deduce the opposite type inequalities. It follows from
(5.5) that for all i = 1, . . . , N

− ∂t((ui)n − ε0w
n)−∆((ui)n − ε0w

n)

= Li(mn,vn,∇un)− ε0

N∑
i=1

Li(mn,vn,∇un).
(5.35)

Denoting zn := (ui)n − ε0w
n ad multiplying (5.35) by e2Czn we get

− 1

2C
∂te

2Czn − 1

2C
∆e2Czn

= e2Czn

(
Li(mn,vn,∇un)− ε0

N∑
i=1

Li(mn,vn,∇un)

)
− e2Czn|∇zn|2.

(5.36)

Hence, using (3.2), we see that the right hand side is bounded by an
convergent sequence and therefore we can proceed similarly as before
by using the Fatou lemma and to obtain

− ∂t(ui − ε0w)−∆(ui − ε0w)

≤ Li(m,v,∇u)− ε0

N∑
i=1

Li(m,v,∇u).
(5.37)

Thus summing with respect to i = 1, . . . , N and dividing by (1 − ε0)
we see that

− ∂tw −∆w

≤
N∑
i=1

Li(m,v,∇u),

4In fact we must mollify the test function with respect to the time variable and
then to pas to the limit. Since such a procedure was explained in details in [2], we
do not provide the complete proof here.
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which combined with (5.34) gives

− ∂tw −∆w =
N∑
i=1

Li(m,v,∇u)(5.38)

and consequently also we obtain from (5.37) that

− ∂tui −∆ui ≤ Li(m,v,∇u).(5.39)

Finally using (5.38) and (5.39), we get

−∂tui −∆ui = −∂tw −∆w +
∑
j 6=i

(∂tu
j + ∆uj)

≥
N∑
j=1

Lj(m,v,∇u)−
∑
j 6=i

Lj(m,v,∇u)

= Li(m,v,∇u).

Hence, (5.39) implies that

− ∂tui −∆ui = Li(m,v,∇u)(5.40)

and (2.41) follows. This completes the proof of Theorem 2.2.
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