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Abstract

The convergence and numerical analysis of a low memory implementation of the Or-
thogonal Matching Pursuit greedy strategy, which is termed Self Projected Matching
Pursuit, is presented. This approach provides an iterative way of solving the least squares
problem with much less storage requirement than direct linear algebra techniques. Hence,
it is appropriate for solving large linear systems. Furthermore, the low memory require-
ment of the method suits it for massive parallelization, via Graphics Processing Unit, to
tackle systems which can be broken into a large number of subsystems of much smaller
dimension.

Keywords: Sparse Representation; Greedy Pursuit Strategies; Orthogonal Matching Pursuit;
Self Projected Matching Pursuit; Least Squares of Large Systems; Iterative Projections.

1 Introduction

The process by which a signal is transformed, in order to significantly reduce its dimension-
ality, is refereed to as sparse representation of the signal. For the class of signals known as
compressible, such as images and audio signals, this process can be realized without much
loss of information content. The degree of the achieved sparsity depends on the suitability of
the transformation for representing the particular signal. Traditional methods implement the
transformation using fast orthogonal transforms. However, much higher levels of sparsity are
attained, in many cases, if the transformation is carried out using a large redundant set called
a ‘dictionary’. The gain comes at expenses of increment in complexity. However, advances

1



in computational facilities, including multiprocessors for personal computers, have encouraged
the developments of techniques for signal representation using dictionaries. For the most part
these techniques comprise strategies based on minimization of the l1-norm [1–3] and the so-
called ‘greedy strategies’. The latter consist in adaptively constructing a signal representation
as a linear superposition of elements taken from the dictionary. In this contribution we focus
on the analysis of a low memory implementation of a particular method within this category.

Greedy strategies have been the subject of extensive research in the last two decades [4–8,
10–19]. The simplest, yet very effective greedy algorithm for the sparse representation of large
signals, was introduced to the signal processing community in [4] with the name of Matching
Pursuit (MP). It had previously appeared as a regression technique in statistics though [20,21],
where the convergence property was established. While MP converges asymptotically to a signal
in the linear span of the dictionary, or to its orthogonal projection if the signal is out of that
space, the approach is not stepwise optimal because it does not yield an orthogonal projection
at each step. Consequently, in addition to failing to minimize the norm of the approximation
error at each step, it may select linearly dependent elements. As illustrated in [22], this feature
significantly compromises sparsity in some cases.

A refinement to MP, which does yield an orthogonal projection at each iteration, is refer-
eed to as Orthogonal Matching Pursuit (OMP) [5]. This technique is broadly used for signal
processing and the analysis of its suitability in the context of some applications is a topic of
resent research [23–26]. If implemented by direct methods, the OMP approach is very effective
up to some dimensionality. When processing large signals, however, the storage requirement of
the implementations by direct methods frequently exceed the memory capacity of a personal
computer used for research purposes. Some techniques addressing this matter are known as
Gradient Pursuits [16]. They are based on approximations of the conjugate gradient method.
While these techniques produce a satisfactory approximation to the OMP criterion in many
practical situations, they are not guaranteed to choose linearly independent atoms and may not
be satisfactory in cases where the basic MP method performs badly. An alternative implemen-
tation of OMP, which requires much less memory than standard implementations is considered
in [22]. The approach is termed Self Projected Matching Pursuit (SPMP), because it produces
the orthogonal projection of the signal, at each iteration, by applying MP using a dictionary
consisting only of the already selected elements. The SPMP implementation of OMP has been
shown to be effective for sparse representation of astronomical images [22] and X-Ray medical
images [27]. The convenient feature in that context is that SPMP fully exploits the separability
of dictionaries. In the case of one dimensional signals such as melodic music, which are well
approximated by trigonometric dictionaries, the SPMP approach allows to implement OMP
without having to save the dictionary and performs the calculation via the Fast Fourier Trans-
form [28]. In addition to its suitability for solving the least squares problem of large systems, or
systems which otherwise would require large memory availability, the SPMP algorithm has been
shown appropriate for implementations in Graphics Processing Unit (GPU) to tackle systems
which can be broken into a large number of subsystems of smaller dimension [29]. Nevertheless,
until now the method had not been analyzed. Hence, this work focusses on the convergence
and numerical analysis of the SPMP approach.

The paper is organized as follows: Sec. 2 recalls the SPMP algorithm, proves the geometrical
convergence rate of the self projection step and develops its numerical analysis. In Sec. 3 the
applicability of the method is extended by dedicating the algorithm to the approximation of
non stationary signals by partitioning. The final conclusions are presented in Sec. 4.
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2 Self Projected Matching Pursuit (SPMP)

Before reviewing the general SPMP technique let’s define some basic notation: R and N rep-
resent the sets of real and natural numbers, respectively. Boldface fonts are used to indicate
Euclidean vectors or matrices and standard mathematical fonts to indicate components, e.g.,
d ∈ RN is a vector of N -components d(i) ∈ R , i = 1, . . . , N and A ∈ RNx×Ny a matrix of
elements A(i, j) ∈ R , i = 1, . . . , Nx, j = 1, . . . , Ny. The transpose of A is denoted as A>.
The operation 〈·, ·〉 indicates the Euclidean inner product and ‖ · ‖ the induced norm, i.e.
‖d‖2 = 〈d,d〉, with the usual inner product definition: For g ∈ RN and f ∈ RN

〈f ,g〉 =
N∑
i=1

f(i)g(i). (1)

Let’s consider a finite set D of M of normalized vectors D = {dn ∈ RN ; ‖dn‖ = 1}Mn=1 and let’s
define SM = span(D), which could be RN . For M > dim(SM) the set D is called a dictionary
and the elements are called atoms. Given a signal, as a vector f ∈ RN , the k-term atomic
decomposition for its approximation takes the form

fk =
k∑

j=1

c(j)d`j . (2)

The problem of how to select from D the smallest number of k atoms d`j , j = 1 . . . , k, such
that ‖fk − f‖ < ρ, for a given tolerance parameter ρ, is an NP-hard problem [6]. In practical
applications one looks for ‘tractable sparse’ solutions. This is to say a representation involving
a number of k-terms, with k acceptably small in relation to N . The simplest approach to tackle
this problem is MP. It evolves by successive approximations as follows [4]: Setting k = 0 and
starting with an initial approximation f0 = 0 and residual r0 = f , the algorithm progresses by
sub-decomposing the k-th order residual in the form

rk =
〈
d`k+1

, rk
〉

d`k+1
+ rk+1, (3)

with the atom d`k+1
corresponding to the index selected as

`k+1 = arg max
n=1,...,M

|
〈
dn, r

k
〉
|. (4)

This atom is used to update the approximation fk as

fk = fk−1 +
〈
d`k+1

, rk
〉

d`k+1
. (5)

From (3) it follows that ‖rk+1‖ ≤ ‖rk‖, since

‖rk‖2 = |
〈
d`k+1

, rk
〉
|2 + ‖rk+1‖2. (6)

Lemma 1. In the limit k → ∞, the sequence fk given in (5) converges to f , if f ∈ SM , or to
P̂SM f , the orthogonal projection of f onto SM , if f /∈ SM .

This lemma is just a particular case of the well established and more general convergence
results for MP [4, 8, 21]. However, for pedagogical reasons, due to its crucial importance for
this work, we present here a particular proof holding for finite dimension spaces which, for this
reason, is very simple.
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Proof. We notice, from (6), that ‖rk‖2 is a decreasing sequence which, since ‖rk‖2 ≥ 0 for all k,
is bounded. It is a classic result of analysis that a decreasing and bounded sequence converges
to the infimum [46], i.e., limk→∞ ‖rk‖2 = b. We prove next that b = 0. Since

‖rk+1‖2 = ‖rk‖2 − |
〈
d`k+1

, rk
〉
|2,

taking limk→∞ of both sizes, we have:

b2 = b2 − lim
k→∞
|
〈
d`k+1

, rk
〉
|2.

Thus, limk→∞ |
〈
d`k+1

, rk
〉
| = 0, which using (4) implies limk→∞ |

〈
dn, r

k
〉
| = 0, n = 1, . . . ,M.

Consequently, either limk→∞ rk = 0 or, if the dictionary is incomplete, limk→∞ rk is orthogonal
to all the elements in D. This result is readily obtainable here, because of the finite dimension
framework.

2.1 Adding Self Projections

The obvious way of improving the MP algorithm is to calculate the coefficients in (2) so as
to minimize the norm of the residual error ‖f − fk‖ for every value of k. In other words, to
require that, at each iteration, the coefficients in (2) should fulfill the condition fk = P̂Skf , where
Sk = span{d`j}kj=1. Hence the name, OMP, of the approach achieving this. When the dimension
of the problem is such that memory requirement is not an issue, a number of convenient direct
linear algebra methods for performing the projection P̂Skf are available [31–33]. However, it
is the need of calculating orthogonal projections with much less storage demands than direct
methods what originated the SPMP approach described below.

SPMP relays on Lemma 1 to realize the orthogonal projection step and produce an alterna-
tive iterative implementation of the OMP approach. Given a signal and a dictionary it proceeds
as follows [22]: Set L0 = {∅}, f0 = 0 and r0 = f . Starting from k = 1, at each iteration k
implement the steps below.

i) Apply the MP criterion for selecting one atom from D, i.e., select `k such that

`k = arg max
n=1,...,M

|
〈
dn, r

k−1
〉
|. (7)

Update the set Lk = Lk−1 ∪ `k. Compute c(k) =
〈
d`k , r

k−1
〉
, update the approximation

of f as fk = fk−1 + c(k)d`k , and evaluate the new residual rk = f − fk.

ii) Realize the orthogonal projection by subtracting from rk the component in Sk = span{d`i}ki=1,
via the MP algorithm, as follows. Let ε be a given tolerance for the projection error. Set
j = 1, rk,0 = rk and at iteration j implement the steps below:

(a) Choose, out of the set Lk the index lj such that

lj = arg max
i=1,...,k

∣∣〈d`i , r
k,j−1

〉∣∣ .
If
∣∣〈dlj , r

k,j−1
〉∣∣ < ε stop. Otherwise continue with the next steps.

(b) Use
〈
dlj , r

k,j−1
〉

to update the coefficient c(lj), the approximation fk, and the resid-
ual, as

c(lj) ← c(lj) +
〈
dlj , r

k,j−1
〉
,

fk ← fk +
〈
dlj , r

k,j−1
〉

dlj ,

rk,j = rk,j−1 −
〈
dlj , r

k,j−1
〉

dlj .
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(c) Increment j ← j + 1 and repeat steps (a) → (c) until the stopping criterion is met.

Continue with steps i) - ii) until, for a required tolerance error ρ, the condition ‖rk‖ < ρ
is reached.

As proved in Lemma 1, by means of the self-projections implemented by steps (a) – (c), at
each iteration k the SPMP algorithm asymptotically delivers an approximation fk = P̂Skf with

residual rk = f − P̂Skf . The next Lemma stresses the fact that, as a consequence, the SPMP
algorithm selects only linearly independent atoms.

Lemma 2. If the atoms d`i , i = 1, . . . , k are selected by criterion (7), and the residual rk is
refined by self projections at each iteration, the selected atoms constitutes a linearly independent
set.

Proof. For k = 1 the lemma is triviality true. Assuming that it is true for the first k atoms we
prove that it is true for k + 1 atoms.

Suppose, on the contrary, that
∣∣〈d`k+1

, rk
〉∣∣ > 0 and d`k+1

=
∑k

i=1 aid`i , where ai, i =

1, . . . , k are numbers such that
∑k

i=1 |ai|2 > 0. Since at the iteration k the SPMP algorithm

asymptotically gives a residual that satisfies rk = f − P̂Skf we have:

〈
d`k+1

, rk
〉

=

〈
k∑

i=1

aid`i , f − P̂Skf

〉
= 0,

which contradicts the assumption that
∣∣〈d`k+1

, rk
〉∣∣ > 0. It is concluded then that d`k+1

cannot
be expressed as a linear combination of the previously selected atoms.

2.2 Convergence rate of the self projection steps

We start by recalling some properties of symmetric matrices, which will be used for the analysis.
Let the atoms d`i , i = 1, . . . , k be the columns of the matrix Sk. Since the atoms are linearly
independent, the symmetric matrix Hk = SkS

>
k has k nonzero eigenvalues, which are also the

k eigenvalues of the Gram matrix Gk = S>k Sk. In terms of the corresponding eigenvectors Hk

can be expressed as
Hk = UkΛkU

>
k , (8)

where Λk is a diagonal matrix, containing in the diagonal its eigenvalues λki > 0, i = 1, . . . , k
in descending order. Since all the atoms are normalized, it holds that

Trace(Hk) =
k∑

i=1

λki = k.

This relation implies that kλkk ≤ k ≤ kλk1, which ensures that λkk ≤ 1. The columns of matrix
Uk are the normalized eigenvectors of Hk corresponding to the eigenvalues λki > 0, i = 1, . . . , k.
Since Hk is symmetric these eigenvectors constitute an orthonormal basis for Sk = Range(Sk).
Accordingly, the orthogonal projector P̂Sk admits a representation of the form:

P̂Sk = UkU
>
k . (9)

Then, the following inequality arises from (8) and (9),

‖S>k g‖2 =
〈
g,SkS

>
k g
〉
≥ λkk‖P̂Skg‖2, ∀g ∈ RN . (10)
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This inequality will be used for the analysis of the convergence rate of the self-projection step.
Let’s recall that such a step operates by setting rk,0 = rk and at the j-th iteration decomposing
the residual rk,j as

rk,j = rk,j−1 −
〈
dlj , r

k,j−1
〉

dlj , (11)

where
lj = arg max

i=1,...,k
|
〈
d`i , r

k,j−1
〉
|. (12)

Since P̂Skdlj = dlj , applying the operator P̂Sk on both sides of (11) we have,

P̂Skr
k,j = P̂Skr

k,j−1 −
〈
dlj , r

k,j−1
〉

dlj ,

and consequently
‖P̂Skr

k,j−1‖2 = ‖P̂Skr
k,j−1‖2 − |

〈
rk,j−1,dlj

〉
|2. (13)

By definition of the index lj (cf.(12)), and using (10), we assert that

|
〈
dlj , r

k,j−1
〉
|2 ≥ 1

k

k∑
i=1

|
〈
di, r

k,j−1
〉
| = 1

k
‖S>k rk,j−1‖2 ≥ λkk

k
‖P̂Skrk,j−1‖2.

Then, we finally obtain

‖P̂Skr
k,j‖2 ≤

(
1− λkk

k

)
‖P̂Skr

k,j−1‖2, (14)

and applying the inequality back j-times

‖P̂Skr
k,j‖2 ≤

(
1− λkk

k

)j

‖P̂Skr
k,0‖2 ≤

(
1− λkk

k

)j

‖rk,0‖2. (15)

The above bound indicates the geometric convergence to a residual vector having no component
in Sk. It also shows the dependence of the convergence rate on the smallest eigenvalue of the
Gram matrix Gk of the selected atoms up to iteration k. According to the interlacing theorem
( [34], p 189–190) it is true that λk+1

k+1 < λkk. Hence, in general one could expect the convergence
rate of the self projection to slow down as the iterative selection of atoms progresses.

Remark 1: The geometric convergence of MP in terms of the dictionary’s coherence [13]
is derived in [14] for the case of quasi incoherent dictionaries. That condition is too stringent
for signals of practical interest, which are far more compressible when using a highly coherent
dictionary than when using an orthogonal or quasi orthogonal basis. Contrarily, the expression
(15) gives a realistic appreciation with respect to the broad range of effective applicability of
the SPMP approach. Regardless of the dictionary coherence, SPMP can be an effective low
memory implementation of the OMP greedy strategy as long as the least squares problem, for
the determination of the coefficients in the decomposition (2), is a well posed problem.

The numerical accuracy of most used direct methods for calculating a projection is well
studied [31–33,35,38–40] and also the subject of resent research in particular contexts [41–43].
Contrarily, the numerical analysis of the SPMP algorithm has not yet been addressed. There-
fore, the next section discusses the accuracy of the self projection procedure, when implemented
in finite precision arithmetic.
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2.3 On the accuracy of self projections

Since the self projection steps (a) - (c) in Sec. 2.1 are based on recursive calculation of inner
products, we base the numerical analysis of the method on two basic results. As usual the
evaluation of an arithmetic operation is denoted as fl(·) and the unit roundoff as u. Thus, for
f1 ∈ RN and f2 ∈ RN the numerical error in the calculation of the inner product 〈f1, f2〉 is
bounded as ( [32], p. 99)

|fl(〈f1, f2〉)− 〈f1, f2〉 | ≤ Nu‖f1‖‖f2‖+ O(u2). (16)

The computation of the saxpy operation αf1 + f2, with α a number, is bounded as ( [32], p.
100)

‖fl(αf1 + f2)− (αf1 + f2)‖ ≤ u(2‖αf1‖+ ‖f2‖) + O(u2). (17)

Then, denoting the computed quantities by r̄k,j and by l̄j the indices selected with the computed
quantities, using (17) we have

r̄k,j = r̄k,j−1 − fl(
〈
r̄k,j−1,dl̄j

〉
)dl̄j + δr̄k,j, (18)

where, since ‖dl̄j‖ = 1,

‖δr̄k,j‖ ≤ u
(
‖r̄k,j−1‖+ 2|fl(

〈
r̄k,j−1,dl̄j

〉
)|
)

+ O(u2).

Through straightforward manipulation we further have

‖δr̄k,j‖ ≤ u
(
‖r̄k,j−1‖+ 2|fl(

〈
r̄k,j−1,dl̄j

〉
)−

〈
r̄k,j−1,dl̄j

〉
|+ 2|

〈
r̄k,j−1,dl̄j

〉
|
)

+ O(u2)

so that, using (16), we finally obtain

‖δr̄k,j‖ ≤ u
(
3‖r̄k,j−1‖+ 2Nu‖r̄k,j−1‖

)
+ O(u2) = 3u‖r̄k,j−1‖+ O(u2). (19)

Moreover, (18) can be rewritten as

r̄k,j = r̄k,j−1 −
〈
r̄k,j−1,dl̄j

〉
dl̄j + ∆r̄k,j, (20)

where ∆r̄k,j = −fl(
〈
r̄k,j−1,dl̄j

〉
)dl̄j +

〈
r̄k,j−1,dl̄j

〉
dl̄j + δr̄k,j. Using now (19) and (16) we have

the bound for the norm of ∆r̄k,j in the form

‖∆r̄k,j‖ ≤ Nu‖r̄k,j−1‖+ 3u‖r̄k,j−1‖+ O(u2) = u(N + 3)‖r̄k,j−1‖+ O(u2). (21)

Thus, due to rounding errors instead of the theoretical result ‖rk,j‖ ≤ ‖rk,j−1‖ we only have

‖rk,j‖ ≤ (1 + (N + 3)u)‖rk,j−1‖+ O(u2) ≤ (1 + (N + 3)u)j|r̄k,0‖+ O(u2).

This inequality gives rise to the recurrence for bounding the total error in the calculation of rk,j.
In terms of the matrices T̄j = (I − dl̄jd

>
l̄j

), where I ∈ RN×N is the identity matrix, equation

(20) can be expressed in the form

r̄k,j = T̄jT̄j−1 · · · T̄1r
k,0 + ∆r̄k,jT ,

where ∆r̄k,jT =
∑j

i=1 ∆r̄k,i. Since all the ∆r̄k,i, i = 1, . . . , j are bounded as in (21) it follows

that ∆r̄k,jT is bounded as

‖∆r̄k,jT ‖ ≤
j∑

i=1

‖∆r̄k,i‖ ≤ u(N + 3)

j∑
i=1

(1 + (N + 3)u)i‖rk,0‖+ O(u2). (22)

7



Restricting considerations to Nu� 1 we have the approximate bound

‖∆r̄k,jT ‖ / (N + 3)ju‖rk,0‖+ O(u2). (23)

Even if, as discussed in Sec. 2.2, in the limit j → ∞ the convergence rk,j → f − P̂Skf is
theoretically guaranteed, the size of ∆r̄k,jT gives a limit for the maximum number of recursive
operations. Beyond that limit the calculations in the self projection algorithm are dominated
by rounding errors. However, in situations of practical interest the numerical convergence is
fast enough for the algorithm to operate within the boundary of reliability established in (23).

2.4 Numerical Example I

We illustrate here the suitability of the SPMP approach for tackling the following large di-
mension problem: The representation by non-orthogonal frequency components of a flute tone,
consisting of N = 61285 points, depicted in Fig.1.

0 1 2 3 4 5 6

x 10
4

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Figure 1: Baroque flute tone C#5. Sound clip Csharp5.baroque.wav available on
https://newt.phys.unsw.edu.au/music/flute/baroque/Csharp5.baroque.html

As oppose to the melodic music clips (which will be considered in Sec.3.1) the flute tone
is characterized by being stationary. This implies that its frequency components do not vary
along the clip and this is approximated with fewer components without partitioning the signal.
For the approximation we use the trigonometric dictionaries Dcs = Dc ∪ Ds, with Dc and Ds

as given below

Dc = { 1

wc(n)
cos(

π(2i− 1)(n− 1)

2M
), i = 1, . . . , N}Mn=1. (24)

and

Ds = { 1

ws(n)
sin(

π(2i− 1)n

2M
), i = 1, . . . , N}Mn=1, (25)

with

wc(n) =


√
N if n = 1,√
N
2

+
sin(

π(n−1)
M

) sin(
2π(n−1)N

M
)

2(1−cos(
2π(n−1)

M
))

if n 6= 1.
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and

ws(n) =


√
N if n = 1,√
N
2
− sin(πn

M
) sin( 2πnN

M
)

2(1−cos( 2πn
M

))
if n 6= 1.

The trigonometric dictionary Dcs with redundancy four has been shown to produce high qual-
ity approximation of music, involving much less terms than what are needed when using an
orthonormal trigonometric basis [28,45].

A particularity of dictionary Dcs is that, because by padding with zeros the inner products
with its elements can be computed via Fast Fourier Transform, the calculations are fast and
there is no need to store the dictionary as such (otherwise in this example it would be a matrix
of dimension 61285× 245140).

The quality of the k-term approximation fk of a signal f is assessed by the Signal to Noise
Ratio (SNR), which is defined as

SNR = 10 log10

‖f‖2

‖f − fk‖2
.

In this numerical example the approximation error is set to yield a SNR of 35dB. This value
produces a high quality approximation of the signal. It corresponds to a residual error with
very small mean (O(10−6)) and very small variance (O(10−6)). For an approximation of this
quality the SPMP algorithm uses K = 373 dictionary atoms while the basic MP uses K = 450
atoms.

As already mentioned, music signals which are not stationary are to be approximated by
partitioning. The next section discusses an application of the SPMP methodology dedicated
to that type of processing.

3 Hierarchized Block Wise SPMP

The Hierarchized Block Wise (HBW) version of pursuit strategies is an implementation of
those techniques dedicated to approximating by partitioning. The technique approximates
each element of a signal partition independently of each other, but links the approximations by
a global constraint on sparsity [44,45]. The approach simply ranks the partition units for their
sequential stepwise approximation.

Let’s suppose that a given signal f is split into Q disjoint ‘blocks’ fq, q = 1, . . . , Q, where

each fq is an element of RNb , with Nb = N/Q. Denoting by Ĵ the concatenation operator, the

signal f ∈ RN is ‘assembled’ from the blocks as f = Ĵ
Q

q=1fq. This operation implies that the
first N1 components of the vector f are given by the vector f1, the next N2 components by the
vector f2 and so on. The HBW version of SPMP for approximating the signal’s partition is
implemented by the following steps.

1) For q = 1, . . . , Q set r0
q = fq, f0

q = 0, Lq
0 = ∅ and kq = 1. Initialize the algorithm by

selecting the ‘potential’ first atom for the atomic decomposition of every block q, according
to the MP criterion:

`qkq = arg max
n=1,...,M

∣∣〈dn, r
kq−1
q

〉∣∣ , q = 1, . . . , Q.

2) Select the block q? such that

q? = arg max
q=1,...,Q

∣∣∣〈d`qkq
, rkq−1

q

〉∣∣∣ .
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Update the set Lq?

kq?
= Lq?

kq?−1 ∪ `
q?

kq?
and the atomic decomposition of the block q? by

incorporating the atom d
`q
?

kq?

i.e., use cq
?
(kq?) =

〈
d
`q
?

kq?

, r
kq?−1
q?

〉
to compute

f
kq?
q? = f

kq?−1
q? + cq

?

(kq?)d`q
?

kq?

,

r
kq?
q? = fq? − f

kq?
q? .

If kq? > 1 starting from j = 1, rk,0q? = rkq? apply the self projection step of (a) → (c) as
indicated below.

(a) Choose, out of the set Lq?

kq?
= {`q

?

i }
kq?

i=1, the index l such that

l = arg max
i=1,...,kq?

∣∣∣〈d
`q
?

i
, rkq? ,j−1

〉∣∣∣ .
If
∣∣〈dl, r

kq? ,j−1
〉∣∣ < ε stop. Otherwise proceed with the next step.

(b) Use
〈
dl, r

kq? ,j−1
〉

to update the coefficient cq
?
(l), the approximation f

kq?
q? , and the

residual as

cq
?

(l) ← cq
?

(l) +
〈
dl, r

kq? ,j−1
〉
,

fkq? ← fkq? +
〈
dl, r

kq? ,j−1
〉

dl,

rkq? ,j = rkq? ,j−1 −
〈
dl, r

kq? ,j−1
〉

dl.

(c) Increment j ← j + 1 and repeat steps (a) → (c) until the stopping criterion is met.

3) Check if, for the given numbers K the condition
∑Q

q=1 kq = K has been met. Otherwise:

• Increase kq? ← kq? + 1.

• Select a new potential atom for the atomic decomposition of block q?

`q
?

kq?
= arg max

n=1,...,M

∣∣∣〈dn, r
kq?−1
q?

〉∣∣∣ .
• Repeat steps 2) and 3).

Remark 2: Notice that the memory requirements of the SPMP approach and its HBW version
are equivalent to that of the MP approach and its HBW version, respectively. This implies
a significant saving in memory with respect of the standard implementations of OMP and
the HBW version of it. Certainly, for the implementation of the orthogonal projection step,
through Gram Schmidt orthogonalization for instance, the OMP approach would require to
construct kq vectors, each of dimension Nb. Thus, its HBW version would need to save these
vectors for each of the Q blocks, only for the calculation of the projection. On the contrary,
the HBW-SPMP implementation saves directly the coefficients of the approximation. Thereby
the storage demands for the projection step are reduced from O(NbK) to O(K).
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3.1 Numerical Example II

We construct now the atomic decomposition of the Pop Piano and Classic Guitar clips shown
in Fig. 2. Both clips consists of N = 262144 samples at 44100Hz each (5.94 secs length). The
global sparsity of the signal approximation is measured by the Sparsity Ratio (SR) which is

defined as SR =
N

K
, where K is the total number of coefficients in the signal representation.

Hence, the larger the value of SR is the smaller the number of frequency components needed
for the approximation.

0 1 2 3 4 5 6
−0.5

0

0.5

                                                                                 secs

0 1 2 3 4 5 6
−0.5

0

0.5

                                                                                                         secs

Figure 2: Pop Piano (top graph) and Classic Guitar music signals. Both clips consist of N = 262144
samples at 44100Hz each (5.94 secs length).

The convenience of applying the HBW version of a greedy approach for approximating by
partitioning using the dictionary introduced in Sec. 2.4 was previously discussed in [45]. Here
we are simply extending the applicability of the HBW-OMP approach by implementing it via
SPMP. Certainly, the numerical study of this section would not be possible to realize otherwise
in a standard computer.

The sparsity results of the clips in Fig. 2 are shown in Fig. 3, for the MP, HBW-MP, SPMP,
HBW-SPMP approaches and partitions of unit size Nb equal to 1024, 2048, 4096, and 8192
samples. For larger values of Nb the sparsity does not improve significantly. The quality of
the approximation is fixed to yield a SNR of 35dB. As observed in Fig. 3 for the two clips in
Fig. 2 the gain in sparsity achieved by implementing the SPMP approach in the HBW manner
is significant. Note: The MATLAB functions implementing the methods, as well as the signals
used in the numerical examples, have been made available on [47].

4 Conclusions

The geometric convergence of the SPMP algorithm, which implements the OMP greedy strategy
by means of the MP one, was derived. The orthogonal projection step, intrinsic to the OMP
method, is realized within the SPMP framework by subtraction from the residual error its

11



1024 2048 4096 8192
10

12

14

16

18

20
SR values for the Pop Piano Clip

 

 

HBW−SPMP

SPMP

HBW−MP

MP

1024 2048 4096 8192
10

14

18

22

26

30

34
SR values for the Classic Guitar Clip

 

 

HBW−SPMP

SPMP

HBW−MP

MP

Figure 3: SR vs partition unity size Nb = 1024, 2048, 4096 and 8192 samples for the music clips of
Fig. 2. The graph on left corresponds to the Pop Piano and the other to the Classic Guitar.

approximation using the MP algorithm with a dictionary consisting only of the already selected
atoms, up to the particular step. Thus, the memory requirements are kept within the same
scale as for MP. The bound for the self projection convergence rate (c.f. (15)) clearly highlights
the broad range of cases for which the OMP greedy strategy can be implemented through the
SPMP method. The cases for which the convergence could become very slow fall within the
class of ill posed problems.

The analysis of the accuracy of the projection step, when implemented in finite precision
arithmetics, produced a meaningful upper bound relating the number of iterations with the
dimension of system and the unit roundoff. This worst-case behavior bound confirms that the
SPMP method is suitable to be applied to solve well posed problems for which the geometric
convergence is fast. Otherwise, as the number of iterations increases the accuracy of the ap-
proach would be dominated by roundoff errors. Nevertheless, a number of applications to real
world signals [22,27–29] have already confirmed that the approach is of assistance for practical
implementations of the OMP greedy strategy in situations where, due to memory requirements,
direct linear algebra techniques cannot be applied.

The HBW extension of a pursuit strategy for approximating a signal partition was considered
in relation to the SPMP implementation for reduction in memory requirements. The suitability
of the technique was highlighted by numerical tests which, due to memory limitations, could
not have been realized in a standard computer by other implementations of OMP.
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