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STABILITY OF THE ALE SPACE-TIME DISCONTINUOUS GALERKIN
METHOD FOR NONLINEAR CONVECTION-DIFFUSION PROBLEMS IN
TIME-DEPENDENT DOMAINS

MONIKA BALAZSOVA !, MILOSLAV FEISTAUER? AND MILOSLAV VLASAK?

Abstract. The paper is concerned with the analysis of the space-time discontinuous Galerkin method
(STDGM) applied to the numerical solution of nonstationary nonlinear convection-diffusion initial-
boundary value problem in a time-dependent domain. The problem is reformulated using the arbitrary
Lagrangian-Eulerian (ALE) method, which replaces the classical partial time derivative by the so-called
ALE derivative and an additional convective term. The problem is discretized with the use of the ALE-
space time discontinuous Galerkin method (ALE-STDGM). In the formulation of the numerical scheme
we use the nonsymmetric, symmetric and incomplete versions of the space discretization of diffusion
terms and interior and boundary penalty. The nonlinear convection terms are discretized with the
aid of a numerical flux. The main attention is paid to the proof of the unconditional stability of the
method. An important step is the generalization of a discrete characteristic function associated with
the approximate solution and the derivation of its properties.
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INTRODUCTION

Most of results on the solvability and numerical analysis of nonstationary partial differential equations(PDEs)
are obtained under the assumption that a space domain 2 is independent of time t. However, problems in
time-dependent domains §2; are important in a number of areas of science and technology. We can mention,
for example, problems with moving boundaries, when the motion of the boundary 0€); is prescribed, or free
boundary problems, when the motion of the boundary 9€2; should be determined together with the solution of
the PDEs in consideration. This is particularly the case of fluid-structure interaction (FSI), when the flow is
solved in a domain deformed due to the coupling with an elastic structure.

There are various approaches to the solution of problems in time-dependent domains as, for example, fictitious
domain method ( [43]), or imersed boundary method ( [10]). Very popular technique is the arbitrary Lagrangian-
Eulerian (ALE) method based on a suitable one-to-one ALE mapping of the reference configuration {2y onto the
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current configuration ;. It is usually applied in connection with conforming finite element space discretization
and combined with the time discretization by the use of a backward difference formula (BDF). From a wide
literature we mention, e.g., the works [21], [39], [41], [42]. This method is analyzed theoretically for linear
parabolic convection-diffusion initial-boundary value problems. The paper [35] investigates the stability of the
ALE-conforming finite element method. In [4] and [36] error estimates for the ALE-conforming finite element
method are derived.

In the numerical solution of compressible flow, it is suitable to apply the discontinuous Galerkin method(DGM)
for the space discretization. It is based on piecewise polynomial approximations over finite element meshes, in
general discontinuous on interfaces between neighbouring elements. This method was applied to the solution
of compressible flow first in [8] and then in [9]. It allows a good resolution of boundary and internal layers
(including shock waves and contact discontinuities) and has been used for the solution of various types of flow
problems ( [19], [26], [32]). Theory of the space DGM is a subject of a number of works. We cite only some of
them: [2], [3], [13], [18], [46], [20], [21], [34], [38], [40], [45], [50]. It is also possible to refer to the monograph [20]
containing a number of references.

In the cited works, the time discretization is carried out with the aid of the BDF of the first or second order.
One possibility how to construct a higher order method in time is the application of the DGM in time. This
technique uses a piecewise polynomial approximation in time, in general discontinuous at discrete time instants
that form a partition in a time interval. This method was used for time discretization combined with conforming
finite elements for the space discretization of linear parabolic equations in [1], [17], [47], [48], [49], [23], [24]
and [25].

By the combination of the DGM in space and time we get the space-time discontinuous Galerkin method
(STDGM). This method was theoretically analyzed in [7], [14], [29], [33], [61] and [20]. In [28] and [44], the
BDF-DGM and STDGM is applied to linear and nonlinear dynamic elasticity problems. One of the advantages
of the STDGM is the possibility to use different meshes on different time levels.

The mentioned methods have also been extended to the numerical solution of initial-boundary value problems
in time-dependent domains using the ALE method. The ALE method combined with the space DGM and BDF
in time (ALE-DGM-BDF) was applied with success to interaction of compressible flow with elastic structures
in [15], [30], [37] and [44]. In [16], the ALE-STDGM is applied to the simulation of flow induced airfoil vibrations
and the results are compared with the ALE-DGM-BDF approach. It appears that the ALE-STDGM is more
robust and accurate.

The ALE-time discontinuous Galerkin semidiscretization of a linear para-
bolic convection-diffusion problem is analyzed in [11] and [12]. Both papers assume that the transport velocity
is divergence free and consider homogeneous Dirichelt boundary condition. In [11], the stability of the ALE-time
DGM is proved and [12] is devoted to the error estimation. The papers [5] and [6] are concerned with the stability
analysis of the ALE-STDGM applied to a linear convection-diffusion initial-boundary value problem ( [6]) as
well as to the case with nonlinear convection and diffusion ( [5]) with nonhomogeneous Dirichlet boundary
condition, using piecewise linear DG time discretization.

In the present paper we extend the results from [5]. We deal with the stability analysis of the ALE-STDGM
with arbitrary polynomial degree in space as well as in time, applied to a scalar nonstationary nonlinear
convection-diffusion problem equipped with initial condition and nonhomogeneous Dirichlet boundary condition.
This problem can be considered as a simplified prototype of the compressible Navier-Stokes system. The ALE-
STDGM analyzed here corresponds to the technique used in [16] and [28] for the numerical simulation of airfoil
vibrations induced by compressible flow. This means that the ALE mapping is constructed successively from
one time slab to the next one.

The presented stability theory is based on estimates of forms from the definition of an approximate solution.
An important tool is the concept of the discrete characteristic function introduced in [17] in the framework of
the time DGM applied to a linear parabolic problem. The discrete characteristic function was generalized in
connection with the STDGM for nonlinear parabolic problems in fixed domains ( [7], [14]). Here we extend
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the concept of the discrete characteristic function and prove its important properties in the case of the ALE-
STDGM in time dependent domains. On the basis of a technical analysis we obtain an unconditional stability
of this method represented by a bound of the approximate solution in terms of data without any limitation of
the time step in dependence on the size of the triangulations.

In Section 2 we formulate the continuous problem. Section 3 is devoted to the ALE-space time discretization.
We describe here triangulations and ALE mappings and introduce important function spaces and concepts. Then
an approximate solution is defined. Section 4 deals with the stability analysis. First some auxiliary results are
presented. Then we introduce important estimates and the generalized concept of the discrete characteristic
function. An important part is devoted to the derivation of its properties. Finally, the last part presents the
proof of unconditional stability of the ALE-STDGM.

1. FORMULATION OF THE CONTINUOUS PROBLEM

In what follows, we shall use the standard notation L?(w) for the Lebesgue space, W*P(w), HF(w) = W2 (w)
for the Sobolev spaces over a bounded domain w C IR?, d = 2,3, and the Bochner spaces L>(0,T; X) with a
Banach space X and

Whoe(0, T; W ()
= {f € L>0,T;Wh>™(Q)); df /dt € L=(0,T; WH>()) },

where df /dt denotes here the distributional derivative.

If X is a Banach (Hilbert) space, then its norm (scalar product) will be denoted by || - ||x ((-,")x). By |- |x
we denote a seminorm in X. For simplicity we use the notation || - ||z2w) = || - [lws ()r2(w) = (+,-)w and
I 220wy = I - llow-

We shall be concerned with an initial-boundary value nonlinear convection-diffusion problem in a time-
dependent bounded domain Q; C IR%, wheret € [0,T], T > 0: Find a function u = u(x,t) withz € Q;, t € (0,7)
such that

d
% + ; agf) —div(B(u)Vu) = g in Q,te (0,T), (1)
u = up on I, te (0,7T), (2)
uw(z,0) = u’(z), x€Qy. (3)

We assume that fs € C1(IR), fs(0)=0
[fdl <Ly, s=1,....4, (4)
and function 3 is bounded and Lipschitz-continuous:

B:R— [Bo, 5], 0< By <pr<oo, (5)
|B(u1) — Buz)| < Lgluy —ua| Vui,us € R. (6)

Problem (1)-(3) can be reformulated with the aid of the so called arbitrary Lagrangian-Eulerian (ALE)
method. It is based on a regular one-to-one ALE mapping of the reference configuration €2y onto the current
configuration §2;:

Atiﬁo —>§t7 XGQ()—>£L'—£L'( ) At( )Gﬁt, tE[O,T] (7)

We can also write A(X,t) = A,(X), X € Qo, t € [0,7]. Usually it is supposed that the ALE mapping
is sufficiently regular, e.g., A € W (0, T; W1>°(€,)). In further considerations more general property will
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appear. Now we introduce the domain velocity

- 0 L1

z2(X,t) = aAt(X)’ z(z,t) = 2(A; " (2),t), t€[0,T], X € Qo, z € Qy, (8)
and define the ALE derivative Dy f = Df /Dt of a function f = f(z,t) for z € Q; and t € [0,7T] as

of

(X0, 9

Dof(a1) = 5 f(art) =

where f(X,t) = f(A(X),t), X € Qo, and 2 = A,(X) € Q. The use of the chain rule yields the relation

D _of

5= o T2 V) (10)

which allows us to reformulate problem (1)—(3) in the ALE form:
Find u = u(x,t) with € Q,, ¢t € (0,T) such that

d
% + ; 858;?) —z-Vu—div(f(u)Vu) = g in Q4 t € (0,7T), (11)
u = up on I, te(0,T), (12)
u(z,0) = u’(z), =€ Q. (13)

In what follows we shall be concerned with the numerical solution of the ALE problem (11)-(13) by the space-
time discontinuous Galerkin method. In the theoretical analysis a number of various constants will appear. Some
important constants in main assertions will be denoted by Cp,, Crs, etc. in Lemma 1, Lemma 2, etc. and
Cr1, Cro, etc. in Theorem 1, Theorem 2, etc. Inside proofs, constants are denoted locally by ¢, ¢1, ca, c* etc.

2. ALE-SPACE TIME DISCRETIZATION

In the time interval [0, T we consider a partition 0 =tg < t; < -+ < tpy =T and set 7, =ty — tim—1, Im =
(tm—1stm)s Im = [tm—1,tm] for m = 1,..., M, 7 = max;—1,. mTm. We assume that 7 € (0,7), where
7 > 0. The space-time discontinuous Galerkin method (STDGM) has an advantage that on every time interval
I = [tm—1,tm] it is possible to consider a different space partition (i.e. triangulation) — see, e.g. [20], [14].
Here we also use this possibility for the application of the STDGM in the framework of the ALE method.
It allows to consider an ALE mapping separately on each time interval [t,,—1,t,,) for m = 1,..., M and the
resulting ALE mapping in [0, 7] may be discontinuous at time instants ¢,,, m = 1,..., M — 1. This means that
one-sided limits A(t,,—) # A(t;m+) in general. Similarly the same may hold for the approximate solution. Such
situation appears in the numerical solution of fluid-structure interaction problems, when both the ALE mapping
and the approximate flow solution are constructed successively on the time intervals I,,,, m =1,..., M, by the
space-time discontinuous Galerkin method (see, e.g., [16], [44]).

2.1. ALE mappings and triangulations

For every m =1,..., M we consider a standard conforming triangulation ,fh,t in Q, ., where h € (0,h)
and h > 0. This triangulation is formed by a finite number of closed triangles (d = 2) or tetrahedra (d = 3) with
disjoint interiors. We assume that the domain €2, is polygonal (polyhedral). Further, for each m =1,..., M
we introduce a one-to-one ALE mapping

m—1

m—1

APy, Ry for b€ [t1,tm), b€ (0,R). (14)
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We assume that A}', !is in space a piecewise affine mapping on the triangulation Tht continuous in space

variable X € Q;

m—1

m—17
and in time ¢ € [0,t,,) and A}Z;}ﬂ = Id (identical mapping). Hence, we assume that all
domains €, are polygonal (polyhedral). For every ¢ € [t,,,—1,t,,) we define the conforming triangulation

Too = {K = A7 (K); K € T,y in 0 (15)
At t = t,,, we define the one-sided limit A;’f;jf, introduce the triangulation

’Z’h’tmf = {.A;Z;mli(K), K S j—h,tm71} in ﬁt

m

and suppose that
A’;:';ml (ﬁtm 1) == ﬁt

L — m

We have T4, , = Th,tmflv but in general, 7y, ¢, — # ’]A“h’tm.
As we see, for every ¢ € [0,T] we have a family {ﬂ,t}he(o ) of triangulations of the domain ;.

Remark 1. In general, the triangulations may be even nonconforming with hanging nodes (and hanging edges
in 3D) and the ALE mapping may be nonaffine in the domain Q. However, the analysis would be rather
complicated and, therefore, we are not concerned with such a situation.

2.2. Discrete function spaces

In what follows, for every m = 1,..., M we consider the space
spmt = {p € LA, oli € PPR) VK € T, (17)

where p > 1 is an integer and PP (K ) is the space of all polynomials on K of degree < p. Now for every t € I,
we define the space

strmot {SD € L) po APl Sﬁ,m—l}, (18)

It is possible to see that
Sppmt =L € LH(); |k € PPK) VK € Ty} - (19)

Of course, S;m P~ = SP™ in general.
Further, let p, ¢ > 1 be integers. By P9(I,,; SZ’mfl) we denote the space of mappings of the time interval
I,,, into the space Sﬁ’m_l which are polynomials of degree < ¢ in time. We set

Sp = {gp; P(t) 0 AP p, € P(Ls SE™ Y, m=1,.. .,M} . (20)

This means that if ¢ € S, then

o (AT X)) = Do w0 (21)
1=0

0, €SP Xe, ,tel,, m=1,....M, he (0,h).

m—17

An approximate solution of problem (11)—(13) and test functions will be elements of the space Sﬁz
By D; we denote the ALE derivative defined by (9) for ¢ € U;Vf:l Ip,.



6 TITLE WILL BE SET BY THE PUBLISHER

2.3. Some notation and important concepts

Over a triangulation 7+, for each positive integer k, we define the broken Sobolev space
H*(Q4, Tht) = {v; v|x € H¥(K) VK € Tp, 4},

equipped with the seminorm

1/2

‘lek(Qt,Th,t) = Z |'U|%{k(K) ;
KEIZ—}L,t

where | - [ gr(x) denotes the seminorm in the space H*(K).

By Fn: we denote the system of all faces of all elements K € 7, ;. It consists of the set of all inner faces
]—",it and the set of all boundary faces ]—"}th: Fhi = f,f’t U fft. Each I' € Fj ¢ will be associated with a unit
normal vector nr. By KIQL) and KIQR) € Tp,,. we denote the elements adjacent to the face I' € }"}{’t. Moreover,
for I' € F’ B the element adjacent to this face will be denoted by KIEL). We shall use the convention, that nr is
the outer normal to 8K(L)

If v e H (Qt,ﬂlt) and I' € Funy, then vlgL) and v(FR) will denote the traces of v on I' from the side of
elements K ) and K , respectively. We set hxg = diam K for K € Tp,,, h(T') = diamT for I' € F}, and
(V)p =35 (vl(ﬂL) + vl(a )), [v]r = vl(ﬁL) — UIQR), for T' € Fj. ;. Moreover, by px we denote the diameter of the largest
ball inscribed into K € Tj, +.

2.4. Discretization

First we introduce the space semidiscretization of problem (11)-(13). We assume that u is a sufficiently
smooth solution of our problem. If we choose an arbitrary but fixed ¢ € (0,7, multiply equation (11) by a test
function p € H Q(Qt,ﬂ,t), integrate over any element K and finally sum over all elements K € 7}, ;, then for
t e I, we get

> gadx+ > /Zafs (22)

KeTh . KeTh +
Z /Zzgax pdz — Z /le w)Vu)pde = Z /g(pdx
KeTh ¢ KeTh . KeTh ¢

Applying Green’s theorem to the convection and diffusion terms, introducing the concept of a numerical flux
and suitable expressions mutually vanishing, after some manipulation we arrive at the identity

(Dtu7 L)O) + Ah (’U/, ®, t) + bh (ua @, t) + dh (’U/, @, t) = lh((P, t)a (23)
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where the forms appearing here are defined for u, ¢ € H?(,75.4), 6 € IR and ¢y > 0 in the following way

ap(u, o, t) = Z Bw)Vu - Ve dz (24)
KeﬁL,t K
- /((5(U)VU>'HF [p] + 0 (B(u)Ve) -nr [u]) dS
rerf, r
= 3 [ (B@)Vu ne e+ 050 nru - 05(u) Vi - up) d
rezg, 't
Do t) =aw 3 hr)" [ fullelds (25)
rerl, r
tew > h(r)*l/wds,
reFp, r
g =ew 3 D) [ upds, (26)
reFp, r
Ah(ua ©s t) = ah(ua ©s t) + 60 Jh(u7 2 t)7 (27)
d i
g t) == [ Y fw) s (28)
KeTh . s=1
+ 3 [P e s+ 3 [ @ nn)pds,
reri, b rezg, b
o
= — —_ = — N 2
hlwp == ¥ [ Yagtedi—- ¥ [ @ Tueds, (29)
KeTy, 'K s=1 KETh,
we) = Y [ gedetpoen 3 a0 [uppds (30)
KeTy, K rerp, r
Let us note that in integrals over faces we omit the subscript T of (-) and [-]. We consider § = 1, § = 0
and § = —1 and get the symmetric (SIPG), incomplete (ITPG) and nonsymmetric (NIPG) variants of the

approximation of the diffusion terms, respectively.
In (28), H is a numerical flux with the following properties:
(H1) H(u,v,n) is defined in R? x By, where B; = {n € R?% |n| = 1}, and is Lipschitz-continuous with respect
to u,v: there exists Ly > 0 such that
|H(u,v,n) — H(u*,v*n)| < Lyg(ju—u*|+ |v —v*|), for allu,v,u*,v* € R.
(H2) H is consistent: H(u,u,n) = Zle fs(u)ns, uwe€R, ne By,
(H3) H is conservative: H(u,v,n) = —H(v,u,—n), u,v€R, ne By.
In what follows, in the stability analysis we shall use the properties (H1) and (H2). (Assumption (H3) is
important for error estimation, but here it is not necessary.)
For a function ¢ defined in U%:l I, we denote

@i = Qp(tmi) = lim @(t% {Qo}m = So(tm+) - @(tm_)a (31)

t—ty,t
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if the one-sided limits ¢ exist.
Now we define an ALE-STDG approximate solution of problem (11)—(13).

Definition 1. A function U is an approzimate solution of problem (11)-(13), if U € Sp'% and

/ (DU, @), + An(U, @, t) + b (U, @, t) + dp (U, p, 1)) dt (32)

Iy,

(Ut 0, = / (g, t)dt Ve 8P m=1,... M,

Uy €SP° (Uy —u®up) =0 Yo, € SPO. (33)
(For m =1 we set {U}y—1 = {U}o :=Us" — Uy with U, given by (33)).

The ALE-STDG numerical method (32)—(33) was applied in [16] and [44] to the numerical simulation of a
compressible flow in time-dependent domains and fluid-structure interaction.

3. ANALYSIS OF THE STABILITY

3.1. Some auxiliary results

As was mentioned in Section 2.1, for each ¢ € [0, 7] we consider a system of triangulations {7}, .} he(oR)- We
assume that these systems are uniformly shape regular. This means that there exists a positive constant cg,
independent of K, ¢ and h such that

h _
p—K <cp forall K €Ty, he(0,h),t€ [tm1,tm], (34)
K

Tm <7 € (0,7), m=1,..., M.

_ 3 . _ dAm71 d Amfl —1
By (A7) ~! we denote the inverse to the mapping A", . The symbols % and ( - )" genote the
. . _ _ . . d-Amrfl d A’anl —1
Jacobian matrices of AJ'7 " and (A}’ 1)L, respectively. The entries of 7v— and ( Ll ) are constant

on every element K € j}m and K € 7T,,,, respectively. Moreover, we define the Jacobians J(X,t) =

det™ee ™ X €, and 7z, 1) = det "

constant over ’ZA'h’tmfl and 7 ¢, respectively. The constant value of J on K e ’ZA'h’tmfl and of J7™' on K € Tht
will be denoted by J; and Jl}l, respectively. Of course, these terms depend on ¢ and, hence, Jz = Jy(t) and
Tt = JH0).

In what follows, we assume that

m—1

, x € . The Jacobians J and J~! are piecewise

m—1)

At e Wh (L Wh(, ), m=1,...,M, he(0,h) (35)

and
(AP~ e Whe(L,; Whe(Q,)), m=1,...M, he (0,h). (36)
Obviously, we have J € Whoo(L,; L>®(, ), J~1 € WbHee(I,,; L=(Q;)). Since A;’:t_n}il is the identical

mapping and, hence, J(X,t,,—1) = 1, we assume that there exist constants C';, C}' > 0 such that the Jacobians
satisfy the conditions

C;<JX,t)<C;, XeW, ,t€ly m=1,....M, he(0,h), (37)
CH <IN a,t)<(C;)™, vey, tel,, m=1,...,M, he(0,h).
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Finally, there exist constants C', CX > 0 such that

A , _

—ax ||SCa X €,y t€Lm, m=1,..., M, h € (0,h), (38)

d(Ath_l)_l(x) _ _ - _

— <Cy,zelly, tely,, m=1,...,M, he (0,h), (39)
where || - || is the matrix norm induced by the Euclidean norm | - | in IR¢.

The above assumptions imply the following properties of the domain velocity: There exists a constant ¢, > 0
such that

|z(z,t)|, |divz(z,t)| <c, forz ey te(0,T). (40)

In what follows, for the sake of simplicity, we use the notation A; for the ALE mapping defined in Unj\le I,
so that

A(X) = AP H(X)  for X € 8 telm,, m=1,...,M, he(0,h). (41)

m—17

The symbol A; ! will denote the inverse to A;. This means that A7 ' : €, 280,  fort eI, m=1,..., M.
Under assumption (34), the multiplicative trace inequality and the inverse inequality hold: There exist
constants ¢z, ¢y > 0 independent of v, h,t and K such that

1012 orey < ear (ollzzae lelins ey + B olare) ) (42)

ve HYK), K € Ty, h€(0,h), t€[0,T),
and

[0l () < er high ol z2 o). (43)
ve PP(K), K €Ty, he(0,h), t€0,T].

In the space H'(Q4, 7;,+) we define the norm

1/2
lellpae = | D lelinm + Inlppt)] (44)
KeTh e
Moreover, over 02 we define the norm
1/2
_ 1/2
lupllpez: = |ew 35 B [jupPas | = (P wp 1), (45)
res?, r
If we use p := U as a test function in (32), we get the basic identity

/I (DU, U, + An(U, U, 1) + by (U, U, 1) + d (U, U, 1)) dt (46)

+<{U}m717U$_1)th71 = / lh(U,t) dt
Im
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3.2. Important estimates

Here we estimate the forms from the definition of the approximate solution. The proofs can be carried out in
a similar way as in [5]. For a sufficiently large constant cy we obtain the coercivity of the diffusion and penalty
terms.

Lemma 1. Let

cw > g ev(er +1)  for 6 =—1(NIPG), (47)
0

cw > gQCM(cI +1) for 0=0 (IIPG), (48)
0
657

cw > 2 emler +1)  for 6 =1 (SIPG). (49)

0
Then
/ (an(U,U,t) + o Ju(U,U, 1)) dt (50)

m

ﬁ p
3] Wibaiat = [ uplbon,

Further, we estimate the convection terms:

Lemma 2. For each ki > 0 there exists a constant ¢, > 0 such that we have the inequality

/I |br (U, U, t)|dt < /601/1 ||U||%G7tdt+cb/ U |3, dt. (51)

m m Im

Lemma 3. For each ko > 0 there exists a constant cq > 0 such that we have the inequality

/ |dn(U, U, 1) dt < = 60 ”U”Dtht+ ﬂ . U8, dt. (52)
We also need to estimate the right-hand side form:
Lemma 4. For any ks > 0 we have
1
| m@aae<g [ (ol +1013,) a (53)

Boks Bo
52 [ Nunlbeside+ 2 [ 101Gt

m

+

Finally we need to estimate the term with the ALE derivative:
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Lemma 5. It holds that

/ (DtUa U)Qt dt (54)
Im
1 _
> 3 (10l 105 B, — e [ 1018, a0).
({U}mq,U,ﬁ_l)thfl )
X .
=5 (U, + 0 al,,, ~ WUl )
/ (DtU& U)Qt dt + ({U}m_l’Ug_l)thfl (56)
2 Wl + 3105l =5 [ IR d = (U0, U5)
= 5l%mlla,, —ullQe, , T3 o merTm T e

Proof. We start with the first inequality. We have

(DtU U DtU U Kdt (57)
/ -3/

m KeTht

By virtue of relation (15), the Reynolds transport theorem (see, e.g. [27] or [1]) and relation (10), we get

U?(z,t) dz (58)
@t Jy
/<mmm“+4mwa@@HU%mmm@@>m
N\ o
= i <2U x,t) (8Uéf’t) + z(z,t) - VU(I‘,t)) + UZ(x,t)divz(x,t)> dz

=2(D,U,U) g + (U?,div 2) k.

Expressing (DU, U) k, summing over K € 7;; and integrating over I,,, together with assumption (40) yield

/(mUU) (59)
/‘&/(ﬂmw—f/(W@w@mw
1 5 .
:§Hm%m H 1Mtl—§IJUmmdm&
1, c:
> VIR, — S0, — 2 | 1Ul5, dt,

which is (54).
Further, by a simple manipulation we find that

(U; 1 U7; 17U;—1>th,1

LAY [ S 5 S-S 1ol - N

which immediately implies (55).
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Concerning inequality (56), from (59) we get
/1 (DU, D)adt 4+ (U1, U1 ) g,

1, 1
= SWUz IR, — 1T A,

m—1

1 . _
-3 | G dvaad U, - WUk,
1 _ _
> 5 (103l + 10, — e [ 101t) = (U g,
which proves the lemma. [l

3.3. Discrete characteristic function

In our further considerations, the concept of a discrete characteristic function will play an important role.
The discrete characteristic function was introduced in [17] in the framework of the time discontinuous Galerkin
method combined with conforming finite elements applied to a linear parabolic problem. The discrete character-
istic function was generalized in connection with the STDGM for nonlinear parabolic problems in [7], [14], [20].
Here it is generalized to time-dependent domains.

For m =1,..., M we use the following notation:

U=U(z,t), z € Q,t € I,, will denote the approximate solution in €;, and

U=U(X,t)=U(A(X),t), X € Q
domain € .

For s € I, we denote U, = U, (X,t), X € Q,,_,,t € I, the discrete characteristic function to U at a point
s € I,. Tt is defined as Uy € P(I; S,’Z”m_l) such that

t € I,, denotes the approximate solution transformed to the reference

m—1)

/I e, &t = [ (O, dt Voe PTLSEY), (60)
m tm—1
U(X,th ) = TUXth ), Xey, . (61)

Further, we introduce the discrete characteristic function Us = Us(x,t), © € Qi t € I, to U € S,’;:g at a point
s€ ly:

Uy(z,t) = U (A7 (), 1), 2 €Qy, t ey, (62)

m—1

Hence, in view of (20), U, € SZ:Z and for X € O, we have
Us( X tm1+) = U(X, tp_1+). (63)

In what follows, we prove some important properties of the discrete characteristic function. Namely, we prove
that the discrete characteristic function mapping U — U, is continuous with respect of the norms || - || 72 (q,) and
Il - llpg,t- In the proof we use a result from [7] for the discrete characteristic function on a reference domain:

There exists a constant Egl)q > () depending on ¢ only such that

R S A L (64)

m

forallm=1,...,M and h € (0,h).
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Lemma 6. There exist constants Cig, Cig > 0 such that

Cigh(D) ™ < h(D)™' < Crph(D) ™!

for all I'e Fht I' = At(f) €Fniand allt € I,,,, m=1,...,M, h e (0,h).

m—1)

13

Proof. We use the relation between I' and T' and the properties (38) and (39) of the mappings A; and A; !
We also take into account that I' ¢ K for some K € Th o1, I C K = A(K) € Tp,; and that the Jacobian

dX

matrices %‘g and %A are constant on K and K , respectively. Then we can write
hIT) = diam(T') = max |z —z*| = max |A;(X)— A(X™)]
z,x*el X, X*el
d
< A X )’ max |X — X*| <C¥ max \X X*| =} h(D).
X, X+

Xel X, X*el

Similarly, we get h(I') < C h(T'). These inequalities immediately imply (65) with Cs = (CF)~

C.

Theorem 1. There exist constants cg}{, C(CZ}{ > 0, such that

A

/I B dt < ) / U2, dt

m m

/I UlBe dt < 2 / 10|20, dt

m m

IN

foralls €I, m=1,...,M and h € (0,h).

Proof. We begin with the proof of the first inequality. We have

U3, = / Us (D2 d = / (A7 (), D)2 da

:/Q |L?3(X,t)\2J(X,t)ngcj/ 0L (X, )2 dX

LT

= C[Us(t)]3,

m—1

1 Hk
and Ci§ =

O
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Integrating over I, and using (64), we obtain

AN
<}
»\
<
RE
(oW
~

| o, a

m

IA
Q
=+
QTJ

T
o
IS
R
o
~

|U(X, t)|2dX> dt

|U(At(X),t)|2dX> dt
= ct 2},/ ( U(m,t)|2.]1(z,t)dx> dt
Inm, Qy
< cf (Cl}{C*/ ( |U(x,t)|2dx> dt
Qy

= oo / U3, d.

Setting cg}i = Cj&g}{C’j, we get (66).

Now we pay our attention to the proof of the second inequality in the theorem. From the definition of the
DG-norm we have

| Wt (68)
Cw 2
Y Ul ey di + / > / U] dsS | dt
/Im KET . Im \rer , MT) Jr
Cw 9
+ / > / U[?dS | dt,
v\, M0 e

where F , = {.Aznt_l(f‘), I'e Fity. .} and similarly FP, = {Aznt_l( ;T e Flo b
Further, we estimate each term on the right-hand side of (68). From [20], relation (6.161), it follows that

~(2)

KeTh . KeTh

m—1 m—1

with a constant é(cgl)q > (0 depending on ¢ only. For simplicity let us denote

dAH (X)

(Am 1) (JJ)
dX ’ '

B; = By(X) = e
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Then it follows from (38) and (39) that ||Bt|| <C}and |B Y <Cy.
Now, for K € T, 4, K = Ay(K) with K € Ty, 4, _,, using that | Bt| ¢ || and || B;"| 2| are constant, we have

Ui = [ IVt 0P ds = [ [VEAT @0 do (70)

~ 2
S/K‘B;HKVUS(X,?S)‘ J(X1)dX < (C3)*CF U020 1

The summation over all K € 7}, 4, integration over I, and the use of (69) imply that

/ > U3 i At (71)

mKETht
+ y 2
ey / S O dt
‘' KeTn m—1
™ KeTh, 1
= (C;)*CF CH/ / IVU(X,t)[>dX | dt
Im KGThf

—1

— (5 >Cjéﬁtﬂ 3 [;\vaquxvxnﬁ ax | at

KeT;
Mol 2| By g (VU) (A (X),1)]

S(C)ngH/ /|VUxt)\J de | at

Im \ keT, ,

<@rerely [ | X [ vuriEg ar | a

m, KGT ot
< CPCTEN RO [ 3 0 o
Im KeTh ¢
:d%[|wm@@ﬂﬂ®

where CL%), = (C7)2CT(C7)1é3), (CH)2.
Now we turn our attention to the term

/1 Zt ;(VIK) /F[Us]zdS dt.
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For simplicity we assume that d = 2. In Appendix we briefly describe the proof for d = 3. We will use estimate
(6.162) from [20], which implies that

/’ Z hC(VfV) /F G2 dst | at (72)

<y / y o / [0 as” | dt.
I \ pegr h(L') Ji
Bty —1

(Here dST denotes the element of the arc I'. Similarly we use the notation dST.)
Now we consider the relation I' = A4,(T"), " € f}itmfl’ and introduce a parametrization of I':

[=8,.(0.1) = {X = B, ,(v);v € [0,1]}.
Then an element of I can be expressed as
ds” = |(BL, ) (v)|dv, v e [0,1].
These relations imply that

[ = {o=A(BL_,(v);v e 0,1}

A B )B ) ()| dv, v e0.1]

r _
ds X

The term (Bfn_l)’(v) is a tangent vector to I' at the point Bfn_l(v). It follows from the properties of the
mapping A; that the values of

d.At i ’
IX (Bl ()8, 1) (v)

are identical from the sides of both elements K ISL) and KIER) adjacent to I'. Then we can use the above relations,
inequalities (65), (38), and write

: m[us]QdSF (73)
_ [t ) e ()| dv

_/O Dy Mo (A (Bl (o) B 1 (0)(B], ) (v)] d

< [ o (B () %‘g(sm )] Jt ] ao
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From (72) and (73) we get

/1 ( 3 hc(% /F [uﬁdsf) dt (74)

rerl,

< ¥ chor / y W / [0)2dsT | dt.
Tm Ter! W) Je
tm—1

Further, for I' = At(f‘), where I' € f}{ﬂtwn—l’ we consider the parametrization

I'={z =B} (v);v € [0,1]},
D= {X =A7'(B} (v);v € [0,1]},

dA;!

as" = | (B W) B ()] o

Then, by (39),

) 1 -1
Jiozast = [ @A E )R DB )6 @) do
r 0
[U(B} (v))]?
1 —1
< [ wEror| e o) ey a
<ci
1
< O [ WEEPIED @l
= c;/[UPdsF.
r

Substituting back to (74) and using (65), we find that

/I ) ( 3 hC(VFV) /F [us}2d5F> dt (75)

rerl,
~ *k * — — Cc
< EHCHCTE(Cre) 10,4/[ ( Z hg)A[U}QdS) dt
™ \leF/,
_® ‘w 2
_C’CH/I ( > h(r)/F[U] dS) dt,
™ \ler],

b ~(3 *k * ) — —
where Cé}{ = C(C'}ICXCLG(CLG) Oy
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Similarly we can prove the inequality

cw 2 1al
g Ug|7dS™ | dt
/ 2, h(T) /p' |

(¢) cw 2
< .
_CCH/I S h(r)/F|U| ds | dt

™ \lerp,

Finally, (71), (75) and (76) imply (67) with ¢}, = max{C'*),, ) ).
3.4. Proof of the unconditional stability
Theorem 2. There exists a constant Cpg > 0 such that

_ . Bo
U, = 1Umalld,,  + I{Umallg,, |+ 5 [ 1UlDe et
m m—1 m—1 2

m

< Cro (/ ol i+ [ Juplbe dt+ [ |U||?2tdt).

m m m

Proof. From (46), by virtue of (54), (50), (51), (52), (55) and (53), after some manipulation we get

WUl WUm il + 1T a2,

1 1 1
- — - — Ul|% dt
+ﬁ0< kl k2 k3>/]m H ||DG,t

< / lgll3, dt + o (1 + ks) / lun 3 dt

m m

C,
+ <cz 14+ 24 2(:b> / U2, dt.
Bo I, '

Hence, choosing ki = ko = k3 = 6, we get (77) with Cprs = max{1,708y, ¢, + 1 + ca/Bo + 2¢p}-

Theorem 3. There exist constants Chg, CT5 > 0 such that for any 61 > 0 we have

i B
1l + 105, + 22 [ 10Dt

I,

< Oy / 0|13, dt + Ci / (lgl13, + luplBen.,)dt

m m

2,
+= Uil 401055, -
; ,

Proof. From (32), by virtue of (56), (50), (51), (52), (55) and (53), we get

_ 1 1
0l + 105l 400 (1= = = ) [ W0

Im

< / lgl13,dt + fo(1 + ks) / lup | dt

Im Im

+(1+cz+2cb+%)/ U1, dt +2(Up_y Ut 1),
0/ Ji,, t

m—1
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Using Young’s inequality for the term 2(U,. _,, U} _|) and setting k1 = ko = k3 = 6, we get (78), where
Chs =1+ c, +2¢p + cq/Bo and CF5 = max{1, 75y} O

We introduce the following notation:

tm71+l/q = lm-1+ Tm&»
Um—1+l/q = U(tm—1+l/q)a 1=0,...,q
Lemma 7. There exist constants Ly, My > 0 such that form =1,..., M we have
- 2 Ly 2
Z ”Um—l-‘rl/q”Qt Yy > — HU”Qtdt» (79)
1=0 e Tm J I,
M*
U5l < =L [ |UIR,dt. (80)
m—1 Tm Im

Proof. Using the equivalence of norms in the space of polynomials of degree < g, for p(t) = U(X,t), t €Iy,
and any fixed X € €, _,, we have

q
ZU2 <X7 tm71+l/q) > fi/[ 02(X7 t) dta
1=0 m S im

U*(X,th_ ) < qu i U%(X,t)dt

(Cf. [20], Section 6.2.3.2). integrating over €; _, and using Fubini’s theorem, we get

L -
Z/ Xotmo111/q) PdX > q/ (/ |U(X,t)|2dt> dx
Q Tm JQ, I,

=0 tm—1 m—1

AL
Tm S \JQ,,

Vv
|

|U(X,t)|2dX> dt

—1

Analogously we find that

/ U(X,t}) |2dX<—/ /
Q¢ I Q¢

m—1

U(X t)|2dX>

m—1
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Now the substitution X = A; *(z), where X € x € Q, relation U(A; 1 (z),t)

that

m—17

q
2
Z ||Um71+l/qHth_1+l/q
=0

|U(.’E, tm71+l/q)|2‘]_1(xa tm71+l/q) dx

tm—1+1/q

q

T2,

q

§;ﬂ U(X, b1 11/q) X
0 t

m—1

;/ (/ U(X t)|2dX> dt
_ ic; /Im ( [ 10T @08 dx) at

I \/

I V

—qC+ oy / (/ |Uxt|2dx>

- %w*%v/nmmw
.

m

Hence, we get (79) with L = L,(CT)™1C7.

= U(z,t) and (37) imply

Further, since 2 = A, (X) = X and, thus, U(X,t} ) = U(z,t)_,), using the substitution theorem and

»"m—1

(37), we obtain

L A 0(X,t,_,)PAX

U
( U(X,t)] dX)
Q.

\UAt, 2T (a, )dx)dt

< (C’EA( Jme%Q
=4—/|mm&

IN

where My = My (C;)~".

In what follows, because of simplicity, we use the notation U’ = W U and do not write the arguments X and

t in integrals.
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Lemma 8. There exists a constant Crg > 0 such that

m—1

/ (DVU, U)ot + (U}t Us (1)),

Im

1
> 5 (0GR, + v DIk, )

s / WU3,dt — (U .U e,

forany s € I,, m=1,...,M and h € (0,h).

Proof. By virtue of the definition of the ALE derivative (9), the definitions of U,Us,Us, the fact that U’ is a
polynomial of degree < g — 1 in time and the substitution theorem we can write

/(DtU,US)Qtdt:/ (U’,LLJ)Q dt (82)
I tm—

m m m—1

:/I (ff’,i{s)ﬂt” 1dt+/1 (0" -n),

m 11— m m—1

_ / (00), e+ /IM<U’,L~IS(J—1))Qt at

tm71 m—1
S

:/tm (U/’UJ)Q%_I dt+/tm (U/,U(l—J))Qt dt

—1 m—1

+/I (U’,L?S(Jfl))m dt

m m—1

:/s (DtU,U)QtdtJr/s (U’,U(l—J)) dt

tmfl tmfl Qt

+/I (U’,L?S(J—l))ﬂt dt.

m ‘m—1

m—1

Now we estimate the second and third term on the right-hand side. We begin with the third term. The fact
that J is constant on each K € 7j, ; and the substitution theorem imply that

m—1

dt‘: > /I’(Jk—l)(/KU’Z;{SdX>dt

KGTh,t

/I (U’,Z/?S(J - 1))&

m m—1
m—1

< - T
< > max |/ 1|/Im(/k|UUs|dX> dt.

Relj’h,tm_l

Using the relation Jy (t,,—1) = 1, we have

tm,
max |J; — 1] S/ |J}(|dt§0JTm7

tEIm t'm—l
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where c¢; > 0 is a constant independent of h, 7,,, m. Then we find that

Jip—1 U'U,| dXdt
>, max|g I/Im/kl Al

Rej—hafm 1
<cr Y, Tm/ (/ |Uu|dX>dt
KGThtm 1

=CJTm Z /(/ |UZ/l|dt)dX

Kelz’i“' o I7n

_ 1/2 ~ 1/2
< CyTm Z / <</ |U’|2dt> (/ |L{S|2dt> )dX.
I
ET” Im m

Now we apply the inverse inequality in time: There exists a constant ¢y such that

(/j 07(X, t)|2dt)1/2 < (/, O(x, t)|2dt)1/2 (53)

holds for every X € |, 7, € (0,7) and m=1,..., M.
This inequality, Young’s inequality, Fubini’s theorem, (64), substitution theorem and (37) imply that

1/2 ~ 1/2
T ( |U’|2dt) (/ |L{S|2dt> ) dX
Im

Ke Thf 1
1/2 1/2
|U|2dt> (/ Z:ls|2dt> dXx
KGTM Lom

021 ( (10 + |ths]?) dt) dx

IN
\

Kedy, 1

|U|2 + [Us]?) dX) dt
KGTh 't

m—1

Cr ~ ~
=2(/ 018, de+ [ 1R, )
I,

S [ W0, a

\ /\

m—1

_ ~<1>/ 3 /|U| ax)

KeTh .

=S +ag3{>/ ( |U|2J1da:> dt < c*/ U3, dt,
I, Q4 I,
where ¢* = (C7) e (1+ c ) /2. Summarizing the obtained results, we see that we have proved the inequality

/ (U’,HS(J—1)> dt‘<c*cJ/ U3, dt. (84)
I Qtnl—l Im

m
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Similarly as above we can estimate the second term on the right-hand side of (82):

/s (U’,U(l—J))Q dt

m—1

g/ ‘U’,U(l—J) at

m tm—1

tm—1
< —Js 7' 0
< Y max|1 JK|/IM/K|U U dxdt

K€j’h1tm71

<ciTm Y. // 00| dX dt
I K

Rej’h,t m

m—1

=CiTm Y /R(/IMU’ﬁdQ dx

KeTh,,,

~ 1/2 ~ 1/2
<citmo Y. / <</ |U’2dt) (/ |U2dt) )dX.
K I Iy,

KGTh,t7n_1

Now the inverse inequality in time, Young’s inequality, Fubini’s theorem, (64) and (37) yield the inequality

/S (@ 00-0)  a

m—1 b — 1

<o [ 10l (85)
I,

with ¢; = ¢;(C7) " ter/2.
Finally, from (82), (84), (85) and analogy to (59), (63) putting ¢z = ¢*cy + ¢1 we find that

/ (DU, U)oyt + ({U o Us (b1 4) ),

Im

m—1

1

> [ (D00t + 10,

tm—1

Ui Uk e, e / U3,

m

1 c /4 , IR I
_ Q/tml (dt /QtU (x,t)dac) dt — 5/ (U2div, 2),, dt

tm—1
HUE AR, ~ WaanUida,, —ca [ (VIR
1 2 + 2 c: [°
=5 (WG, + 10503, ) =% [ WUlea
tm—1

e / WUI3,dt — (U 1. UE e,

m

m—1"

which implies (81) with Crg = ¢,/2 + ca. O

In the following lemmas, for simplicity we use the notation ;" and Z:ll* for the discrete characteristic functions
to U and U, respectively at the time instant ¢,, 14/

Lemma 9. There exists a constant Crg > 0 such that

lan (U U, 1) + Bo (U U )] < Cro (IU e + 1 1Dt + lunlibes i) (86)
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forallt,l1 € I,,, m=1,.... M, he(0,h).
Proof. From the definition of the forms a; and J, we immediately have

an(U U 1) = > | BU)VU- VU d

KeTh K

Now, using the property of the function 3, the Cauchy inequality and Young’s inequality, we get

lan(U,U; )| < Ba Z /(|VU|2+|Vul*‘2) dx
KeTy ¢ K

h(T
> /r <C(W) (‘VUéL)F + IVUFR)IQ) + ;(& [u,*]2> 4s

I)
N

o0 2 [ (M2 (v wer) + 2 ) as

NS ow h(F)

@ 2, W k2
+B Y /F<CW IVU? + A ;| ) as

rerp?,

h(r) * |2 cw 2
+B Y /F<6W|vul| + R U| ) as

rerp,

+61 Z /|Vul*\|up|d5’.
r

rerp,

The last term can be estimated using Using Young’s inequality and the relation h(T") < h

KI(‘L)7
we get

6 Y / VU | fup| dS
N

rerFp,
< e WD) Jup? dS + 21 hoo VU dS
_TZ F() lup| +£Z FK§L>| il
rerp, rery,
< 515

B & * (2
ZCWJh (up,up) + 5 > /a o hyeeer | VU dS.

TeFp,

(87)

for each ¢ > 0
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Now we express the first term on the right-hand side with the aid of the definition of the || - | pgg +-norm and
to the second term we apply the multiplicative trace inequality (42) and the inverse inequality (43). We get

B1 /|Vul | lup| dS

rerp,

ﬂ1€ B .
HuD”DGBt + - 9 cm(er +1) Z VU, ||2L2(K)-

KeTh .

If we use the inequality >, ||VU ||L2(K) < ||Uf ||DG’t, which obviously follows from the definition of the
|| : HDG,t‘nOTm, we get

ﬁ€ B .
o1 Y [ 1901 lupl 45 < 225 fupllbas, + Grenter + DI e, (9

Fe]—‘B

Setting ¢ := gl cpr(er + 1) in (88) and substituting back to (87) we get

lan (UL, 0)] < Z/ (VU + VU ) de

KEThf
s X [ B0 (vulp 4 o) as
rerf,
6y / )\vup as
rerp,
X [ 20 (Ve e+ v @) as
rerf,
b5 [ Mwas+ 2 cuter + Dlunlbo,
Fe]—'B w

h,t

+70Hul*||2DG’,t + ﬁl Jh(ul*7ul*7t) + ﬁl Jh(Ua U7 t)
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Using the inequality h(T') < hg for T' C 0K, we have

U D15 S [ (VU + V) de (89)
KeﬁL,t K
—|-ﬁ Z (h (L)|VU(L)|2—|-h (R)|VU(R)|2) ds
CWF T T KF r Kr r
eFl,
B / 2
+— h.w|VU|*dS
B b VU2 + b |V U)EP12) ds
+- > x| VU )R+ e VU
w T T r r
rer},
B1 / 2
+ 2L ho VU2 dS
B3 Bo 1,
+2ﬁochCM(CIJFUHUD”%GB,HF ?OHUZ HzDG,t

+61 Jh(ul*aul*?t) + 61 Jh(Ua U7 t)

< Z /(|VU|2+|VZ/[Z*|2) dx

KeTh ¢ K
+& > / hi (VU + VU ?) dS
‘w KGTh,g oK

: Bo

B .
+2501CW em(er + Dlupllban.: + 3\\“1 [P

+051 Jh(ul*,ul*7t) + 51 Jh(U, U,t).

Now, applying the multiplicative inequality and the inverse inequality, we can estimate the term

> / hi (|VU? + VU |?) dS
oK

KeTy ¢
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as follows:

> /aK hi (IVUP + VU7 2) dS (90)

KeTh,

= 3 e (IVU o) + 190 132010 )
KeTy .

<ecm Z he(IVU|lL2xy VU115 +h%1”VU||%2(K))

KE,Z—}L,t 1
<crhg I|VUHL2(K)

‘e Y (VU ey (VU Imi AR IVU 7200
Keq’h,t
SCI’LI;I‘|VZ’{1*‘|L2(K)

<cmler+1) Z (”VU”%’-’(K) + Hvul*”%?(K))
KeTh ¢

=cm(er +1) Z (\Uﬁql(ﬂ) + |Uz*|?ql(ﬂ)> :
KeTy ¢

From (89), (90), the definition of the || - || pg,-norm, using the inequality
T (UUE 1) < Ju(U,ULE) + JnU U t)

and putting Crg = max{fy + S1 + Bica(cr + 1) /ew, Biem(er +1)/(2Bocw)}, we finally get

‘ah(Uvul*vt) + 60 Jh(Ua ul*vt)| < <ﬂ1 =+ %CM(CI + 1)) |U|§{1(Qt7'fh,t)

+(Bo + B1)Jn(U, U, t) + (51 + % + %CM(CI + 1)) \Uz*ﬁ{l(gt,n,t)

B
2Bocw
<Cprg (||UH2DG,t + ||Z/{l*||2DG,t + ||uD||2DGB,t) .

+(Bo + Br) Jn (U, U] t) + en(er + 1)||UD||2DGB,t

O

Lemma 10. For each ki1 > 0 there exists a constant ¢, > 0 such that for the approrimate solution U and the
discrete characteristic function U we have the inequality

| gt < 32 [ e e [ Ui 1)
Im 2k1 Jg,, ’ Im !
Proof. By (28),
(UL ) =~ S / Xd: Fn M 4, (92)
KeTy ¢ Kos=1 8xs

=01

+ Y [0 o s+ Y [ a0 an)u; ds.
r r

FG‘F’IL,t Fe]—',’it
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Then from the Lipschitz-continuity of the functions f,, s = 1,...,d, with the modul L; > 0, assumption that
fs(0) = 0 and the Cauchy inequality, we obtain

ou;
ol < Y /Z\fs e (93)
KeTh ¢
U .
<uy [ Zw\axl < LA U, 4 i 700
KeTy, e s

Now we shall estimate 3. From the relation fs(0) =0, s = 1,...,d, and the consistency property (H2) of
the numerical flux H we have H(0,0,nr) = 0. Then we can use the Lipschitz-continuity of H and get

L R
o < In Y / (US| + U ;) ds
FEJ:I

Iy S /|UL>|+|U<L )W) ds.
Fe}‘B

Using the fact that UﬁR) = UISL) for T € }",ft, the Cauchy inequality and the relation h(T') < hg, if ' C 0K,
we obtain

|oa| (94)
9 1/2
S LN Sy gL
< cw cw YN
Cw re f}{t F) FE]__}Et T h’(F)
1/2
| 3w [Qu+ i as
FeFn,:
1/2
LH * * 1/2 (L) 2 (R) 2
< Jh(ulaulvt)/ Z h / U | +|UF | ds
vV Eew reFn: ( )
Ly 1
< I (U Z/{*,t /2
> W h( IRL )
1/2
X Z hK(L)/ - |U1£L)|2ds+hK(R)/ dS
TeFn+ Kponb '
L
< nerun S [ hK|U\2dS
KeTh:
= 0 [ U
V ew

KETh,t
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Substituting (93) and (94) into (92), using the Cauchy inequality and the definition of the || - || pg -norm, we
find that

(U U )] < LV |Ula, U |10, 70 (95)
1/2
LH * * 1/2 2
(7O Z AUl 72 0k)
‘w KeTy ¢
1/2
< | L3dIUIE, + Z hic|U N7 20x)
KGT}, +

1/2
X (Wl |§11(Q,,,Th,,,) + Jn (U Y at))
1/2

<cltlpae [ 1Ule,+ | D hxlUlZ20k) ;
KeTh .

1/2
where ¢ = (max{Lfc d, L%/ Cw}) . Furthermore, the multiplicative trace inequality and the inverse inequality
imply that

S bl < en S e (100|010 + b U132 )
KG'Z’}I,J KET},,J,

<emler+1) Y U7y = emler + DU,
KeTy ¢

Hence, from this relation, (95) and Young’s inequality we get

IN

(U250 < e 4 b 10l < 10 b + 5 IUIR,

ﬂo

||Ul ”DG ¢ T Cy ||U||Qta

where ¢; = c¢(1 + v/car(er +1)),k1 > 0 and ¢, = c3k1/By. Integrating over the interval I,,,, we finally have
(91). O

Lemma 11. For each ks > 0 there exists a constant cq > 0 such that the approximate solution U and the
discrete characteristic function U] satisfy the inequality

J v i< g [ wibe,a g
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Proof. By (29), (40) and the Cauchy and Young’s inequalities,

/|dh(Uul, \dt<cz/ > /Z|Ul||—|da:dt

"’KGT

< CZ/ U N U 75, At

m

<e /||ul||9 U]l b dt < 2 / WUl dt+ S22 [ )2, dt
- ¢ ~ 2ko ot 260 J1,, e

which is (96) with cq = cZks. O

Im

Lemma 12. For the approzimate solution U, the discrete characteristic function U, and any k3 > 0 we have

1 *
[ it < g [ (ol + 1, o (97)

Boks Bo X
+—= | llupllbgpdt + 5 Hul 1B dt.
2 J; s

m

Proof. Tt follows from (30) that

W@ D) = (0. U) + Boew 3 h(T)! / up Uy ds).
T

rerf,

After using the Cauchy inequality for the first term on the right-hand side and applying Young’s inequality with
k3 > 0 to the second term, we find that

(9:U5) + Boew Y h(F)*l/FuDul*dS|

rerf,
1 50763
5(”9”@ + e l13,) + cw Z hT)~t [ fupl?ds
rerp, r
=lunlibes .
+@ cw / U |? ds.
2ks
FEfB
< Jh,(ul* ,Z/{l*,t)g Huz* H2DG,t
Hence,
* 1 * 50k3 ﬂO *
@y, O] < S (lgllg, + 14°16,) + == lunllbes,e + 5 - o 14 D
from which we get (97) by integrating both sides over the interval I,,,. O

Theorem 4. There exist constants Cra, Cr4 > 0 such that

[ Wit < Crar (10 a0, + [ (Lol + luplfhsat) (98)

m m
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provided 0 < 7, < Cry.

Proof. For g =1, the proof is contained in [5]. Let us assume that ¢ > 2,1 € {1,...,q —1}.
From the definition of the approximate solution (32)—(33) for ¢ := U} we get

| D0, (U W), (99)

I m—1
m

:/ (—an (UL ) — Bodn (UL 1) — bu(U, U7 £)) dlt
I,

+ / (—dn (U U7 £) + (U 1)) dt.
I

m

This relation and Lemma 8 imply that

1 - 2
2 HUm*Hl/qHQt

é/ |ah<U,ul*,t>+50Jh(U,uz*,t>|dt+/ b (U, U7 1)

+ Untlllfzt,,L1> (100)

m—14+1/q

m m

+/ |dh<U,ul*,t>|dt+/ 1 U7 1)) dt
I

Im

m

(U1 Ui)g, +CL8/ |U||&, dt = RHS.

m

Now we need to estimate the right-hand side of (100) from above. Using (86), (91), (96),(97) with k; = ko =
ks =1, (81) and Young’s inequality with any d; > 0, we get

RES < Cun [ (IUlbay+ 14 oo, + lunlbas,) d

I’l’ll
Bo . Bo
P2 et e [ 0GR [ UG
I m I,
Cd * 1 *
R T AT T / (lgll3, + U713, ) dt
260 J1,, 2 Jr,
Bo Bo B
+? ||UD||?:)GB,tdt+ o5 [l H%G,t
I I
WU l3,

L8l Cos [ U

m

2
Hence,

RHS
§61/ (10D« + 14 D e + 471G, + UG, + llglié, + luplDas..) dt

m

U1 113,

S U R,
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where ¢; = max{Cprg + B0 + ca/(260) + 1/2,¢, + Crs}. Now we apply Theorem 1 on the continuity of the
discrete characteristic function:

(1
| il ey [ wipae [
1 1 1

m m m

* 2
Uy [t < C2) / U3 .

Hence,

RS < o [ (10l + IUI, +lolfs, + lunlbas,) di

m

Ul o
R,

1

with ¢ = ¢y max{1 + c&)q, 1+ c((?}{} Then it follows from (100) that
(H 1+l/q||Q,n_1+l/q + ||U$_1||?ztm_l) (101)

1Un—all3,,

< Cz/ (10Ul De.e + U, + llgllé, + lluplbep,.) dt + 5 :

m

+62||U74n_,—1||9t

m—1"
Further, multiplying (101) by %, summing over [ = 1,...,¢ — 1 and adding to (78), we find that

B 8
—2 0 2 0 2
IV, + e =3y 2N+ (2 +1) Wil

5
s Wb
<t / ||U||Dtht+('3°+cT3) | iR

m

I¢]
+( 04 o ) / (9113, + luplben.) dt

ﬁO 2 — 2 5052 + 2
+ (4@62 + 5 WUpallg,, |+ +401 | [Ugallg, -

Setting ¢3 := min {%, 8% + 1} and rearranging, we get

qg—1
es(N0mloz, + D N0 vpyglh ., +IUH IR, )
=1

:Z Lq:() ”UmflJrl/qH?‘zt

ﬂ
: HUIIDG rdt

m—1+1l/q
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B p
< (Brons) [ 1o (R ren) [ Qo+ luolhes,) d

Fo 2 - 2 ﬂo 2 Lo
+ (40262 * a ||Um_1||th_1 + + 451 ||l]7n—1Hth_1

It follows from inequalities (79) and (80) that

c3ly Bo
2 [ it 2 [ e

m

0o My 401 M
< (B B Do) [ ol

4coTm T 4

m

B
+.( 0 4o )t[ (912, + luplbe.) dt

ﬂO 2 — 2
— | |IU.
+(%%+& Vil

. L} cgco LY e
Setting §; = 1;]%*’ 0o = 50;/[;‘1, Cq = 46262 + 5 , C5 1= % + C7% we get
csly  fo . Bo
(%5—4—%ngwmw+4jgw%mm (102)

Sc5/'(mmgt+uanDGBJdt+cu| LB,

m

m—1

If the condition 0 < 7,, < CF = M%Lé*) is satisfied, then 2 4 Cix, > ;Tiq (102) we obtain the
estimate T

csly Bo

“% [ i 2 [ wipe,a

Tm I I
<es [ (lglley, + lunlbes,) dt +ealUp oI5,
m—1

which implies (98). 0

The stability analysis will be finished by the application of the following auxiliary lemma.

Lemma 13. (Discrete Gronwall inequality) Let x,,, ap,, by, and y,, where

m=1,2,..., be non-negative sequences and let the sequence a,, be nondecreasing. Then, if
zo + Yo < ao,
m—1
xm+ym§am+zbjxj fOT’ le,
§j=0
we have
m—1

T+ Ym < am [[ (L+10;) for m>0.
j=0
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The proof can be carried out by induction.
Now, if (98) is substituted into (77), an inequality is obtained, which is a basis of the proof of our main result

about the stability:

_ _ Bo
U8, = 11Un_illa., , + ||{U}m—1|\?z,,m_1 t5 : 1UIDe, dt (103)

1

< (Cr2+Cry Tm)/ (gl + luplbepe) dt + CraCra Ta||Up, 4 ll, -

Im

Theorem 5. Let 0 < 7,,, < C}, for m=1,..., M. Then there exists a constant Crs > 0 such that
Uz 1R, + D U1} Ig,,, + > > | 1UlIbg,dt (104)
j=1 =171
<C ok 3 ; = h
< Crs | UG ||Qt0+z/ Ruydt|, m=1,.... M he(0R),
j=1"1

where Ry j = (Crz2 + Cra7i) (918, + llunlbap,) fort € 1.

Proof. Writing j instead of m in (103),we obtain
- b
U318, = 107l -, + {U Y -allE,, + ?0 ’ U, dt

S/ Rt7jdt+CT20T4T]'HUJ'_71H?EJ7 :
I;

Let m > 1. The summation over all j = 1,...,m yields the inequality
-2 - 2 Bo - 2
U3, + D IHUY -1 lE,  + 72 ’ IUlpe,s dt
j=1 =171

< WU Iy + CraCra Ym0 1B, + Z/I Ry dt.
j=171i

J=0

The use of the discrete of Gronwall inequality with setting

zo = ao=|Us I, co=0,
tn = U2, .
m ﬁ m
0
i = LU, + Y [ I,
j=1 j=1"1%i
m
an = U5, + Y [ Fust
=171

bj = Cr2Cra7iy1, j=0,1,...,m,
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yield
1Unllé,, + KU -1}IG,, | + 3 > [ Ulbe, dt (105)
j=1 j=1"1;
m m—1
< [ 105 113, + Z/Rm- dt (1+ CraCratjta).
j=1"1 7=0

Finally (105) and the inequality 1 4+ o < exp(o) valid for any o > 0 immediately yield (104) with the constant
CT5 = eXp(CTQCT4T). O

4. CONCLUSION

This paper is devoted to the stability analysis of the space-time discontinuous Galerkin method (STDGM)
applied to the numerical solution of a initial-boundary value problem for a nonlinear convection-diffusion equa-
tion in a time-dependent domain. The problem is formulated with the aid of the arbitrary Lagrangian-Eulerian
(ALE) method. In the numerical scheme we use the nonsymmetric, symmetric and incomplete versions of the
space discretization of diffusion terms and interior and boundary penalty. The nonlinear convection terms are
discretized with the aid of a numerical flux. The space discretization uses piecewise polynomial approximations
of degree < p with an integer p > 1. For the discontinuous Galerkin discretization in time we use polyno-
mials of degree < ¢ with ¢ > 2. (If ¢ = 0, then we get the backward Euler time discretization and the case
q = 1 was analyzed in [5].) Here the situation is much more complicated and a special technique based on
the ALE-generalization of the concept of the discrete characteristic function has been applied. This approach
combined with a number of various estimates results in the proof of unconditional stability of the method. The
obtained results represent a theoretical support of the ALE-STDGM developed in [16] for the numerical solution
of compressible Navier-Stokes equations in time-dependent domains and interaction of compressible flow with
elastic structures. Further step will be the application of derived results to the analysis of error estimates of
the ALE-STDGM in time-dependent domains.
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5. APPENDIX: PROOF OF ESTIMATES (75) AND (76) FROM THE PROOF OF THEOREM 1 IN
THE 3D CASE (BY Z. VLASAKOVA)

We introduce a parametrization of I'. Let A? be a reference simplex in R? (with one vertex being the origin
and all of the other vertices have only one non-zero coordinate equal to 1). Now

r=A(r), TeF, .,
F Bm 1(A2)7{X Bm 1( );UGAZ}v

~  |lont oBL
T _ m—1 m—1 1 2 2
ds' = Dol (v) x 92 (v)|| dz dz=, ve AZ,
I = {o=A(BL_,(v); v e A%,
dA oBL _ dA oBL _
dst = dXt (BL,_ (v) Bl = (v) % dXt (BL,, (v) a2 = (v)|[ dz'da?,
v e A2

r
m—1

By the symbol x we denote the vector product. The terms a[;zf (v) are tangent vectors to I at the point

N . T
B (v). Tt follows from the properties of the mapping A; that the values of ‘2’;‘; (B{n_l(v))aBmf‘ (v) are

. o R ErY
identical from the sides of both elements KT and K% adjacent to I
Then we can write
1 23¢T
[ Uas (106)
— [ A )P
" Jae (T
dA; , ¢ oBL _, dA; OB}, 17,2
L (BE () =2 (0) x B, () =2 (0)| et
1~  p dA, 2
< E—
< [ O B | G B )
aBTYL 1 aBm 1 1 2
| Dl (v) x 9 (v)||dz*dx

< (Ch)? / ]ir) AT

Hence,

/1 Z hc(vlﬁ) /F [U,]2dST | dt (107)

<&@ (chren W / 02as” | ar.
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Further for I' = A, (), T' e ]:I{,tm,lv we consider the parametrization

U= {z=DB;(v); ve A’}
I'={X = A" (Bl (v)); v e A%},
oBY

oos (V)

0B},
dst = H 6’;;1 (v) x

‘dv, veA?

s = H d“;‘; (B{(v))gitf (v) d“;gl (B{(v))‘;ig @)|[dv, ve A
Then
/f ]2ds" (108)
- [ o s e
oBF dA;! oB;

-1
H dA, dz'da?

T (B (0) Gt () x o (B (1) 5 (0)

dA! ?

oBL oBL
I m—1
"L (B (v)

=L () H dzlda?

T 2
< | wEe)

< (C7) /A U]2dS".

Ozt (v) Ox?

Together we get

/1 3y hc(vlz) /F [U,)2dST | dt (109)

rerf,

~(¢ * %k * O\ — — C
SC(CS}I(CXFCLG(CLG) 1(CA>2/ Z v /[U}zdS’F dt,
o\ 2 B Jr
h,t

which is the 3D version of (75). Similarly we proof (76) in the 3D case.
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