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STABILITY OF THE ALE SPACE-TIME DISCONTINUOUS GALERKIN

METHOD FOR NONLINEAR CONVECTION-DIFFUSION PROBLEMS IN
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Abstract. The paper is concerned with the analysis of the space-time discontinuous Galerkin method
(STDGM) applied to the numerical solution of nonstationary nonlinear convection-diffusion initial-
boundary value problem in a time-dependent domain. The problem is reformulated using the arbitrary
Lagrangian-Eulerian (ALE) method, which replaces the classical partial time derivative by the so-called
ALE derivative and an additional convective term. The problem is discretized with the use of the ALE-
space time discontinuous Galerkin method (ALE-STDGM). In the formulation of the numerical scheme
we use the nonsymmetric, symmetric and incomplete versions of the space discretization of diffusion
terms and interior and boundary penalty. The nonlinear convection terms are discretized with the
aid of a numerical flux. The main attention is paid to the proof of the unconditional stability of the
method. An important step is the generalization of a discrete characteristic function associated with
the approximate solution and the derivation of its properties.
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Introduction

Most of results on the solvability and numerical analysis of nonstationary partial differential equations(PDEs)
are obtained under the assumption that a space domain Ω is independent of time t. However, problems in
time-dependent domains Ωt are important in a number of areas of science and technology. We can mention,
for example, problems with moving boundaries, when the motion of the boundary ∂Ωt is prescribed, or free
boundary problems, when the motion of the boundary ∂Ωt should be determined together with the solution of
the PDEs in consideration. This is particularly the case of fluid-structure interaction (FSI), when the flow is
solved in a domain deformed due to the coupling with an elastic structure.

There are various approaches to the solution of problems in time-dependent domains as, for example, fictitious
domain method ( [43]), or imersed boundary method ( [10]). Very popular technique is the arbitrary Lagrangian-
Eulerian (ALE) method based on a suitable one-to-one ALE mapping of the reference configuration Ω0 onto the
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3 Charles University, Faculty of Mathematics and Physics, Sokolovská 83, 186 75 Praha 8, Czech Republic
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current configuration Ωt. It is usually applied in connection with conforming finite element space discretization
and combined with the time discretization by the use of a backward difference formula (BDF). From a wide
literature we mention, e.g., the works [21], [39], [41], [42]. This method is analyzed theoretically for linear
parabolic convection-diffusion initial-boundary value problems. The paper [35] investigates the stability of the
ALE-conforming finite element method. In [4] and [36] error estimates for the ALE-conforming finite element
method are derived.

In the numerical solution of compressible flow, it is suitable to apply the discontinuous Galerkin method(DGM)
for the space discretization. It is based on piecewise polynomial approximations over finite element meshes, in
general discontinuous on interfaces between neighbouring elements. This method was applied to the solution
of compressible flow first in [8] and then in [9]. It allows a good resolution of boundary and internal layers
(including shock waves and contact discontinuities) and has been used for the solution of various types of flow
problems ( [19], [26], [32]). Theory of the space DGM is a subject of a number of works. We cite only some of
them: [2], [3], [13], [18], [46], [20], [21], [34], [38], [40], [45], [50]. It is also possible to refer to the monograph [20]
containing a number of references.

In the cited works, the time discretization is carried out with the aid of the BDF of the first or second order.
One possibility how to construct a higher order method in time is the application of the DGM in time. This
technique uses a piecewise polynomial approximation in time, in general discontinuous at discrete time instants
that form a partition in a time interval. This method was used for time discretization combined with conforming
finite elements for the space discretization of linear parabolic equations in [1], [17], [47], [48], [49], [23], [24]
and [25].

By the combination of the DGM in space and time we get the space-time discontinuous Galerkin method
(STDGM). This method was theoretically analyzed in [7], [14], [29], [33], [51] and [20]. In [28] and [44], the
BDF-DGM and STDGM is applied to linear and nonlinear dynamic elasticity problems. One of the advantages
of the STDGM is the possibility to use different meshes on different time levels.

The mentioned methods have also been extended to the numerical solution of initial-boundary value problems
in time-dependent domains using the ALE method. The ALE method combined with the space DGM and BDF
in time (ALE-DGM-BDF) was applied with success to interaction of compressible flow with elastic structures
in [15], [30], [37] and [44]. In [16], the ALE-STDGM is applied to the simulation of flow induced airfoil vibrations
and the results are compared with the ALE-DGM-BDF approach. It appears that the ALE-STDGM is more
robust and accurate.

The ALE-time discontinuous Galerkin semidiscretization of a linear para-
bolic convection-diffusion problem is analyzed in [11] and [12]. Both papers assume that the transport velocity
is divergence free and consider homogeneous Dirichelt boundary condition. In [11], the stability of the ALE-time
DGM is proved and [12] is devoted to the error estimation. The papers [5] and [6] are concerned with the stability
analysis of the ALE-STDGM applied to a linear convection-diffusion initial-boundary value problem ( [6]) as
well as to the case with nonlinear convection and diffusion ( [5]) with nonhomogeneous Dirichlet boundary
condition, using piecewise linear DG time discretization.

In the present paper we extend the results from [5]. We deal with the stability analysis of the ALE-STDGM
with arbitrary polynomial degree in space as well as in time, applied to a scalar nonstationary nonlinear
convection-diffusion problem equipped with initial condition and nonhomogeneous Dirichlet boundary condition.
This problem can be considered as a simplified prototype of the compressible Navier-Stokes system. The ALE-
STDGM analyzed here corresponds to the technique used in [16] and [28] for the numerical simulation of airfoil
vibrations induced by compressible flow. This means that the ALE mapping is constructed successively from
one time slab to the next one.

The presented stability theory is based on estimates of forms from the definition of an approximate solution.
An important tool is the concept of the discrete characteristic function introduced in [17] in the framework of
the time DGM applied to a linear parabolic problem. The discrete characteristic function was generalized in
connection with the STDGM for nonlinear parabolic problems in fixed domains ( [7], [14]). Here we extend
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the concept of the discrete characteristic function and prove its important properties in the case of the ALE-
STDGM in time dependent domains. On the basis of a technical analysis we obtain an unconditional stability
of this method represented by a bound of the approximate solution in terms of data without any limitation of
the time step in dependence on the size of the triangulations.

In Section 2 we formulate the continuous problem. Section 3 is devoted to the ALE-space time discretization.
We describe here triangulations and ALE mappings and introduce important function spaces and concepts. Then
an approximate solution is defined. Section 4 deals with the stability analysis. First some auxiliary results are
presented. Then we introduce important estimates and the generalized concept of the discrete characteristic
function. An important part is devoted to the derivation of its properties. Finally, the last part presents the
proof of unconditional stability of the ALE-STDGM.

1. Formulation of the continuous problem

In what follows, we shall use the standard notation L2(ω) for the Lebesgue space, W k,p(ω), Hk(ω) = W k,2(ω)
for the Sobolev spaces over a bounded domain ω ⊂ IRd, d = 2, 3, and the Bochner spaces L∞(0, T ;X) with a
Banach space X and

W 1,∞(0, T ;W 1,∞(Ωt))

=
{
f ∈ L∞(0, T ;W 1,∞(Ωt)); df/dt ∈ L∞(0, T ;W 1,∞(Ωt))

}
,

where df/dt denotes here the distributional derivative.
If X is a Banach (Hilbert) space, then its norm (scalar product) will be denoted by ‖ · ‖X ((·, ·)X). By | · |X

we denote a seminorm in X. For simplicity we use the notation ‖ · ‖L2(ω) = ‖ · ‖ω, (·, ·)L2(ω) = (·, ·)ω and
‖ · ‖L2(∂ω) = ‖ · ‖∂ω.

We shall be concerned with an initial-boundary value nonlinear convection-diffusion problem in a time-
dependent bounded domain Ωt ⊂ IRd, where t ∈ [0, T ], T > 0: Find a function u = u(x, t) with x ∈ Ωt, t ∈ (0, T )
such that

∂u

∂t
+

d∑

s=1

∂fs(u)

∂xs
− div(β(u)∇u) = g in Ωt, t ∈ (0, T ), (1)

u = uD on ∂Ωt, t ∈ (0, T ), (2)

u(x, 0) = u0(x), x ∈ Ω0. (3)

We assume that fs ∈ C1(IR), fs(0) = 0,

|f ′
s| ≤ Lf , s = 1, . . . , d, (4)

and function β is bounded and Lipschitz-continuous:

β : R → [β0, β1], 0 < β0 < β1 < ∞, (5)

|β(u1) − β(u2)| ≤ Lβ |u1 − u2| ∀u1, u2 ∈ R. (6)

Problem (1)–(3) can be reformulated with the aid of the so called arbitrary Lagrangian-Eulerian (ALE)
method. It is based on a regular one-to-one ALE mapping of the reference configuration Ω0 onto the current
configuration Ωt:

At : Ω0 → Ωt, X ∈ Ω0 → x = x(X, t) = At(X) ∈ Ωt, t ∈ [0, T ]. (7)

We can also write A(X, t) = At(X), X ∈ Ω0, t ∈ [0, T ]. Usually it is supposed that the ALE mapping
is sufficiently regular, e.g., A ∈ W 1,∞(0, T ;W 1,∞(Ωt)). In further considerations more general property will
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appear. Now we introduce the domain velocity

z̃(X, t) =
∂

∂t
At(X), z(x, t) = z̃(A−1

t (x), t), t ∈ [0, T ], X ∈ Ω0, x ∈ Ωt, (8)

and define the ALE derivative Dtf = Df/Dt of a function f = f(x, t) for x ∈ Ωt and t ∈ [0, T ] as

Dtf(x, t) =
D

Dt
f(x, t) =

∂f̃

∂t
(X, t), (9)

where f̃(X, t) = f(At(X), t), X ∈ Ω0, and x = At(X) ∈ Ωt. The use of the chain rule yields the relation

Df

Dt
=

∂f

∂t
+ z · ∇f, (10)

which allows us to reformulate problem (1)–(3) in the ALE form:
Find u = u(x, t) with x ∈ Ωt, t ∈ (0, T ) such that

Du

Dt
+

d∑

s=1

∂fs(u)

∂xs
− z · ∇u − div(β(u)∇u) = g in Ωt, t ∈ (0, T ), (11)

u = uD on ∂Ωt, t ∈ (0, T ), (12)

u(x, 0) = u0(x), x ∈ Ω0. (13)

In what follows we shall be concerned with the numerical solution of the ALE problem (11)-(13) by the space-
time discontinuous Galerkin method. In the theoretical analysis a number of various constants will appear. Some
important constants in main assertions will be denoted by CL1, CL2, etc. in Lemma 1, Lemma 2, etc. and
CT1, CT2, etc. in Theorem 1, Theorem 2, etc. Inside proofs, constants are denoted locally by c, c1, c2, c

∗ etc.

2. ALE-space time discretization

In the time interval [0, T ] we consider a partition 0 = t0 < t1 < · · · < tM = T and set τm = tm − tm−1, Im =
(tm−1, tm), Im = [tm−1, tm] for m = 1, . . . ,M , τ = maxm=1,...,Mτm. We assume that τ ∈ (0, τ), where
τ > 0. The space-time discontinuous Galerkin method (STDGM) has an advantage that on every time interval
Im = [tm−1, tm] it is possible to consider a different space partition (i. e. triangulation) – see, e. g. [20], [14].
Here we also use this possibility for the application of the STDGM in the framework of the ALE method.
It allows to consider an ALE mapping separately on each time interval [tm−1, tm) for m = 1, . . . ,M and the
resulting ALE mapping in [0, T ] may be discontinuous at time instants tm, m = 1, . . . ,M − 1. This means that
one-sided limits A(tm−) 6= A(tm+) in general. Similarly the same may hold for the approximate solution. Such
situation appears in the numerical solution of fluid-structure interaction problems, when both the ALE mapping
and the approximate flow solution are constructed successively on the time intervals Im, m = 1, . . . ,M , by the
space-time discontinuous Galerkin method (see, e.g., [16], [44]).

2.1. ALE mappings and triangulations

For every m = 1, . . . ,M we consider a standard conforming triangulation T̂h,tm−1
in Ωtm−1

, where h ∈ (0, h)

and h > 0. This triangulation is formed by a finite number of closed triangles (d = 2) or tetrahedra (d = 3) with
disjoint interiors. We assume that the domain Ωtm−1

is polygonal (polyhedral). Further, for each m = 1, . . . ,M
we introduce a one-to-one ALE mapping

Am−1
h,t : Ωtm−1

onto−→ Ωt for t ∈ [tm−1, tm), h ∈ (0, h). (14)
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We assume that Am−1
h,t is in space a piecewise affine mapping on the triangulation T̂h,tm−1

, continuous in space

variable X ∈ Ωtm−1
and in time t ∈ [0, tm) and Am−1

h,tm−1
= Id (identical mapping). Hence, we assume that all

domains Ωt are polygonal (polyhedral). For every t ∈ [tm−1, tm) we define the conforming triangulation

Th,t =
{

K = Am−1
h,t (K̂); K̂ ∈ T̂h,tm−1

}

in Ωt. (15)

At t = tm we define the one-sided limit Am−1
h,tm−, introduce the triangulation

Th,tm− = {Am−1
h,tm−(K̂); K̂ ∈ T̂h,tm−1

} in Ωtm

and suppose that

Am−1
h,tm

(
Ωtm−1

)
= Ωtm

. (16)

We have Th,tm−1
= T̂h,tm−1

, but in general, Th,tm− 6= T̂h,tm
.

As we see, for every t ∈ [0, T ] we have a family {Th,t}h∈(0,h) of triangulations of the domain Ωt.

Remark 1. In general, the triangulations may be even nonconforming with hanging nodes (and hanging edges
in 3D) and the ALE mapping may be nonaffine in the domain Ωtm−1

. However, the analysis would be rather
complicated and, therefore, we are not concerned with such a situation.

2.2. Discrete function spaces

In what follows, for every m = 1, . . . ,M we consider the space

Sp,m−1
h =

{

ϕ ∈ L2(Ωtm−1
); ϕ|K̂ ∈ P p(K̂) ∀ K̂ ∈ T̂h,tm−1

}

, (17)

where p ≥ 1 is an integer and P p(K̂) is the space of all polynomials on K̂ of degree ≤ p. Now for every t ∈ Im

we define the space

St,p,m−1
h =

{

ϕ ∈ L2(Ωt); ϕ ◦ Am−1
h,t ∈ Sp,m−1

h

}

. (18)

It is possible to see that

St,p,m−1
h =

{
ϕ ∈ L2(Ωt); ϕ|K ∈ P p(K) ∀K ∈ Th,t

}
. (19)

Of course, Stm,p,m−1
h 6= Sp,m

h in general.

Further, let p, q ≥ 1 be integers. By P q(Im;Sp,m−1
h ) we denote the space of mappings of the time interval

Im into the space Sp,m−1
h which are polynomials of degree ≤ q in time. We set

Sp,q
h,τ =

{

ϕ; ϕ(t) ◦ Am−1
h,t |Im

∈ P q(Im;Sp,m−1
h ), m = 1, . . . ,M

}

. (20)

This means that if ϕ ∈ Sp,q
h,τ , then

ϕ
(

Am−1
h,t (X), t

)

=

q
∑

i=0

ϑi(X) ti, (21)

ϑi ∈ Sp,m−1
h , X ∈ Ωtm−1

, t ∈ Im, m = 1, . . . ,M, h ∈ (0, h).

An approximate solution of problem (11)–(13) and test functions will be elements of the space Sp,q
h,τ .

By Dt we denote the ALE derivative defined by (9) for t ∈ ⋃M
m=1 Im.
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2.3. Some notation and important concepts

Over a triangulation Th,t, for each positive integer k, we define the broken Sobolev space

Hk(Ωt, Th,t) = {v; v|K ∈ Hk(K) ∀K ∈ Th,t},

equipped with the seminorm

|v|Hk(Ωt,Th,t) =




∑

K∈Th,t

|v|2Hk(K)





1/2

,

where | · |Hk(K) denotes the seminorm in the space Hk(K).
By Fh,t we denote the system of all faces of all elements K ∈ Th,t. It consists of the set of all inner faces

FI
h,t and the set of all boundary faces FB

h,t: Fh,t = FI
h,t ∪ FB

h,t. Each Γ ∈ Fh,t will be associated with a unit

normal vector nΓ. By K
(L)
Γ and K

(R)
Γ ∈ Th,t we denote the elements adjacent to the face Γ ∈ FI

h,t. Moreover,

for Γ ∈ FB
h,t the element adjacent to this face will be denoted by K

(L)
Γ . We shall use the convention, that nΓ is

the outer normal to ∂K
(L)
Γ .

If v ∈ H1(Ωt, Th,t) and Γ ∈ Fh,t, then v
(L)
Γ and v

(R)
Γ will denote the traces of v on Γ from the side of

elements K
(L)
Γ and K

(R)
Γ , respectively. We set hK = diam K for K ∈ Th,t, h(Γ) = diam Γ for Γ ∈ Fh,t and

〈v〉Γ = 1
2

(

v
(L)
Γ + v

(R)
Γ

)

, [v]Γ = v
(L)
Γ − v

(R)
Γ , for Γ ∈ FI

h,t. Moreover, by ρK we denote the diameter of the largest

ball inscribed into K ∈ Th,t.

2.4. Discretization

First we introduce the space semidiscretization of problem (11)–(13). We assume that u is a sufficiently
smooth solution of our problem. If we choose an arbitrary but fixed t ∈ (0, T ), multiply equation (11) by a test
function ϕ ∈ H2(Ωt, Th,t), integrate over any element K and finally sum over all elements K ∈ Th,t, then for
t ∈ Im we get

∑

K∈Th,t

∫

K

Du

Dt
ϕdx +

∑

K∈Th,t

∫

K

d∑

s=1

∂fs(u)

∂xs
ϕdx (22)

−
∑

K∈Th,t

∫

K

d∑

s=1

zs
∂u

∂xs
ϕdx −

∑

K∈Th,t

∫

K

div(β(u)∇u)ϕdx =
∑

K∈Th,t

∫

K

gϕdx.

Applying Green’s theorem to the convection and diffusion terms, introducing the concept of a numerical flux
and suitable expressions mutually vanishing, after some manipulation we arrive at the identity

(Dtu, ϕ) + Ah(u, ϕ, t) + bh(u, ϕ, t) + dh(u, ϕ, t) = lh(ϕ, t), (23)
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where the forms appearing here are defined for u, ϕ ∈ H2(Ωt, Th,t), θ ∈ IR and cW > 0 in the following way

ah(u, ϕ, t) =
∑

K∈Th,t

∫

K

β(u)∇u · ∇ϕdx (24)

−
∑

Γ∈FI
h,t

∫

Γ

(〈β(u)∇u〉 · nΓ [ϕ] + θ 〈β(u)∇ϕ〉 · nΓ [u]) dS

−
∑

Γ∈FB
h,t

∫

Γ

(β(u)∇u · nΓ ϕ + θβ(u)∇ϕ · nΓ u − θβ(u)∇ϕ · nΓ uD) dS,

Jh(u, ϕ, t) = cW

∑

Γ∈FI
h,t

h(Γ)−1

∫

Γ

[u] [ϕ] dS (25)

+ cW

∑

Γ∈FB
h,t

h(Γ)−1

∫

Γ

u ϕ dS,

JB
h (u, ϕ, t) = cW

∑

Γ∈FB
h,t

h(Γ)−1

∫

Γ

u ϕ dS, (26)

Ah(u, ϕ, t) = ah(u, ϕ, t) + β0 Jh(u, ϕ, t), (27)

bh(u, ϕ, t) = −
∑

K∈Th,t

∫

K

d∑

s=1

fs(u)
∂ϕ

∂xs
dx (28)

+
∑

Γ∈FI
h,t

∫

Γ

H(u
(L)
Γ , u

(R)
Γ ,nΓ) [ϕ] dS +

∑

Γ∈FB
h,t

∫

Γ

H(u
(L)
Γ , u

(L)
Γ ,nΓ)ϕdS,

dh(u, ϕ, t) = −
∑

K∈Th,t

∫

K

d∑

s=1

zs
∂u

∂xs
ϕdx = −

∑

K∈Th,t

∫

K

(z · ∇u)ϕdx, (29)

lh(ϕ, t) =
∑

K∈Th,t

∫

K

gϕdx + β0 cW

∑

Γ∈FB
h,t

h(Γ)−1

∫

Γ

uD ϕdS. (30)

Let us note that in integrals over faces we omit the subscript Γ of 〈·〉 and [·]. We consider θ = 1, θ = 0
and θ = −1 and get the symmetric (SIPG), incomplete (IIPG) and nonsymmetric (NIPG) variants of the
approximation of the diffusion terms, respectively.

In (28), H is a numerical flux with the following properties:
(H1) H(u, v,n) is defined in R

d×B1, where B1 = {n ∈ R
d; |n| = 1}, and is Lipschitz-continuous with respect

to u, v: there exists LH > 0 such that
|H(u, v,n) − H(u∗, v∗,n)| ≤ LH(|u − u∗| + |v − v∗|), for allu, v, u∗, v∗ ∈ R.

(H2) H is consistent: H(u, u,n) =
∑d

s=1 fs(u)ns, u ∈ R, n ∈ B1,
(H3) H is conservative: H(u, v,n) = −H(v, u,−n), u, v ∈ R, n ∈ B1.

In what follows, in the stability analysis we shall use the properties (H1) and (H2). (Assumption (H3) is
important for error estimation, but here it is not necessary.)

For a function ϕ defined in
⋃M

m=1 Im we denote

ϕ±
m = ϕ(tm±) = lim

t→tm±
ϕ(t), {ϕ}m = ϕ(tm+) − ϕ(tm−), (31)
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if the one-sided limits ϕ±
m exist.

Now we define an ALE-STDG approximate solution of problem (11)–(13).

Definition 1. A function U is an approximate solution of problem (11)–(13), if U ∈ Sp,q
h,τ and

∫

Im

(
(DtU,ϕ)Ωt

+ Ah(U,ϕ, t) + bh(U,ϕ, t) + dh(U,ϕ, t)
)

dt (32)

+({U}m−1, ϕ
+
m−1)Ωtm−1

=

∫

Im

lh(ϕ, t) dt ∀ϕ ∈ Sp,q
h,τ , m = 1, . . . ,M,

U−
0 ∈ Sp,0

h , (U−
0 − u0, vh) = 0 ∀vh ∈ Sp,0

h . (33)

(For m = 1 we set {U}m−1 = {U}0 := U+
0 − U−

0 with U−
0 given by (33)).

The ALE-STDG numerical method (32)–(33) was applied in [16] and [44] to the numerical simulation of a
compressible flow in time-dependent domains and fluid-structure interaction.

3. Analysis of the stability

3.1. Some auxiliary results

As was mentioned in Section 2.1, for each t ∈ [0, T ] we consider a system of triangulations {Th,t}h∈(0,h). We

assume that these systems are uniformly shape regular. This means that there exists a positive constant cR,
independent of K, t and h such that

hK

ρK
≤ cR for all K ∈ Th,t, h ∈ (0, h), t ∈ [tm−1, tm], (34)

τm ≤ τ ∈ (0, τ), m = 1, . . . ,M.

By (Am−1
h,t )−1 we denote the inverse to the mapping Am−1

h,t . The symbols
dAm−1

h,t

dX and
d(Am−1

h,t )−1

dx denote the

Jacobian matrices of Am−1
h,t and (Am−1

h,t )−1, respectively. The entries of
dAm−1

h,t

dX and
d(Am−1

h,t )−1

dx are constant

on every element K̂ ∈ T̂h,tm−1
and K ∈ Th,t, respectively. Moreover, we define the Jacobians J(X, t) =

det
dAm−1

h,t (X)

dX , X ∈ Ωtm−1
, and J−1(x, t) = det

d(Am−1
h,t (x))−1

dx , x ∈ Ωt. The Jacobians J and J−1 are piecewise

constant over T̂h,tm−1
and Th,t, respectively. The constant value of J on K̂ ∈ T̂h,tm−1

and of J−1 on K ∈ Th,t

will be denoted by JK̂ and J−1
K , respectively. Of course, these terms depend on t and, hence, JK̂ = JK̂(t) and

J−1
K = J−1

K (t).
In what follows, we assume that

Am−1
h,t ∈ W 1,∞(Im;W 1,∞(Ωtm−1

)), m = 1, . . . ,M, h ∈ (0, h) (35)

and

(Am−1
h,t )−1 ∈ W 1,∞(Im;W 1,∞(Ωt)), m = 1, . . . M, h ∈ (0, h). (36)

Obviously, we have J ∈ W 1,∞(Im;L∞(Ωtm−1
)), J−1 ∈ W 1,∞(Im;L∞(Ωt)). Since Am−1

h,tm−1
is the identical

mapping and, hence, J(X, tm−1) = 1, we assume that there exist constants C−
J , C+

J > 0 such that the Jacobians
satisfy the conditions

C−
J ≤ J(X, t) ≤ C+

J , X ∈ Ωtm−1
, t ∈ Im, m = 1, . . . ,M, h ∈ (0, h), (37)

(C+
J )−1 ≤ J−1(x, t) ≤ (C−

J )−1, x ∈ Ωt, t ∈ Im, m = 1, . . . ,M, h ∈ (0, h).
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Finally, there exist constants C−
A , C+

A > 0 such that

∥
∥
∥
∥
∥

dAm−1
h,t (X)

dX

∥
∥
∥
∥
∥
≤ C+

A , X ∈ Ωtm−1
, t ∈ Im, m = 1, . . . ,M, h ∈ (0, h), (38)

∥
∥
∥
∥
∥

d(Am−1
h,t )−1(x)

dx

∥
∥
∥
∥
∥
≤ C−

A , x ∈ Ωt, t ∈ Im, m = 1, . . . ,M, h ∈ (0, h), (39)

where ‖ · ‖ is the matrix norm induced by the Euclidean norm | · | in IRd.
The above assumptions imply the following properties of the domain velocity: There exists a constant cz > 0

such that

|z(x, t)|, |divz(x, t)| ≤ cz for x ∈ Ωt, t ∈ (0, T ). (40)

In what follows, for the sake of simplicity, we use the notation At for the ALE mapping defined in
⋃M

m=1 Im

so that

At(X) = Am−1
h,t (X) for X ∈ Ωtm−1

, t ∈ Im, m = 1, . . . ,M, h ∈ (0, h). (41)

The symbol A−1
t will denote the inverse to At. This means that A−1

t : Ωt
onto−→ Ωtm−1

for t ∈ Im, m = 1, . . . ,M .
Under assumption (34), the multiplicative trace inequality and the inverse inequality hold: There exist

constants cM , cI > 0 independent of v, h, t and K such that

‖v‖2
L2(∂K) ≤ cM

(

‖v‖L2(K) |v|H1(K) + h−1
K ‖v‖2

L2(K)

)

, (42)

v ∈ H1(K), K ∈ Th,t, h ∈ (0, h), t ∈ [0, T ],

and

|v|H1(K) ≤ cI h−1
K ‖v‖L2(K), (43)

v ∈ P p(K), K ∈ Th,t, h ∈ (0, h), t ∈ [0, T ].

In the space H1(Ωt, Th,t) we define the norm

‖ϕ‖DG,t =




∑

K∈Th,t

|ϕ|2H1(K) + Jh(ϕ,ϕ, t)





1/2

. (44)

Moreover, over ∂Ω we define the norm

‖uD‖DGB,t =



cW

∑

Γ∈FB
h,t

h(Γ)−1

∫

Γ

|uD|2 dS





1/2

=
(
JB

h (uD, uD, t)
)1/2

. (45)

If we use ϕ := U as a test function in (32), we get the basic identity

∫

Im

(
(DtU,U)Ωt

+ Ah(U,U, t) + bh(U,U, t) + dh(U,U, t)
)
dt (46)

+({U}m−1, U
+
m−1)Ωtm−1

=

∫

Im

lh(U, t) dt.
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3.2. Important estimates

Here we estimate the forms from the definition of the approximate solution. The proofs can be carried out in
a similar way as in [5]. For a sufficiently large constant cW we obtain the coercivity of the diffusion and penalty
terms.

Lemma 1. Let

cW ≥ β2
1

β2
0

cM (cI + 1) for θ = −1 (NIPG), (47)

. cW ≥ β2
1

β2
0

cM (cI + 1) for θ = 0 (IIPG), (48)

cW ≥ 16β2
1

β2
0

cM (cI + 1) for θ = 1 (SIPG). (49)

Then

∫

Im

(ah(U,U, t) + β0 Jh(U,U, t)) dt (50)

≥ β0

2

∫

Im

‖U‖2
DG,t dt − β0

2

∫

Im

‖uD‖2
DGB,t dt.

Further, we estimate the convection terms:

Lemma 2. For each k1 > 0 there exists a constant cb > 0 such that we have the inequality

∫

Im

|bh(U,U, t)|dt ≤ β0

2k1

∫

Im

‖U‖2
DG,tdt + cb

∫

Im

‖U‖2
Ωt

dt. (51)

Lemma 3. For each k2 > 0 there exists a constant cd > 0 such that we have the inequality

∫

Im

|dh(U,U, t)|dt ≤ β0

2k2

∫

Im

‖U‖2
DG,t dt +

cd

2β0

∫

Im

‖U‖2
Ωt

dt. (52)

We also need to estimate the right-hand side form:

Lemma 4. For any k3 > 0 we have

∫

Im

|lh(U, t)|dt ≤ 1

2

∫

Im

(
‖g‖2

Ωt
+ ‖U‖2

Ωt

)
dt (53)

+
β0k3

2

∫

Im

‖uD‖2
DGB,t dt +

β0

2k3

∫

Im

‖U‖2
DG,t dt.

Finally we need to estimate the term with the ALE derivative:
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Lemma 5. It holds that
∫

Im

(DtU,U)Ωt
dt (54)

≥ 1

2

(

‖U−
m‖2

Ωtm
− ‖U+

m−1‖2
Ωtm−1

− cz

∫

Im

‖U‖2
Ωt

dt

)

,

(
{U}m−1, U

+
m−1

)

Ωtm−1

(55)

=
1

2

(

‖U+
m−1‖2

Ωtm−1
+ ‖{U}m−1‖2

Ωtm−1
− ‖U−

m−1‖2
Ωtm−1

)

,
∫

Im

(DtU,U)Ωt
dt +

(
{U}m−1, U

+
m−1

)

Ωtm−1

(56)

≥ 1

2
‖U−

m‖2
Ωtm

+
1

2
‖U+

m−1‖2
Ωtm−1

− cz

2

∫

Im

‖U‖2
Ωt

dt −
(
U−

m−1, U
+
m−1

)

Ωtm−1

.

Proof. We start with the first inequality. We have

∫

Im

(DtU,U)Ωt
dt =

∑

K∈Th,t

∫

Im

(DtU,U)K dt. (57)

By virtue of relation (15), the Reynolds transport theorem (see, e.g. [27] or [1]) and relation (10), we get

d

dt

∫

K

U2(x, t) dx (58)

=

∫

K

(
∂U2(x, t)

∂t
+ z(x, t) · ∇(U2(x, t)) + U2(x, t)div z(x, t)

)

dx

=

∫

K

(

2U(x, t)

(
∂U(x, t)

∂t
+ z(x, t) · ∇U(x, t)

)

+ U2(x, t)div z(x, t)

)

dx

= 2(DtU,U)K + (U2,div z)K .

Expressing (DtU,U)K , summing over K ∈ Th,t and integrating over Im together with assumption (40) yield

∫

Im

(DtU,U)Ωt
dt (59)

=
1

2

∫

Im

d

dt

∫

Ωt

U2 dxdt − 1

2

∫

Im

(U2,div z)Ωt
dt

=
1

2
‖U−

m‖2
Ωtm

− 1

2
‖U+

m−1‖2
Ωtm−1

− 1

2

∫

Im

(U2,div z)Ωt
dt

≥ 1

2
‖U−

m‖2
Ωtm

− 1

2
‖U+

m−1‖2
Ωtm−1

− cz

2

∫

Im

‖U‖2
Ωt

dt,

which is (54).
Further, by a simple manipulation we find that

2(U+
m−1 − U−

m−1, U
+
m−1)Ωtm−1

= ‖U+
m−1‖2

Ωtm−1
+ ‖{U}m−1‖2

Ωtm−1
− ‖U−

m−1‖2
Ωtm−1

,

which immediately implies (55).
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Concerning inequality (56), from (59) we get

∫

Im

(DtU,U)Ωt
dt +

(
{U}m−1, U

+
m−1

)

Ωtm−1

=
1

2
‖U−

m‖2
Ωtm

− 1

2
‖U+

m−1‖2
Ωtm−1

−1

2

∫

Im

(U2,div z)Ωt
dt + ‖U+

m−1‖Ωtm−1
− (U−

m−1, U
+
m−1)Ωtm−1

≥ 1

2

(

‖U−
m‖2

Ωtm
+ ‖U+

m−1‖2
Ωtm−1

− cz

∫

Im

‖U‖2
Ωt

dt

)

−
(
U−

m−1, U
+
m−1

)

Ωtm−1

,

which proves the lemma. �

3.3. Discrete characteristic function

In our further considerations, the concept of a discrete characteristic function will play an important role.
The discrete characteristic function was introduced in [17] in the framework of the time discontinuous Galerkin
method combined with conforming finite elements applied to a linear parabolic problem. The discrete character-
istic function was generalized in connection with the STDGM for nonlinear parabolic problems in [7], [14], [20].
Here it is generalized to time-dependent domains.

For m = 1, . . . ,M we use the following notation:
U = U(x, t), x ∈ Ωt, t ∈ Im will denote the approximate solution in Ωt, and

Ũ = Ũ(X, t) = U(At(X), t), X ∈ Ωtm−1
, t ∈ Im denotes the approximate solution transformed to the reference

domain Ωtm−1
.

For s ∈ Im we denote Ũs = Ũs(X, t), X ∈ Ωtm−1
, t ∈ Im, the discrete characteristic function to Ũ at a point

s ∈ Im. It is defined as Ũs ∈ P q(Im;Sp,m−1
h ) such that

∫

Im

(Ũs, ϕ)Ωtm−1
dt =

∫ s

tm−1

(Ũ , ϕ)Ωtm−1
dt ∀ϕ ∈ P q−1(Im;Sp,m−1

h ), (60)

Ũs(X, t+m−1) = Ũ(X, t+m−1), X ∈ Ωtm−1
. (61)

Further, we introduce the discrete characteristic function Us = Us(x, t), x ∈ Ωt, t ∈ Im to U ∈ Sp,q
h,τ at a point

s ∈ Im:

Us(x, t) = Ũs(A−1
t (x), t), x ∈ Ωt, t ∈ Im. (62)

Hence, in view of (20), Us ∈ Sp,q
h,τ and for X ∈ Ωtm−1

we have

Us(X, tm−1+) = U(X, tm−1+). (63)

In what follows, we prove some important properties of the discrete characteristic function. Namely, we prove
that the discrete characteristic function mapping U → Us is continuous with respect of the norms ‖ ·‖L2(Ωt) and
‖ · ‖DG,t. In the proof we use a result from [7] for the discrete characteristic function on a reference domain:

There exists a constant c̃
(1)
CH > 0 depending on q only such that

∫

Im

‖Ũs‖2
Ωtm−1

dt ≤ c̃
(1)
CH

∫

Im

‖Ũ‖2
Ωtm−1

dt, (64)

for all m = 1, . . . ,M and h ∈ (0, h).
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Lemma 6. There exist constants C∗
L6, C∗∗

L6 > 0 such that

C∗
L6 h(Γ̂)−1 ≤ h(Γ)−1 ≤ C∗∗

L6 h(Γ̂)−1 (65)

for all Γ̂ ∈ Fh,tm−1
,Γ = At(Γ̂) ∈ Fh,t and all t ∈ Im, m = 1, . . . ,M, h ∈ (0, h).

Proof. We use the relation between Γ and Γ̂ and the properties (38) and (39) of the mappings At and A−1
t .

We also take into account that Γ̂ ⊂ K̂ for some K̂ ∈ T̂h,tm−1
, Γ ⊂ K = At(K̂) ∈ Th,t and that the Jacobian

matrices dAt

dX and
dA−1

t

dx are constant on K̂ and K, respectively. Then we can write

h(Γ) = diam(Γ) = max
x,x∗∈Γ

|x − x∗| = max
X,X∗∈Γ̂

|At(X) −At(X
∗)|

≤ max
X∈Γ̂

∥
∥
∥
∥

dAt(X)

dX

∥
∥
∥
∥

max
X,X∗∈Γ̂

|X − X∗| ≤ C+
A max

X,X∗∈Γ̂
|X − X∗| = C+

A h(Γ̂).

Similarly, we get h(Γ̂) ≤ C−
A h(Γ). These inequalities immediately imply (65) with C∗

L6 = (C+
A )−1 and C∗∗

L6 =

C−
A . �

Theorem 1. There exist constants c
(1)
CH , c

(2)
CH > 0, such that

∫

Im

‖Us‖2
Ωt

dt ≤ c
(1)
CH

∫

Im

‖U‖2
Ωt

dt (66)

∫

Im

‖Us‖2
DG,t dt ≤ c

(2)
CH

∫

Im

‖U‖2
DG,t dt (67)

for all s ∈ Im, m = 1, . . . ,M and h ∈ (0, h).

Proof. We begin with the proof of the first inequality. We have

‖Us(t)‖2
Ωt

=

∫

Ωt

|Us(x, t)|2 dx =

∫

Ωt

|Ũs(A−1
t (x), t)|2 dx

=

∫

Ωtm−1

|Ũs(X, t)|2J(X, t) dX ≤ C+
J

∫

Ωtm−1

|Ũs(X, t)|2 dX

= C+
J ‖Ũs(t)‖2

Ωtm−1
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Integrating over Im and using (64), we obtain

∫

Im

‖Us(t)‖2
Ωt

dt ≤ C+
J

∫

Im

‖Ũs(t)‖2
Ωtm−1

dt

≤ C+
J c̃

(1)
CH

∫

Im

‖Ũ(t)‖2
Ωtm−1

dt

= C+
J c̃

(1)
CH

∫

Im

(
∫

Ωtm−1

|Ũ(X, t)|2 dX

)

dt

= C+
J c̃

(1)
CH

∫

Im

(
∫

Ωtm−1

|U(At(X), t)|2 dX

)

dt

= C+
J c̃

(1)
CH

∫

Im

(∫

Ωt

|U(x, t)|2J−1(x, t) dx

)

dt

≤ C+
J c̃

(1)
CHC−

J

∫

Im

(∫

Ωt

|U(x, t)|2 dx

)

dt

= C+
J c̃

(1)
CHC−

J

∫

Im

‖U(t)‖2
Ωt

dt.

Setting c
(1)
CH = C+

J c̃
(1)
CHC−

J , we get (66).
Now we pay our attention to the proof of the second inequality in the theorem. From the definition of the

DG-norm we have

∫

Im

||Us||2DG,t dt (68)

=

∫

Im

∑

K∈Th,t

|Us|2H1(K) dt +

∫

Im




∑

Γ∈FI
h,t

cW

h(Γ)

∫

Γ

[Us]
2 dS



dt

+

∫

Im




∑

Γ∈FB
h,t

cW

h(Γ)

∫

Γ

|Us|2 dS



dt,

where FI
h,t = {Am−1

h,t (Γ̂); Γ̂ ∈ FI
h,tm−1

} and similarly FB
h,t = {Am−1

h,t (Γ̂); Γ̂ ∈ FB
h,tm−1

}.
Further, we estimate each term on the right-hand side of (68). From [20], relation (6.161), it follows that

∑

K̂∈T̂h,tm−1

∫

Im

|Ũs(t)|2H1(K̂)
dt ≤ c̃

(2)
CH

∑

K̂∈T̂h,tm−1

∫

Im

|Ũ(t)|2
H1(K̂)

dt, (69)

with a constant c̃
(2)
CH > 0 depending on q only. For simplicity let us denote

Bt = Bt(X) =
dAm−1

h,t (X)

dX
, B−1

t = B−1
t (x) =

d(Am−1
h,t )−1(x)

dx
.



TITLE WILL BE SET BY THE PUBLISHER 15

Then it follows from (38) and (39) that ‖Bt‖ ≤ C+
A and ‖B−1

t ‖ ≤ C−
A .

Now, for K ∈ Th,t, K = At(K̂) with K̂ ∈ T̂h,tm−1
, using that ‖Bt|K̂‖ and ‖B−1

t |K̂‖ are constant, we have

|Us(t)|2H1(K) =

∫

K

|∇Us(x, t)|2 dx =

∫

K

∣
∣
∣∇Ũs(A−1

t (x), t)
∣
∣
∣

2

dx (70)

≤
∫

K̂

∣
∣
∣B−1

t |K∇Ũs(X, t)
∣
∣
∣

2

J(X, t) dX ≤ (C−
A )2C+

J |Ũs(t)|2H1(K̂)
.

The summation over all K ∈ Th,t, integration over Im and the use of (69) imply that

∫

Im

∑

K∈Th,t

|Us(t)|2H1(K) dt (71)

≤ (C−
A )2C+

J

∫

Im

∑

K̂∈T̂h,tm−1

|Ũs(t)|2H1(K̂)
dt

≤ (C−
A )2C+

J c̃
(2)
CH

∫

Im

∑

K̂∈T̂h,tm−1

|Ũ(t)|2
H1(K̂)

dt

= (C−
A )2C+

J c̃
(2)
CH

∫

Im






∑

K̂∈T̂h,tm−1

∫

K̂

|∇Ũ(X, t)|2 dX




dt

= (C−
A )2C+

J c̃
(2)
CH

∫

Im







∑

K̂∈T̂h,tm−1

∫

K̂

|∇(U(At(X), t))|2
︸ ︷︷ ︸

=|Bt|K̂(∇U)(At(X),t)|2
dX







dt

≤ (C−
A )2C+

J c̃
(2)
CH

∫

Im




∑

K∈Th,t

∫

K

|∇U(x, t)|2J−1
K dx



 dt

≤ (C−
A )2C+

J c̃
(2)
CH

∫

Im




∑

K∈Th,t

∫

K

|∇U(t)|2‖Bt‖2J−1
K dx



 dt

≤ (C−
A )2C+

J (C−
J )−1c̃

(2)
CH(C+

A )2
∫

Im

∑

K∈T h,t

|U(t)|2H1(K) dt

= C
(a)
CH

∫

Im

|U(t)|2H1(Ωt,Th,t)
dt,

where C
(a)
CH := (C−

A )2C+
J (C−

J )−1c̃
(2)
CH(C+

A )2.
Now we turn our attention to the term

∫

Im




∑

Γ∈FI
h,t

cW

h(Γ)

∫

Γ

[Us]
2 dS



 dt.
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For simplicity we assume that d = 2. In Appendix we briefly describe the proof for d = 3. We will use estimate
(6.162) from [20], which implies that

∫

Im






∑

Γ̂∈FI
h,tm−1

cW

h(Γ̂)

∫

Γ̂

[Ũs]
2 dSΓ̂




 dt (72)

≤ c̃
(3)
CH

∫

Im






∑

Γ̂∈FI
h,tm−1

cW

h(Γ̂)

∫

Γ̂

[Ũ ]2 dSΓ̂




 dt.

(Here dSΓ̂ denotes the element of the arc Γ̂. Similarly we use the notation dSΓ.)

Now we consider the relation Γ = At(Γ̂), Γ̂ ∈ FI
h,tm−1

, and introduce a parametrization of Γ̂:

Γ̂ = BΓ̂
m−1([0, 1]) = {X = BΓ̂

m−1(υ); υ ∈ [0, 1]}.

Then an element of Γ̂ can be expressed as

dSΓ̂ = |(BΓ̂
m−1)

′(υ)|dυ, υ ∈ [0, 1].

These relations imply that

Γ = {x = At(BΓ̂
m−1(υ)); υ ∈ [0, 1]}

dSΓ =

∣
∣
∣
∣

dAt

dX
(BΓ̂

m−1(υ))(BΓ̂
m−1)

′(υ)

∣
∣
∣
∣

dυ, υ ∈ [0, 1].

The term (BΓ̂
m−1)

′(υ) is a tangent vector to Γ̂ at the point BΓ̂
m−1(υ). It follows from the properties of the

mapping At that the values of

dAt

dX
(BΓ̂

m−1(υ))(BΓ̂
m−1)

′(υ)

are identical from the sides of both elements K
(L)

Γ̂
and K

(R)

Γ̂
adjacent to Γ̂. Then we can use the above relations,

inequalities (65), (38), and write

∫

Γ

1

h(Γ)
[Us]

2dSΓ (73)

=

∫ 1

0

1

h(Γ)
[Us(At(BΓ̂

m−1(υ)))]2
∣
∣
∣
∣

dAt

dX
(BΓ̂

m−1(υ))(BΓ̂
m−1)

′(υ)

∣
∣
∣
∣

dυ

≤
∫ 1

0

1

h(Γ)
[Ũs(BΓ̂

m−1(υ))]2
∥
∥
∥
∥

dAt

dX
(BΓ̂

m−1(υ))

∥
∥
∥
∥

︸ ︷︷ ︸

≤C+
A

∣
∣
∣(BΓ̂

m−1)
′(υ)

∣
∣
∣ dυ

≤ C+
A

∫

Γ̂

C∗∗
L6

h(Γ̂)
[Ũs]

2dSΓ̂.
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From (72) and (73) we get

∫

Im




∑

Γ∈FI
h,t

cW

h(Γ)

∫

Γ

[Us]
2 dSΓ



 dt (74)

≤ c̃
(3)
CHC+

AC∗∗
L6

∫

Im






∑

Γ̂∈FI
h,tm−1

cW

h(Γ̂)

∫

Γ̂

[Ũ ]2 dSΓ̂




 dt.

Further, for Γ = At(Γ̂), where Γ̂ ∈ FI
h,tm−1

, we consider the parametrization

Γ = {x = BΓ
t (υ); υ ∈ [0, 1]},

Γ̂ = {X = A−1
t (BΓ

t (υ)); υ ∈ [0, 1]},

dSΓ̂ =

∣
∣
∣
∣

dA−1
t

dx
(BΓ

t (υ))(BΓ
t )′(υ)

∣
∣
∣
∣

dυ.

Then, by (39),

∫

Γ̂

[Ũ ]2 dSΓ̂ =

∫ 1

0

[Ũ(A−1
t (BΓ

t (υ)))]2
︸ ︷︷ ︸

[U(BΓ
t (υ))]2

∣
∣
∣
∣

dA−1
t

dx
(BΓ

t (υ))(BΓ
t )′(υ)

∣
∣
∣
∣

dυ

≤
∫ 1

0

[U(BΓ
t (υ))]2

∥
∥
∥
∥

dA−1
t

dx
(BΓ

t (υ))

∥
∥
∥
∥

︸ ︷︷ ︸

≤C−

A

∣
∣(BΓ

t )′(υ)
∣
∣ dυ

≤ C−
A

∫ 1

0

[U(BΓ
t (υ))]2|(BΓ

t )′(υ)|dυ

= C−
A

∫

Γ

[U ]2 dSΓ.

Substituting back to (74) and using (65), we find that

∫

Im




∑

Γ∈FI
h,t

cW

h(Γ)

∫

Γ

[Us]
2 dSΓ



 dt (75)

≤ c̃
(3)
CHC+

AC∗∗
L6(C

∗
L6)

−1C−
A

∫

Im




∑

Γ∈FI
h,t

cW

h(Γ)

∫

Γ

[U ]2 dS



 dt

= C
(b)
CH

∫

Im




∑

Γ∈FI
h,t

cW

h(Γ)

∫

Γ

[U ]2 dS



 dt,

where C
(b)
CH = c̃

(3)
CHC+

AC∗∗
L6(C

∗
L6)

−1C−
A .



18 TITLE WILL BE SET BY THE PUBLISHER

Similarly we can prove the inequality

∫

Im




∑

Γ∈FB
h,t

cW

h(Γ)

∫

Γ

|Us|2 dSΓ



 dt (76)

≤ C
(c)
CH

∫

Im




∑

Γ∈FB
h,t

cW

h(Γ)

∫

Γ

|U |2 dS



 dt.

Finally, (71), (75) and (76) imply (67) with c
(2)
CH = max{C(a)

CH , C
(b)
CH , C

(c)
CH}. �

3.4. Proof of the unconditional stability

Theorem 2. There exists a constant CT2 > 0 such that

‖U−
m‖2

Ωtm
− ‖U−

m−1‖2
Ωtm−1

+ ‖{U}m−1‖2
Ωtm−1

+
β0

2

∫

Im

‖U‖2
DG,tdt (77)

≤ CT2

(∫

Im

‖g‖2
Ωt

dt +

∫

Im

‖uD‖2
DGB,tdt +

∫

Im

‖U‖2
Ωt

dt

)

.

Proof. From (46), by virtue of (54), (50), (51), (52), (55) and (53), after some manipulation we get

‖U−
m‖2

Ωtm
− ‖U−

m−1‖2
Ωtm−1

+ ‖{U}m−1‖2
Ωtm−1

+β0

(

1 − 1

k1
− 1

k2
− 1

k3

)∫

Im

‖U‖2
DG,tdt

≤
∫

Im

‖g‖2
Ωt

dt + β0(1 + k3)

∫

Im

‖uD‖2
DGB,tdt

+

(

cz + 1 +
cd

β0
+ 2cb

)∫

Im

‖U‖2
Ωt

dt.

Hence, choosing k1 = k2 = k3 = 6, we get (77) with CT2 = max{1, 7β0, cz + 1 + cd/β0 + 2cb}. �

Theorem 3. There exist constants C∗
T3, C

∗∗
T3 > 0 such that for any δ1 > 0 we have

‖U−
m‖Ω2

tm
+ ‖U+

m−1‖2
Ωtm−1

+
β0

2

∫

Im

‖U‖2
DG,tdt (78)

≤ C∗
T3

∫

Im

‖U‖2
Ωt

dt + C∗∗
T3

∫

Im

(
‖g‖2

Ωt
+ ‖uD‖2

DGB,t

)
dt

+
2

δ1
‖U−

m−1‖2
Ωtm−1

+ 4δ1‖U+
m−1‖2

Ωtm−1
.

Proof. From (32), by virtue of (56), (50), (51), (52), (55) and (53), we get

‖U−
m‖2

Ωtm
+ ‖U+

m−1‖2
Ωtm−1

+ β0

(

1 − 1

k1
− 1

k2
− 1

k3

)∫

Im

‖U‖2
DG,tdt

≤
∫

Im

‖g‖2
Ωt

dt + β0(1 + k3)

∫

Im

‖uD‖2
DGB,tdt

+
(

1 + cz + 2cb +
cd

β0

)∫

Im

‖U‖2
Ωt

dt + 2
(
U−

m−1, U
+
m−1

)

Ωtm−1

.
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Using Young’s inequality for the term 2(U−
m−1, U

+
m−1) and setting k1 = k2 = k3 = 6, we get (78), where

C∗
T3 = 1 + cz + 2cb + cd/β0 and C∗∗

T3 = max{1, 7β0}. �

We introduce the following notation:

tm−1+l/q = tm−1 + τm
l

q
,

Um−1+l/q = U(tm−1+l/q), l = 0, . . . , q.

Lemma 7. There exist constants L∗
q ,M

∗
q > 0 such that for m = 1, . . . ,M we have

q
∑

l=0

‖Um−1+l/q‖2
Ωtm−1+l/q

≥
L∗

q

τm

∫

Im

‖U‖2
Ωt

dt, (79)

‖U+
m−1‖2

Ωtm−1
≤

M∗
q

τm

∫

Im

‖U‖2
Ωt

dt. (80)

Proof. Using the equivalence of norms in the space of polynomials of degree ≤ q, for p(t) = Ũ(X, t), t ∈ Im,
and any fixed X ∈ Ωtm−1

, we have

q
∑

l=0

Ũ2
(
X, tm−1+l/q

)
≥ Lq

τm

∫

Im

Ũ2(X, t) dt,

Ũ2
(
X, t+m−1

)
≤ Mq

τm

∫

Im

Ũ2(X, t) dt

(Cf. [20], Section 6.2.3.2). integrating over Ωtm−1
and using Fubini’s theorem, we get

q
∑

l=0

∫

Ωtm−1

|Ũ
(
X, tm−1+l/q

)
|2dX ≥ Lq

τm

∫

Ωtm−1

(∫

Im

|Ũ(X, t)|2dt

)

dX

=
Lq

τm

∫

Im

(
∫

Ωtm−1

|Ũ(X, t)|2dX

)

dt.

Analogously we find that

∫

Ωtm−1

|Ũ
(
X, t+m−1

)
|2 dX ≤ Mq

τm

∫

Im

(
∫

Ωtm−1

|Ũ(X, t)|2dX

)

dt.
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Now the substitution X = A−1
t (x), where X ∈ Ωtm−1

, x ∈ Ωt, relation Ũ(A−1
t (x), t) = U(x, t) and (37) imply

that

q
∑

l=0

‖Um−1+l/q‖2
Ωtm−1+l/q

≥ C−
J

q
∑

l=0

∫

Ωtm−1+l/q

|U(x, tm−1+l/q)|2J−1(x, tm−1+l/q) dx

= C−
J

q
∑

l=0

∫

Ωtm−1

|Ũ(X, tm−1+l/q)|2dX

≥ Lq

τm
C−

J

∫

Im

(
∫

Ωtm−1

|Ũ(X, t)|2dX

)

dt

=
Lq

τm
C−

J

∫

Im

(∫

Ωt

|Ũ(A−1
t (x), t)|2J−1(x, t) dx

)

dt

≥ Lq

τm
(C+

J )−1C−
J

∫

Im

(∫

Ωt

|U(x, t)|2 dx

)

dt

=
Lq

τm
(C+

J )−1C−
J

∫

Im

‖U‖2
Ωt

dt.

Hence, we get (79) with L∗
q = Lq(C

+
J )−1C−

J .

Further, since x = Atm−1
(X) = X and, thus, Ũ(X, t+m−1) = U(x, t+m−1), using the substitution theorem and

(37), we obtain

‖U+
m−1‖2

Ωtm−1
=

∫

Ωtm−1

|Ũ
(
X, t+m−1

)
|2dX

≤ Mq

τm

∫

Im

(
∫

Ωtm−1

|Ũ(X, t)|2dX

)

dt

=
Mq

τm

∫

Im

(∫

Ωt

|Ũ(A−1
t , t)|2J−1(x, t) dx

)

dt

≤ Mq

τm
(C−

J )−1

∫

Im

(∫

Ωt

|U(x, t)|2 dx

)

dt

=
M∗

q

τm

∫

Im

‖U‖2
Ωt

dt,

where M∗
q = Mq(C

−
J )−1. �

In what follows, because of simplicity, we use the notation Ũ ′ = ∂Ũ
∂t and do not write the arguments X and

t in integrals.



TITLE WILL BE SET BY THE PUBLISHER 21

Lemma 8. There exists a constant CL8 > 0 such that

∫

Im

(DtU,Us)Ωt
dt + ({U}m−1,Us(t

+
m−1))Ωtm−1

(81)

≥ 1

2

(

‖U(s−)‖2
Ωs

+ ‖U(t+m−1)‖2
Ωtm−1

)

−CL8

∫

Im

‖U‖2
Ωt

dt − (U+
m−1, U

−
m−1)Ωtm−1

.

for any s ∈ Im, m = 1, . . . ,M and h ∈ (0, h).

Proof. By virtue of the definition of the ALE derivative (9), the definitions of Ũ , Ũs,Us, the fact that Ũ ′ is a
polynomial of degree ≤ q − 1 in time and the substitution theorem we can write

∫

Im

(DtU,Us)Ωt
dt =

∫

Im

(

Ũ ′, ŨsJ
)

Ωtm−1

dt (82)

=

∫

Im

(

Ũ ′, Ũs

)

Ωtm−1

dt +

∫

Im

(

Ũ ′, Ũs(J − 1)
)

Ωtm−1

dt

=

∫ s

tm−1

(

Ũ ′, Ũ
)

Ωtm−1

dt +

∫

Im

(

Ũ ′, Ũs(J − 1)
)

Ωtm−1

dt

=

∫ s

tm−1

(

Ũ ′, ŨJ
)

Ωtm−1

dt +

∫ s

tm−1

(

Ũ ′, Ũ(1 − J)
)

Ωtm−1

dt

+

∫

Im

(

Ũ ′, Ũs(J − 1)
)

Ωtm−1

dt

=

∫ s

tm−1

(DtU,U)Ωt
dt +

∫ s

tm−1

(

Ũ ′, Ũ(1 − J)
)

Ωtm−1

dt

+

∫

Im

(

Ũ ′, Ũs(J − 1)
)

Ωtm−1

dt.

Now we estimate the second and third term on the right-hand side. We begin with the third term. The fact
that J is constant on each K̂ ∈ T̂h,tm−1

and the substitution theorem imply that

∣
∣
∣
∣

∫

Im

(

Ũ ′, Ũs(J − 1)
)

Ωtm−1

dt

∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣
∣

∑

K̂∈T̂h,tm−1

∫

Im

(JK̂ − 1)

(∫

K̂

Ũ ′Ũs dX

)

dt

∣
∣
∣
∣
∣
∣
∣

≤
∑

K̂∈T̂h,tm−1

max
t∈Im

|JK̂ − 1|
∫

Im

(∫

K̂

|Ũ ′Ũs|dX

)

dt.

Using the relation JK̂(tm−1) = 1, we have

max
t∈Im

|JK̂ − 1| ≤
∫ tm

tm−1

|J ′
K̂
|dt ≤ cJτm,
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where cJ > 0 is a constant independent of h, τm,m. Then we find that

∑

K̂∈T̂h,tm−1

max
t∈Im

|JK̂ − 1|
∫

Im

∫

K̂

|Ũ ′Ũs|dXdt

≤ cJ

∑

K̂∈T̂h,tm−1

τm

∫

Im

(∫

K̂

|Ũ ′Ũs|dX

)

dt

= cJτm

∑

K̂∈T̂h,tm−1

∫

K̂

(∫

Im

|Ũ ′Ũs|dt

)

dX

≤ cJτm

∑

K̂∈T̂h,tm−1

∫

K̂

((∫

Im

|Ũ ′|2 dt

)1/2(∫

Im

|Ũs|2 dt

)1/2
)

dX.

Now we apply the inverse inequality in time: There exists a constant ĉI such that

(∫

Im

|Ũ ′(X, t)|2 dt

)1/2

≤ ĉI

τm

(∫

Im

|Ũ(X, t)|2 dt

)1/2

(83)

holds for every X ∈ Ωtm−1
, τm ∈ (0, τ) and m = 1, . . . ,M .

This inequality, Young’s inequality, Fubini’s theorem, (64), substitution theorem and (37) imply that

τm

∑

K̂∈T̂h,tm−1

∫

K̂

((∫

Im

|Ũ ′|2 dt

)1/2(∫

Im

|Ũs|2 dt

)1/2
)

dX

≤ ĉI

∑

K̂∈T̂h,tm−1

∫

K̂

(∫

Im

|Ũ |2dt

)1/2(∫

Im

|Ũs|2dt

)1/2

dX

≤ ĉI

2

∑

K̂∈T̂h,tm−1

∫

K̂

(∫

Im

(
|Ũ |2 + |Ũs|2

)
dt

)

dX

=
ĉI

2

∑

K̂∈T̂h,tm−1

∫

Im

(∫

K̂

(
|Ũ |2 + |Ũs|2

)
dX

)

dt

=
ĉI

2

(∫

Im

‖Ũ‖2
Ωtm−1

dt +

∫

Im

‖Ũs‖2
Ωtm−1

dt

)

≤ ĉI

2
(1 + c̃

(1)
CH)

∫

Im

‖Ũ‖2
Ωtm−1

dt

=
ĉI

2
(1 + c̃

(1)
CH)

∫

Im

∑

K̂∈T̂h,tm−1

∫

K̂

(

|Ũ |2dX
)

dt

=
ĉI

2
(1 + c̃

(1)
CH)

∫

Im

(∫

Ωt

|U |2J−1dx

)

dt ≤ c∗
∫

Im

‖U‖2
Ωt

dt,

where c∗ = (C−
J )−1ĉI(1+ c̃

(1)
CH)/2. Summarizing the obtained results, we see that we have proved the inequality

∣
∣
∣
∣

∫

Im

(

Ũ ′, Ũs(J − 1)
)

Ωtm−1

dt

∣
∣
∣
∣
≤ c∗cJ

∫

Im

‖U‖2
Ωt

dt. (84)
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Similarly as above we can estimate the second term on the right-hand side of (82):

∣
∣
∣
∣
∣

∫ s

tm−1

(

Ũ ′, Ũ(1 − J)
)

Ωtm−1

dt

∣
∣
∣
∣
∣
≤
∫

Im

∣
∣
∣Ũ ′, Ũ(1 − J)

∣
∣
∣
Ωtm−1

dt

≤
∑

K̂∈T̂h,tm−1

max
t∈Im

|1 − JK̂ |
∫

Im

∫

K̂

|Ũ ′Ũ |dXdt

≤ cJτm

∑

K̂∈T̂h,tm−1

∫

Im

∫

K̂

|Ũ ′Ũ |dXdt

= cJτm

∑

K̂∈Th,tm−1

∫

K̂

(∫

Im

|Ũ ′Ũ |dt

)

dX

≤ cJτm

∑

K̂∈T̂h,tm−1

∫

K̂

((∫

Im

|Ũ ′|2 dt

)1/2(∫

Im

|Ũ |2 dt

)1/2
)

dX.

Now the inverse inequality in time, Young’s inequality, Fubini’s theorem, (64) and (37) yield the inequality

∣
∣
∣
∣
∣

∫ s

tm−1

(

Ũ ′, Ũ(1 − J)
)

Ωtm−1

dt

∣
∣
∣
∣
∣
≤ c1

∫

Im

‖U‖2
Ωt

dt. (85)

with c1 = cJ(C−
J )−1ĉI/2.

Finally, from (82), (84), (85) and analogy to (59), (63) putting c2 = c∗cJ + c1 we find that

∫

Im

(DtU,Us)Ωt
dt + ({U}m−1,Us(tm−1+))Ωtm−1

≥
∫ s

tm−1

(DtU,U)Ωt
dt + ‖U+

m−1‖2
Ωtm−1

−(U−
m−1, U

+
m−1)Ωtm−1

− c2

∫

Im

‖U‖2
Ωt

dt

=
1

2

∫ s

tm−1

(
d

dt

∫

Ωt

U2(x, t)dx

)

dt − 1

2

∫ s

tm−1

(
U2div,z

)

Ωt
dt

+‖U+
m−1‖2

Ωtm−1
− (U−

m−1, U
+
m−1)Ωtm−1

− c2

∫

Im

‖U‖2
Ωt

dt

=
1

2

(

‖U(s−)‖2
Ωs

+ ‖U+
m−1‖2

Ωtm−1

)

− cz

2

∫ s

tm−1

‖U‖Ωt
dt

−c2

∫

Im

‖U‖2
Ωt

dt − (U−
m−1, U

+
m−1)Ωtm−1

,

which implies (81) with CL8 = cz/2 + c2. �

In the following lemmas, for simplicity we use the notation U∗
l and Ũ∗

l for the discrete characteristic functions

to U and Ũ , respectively at the time instant tm−1+l/q.

Lemma 9. There exists a constant CL9 > 0 such that

|ah(U,U∗
l , t) + β0Jh(U,U∗

l , t)| ≤ CL9

(
‖U‖2

DG,t + ‖U∗
l ‖2

DG,t + ‖uD‖2
DGB,t

)
(86)
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for all t, l ∈ Im, m = 1, . . . ,M, h ∈ (0, h).

Proof. From the definition of the forms ah and Jh we immediately have

ah(U,U∗
l , t) =

∑

K∈Th,t

∫

K

β(U)∇U · ∇U∗
l dx

−
∑

Γ∈FI
h,t

∫

Γ

(〈β(U)∇U〉 · nΓ [U∗
l ] + θ 〈β(U)∇U∗

l 〉 · nΓ [U ]) dS

−
∑

Γ∈FB
h,t

∫

Γ

(β(U)∇U · nΓ U∗
l + θβ(U)∇U∗

l · nΓ U − θβ(U)∇U∗
l · nΓ uD) dS,

Jh(U,U∗
l , t) = cW

∑

Γ∈FI
h,t

h(Γ)−1

∫

Γ

[U ] [U∗
l ] dS

+cW

∑

Γ∈FB
h,t

h(Γ)−1

∫

Γ

U U∗
l dS.

Now, using the property of the function β, the Cauchy inequality and Young’s inequality, we get

|ah(U,U∗
l , t)| ≤ β1

∑

K∈Th,t

∫

K

(
|∇U |2 + |∇U∗

l |2
)

dx (87)

+β1

∑

Γ∈FI
h,t

∫

Γ

(
h(Γ)

cW

(

|∇U
(L)
Γ |2 + |∇U

(R)
Γ |2

)

+
cW

h(Γ)
[U∗

l ]2
)

dS

+β1

∑

Γ∈FI
h,t

∫

Γ

(
h(Γ)

cW

(

|∇(U∗
l )

(L)
Γ |2 + |∇(U∗

l )
(R)
Γ |2

)

+
cW

h(Γ)
[U ]2

)

dS

+β1

∑

Γ∈FB
h,t

∫

Γ

(
h(Γ)

cW
|∇U |2 +

cW

h(Γ)
|U∗

l |2
)

dS

+β1

∑

Γ∈FB
h,t

∫

Γ

(
h(Γ)

cW
|∇U∗

l |2 +
cW

h(Γ)
|U |2

)

dS

+β1

∑

Γ∈FB
h,t

∫

Γ

|∇U∗
l | |uD|dS.

The last term can be estimated using Using Young’s inequality and the relation h(Γ) ≤ h
K

(L)
Γ

, for each ε > 0

we get

β1

∑

Γ∈FB
h,t

∫

Γ

|∇U∗
l | |uD| dS

≤ β1ε

2

∑

Γ∈FB
h,t

∫

Γ

h(Γ)−1 |uD|2 dS +
β1

2ε

∑

Γ∈FB
h,t

∫

Γ

h
K

(L)
Γ

|∇U∗
l |2 dS

≤ β1ε

2cW
JB

h (uD, uD) +
β1

2ε

∑

Γ∈FB
h,t

∫

∂K
(L)
Γ

h
K

(L)
Γ

|∇U∗
l |2 dS.
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Now we express the first term on the right-hand side with the aid of the definition of the ‖ · ‖DGB,t-norm and
to the second term we apply the multiplicative trace inequality (42) and the inverse inequality (43). We get

β1

∑

Γ∈FB
h,t

∫

Γ

|∇U∗
l | |uD| dS

≤ β1ε

2cW
‖uD‖2

DGB,t +
β1

2ε
cM (cI + 1)

∑

K∈Th,t

‖∇U∗
l ‖2

L2(K).

If we use the inequality
∑

K∈Th,t
‖∇U∗

l ‖2
L2(K) ≤ ‖U∗

l ‖2
DG,t, which obviously follows from the definition of the

‖ · ‖DG,t-norm, we get

β1

∑

Γ∈FB
h,t

∫

Γ

|∇U∗
l | |uD| dS ≤ β1ε

2cW
‖uD‖2

DGB,t +
β1

2ε
cM (cI + 1)‖U∗

l ‖2
DG,t. (88)

Setting ε := β1

β0
cM (cI + 1) in (88) and substituting back to (87) we get

|ah(U,U∗
l , t)| ≤ β1

∑

K∈Th,t

∫

K

(
|∇U |2 + |∇U∗

l |2
)

dx

+β1

∑

Γ∈FI
h,t

∫

Γ

h(Γ)

cW

(

|∇U
(L)
Γ |2 + |∇U

(R)
Γ |2

)

dS

+β1

∑

Γ∈FB
h,t

∫

Γ

h(Γ)

cW
|∇U |2 dS

+β1

∑

Γ∈FI
h,t

∫

Γ

h(Γ)

cW

(

|∇(U∗
l )

(L)
Γ |2 + |∇(U∗

l )
(R)
Γ |2

)

dS

+β1

∑

Γ∈FB
h,t

∫

Γ

h(Γ)

cW
|∇U∗

l |2 dS +
β2

1

2β0cW
cM (cI + 1)‖uD‖2

DGB,t

+
β0

2
‖U∗

l ‖2
DG,t + β1 Jh(U∗

l ,U∗
l , t) + β1 Jh(U,U, t).
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Using the inequality h(Γ) ≤ hK for Γ ⊂ ∂K, we have

|ah(U,U∗
l , t)| ≤ β1

∑

K∈Th,t

∫

K

(
|∇U |2 + |∇U∗

l |2
)

dx (89)

+
β1

cW

∑

Γ∈FI
h,t

∫

Γ

(

h
K

(L)
Γ

|∇U
(L)
Γ |2 + h

K
(R)
Γ

|∇U
(R)
Γ |2

)

dS

+
β1

cW

∑

Γ∈FB
h,t

∫

Γ

h
K

(L)
Γ

|∇U |2 dS

+
β1

cW

∑

Γ∈FI
h,t

∫

Γ

(

h
K

(L)
Γ

|∇(U∗
l )

(L)
Γ |2 + h

K
(R)
Γ

|∇(U∗
l )

(R)
Γ |2

)

dS

+
β1

cW

∑

Γ∈FB
h,t

∫

Γ

h
K

(L)
Γ

|∇U∗
l |2 dS

+
β2

1

2β0cW
cM (cI + 1)‖uD‖2

DGB,t +
β0

2
‖U∗

l ‖2
DG,t

+β1 Jh(U∗
l ,U∗

l , t) + β1 Jh(U,U, t)

≤ β1

∑

K∈Th,t

∫

K

(
|∇U |2 + |∇U∗

l |2
)

dx

+
β1

cW

∑

K∈Th,t

∫

∂K

hK

(
|∇U |2 + |∇U∗

l |2
)

dS

+
β2

1

2β0cW
cM (cI + 1)‖uD‖2

DGB,t +
β0

2
‖U∗

l ‖2
DG,t

+β1 Jh(U∗
l ,U∗

l , t) + β1 Jh(U,U, t).

Now, applying the multiplicative inequality and the inverse inequality, we can estimate the term

∑

K∈Th,t

∫

∂K

hK

(
|∇U |2 + |∇U∗

l |2
)

dS



TITLE WILL BE SET BY THE PUBLISHER 27

as follows:

∑

K∈Th,t

∫

∂K

hK

(
|∇U |2 + |∇U∗

l |2
)

dS (90)

=
∑

K∈Th,t

hK

(

‖∇U‖2
L2(∂K) + ‖∇U∗

l ‖2
L2(∂K)

)

≤ cM

∑

K∈Th,t

hK(‖∇U‖L2(K) |∇U |H1(K)
︸ ︷︷ ︸

≤cIh−1
K ‖∇U‖L2(K)

+h−1
K ‖∇U‖2

L2(K))

+cM

∑

K∈Th,t

hK(‖∇U∗
l ‖L2(K) |∇U∗

l |H1(K)
︸ ︷︷ ︸

≤cIh−1
K ‖∇U∗

l ‖L2(K)

+h−1
K ‖∇U∗

l ‖2
L2(K))

≤ cM (cI + 1)
∑

K∈Th,t

(

‖∇U‖2
L2(K) + ‖∇U∗

l ‖2
L2(K)

)

= cM (cI + 1)
∑

K∈Th,t

(

|U |2H1(Ω) + |U∗
l |2H1(Ω)

)

.

From (89), (90), the definition of the ‖ · ‖DG,t-norm, using the inequality

Jh,(U,U∗
l , t) ≤ Jh(U,U, t) + Jh(U∗

l ,U∗
l , t)

and putting CL9 = max{β0 + β1 + β1cM (cI + 1)/cW , β2
1cM (cI + 1)/(2β0cW )}, we finally get

|ah(U,U∗
l , t) + β0 Jh(U,U∗

l , t)| ≤
(

β1 +
β1

cW
cM (cI + 1)

)

|U |2H1(Ωt,Th,t)

+(β0 + β1)Jh(U,U, t) +

(

β1 +
β0

2
+

β1

cW
cM (cI + 1)

)

|U∗
l |2H1(Ωt,Th,t)

+(β0 + β1)Jh(U∗
l ,U∗

l , t) +
β2

1

2β0cW
cM (cI + 1)‖uD‖2

DGB,t

≤ CL9

(
‖U‖2

DG,t + ‖U∗
l ‖2

DG,t + ‖uD‖2
DGB,t

)
.

�

Lemma 10. For each k1 > 0 there exists a constant cb > 0 such that for the approximate solution U and the
discrete characteristic function U∗

l we have the inequality

∫

Im

|bh(U,U∗
l , t)|dt ≤ β0

2k1

∫

Im

‖U∗
l ‖2

DG,tdt + cb

∫

Im

‖U‖2
Ωt

dt. (91)

Proof. By (28),

bh(U,U∗
l , t) = −

∑

K∈Th,t

∫

K

d∑

s=1

fs(U)
∂U∗

l

∂xs
dx

︸ ︷︷ ︸

:=σ1

(92)

+
∑

Γ∈FI
h,t

∫

Γ

H(U
(L)
Γ , U

(R)
Γ ,nΓ) [U∗

l ]Γ dS +
∑

Γ∈FB
h,t

∫

Γ

H(U
(L)
Γ , U

(L)
Γ ,nΓ)U∗

l dS.

︸ ︷︷ ︸

:=σ2
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Then from the Lipschitz-continuity of the functions fs, s = 1, . . . , d, with the modul Lf > 0, assumption that
fs(0) = 0 and the Cauchy inequality, we obtain

|σ1| ≤
∑

K∈Th,t

∫

K

d∑

s=1

|fs(U) − fs(0)|
∣
∣
∣
∣

∂U∗
l

∂xs

∣
∣
∣
∣

dx (93)

≤ Lf

∑

K∈Th,t

∫

K

d∑

s=1

|U |
∣
∣
∣
∣

∂U∗
l

∂xs

∣
∣
∣
∣

dx ≤ Lf

√
d ‖U‖Ωt

|U∗
l |H1(Ωt,Th,t).

Now we shall estimate σ2. From the relation fs(0) = 0, s = 1, . . . , d, and the consistency property (H2) of
the numerical flux H we have H(0, 0,nΓ) = 0. Then we can use the Lipschitz-continuity of H and get

|σ2| ≤ LH

∑

Γ∈FI
h,t

∫

Γ

(|U (L)
Γ | + |U (R)

Γ |) [U∗
l ] dS

+LH

∑

Γ∈FB
h,t

∫

Γ

(|U (L)
Γ | + |U (L)

Γ |) |(U∗
l )

(L)
Γ |dS.

Using the fact that U
(R)
Γ = U

(L)
Γ for Γ ∈ FB

h,t, the Cauchy inequality and the relation h(Γ) ≤ hK , if Γ ⊂ ∂K,
we obtain

|σ2| (94)

≤ LH√
cW




cW

∑

Γ∈FI
h,t

∫

Γ

[U∗
l ]2

h(Γ)
dS + cW

∑

Γ∈FB
h,t

∫

Γ

(

(U∗
l )

(L)
Γ

)2

h(Γ)
dS






1/2

×




∑

Γ∈Fh,t

h(Γ)

∫

Γ

(|U (L)
Γ | + |U (R)

Γ |)2 dS





1/2

≤ LH√
cW

Jh(U∗
l ,U∗

l , t)1/2




∑

Γ∈Fh,t

h(Γ)

∫

Γ

(

|U (L)
Γ |2 + |U (R)

Γ |2
)

dS





1/2

≤ LH√
cW

Jh(U∗
l ,U∗

l , t)1/2

×




∑

Γ∈Fh,t

h
K

(L)
Γ

∫

∂K
(L)
Γ ∩Γ

|U (L)
Γ |2dS + h

K
(R)
Γ

∫

∂K
(R)
Γ ∩Γ

|U (R)
Γ |2 dS





1/2

≤ LH√
cW

Jh(U∗
l ,U∗

l , t)1/2




∑

K∈Th,t

∫

∂K

hK |U |2 dS





1/2

=
LH√
cW

Jh(U∗
l ,U∗

l , t)1/2




∑

K∈Th,t

hK‖U‖2
L2(∂K)





1/2

.
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Substituting (93) and (94) into (92), using the Cauchy inequality and the definition of the ‖ · ‖DG,t-norm, we
find that

|bh(U,U∗
l , t)| ≤ Lf

√
d ‖U‖Ωt

|U∗
l |H1(Ωt,Th,t) (95)

+
LH√
cW

Jh(U∗
l ,U∗

l , t)1/2




∑

K∈Th,t

hK‖U‖2
L2(∂K)





1/2

≤



L2
fd ‖U‖2

Ωt
+

L2
H

cW

∑

K∈Th,t

hK‖U‖2
L2(∂K)





1/2

×
(

|U∗
l |2H1(Ωt,Th,t)

+ Jh(U∗
l ,U∗

l , t)
)1/2

≤ c ‖U∗
l ‖DG,t




‖U‖Ωt

+




∑

K∈Th,t

hK‖U‖2
L2(∂K)





1/2



 ,

where c =
(

max{L2
f d, L2

H/cW }
)1/2

. Furthermore, the multiplicative trace inequality and the inverse inequality

imply that

∑

K∈Th,t

hK‖U‖2
L2(∂K) ≤ cM

∑

K∈Th,t

hK

(

‖U‖L2(K)|U |H1(K) + h−1
K ‖U‖2

L2(K)

)

≤ cM (cI + 1)
∑

K∈Th,t

‖U‖2
L2(K) = cM (cI + 1)‖U‖2

Ωt
.

Hence, from this relation, (95) and Young’s inequality we get

|bh(U,U∗
l , t)| ≤ c1 ‖U∗

l ‖DG,t ‖U‖Ωt
≤ β0

2k1
‖U∗

l ‖2
DG,t + c2

1

k1

2β0
‖U‖2

Ωt

=
β0

2k1
‖U∗

l ‖2
DG,t + cb ‖U‖2

Ωt
,

where c1 = c(1 +
√

cM (cI + 1)), k1 > 0 and cb = c2
1k1/β0. Integrating over the interval Im, we finally have

(91). �

Lemma 11. For each k2 > 0 there exists a constant cd > 0 such that the approximate solution U and the
discrete characteristic function U∗

l satisfy the inequality

∫

Im

|dh(U,U∗
l , t)|dt ≤ β0

2k2

∫

Im

‖U‖2
DG,t dt +

cd

2β0

∫

Im

‖U∗
l ‖2

Ωt
dt. (96)
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Proof. By (29), (40) and the Cauchy and Young’s inequalities,

∫

Im

|dh(U,U∗
l , t)|dt ≤ cz

∫

Im

∑

K∈Th,t

∫

K

d∑

s=1

|U∗
l ||

∂U

∂xs
|dxdt

≤ cz

∫

Im

‖U∗
l ‖Ωt

|U |H1(Ωt,Th,t) dt

≤ cz

∫

Im

‖U∗
l ‖Ωt

‖U‖DG,t dt ≤ β0

2k2

∫

Im

‖U‖2
DG,t dt +

c2
zk2

2β0

∫

Im

‖U∗
l ‖2

Ωt
dt,

which is (96) with cd = c2
zk2. �

Lemma 12. For the approximate solution U , the discrete characteristic function U∗
l and any k3 > 0 we have

∫

Im

|lh(U∗
l , t)|dt ≤ 1

2

∫

Im

(
‖g‖2

Ωt
+ ‖U∗

l ‖2
Ωt

)
dt (97)

+
β0k3

2

∫

Im

‖uD‖2
DGB,t dt +

β0

2k3

∫

Im

‖U∗
l ‖2

DG,t dt.

Proof. It follows from (30) that

|lh(U∗
l , t)| = |(g,U∗

l ) + β0 cW

∑

Γ∈FB
h,t

h(Γ)−1

∫

Γ

uD U∗
l dS|.

After using the Cauchy inequality for the first term on the right-hand side and applying Young’s inequality with
k3 > 0 to the second term, we find that

|(g,U∗
l ) + β0 cW

∑

Γ∈FB
h,t

h(Γ)−1

∫

Γ

uD U∗
l dS|

≤ 1

2
(‖g‖2

Ωt
+ ‖U∗

l ‖2
Ωt

) +
β0k3

2
cW

∑

Γ∈FB
h,t

h(Γ)−1

∫

Γ

|uD|2 dS

︸ ︷︷ ︸

=‖uD‖2
DGB,t

+
β0

2k3
cW

∑

Γ∈FB
h,t

h(Γ)−1

∫

Γ

|U∗
l |2 dS

︸ ︷︷ ︸

≤ Jh(U∗

l ,U∗

l ,t)≤‖U∗

l ‖2
DG,t

.

Hence,

|lh(U∗
l , t)| ≤ 1

2
(‖g‖2

Ωt
+ ‖U∗

l ‖2
Ωt

) +
β0k3

2
‖uD‖2

DGB,t +
β0

2k3
‖U∗

l ‖2
DG,t,

from which we get (97) by integrating both sides over the interval Im. �

Theorem 4. There exist constants CT4, C
∗
T4 > 0 such that

∫

Im

‖U‖2
Ωt

dt ≤ CT4τm

(

‖U−
m−1‖2

Ωtm−1
+

∫

Im

(
‖g‖2

Ωt
+ ‖uD‖2

DGB,t

)
dt

)

(98)
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provided 0 < τm < C∗
T4.

Proof. For q = 1, the proof is contained in [5]. Let us assume that q ≥ 2, l ∈ {1, . . . , q − 1}.
From the definition of the approximate solution (32)–(33) for ϕ := U∗

l we get

∫

Im

(DtU,U∗
l )Ωt

dt +
(
{U}m−1, {U∗

l }+
m−1

)

Ωtm−1

(99)

=

∫

Im

(−ah(U,U∗
l , t) − β0Jh(U,U∗

l , t) − bh(U,U∗
l , t)) dt

+

∫

Im

(−dh(U,U∗
l , t) + lh(U∗

l , t)) dt.

This relation and Lemma 8 imply that

1

2

(
∥
∥
∥U−

m−1+l/q

∥
∥
∥

2

Ωtm−1+l/q

+ ‖U+
m−1‖2

Ωtm−1

)

(100)

≤
∫

Im

|ah(U,U∗
l , t) + β0Jh(U,U∗

l , t)| dt +

∫

Im

|bh(U,U∗
l , t)|dt

+

∫

Im

|dh(U,U∗
l , t)|dt +

∫

Im

|lh(U∗
l , t)|dt

+
(
U−

m−1, U
+
m−1

)

Ωtm−1

+ CL8

∫

Im

‖U‖2
Ωt

dt ≡ RHS.

Now we need to estimate the right-hand side of (100) from above. Using (86), (91), (96),(97) with k1 = k2 =
k3 = 1, (81) and Young’s inequality with any δ2 > 0, we get

RHS ≤ CL9

∫

Im

(
‖U‖2

DG,t + ‖U∗
l ‖2

DG,t + ‖uD‖2
DGB,t

)
dt

+
β0

2

∫

Im

‖U∗
l ‖2

DG,tdt + cb

∫

Im

‖U‖2
Ωt

dt +
β0

2

∫

Im

‖U‖2
DG,tdt

+
cd

2β0

∫

Im

‖U∗
l ‖2

Ωt
dt +

1

2

∫

Im

(
‖g‖2

Ωt
+ ‖U∗

l ‖2
Ωt

)
dt

+
β0

2

∫

Im

‖uD‖2
DGB,tdt +

β0

2

∫

Im

‖U∗
l ‖2

DG,t

+
‖U−

m−1‖2
Ωtm−1

δ2
+ δ2‖U+

m−1‖2
Ωtm−1

+ CL8

∫

Im

‖U‖2
Ωt

dt.

Hence,

RHS

≤ c1

∫

Im

(
‖U‖2

DG,t + ‖U∗
l ‖2

DG,t + ‖U∗
l ‖2

Ωt
+ ‖U‖2

Ωt
+ ‖g‖2

Ωt
+ ‖uD‖2

DGB,t

)
dt

+
‖U−

m−1‖2
Ωtm−1

δ2
+ δ2‖U+

m−1‖2
Ωtm−1

,
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where c1 = max{CL9 + β0 + cd/(2β0) + 1/2, cb + CL8}. Now we apply Theorem 1 on the continuity of the
discrete characteristic function:

∫

Im

‖U∗
l ‖2

Ωt
dt ≤ c

(1)
CH

∫

Im

‖U‖2
Ωt

dt,

∫

Im

‖U∗
l ‖2

DG,tdt ≤ C
(2)
CH

∫

Im

‖U‖2
DG,tdt.

Hence,

RHS ≤ c2

∫

Im

(
‖U‖2

DG,t + ‖U‖2
Ωt

+ ‖g‖2
Ωt

+ ‖uD‖2
DGB,t

)
dt

+
‖U−

m−1‖2
Ωtm−1

δ2
+ δ2‖U+

m−1‖2
Ωtm−1

,

with c2 = c1 max{1 + c
(1)
CH , 1 + c

(2)
CH}. Then it follows from (100) that

1

2

(∥
∥U−

m−1+l/q

∥
∥

2

Ωtm−1+l/q
+ ‖U+

m−1‖2
Ωtm−1

)

(101)

≤ c2

∫

Im

(
‖U‖2

DG,t + ‖U‖2
Ωt

+ ‖g‖2
Ωt

+ ‖uD‖2
DGB,t

)
dt +

‖U−
m−1‖2

Ωtm−1

δ2

+δ2‖U+
m−1‖Ωtm−1

.

Further, multiplying (101) by β0

4c2(q−1) , summing over l = 1, . . . , q − 1 and adding to (78), we find that

‖U−
m‖2

Ωtm
+

β0

8c2(q − 1)

q−1
∑

l=1

‖U‖2
Ωtm−1+l/q

+

(
β0

8c2
+ 1

)

‖U+
m−1‖2

Ωtm−1

+
β0

2

∫

Im

‖U‖2
DG,tdt

≤ β0

4

∫

Im

‖U‖2
DG,tdt +

(
β0

4
+ C∗

T3

)∫

Im

‖U‖2
Ωt

dt

+

(
β0

4
+ C∗∗

T3

)∫

Im

(
‖g‖2

Ωt
+ ‖uD‖2

DGB,t

)
dt

+

(
β0

4c2δ2
+

2

δ1

)

‖U−
m−1‖2

Ωtm−1
+

(
β0δ2

4c2
+ 4δ1

)

‖U+
m−1‖2

Ωtm−1
.

Setting c3 := min
{

β0

8c2(q−1) ,
β0

8c2
+ 1
}

and rearranging, we get

c3

(

‖U−
m‖Ω2

tm
+

q−1
∑

l=1

‖U2
m−1+l/q‖2

Ωtm−1+l/q
+ ‖U+

m−1‖2
Ωtm−1

︸ ︷︷ ︸

=
∑ q

l=0 ‖Um−1+l/q‖
2
Ωtm−1+l/q

)

+
β0

4

∫

Im

‖U‖2
DG,tdt
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≤
(

β0

4
+ C∗

T3

)∫

Im

‖U‖2
Ωt

dt +

(
β0

4
+ C∗∗

T3

)∫

Im

(
‖g‖2

Ωt
+ ‖uD‖2

DGB,t

)
dt

+

(
β0

4c2δ2
+

2

δ1

)

‖U−
m−1‖2

Ωtm−1
+

(
β0δ2

4c2
+ 4δ1

)

‖U+
m−1‖2

Ωtm−1
.

It follows from inequalities (79) and (80) that

c3L
∗
q

τm

∫

Im

‖U‖2
Ωt

dt +
β0

4

∫

Im

‖U‖2
DG,tdt

≤
(

β0δ2M
∗
q

4c2τm
+

4δ1M
∗
q

τm
+

β0

4
+ C∗

T3

)∫

Im

‖U‖2
Ωt

dt

+

(
β0

4
+ C∗∗

T3

)∫

Im

(
‖g‖2

Ωt
+ ‖uD‖2

DG,t

)
dt

+

(
β0

4c2δ2
+

2

δ1

)

‖U−
m−1‖2

Ωtm−1
.

Setting δ1 =
c3L∗

q

16M∗

q
, δ2 =

c3c2L∗

q

β0M∗

q
, c4 := β0

4c2δ2
+ 2

δ1
, c5 := β0

4 + C∗∗
T3 we get

(
c3L

∗
q

2τm
− β0

4
− C∗

T3

)∫

Im

‖U‖2
Ωt

dt +
β0

4

∫

Im

‖U‖2
DG,tdt (102)

≤ c5

∫

Im

(
‖g‖2

Ωt
+ ‖uD‖2

DGB,t

)
dt + c4‖U−

m−1‖2
Ωtm−1

.

If the condition 0 < τm ≤ C∗
T4 :=

c3L∗

q

4(
β0
4 +C∗

T3)
is satisfied, then β0

4 + C∗
T3 ≥ c3L∗

q

4τm
and from (102) we obtain the

estimate

c3L
∗
q

4τm

∫

Im

‖U‖2
Ωt

dt +
β0

4

∫

Im

‖U‖2
DG,t dt

≤ c5

∫

Im

(
‖g‖2

Ωt
+ ‖uD‖2

DGB,t

)
dt + c4‖U−

m−1‖2
Ωtm−1

,

which implies (98). �

The stability analysis will be finished by the application of the following auxiliary lemma.

Lemma 13. (Discrete Gronwall inequality) Let xm, am, bm and ym, where
m = 1, 2, . . ., be non-negative sequences and let the sequence am be nondecreasing. Then, if

x0 + y0 ≤ a0,

xm + ym ≤ am +

m−1∑

j=0

bjxj for m ≥ 1,

we have

xm + ym ≤ am

m−1∏

j=0

(1 + bj) for m ≥ 0.
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The proof can be carried out by induction.
Now, if (98) is substituted into (77), an inequality is obtained, which is a basis of the proof of our main result

about the stability:

‖U−
m‖2

Ωtm
− ‖U−

m−1‖Ωtm−1
+ ‖{U}m−1‖2

Ωtm−1
+

β0

2

∫

Im

‖U‖2
DG,t dt (103)

≤ (CT2 + CT4 τm)

∫

Im

(‖g‖2
Ωt

+ ‖uD‖2
DGB,t) dt + CT2CT4 τm‖U−

m−1‖2
Ωtm−1

.

Theorem 5. Let 0 < τm ≤ C∗
T4 for m = 1, . . . ,M . Then there exists a constant CT5 > 0 such that

‖U−
m‖2

Ωtm
+

m∑

j=1

‖{Uj−1}‖2
Ωtj−1

+
β0

2

m∑

j=1

∫

Ij

‖U‖2
DG,t dt (104)

≤ CT5



‖U−
0 ‖2

Ωt0
+

m∑

j=1

∫

Ij

Rt,j dt



 , m = 1, . . . ,M, h ∈ (0, h),

where Rt,j = (CT2 + CT4 τj) (‖g‖2
Ωt

+ ‖uD‖2
DGB,t) for t ∈ Ij.

Proof. Writing j instead of m in (103),we obtain

‖Uj‖2
Ωtj

− ‖U−
j−1‖Ωtj−1

+ ‖{U}j−1‖2
Ωtm−1

+
β0

2

∫

Ij

‖U‖2
DG,t dt

≤
∫

Ij

Rt,j dt + CT2CT4 τj‖U−
j−1‖2

Ωtj−1
.

Let m ≥ 1. The summation over all j = 1, . . . ,m yields the inequality

‖U−
m‖2

Ωtm
+

m∑

j=1

‖{U}j−1‖2
Ωtj−1

+
β0

2

m∑

j=1

∫

Ij

‖U‖2
DG,t dt

≤ ‖U−
0 ‖2

Ω0
+ CT2CT4

m∑

j=0

τj+1‖U−
j ‖2

Ωtj
+

m∑

j=1

∫

Ij

Rt,j dt.

The use of the discrete of Gronwall inequality with setting

x0 = a0 = ‖U−
0 ‖2

Ωt0
, c0 = 0,

xm = ‖U−
m‖2

Ωtm
,

ym =

m∑

j=1

‖{Uj−1}‖2
Ωtj−1

+
β0

2

m∑

j=1

∫

Ij

‖U‖2
DG,t dt,

am = ‖U−
0 ‖2

Ωt0
+

m∑

j=1

∫

Ij

Rt,j dt,

bj = CT2CT4 τj+1, j = 0, 1, . . . ,m,
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yield

‖U−
m‖2

Ωtm
+

m∑

j=1

‖{Uj−1}‖2
Ωtj−1

+
β0

2

m∑

j=1

∫

Ij

‖U‖2
DG,t dt (105)

≤



‖U−
0 ‖2

Ωt0
+

m∑

j=1

∫

j

Rt,j dt





m−1∏

j=0

(
1 + CT2CT4 τj+1

)
.

Finally (105) and the inequality 1 + σ < exp(σ) valid for any σ > 0 immediately yield (104) with the constant
CT5 := exp(CT2CT4T ). �

4. Conclusion

This paper is devoted to the stability analysis of the space-time discontinuous Galerkin method (STDGM)
applied to the numerical solution of a initial-boundary value problem for a nonlinear convection-diffusion equa-
tion in a time-dependent domain. The problem is formulated with the aid of the arbitrary Lagrangian-Eulerian
(ALE) method. In the numerical scheme we use the nonsymmetric, symmetric and incomplete versions of the
space discretization of diffusion terms and interior and boundary penalty. The nonlinear convection terms are
discretized with the aid of a numerical flux. The space discretization uses piecewise polynomial approximations
of degree ≤ p with an integer p ≥ 1. For the discontinuous Galerkin discretization in time we use polyno-
mials of degree ≤ q with q ≥ 2. (If q = 0, then we get the backward Euler time discretization and the case
q = 1 was analyzed in [5].) Here the situation is much more complicated and a special technique based on
the ALE-generalization of the concept of the discrete characteristic function has been applied. This approach
combined with a number of various estimates results in the proof of unconditional stability of the method. The
obtained results represent a theoretical support of the ALE-STDGM developed in [16] for the numerical solution
of compressible Navier-Stokes equations in time-dependent domains and interaction of compressible flow with
elastic structures. Further step will be the application of derived results to the analysis of error estimates of
the ALE-STDGM in time-dependent domains.
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5. Appendix: proof of estimates (75) and (76) from the proof of Theorem 1 in
the 3D case (by Z. Vlasáková)

We introduce a parametrization of Γ̂. Let ∆2 be a reference simplex in R
2 (with one vertex being the origin

and all of the other vertices have only one non-zero coordinate equal to 1). Now

Γ = At(Γ̂), Γ̂ ∈ FI
h,tm−1

,

Γ̂ = BΓ̂
m−1(∆

2) = {X = BΓ̂
m−1(v); v ∈ ∆2},

dSΓ̂ =

∥
∥
∥
∥
∥

∂BΓ̂
m−1

∂x1
(v) × ∂BΓ̂

m−1

∂x2
(v)

∥
∥
∥
∥
∥

dx1dx2, v ∈ ∆2,

Γ = {x = At(BΓ̂
m−1(v)); v ∈ ∆2},

dSΓ =

∥
∥
∥
∥
∥

dAt

dX
(BΓ̂

m−1(v))
∂BΓ̂

m−1

∂x1
(v) × dAt

dX
(BΓ̂

m−1(v))
∂BΓ̂

m−1

∂x2
(v)

∥
∥
∥
∥
∥

dx1dx2,

v ∈ ∆2.

By the symbol × we denote the vector product. The terms
∂BΓ̂

m−1

∂xi (v) are tangent vectors to Γ̂ at the point

BΓ̂
m−1(v). It follows from the properties of the mapping At that the values of dAt

dX (BΓ̂
m−1(v))

∂BΓ̂
m−1

∂xi (v) are

identical from the sides of both elements K̂Γ̂
L and K̂Γ̂

R adjacent to Γ̂.
Then we can write

∫

Γ

1

h(Γ)
[Us]

2dSΓ (106)

=

∫

∆2

1

h(Γ)
[Us(At(BΓ̂

m−1(v)))]2

∥
∥
∥
∥
∥

dAt

dX
(BΓ̂

m−1(v))
∂BΓ̂

m−1

∂x1
(v) × dAt

dX
(BΓ̂

m−1(v))
∂BΓ̂

m−1

∂x2
(v)

∥
∥
∥
∥
∥

dx1dx2

≤
∫

∆2

1

h(Γ)
[Ũs(BΓ̂

m−1(v))]2
∥
∥
∥
∥

dAt

dX
(BΓ̂

m−1(v))

∥
∥
∥
∥

2

∥
∥
∥
∥
∥

∂BΓ̂
m−1

∂x1
(v) × ∂BΓ̂

m−1

∂x2
(v)

∥
∥
∥
∥
∥

dx1dx2

≤ (C+
A )2

∫

Γ̂

C∗∗
L6

h(Γ̂)
[Ũs]

2dSΓ̂.

Hence,

∫

Im




∑

Γ∈FI
h,t

cW

h(Γ)

∫

Γ

[Us]
2dSΓ



dt (107)

≤ c̃
(3)
CH(C+

A )2C∗∗
L6

∫

Im






∑

Γ̂∈FI
h,tm−1

cW

h(Γ̂)

∫

Γ̂

[Ũ ]2dSΓ̂




dt.
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Further for Γ = At(Γ̂), Γ̂ ∈ FI
h,tm−1

, we consider the parametrization

Γ = {x = BΓ
t (v); v ∈ ∆2},

Γ̂ = {X = A−1
t (BΓ

t (v)); v ∈ ∆2},

dSΓ =

∥
∥
∥
∥

∂BΓ
m−1

∂x1
(v) × ∂BΓ

m−1

∂x2
(v)

∥
∥
∥
∥

dv, v ∈ ∆2

dSΓ̂ =

∥
∥
∥
∥

dA−1
t

dx
(BΓ

t (v))
∂BΓ

t

∂x1
(v) × dA−1

t

dx
(BΓ

t (v))
∂BΓ

t

∂x2
(v)

∥
∥
∥
∥

dv, v ∈ ∆2.

Then

∫

Γ̂

[Ũ ]2dSΓ̂ (108)

=

∫

∆2

[Ũ(A−1
t (BΓ

t (v)))]2

∥
∥
∥
∥

dA−1
t

dx
(BΓ

t (v))
∂BΓ

t

∂x1
(v) × dA−1

t

dx
(BΓ

t (v))
∂BΓ

t

∂x2
(v)

∥
∥
∥
∥

dx1dx2

≤
∫

∆2

[U(BΓ
t (v))]2

∥
∥
∥
∥

dA−1
t

dx
(BΓ

t (v))

∥
∥
∥
∥

2 ∥
∥
∥
∥

∂BΓ
m−1

∂x1
(v) × ∂BΓ

m−1

∂x2
(v)

∥
∥
∥
∥

dx1dx2

≤ (C−
A )2

∫

∆2

[U ]2dSΓ.

Together we get

∫

Im




∑

Γ∈FI
h,t

cW

h(Γ)

∫

Γ

[Us]
2dSΓ



dt (109)

≤ c̃
(3)
CH(C+

A )2C∗∗
L6(C

∗
L6)

−1(C−
A )2

∫

Im




∑

Γ∈FI
h,t

cW

h(Γ)

∫

Γ

[U ]2dSΓ



 dt,

which is the 3D version of (75). Similarly we proof (76) in the 3D case.
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[19] V. Doleǰśı, On the discontinuous Galerkin method for the numerical solution of the Navier - Stokes equations, Int. J. Numer.

Methods Fluids, 45, 1083–1106, (2004)
[20] V. Doleǰśı, M. Feistauer, Discontinuous Galerkin method – Analysis and applications to compressible flow, Springer, (2015)
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