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Abstract. We prove global Lipschitz regularity for a wide class of convex
variational integrals among all functions in W 1,1 with prescribed (sufficiently

regular) boundary values, which are not assumed to satisfy any geometrical

constraint (as for example bounded slope condition). Furthermore, we do not
assume any restrictive assumption on the geometry of the domain and the

result is valid for all sufficiently smooth domains. The result is achieved with

a suitable approximation of the functional together with a new construction
of appropriate barrier functions.

1. Introduction

In this paper we are concerned with the existence of (unique) scalar-valued Lip-
schitz solutions to the Dirichlet problem

(1.1)
−div (a(|∇u|)∇u) = 0 in Ω,

u = u0 on ∂Ω,

where Ω ⊂ Rd is a bounded, regular domain and with regular prescribed boun-
dary values u0. In this setting, the existence of a weak solution to the Dirichlet
problem (1.1) is equivalent to the existence of a minimizer of a related (convex)

variational integral in the Dirichlet class u0 + W 1,1
0 (Ω), and we may equivalently

look for a function u ∈ u0 +W 1,1
0 (Ω) such that for all smooth, compactly supported

test function ϕ ∈ D(Ω) we have

(1.2)

∫
Ω

F (|∇u|) dx ≤
∫

Ω

F (|∇u0 +∇ϕ|) dx,

where F and a are linked via the identity

(1.3) F ′(s) = a(s)s for all s ∈ R+.
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For the later use, it is convenient to summarize the formulas following from (1.3)
at this place,

(1.4)

a(s) =
F ′(s)

s
, a′(s) =

F ′′(s)

s
− F ′(s)

s2
,

s
a′(s)

a(s)
= s

F ′′(s)

F ′(s)
− 1,

which are valid for any s ∈ R+.
We study the existence of Lipschitz minimizers of the problem (1.2) in a wide

class of convex variational integrals ranging from nearly linear growth right up to
exponential one including also these borderline cases. We can also treat functio-
nals with the so-called (p, q)-structure, see [11]. A classical example of oscillating
function between p and q growth is the following function F : [0,∞)→ [0,∞)

(1.5) F (t) :=

{
tp if 0 ≤ t ≤ t0,

t(
p+q
2 + p−q

2 sin log log log t) if t > t0,

where t0 > 0 is chosen so that sin log log log t0 = 1 (this function was first given as
an example in [5]).

For scalar functions the Lipschitz continuity of minimizers has been investigated
using the bounded slope condition or the barrier functions. When F is convex,
the validity of the so-called bounded slope condition (BSC) due to Hartmann,
Nirenberg and Stampacchia (which is a geometrical assumption on the boundary
data u0) ensures the existence of a minimizer among Lipschitz functions, see [14]. In
addition, if F is also strictly convex, every continuous W 1,1- minimizer is Lipschitz
continuous on Ω, see [2, 3]. Local Lipschitz regularity of solutions was proved by
F. H. Clarke in [4] for strictly convex, p-coercive (p > 1) functions F under a
weaker condition on u0, the so-called lower bounded slope condition, a condition
corresponding to the left-sided version of the BSC, see also [12].

Let us also mention the Perron method [13], originally developed for the Laplace
equation, and generalized for analyzing Dirichlet boundary value problems to vari-
ous elliptic partial differential equations. The idea is to construct an upper solution
of the Dirichlet problem as an infimum of a certain upper class of supersolutions. A
lower solution is constructed similarly using a lower class of subsolutions, and when
the upper and lower solutions coincide we obtain a solution. In the Perron method,
the boundary regularity is essentially a separate problem from the existence of a
solution. The use of barrier functions as a tool for studying boundary regularity
seems to go back to the Lebesgue paper [9]. In [10] Lebesgue characterised regular
boundary points in terms of barriers for the linear Laplace equation. The extension
of Perron’s method and the method of barriers to the nonlinear p-Laplacian was
initiated by Granlund, Lindqvist and Martio in [7] and developed in a series of
papers (see, for example, the accounts given in Heinonen et al. [8]).

In this paper, the attainment of the boundary data is performed by constructing
a barrier at regular points. It seems that the simplest condition for regular points
is the exterior ball condition.

Definition 1.1. A domain Ω satisfies the uniform exterior ball condition if there
exists a number r0 > 0 such that for every point x0 ∈ ∂Ω there is a ball Br0(x0)
such that Br0(x0) ∩ Ω = {xo}.
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Remark 1.1. Convexity or C1,1-regularity of the domain are sufficient for the
uniform exterior ball condition, see e.g. [6], thus, Theorem 1.1 holds in particular
for all convex domains of class C1 and for arbitrary domains of class C1,1.

In the linear case the method of the barrier function for domains satisfying ex-
terior ball condition has been presented in [1]. More precisely, in [1] the authors
study the minimization of convex, variational integrals of linear growth. Due to
insufficient compactness properties of these Dirichlet classes, the existence of so-
lutions does not follow in a standard way by the direct method in the calculus
of variations. Assuming radial structure, they establish a necessary and sufficient
condition on the integrand such that the Dirichlet problem is in general solvable, in
the sense that a Lipschitz solution exists for any regular domain and all prescribed
regular boundary values, via the construction of appropriate barrier functions in
the spirit of Serrin’s paper [14].

In this paper, we significantly generalize the method used in [1] and we are able
to treat also the case of variational integrals ranging from nearly linear growth right
up to exponential one. Our main result is the following.

Theorem 1.1. Let F ∈ C2(R+) be a strictly convex function with lims→0 F
′(s) = 0

which satisfies, for some constants C1, C2 > 0,

C1s− C2 ≤ F (s) for all s ∈ R+,(1.6)

lim inf
s→∞

s2−δF ′′(s)

F ′(s)
≥ 2.(1.7)

Then for arbitrary domain Ω of class C1 satisfying the uniform exterior ball con-
dition and arbitrary prescribed boundary value u0 ∈ C1,1(Ω) there exists a unique
function u ∈ C0,1(Ω) solving (1.1).

Remark 1.2. In fact (1.7) can be relaxed and replaced by

lim inf
s→∞

s2F ′′(s)

(ln s)1+δF ′(s)
≥ 2.(1.8)

Let us emphasize the key novelty of the result. First, we do not require any
geometrical constraint on boundary data and/or on the domain and the result is
valid for all C1,1 domains and arbitrary u0 ∈ C1,1(Ω). Furthermore, we do not
assume any specific growth condition on F as all we need is the sufficient convexity
assumption (1.7). It is worth noticing that the assumption (1.7) is not only sufficient
for getting global Lipschitz solutions but also necessary for F having linear growth,
as it is shown in [1]. Last, we are also able to cover the case of logarithmic,
exponential or even oscillating growth condition for F , see e.g. the example given
in (1.5), which also satisfies (1.7). Furthermore, we are even able to go beyond the
logarithmic or exponential growth. Indeed, we define

F (s) = sη(s) with 1 ≤ η(s)
s→∞→ ∞,

where η is smooth non-decreasing and fulfils for all s > 0

2η′(s) + sη′′(s) > 0.

Then F is strictly convex and satisfies (1.6). The condition (1.7) is equivalent to

lim inf
s→∞

s2−δ(2η′(s) + sη′′(s))

η(s) + sη′(s)
≥ 2.
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Finally, choosing η(s) for example such that η(s) ∼ ee
s

as s→∞ or such that for
some α > 0 we have η(s) ∼ lnα s as s → ∞, then (1.7) remains valid. Hence, we
see that even faster growth than exponential or slower growth than logarithmic are
covered by our result.

The proof will be given by an “approximation” scheme. First, we approximate F
with functionals Fλ that are quadratic for large values of λ. In particular, they are
strictly convex and so they admit unique minimizers uλ. Then, we construct lower
and upper barriers to uλ using an appropriate auxiliary problem. The link with
our original problem (true barrier function, see section 2.5) is achieved with the
selection of the parameter λ large enough in order to guarantee the upper bound.
Using the barrier function, we are able to get uniform Lipschitz estimates and get
the result in the limit.

2. Proof of Theorem 1.1

This section is devoted to the proof of the result of this paper. The proof will
be given by an “approximation” scheme. This means that for some λ > 0 we shall
approximate the original F by Fλ, which will still fulfill (1.6)–(1.7), will satisfy
Fλ(s) = F (s) for all s ≤ λ but will be quadratic for all s ≥ λ. For such chosen λ,
we find a minimizer uλ to

(2.1)

∫
Ω

Fλ(|∇uλ|) dx ≤
∫

Ω

Fλ(|∇u0 +∇ϕ|) dx

and introduce also the corresponding aλ via the identity

(2.2) F ′λ(s) = aλ(s)s for all s ∈ R+.

Then the minimizer uλ will also solve

(2.3)
−div (aλ(|∇uλ|)∇uλ) = 0 in Ω,

uλ = u0 on ∂Ω.

Finally, our goal will be to specify λ > 0 for which there holds

(2.4) ‖∇uλ‖∞ ≤ λ.

Then we immediately have that (since aλ(s) = a(s) for all s ≤ λ)

div (a(|∇uλ|)∇uλ) = div (aλ(|∇uλ|)∇uλ)
(2.3)
= 0

and consequently, uλ is a solution to (1.1) and therefore also a minimizer to (1.2).
Then due to the uniqueness of the minimizer, we get the claim of Theorem 1.1.

2.1. Approximation Fλ. First, we fix some λ0 such that for all s ≥ λ0 the second
derivative of F exists and is positive. Note that the existence of such λ0 is a
consequence of assumption (1.7). Indeed, we can set λ0 in such a way that

(2.5)
s2−δF ′′(s)

F ′(s)
≥ 1

for all s ≥ λ0. Then for arbitrary λ ≥ λ0 we define the approximative Fλ as follows

(2.6) Fλ(s) :=


F (s) for s ≤ λ,

F (λ) + F ′(λ)(s− λ) +
1

2
F ′′(λ)(s− λ)2 for s > λ.
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Direct computation leads to

F ′λ(s) =

{
F ′(s) for s ≤ λ,
F ′(λ) + F ′′(λ)(s− λ) for s > λ.

(2.7)

F ′′λ (s) =

{
F ′′(s) for s ≤ λ,
F ′′(λ) for s > λ.

(2.8)

With such a definition, it is clear that Fλ satisfies (1.6)–(1.7) with constants C1

and C2. In addition, we see that

(2.9) C3(λ)s2 − C4(λ) ≤ Fλ(s) ≤ C4(λ)(s2 + 1)

and that Fλ is strictly convex. Therefore by using the standard methods of calculus
of variations there exists unique uλ ∈ W 1,2(Ω) solving (2.1). Our goal is to show
(2.4) provided that λ is chosen properly.

The function Fλ is still strictly convex but not necessarily uniformly. Therefore,
we introduce next level of approximation, namely

(2.10) Fλ,µ(s) =
µ

2
s2 + Fλ(s).

This function still satisfies (2.9) with a possibly different constants C3 and C4 but
is uniformly convex. Therefore we can find uλ,µ ∈W 1,2(Ω) that solves

(2.11)

∫
Ω

Fλ,µ(|∇uλ,µ|) dx ≤
∫

Ω

Fλ,µ(|∇u0 +∇ϕ|) dx.

Moreover, due to the standard maximum principle we also have

(2.12) ‖uλ,µ‖∞ ≤ ‖u0‖∞.

In addition, we see that

uλ,µ → uλ in W 1,2(Ω)

as µ→ 0+. Therefore, if we show that

(2.13) ‖∇uλ,µ‖∞ ≤ λ,

then (2.4) follows. Thus, it remains to find some λ ≥ λ0 and some µ0 such that for
all µ ∈ (0, µ0) the estimate (2.13) holds.

2.2. Second derivatives and maximum principle. Starting from this sub-
section, we omit writing subscripts in u to shorten the notation, i.e., we denote
u := uλ,µ, where uλ,µ is the unique minimizer to (2.11).

Due to the definition of Fλ,µ, we see that it is uniformly convex. Therefore we
can use the classical result and due to the regularity of the domain Ω and the
boundary data u0, we know that u ∈W 1,∞(Ω)∩W 2,2(Ω). In addition, defining aλ
by

F ′λ(s) = saλ(s)

we see that u solves

(2.14)
−µ∆u− div (aλ(|∇u|)∇u) = 0 in Ω,

u = u0 on ∂Ω.
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Due to the W 2,2 regularity of the solution, we may now apply Dk := ∂xk onto the
equation and multiply the result by Dku and sum over k = 1, . . . , d to obtain (we
use the Einstein summation convention)

0 = Dk (−µ∆u− div (aλ(|∇u|)∇u))Dku

= −µ
2

∆|∇u|2 −Di ((a′λ(|∇u|)Dk|∇u|Diu+ aλ(|∇u|)Dkiu)Dku)

+ µ|∇2u|2 + (a′λ(|∇u|)Dk|∇u|Diu+ aλ(|∇u|)Dkiu)Dkiu

= −µ
2

∆|∇u|2 − 1

2
Di

(
a′λ(|∇u|)|∇u|Dk|∇u|2

DiuDku

|∇u|2
+ aλ(|∇u|)Di|∇u|2

)
+ µ|∇2u|2 + a′λ(|∇u|)|∇u||∇|∇u||2 + aλ(|∇u|)|∇2u|2.

Next, using the fact that (which follows from (1.4), where we replace F by Fλ)

(2.15) a′λ(s)s = (aλ(s)s)′ − aλ = F ′′λ (s)− F ′λ(s)

s
,

we can rewrite the above identity as

0 = −µ
2

∆|∇u|2 + µ|∇2u|2 − 1

2
Di

(
F ′′λ (|∇u|)Dk|∇u|2

DiuDku

|∇u|2

)
− 1

2
Di

(
F ′λ(|∇u|)

(|∇u|)

(
Di|∇u|2 −Dk|∇u|2

DiuDku

|∇u|2

))
+ F ′′λ (|∇u|)|∇|∇u||2 +

F ′λ(|∇u|)
(|∇u|)

(|∇2u|2 − |∇|∇u||2)

≥ −µ
2

∆|∇u|2 − 1

2
Di

(
F ′′λ (|∇u|)Dk|∇u|2

DiuDku

|∇u|2

)
− 1

2
Di

(
F ′λ(|∇u|)

(|∇u|)

(
Di|∇u|2 −Dk|∇u|2

DiuDku

|∇u|2

))
=: −µ

2
∆|∇u|2 − 1

2
Di

(
aikDk|∇u|2

)
,

where for the inequality we used the convexity of Fλ. Note also that due to the
convexity of Fλ, the matrix aij is positively semidefinite, i.e., for arbitrary ξ ∈ Rd,
there holds

(2.16) aijξiξj ≥ 0.

Finally, if we multiply the resulting inequality by max{0, |∇u|2 − ‖∇u‖2L∞(∂Ω)},
and integrate by parts (note here that due to the regularity of u, such a procedure
is rigorous) and use the fact that the boundary integral vanishes, we deduce that∫

Ω

|∇max{0, |∇u|2 − ‖∇u‖2L∞(∂Ω)}|
2 dx = 0,

which consequently implies that

‖∇u‖L∞ ≤ ‖∇u‖L∞(∂Ω).

Finally, since u = u0 on ∂Ω, we can simplify the above estimate to

(2.17) ‖∇u‖L∞ ≤ ‖∇u0‖L∞(∂Ω) + ‖∂nu‖L∞(∂Ω) ≤ C + ‖∂nu‖L∞(∂Ω) ,



GLOBAL LIPSCHITZ ESTIMATES FOR NONSTANDARD GROWTH 7

where ∂n denotes the normal derivative of u on ∂Ω and C is a constant, which is
independent of λ and µ. Hence, to prove (2.13), we need to show that

(2.18) ‖∂nu‖L∞(∂Ω) ≤ C
with C being independent of λ and µ. Indeed, if (2.18) holds true, then it also
follows from (2.17) that (2.13) holds provided that λ ≥ 2C. The rest of the paper
is devoted to the proof of (2.18), which will be shown via the barrier function
technique.

2.3. Estimates of normal derivatives via barrier functions. Our goal is to
show that for almost all x ∈ ∂Ω there holds

(2.19) |∂nu(x)| ≤ C
with a constat C independent of λ and µ. Notice that since u ∈W 2,2(Ω), we know
that it makes sense to consider ∇u on ∂Ω. Assume for a moment that for given
x0 ∈ ∂Ω we can find ub and ub such that

ub(x0) = ub(x0) = u0(x0)

and fulfilling for all x ∈ Br(x0) ∩ Ω with some r > 0

(2.20) ub(x) ≤ u(x) ≤ ub(x).

Then we have

∂nu(x0) ≤ lim sup
{x∈Ω;x→x0}

u(x)− u(x0)

|x− x0|

≤ lim sup
{x∈Ω;x→x0}

ub(x)− u(x0)

|x− x0|
+ lim sup
{x∈Ω;x→x0}

u(x)− ub(x)

|x− x0|

≤ |∇ub(x0)|

∂nu(x0) ≥ lim inf
{x∈Ω;x→x0}

u(x)− u(x0)

|x− x0|

≥ lim inf
{x∈Ω;x→x0}

ub(x)− u(x0)

|x− x0|
+ lim inf
{x∈Ω;x→x0}

u(x)− ub(x)

|x− x0|
≥ −|∇ub(x0)|.

Consequently

(2.21) |∂nu(x0)| ≤ max{|∇ub(x0)|, |∇ub(x0)|}.
Thus, we can reduce everything just on finding proper barriers ub and ub for which
we can control derivatives independently of the choice of x0. This will be however
done by looking for sub- and super-solutions to an original problem. Hence if we
succeed in finding ub and ub such that

(2.22)
−µ∆ub − div

(
aλ(|∇ub|)∇ub

)
≥ 0 in Ω ∩Br(x0),

ub ≥ u on ∂(Ω ∩Br(x0)),

(2.23)
−µ∆ub − div (aλ(|∇ub|)∇ub) ≤ 0 in Ω ∩Br(x0),

ub ≤ u on ∂(Ω ∩Br(x0))

and satisfying ub(x0) = ub(x0) = u0(x0) then due to the convexity of Fλ we can
deduce (2.20). Thus, it just remains to construct solutions to (2.22) and (2.23) (and
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consequently to fix r > 0) for which we are able to control gradients independently
of x0, λ and µ. Since the procedure of finding barriers ub and ub is in fact the
same, we focus in what follows only on finding a function fulfilling (2.22).

2.4. Prototype barrier function. The prototype barrier function will be found
as a solution to a special problem. We shall define

(2.24)
F̃ ′(s)

s
= ã(s) :=

1

1 + s
> 0 for s > 0.

and we can find the corresponding F̃ (s) :=
∫ s

0
F̃ ′(t) dt, which is convex. In addition,

we have for all s > 0,

(2.25) ã′(s) := − 1

(1 + s)2
< 0 and s

ã′(s)

a(s)
= − s

1 + s
< 0.

The minimization problem for F̃ then serve as a kind of comparison problem to
the minimization of Fλ,µ. Using the definition of ã, we see that F̃ ′ is a strictly
monotonically increasing mapping from [0,∞) to [0, 1) with continuous inverse.

With the help of F̃ we now define our prototype barrier function.
For arbitrary r0 > 0 and q ∈ (0, rd−1

0 ), we set

(2.26) bq(r) := (F̃ ′)−1
( q

rd−1

)
=

q

rd−1 − q
.

It can be easily seen that bq ∈ C1[0,∞) is a non-negative decreasing function.
Finally, for all x ∈ Rd \Br0(0), r0 > 0, we define

(2.27) ωq,r0(x) :=

∫ |x|
r0

bq(r) dr.

By construction, ωq,r0 is a minimizer of the functional with integrand F̃ and
equivalently a solution to the associated Dirichlet problem on the set Rd \Br0(0),
but moreover, it also turns out to be super-harmonic. To summarize, we have the
following result.

Lemma 2.1. For every r0 > 0 and q ∈ (0, rd−1
0 ) the function ωq,r0 defined in (2.27)

satisfies

(2.28)
−div (ã(|∇ωq,r0 |)∇ωq,r0) = 0 in Rd \Br0(0),

ωq,r0 = 0 on ∂Br0(0).

Furthermore, there holds

(2.29) −∆ωq,r0(x) ≥ 0 for all x ∈ Rd \Br0(0).

Proof. Using the definition of ωq,r0 , we immediately see that ωq,r0 vanishes on
∂Br0(0), and we further observe

(2.30) ∇ωq,r0(x) = bq(|x|) x

|x|
and |∇ωq,r0(x)| = bq(|x|).

Via the definition of bq, we thus have

F̃ ′(|∇ωq,r0(x)|) = F̃ ′(bq(|x|)) =
q

|x|d−1
.
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Consequently, for all |x| > r0 there holds

div (ã(|∇ωq,r0(x)|)∇ωq,r0(x)) = div
(
F̃ ′(|∇ωq,r0(x)|) ∇ω

q,r0(x)

|∇ωq,r0(x)|

)
= q div

x

|x|d
= 0

(2.31)

and the solution property (2.28) follows. Finally, we check the super-harmonicity
property of ωq,r0 . In view of (2.28) and (2.30) we get

0 = div (ã(|∇ωq,r0(x)|)∇ωq,r0(x))

= ã(|∇ωq,r0(x)|)∆ωq,r0(x) +∇ã(|∇ωq,r0(x)|) · ∇ωq,r0(x)

= ã(bq(|x|))∆ωq,r0(x) + ã′(bq(|x|))bq(|x|)(bq)′(|x|).

Therefore, since the functions ã and bq are positive and bq is monotonically decre-
asing, also the second claim (2.29) follows. �

Thus, ωq,r0 is a good prototype super-solution to the approximative problem
on a certain set. However, due to the possibly non-constant prescribed boundary
values u0, it must be corrected, which will be done in the next step.

2.5. True barrier function. Here, we correct ωq,r0 via an affine function such
that it will finally give us the desired super-solution property to approximative
problem. For this purpose, let k ∈ Rd, c ∈ R, r0 > 0 and q ∈ (0, rd−1

0 ) be arbitrary.
For all x ∈ Rd \Br0(0), we define

(2.32) vq,r0k,c (x) := ωq,r0(x) + k · x + c.

The key properties of the function vq,r0k,c are formulated in the following lemma.

Lemma 2.2. For every K > 0 there exists a constant M > 0 depending only on F ,
λ0 and K such that for all k ∈ BK(0), all c ∈ R, all r0 > 0, all λ ≥ λ0 and all

q ∈ (0, rd−1
0 ), the function vq,r0k,c defined in (2.32) satisfies the inequalities

− div
(
aλ(|∇vq,r0k,c (x)|)∇vq,r0k,c (x)

)
≥ 0,

−∆vq,r0k,c (x) ≥ 0
(2.33)

for all x ∈ Rd \Br0(0) fulfilling bq(|x|) ≥M with bq given by (2.26).

Proof. First, it obviously follows from (2.32) that ∆vq,r0k,c = ∆ωq,r0 in Rd \ Br0(0).

Hence, the second inequality in (2.33) is a consequence of (2.29).
Therefore, it remains to check the first inequality in (2.33). To do so, we first

note that for all x ∈ Rd \Br0(0)

(2.34) ∇vq,r0k,c (x) = ∇ωq,r0(x) + k = bq(|x|) x

|x|
+ k.

Consequently, a direct computation leads to

|∇vq,r0k,c (x)|2 = (bq)2(|x|) + |k|2 + 2bq(|x|)k · x
|x|

,

∇|∇vq,r0k,c (x)| =
bq(|x|)(bq)′(|x|) x

|x| + (bq)′(|x|) x
|x|

k·x
|x| + bq(|x|)

(
k
|x| −

(k·x)x
|x|3

)
|∇vq,r0k,c (x)|

.
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Hence, using these identities, we obtain the following auxiliary results that will be
used later

∇|∇vq,r0k,c (x)| · x

|x|
= (bq)′(|x|)

bq(|x|) + k·x
|x|

|∇vq,r0k,c (x)|
(2.35)

and

∇|∇vq,r0k,c (x)| · k =
bq(|x|)(bq)′(|x|)x·k

|x| + (bq)′(|x|) (k·x)2

|x|2 + bq(|x|)
( |k|2
|x| −

(k·x)2

|x|3
)

|∇vq,r0k,c (x)|
.

(2.36)

With the help of the above identities, we evaluate the left hand side of (2.33).
We introduce the abbreviation

L(x) := −div
(
aλ(|∇vq,r0k,c (x)|)∇vq,r0k,c (x)

)
= −∇aλ(|∇vq,r0k,c (x)|) · ∇vq,r0k,c (x)− aλ(|∇vq,r0k,c (x)|) div

(
∇vq,r0k,c (x)

)
=: L1(x) + L2(x).

Employing (2.34), (2.35) and (2.36), we first calculate

L1(x) = −a′λ(|∇vq,r0k,c (x)|)∇|∇vq,r0k,c (x)| · ∇vq,r0k,c (x)

= −a′λ(|∇vq,r0k,c (x)|)∇|∇vq,r0k,c (x)| ·
[
bq(|x|) x

|x|
+ k

]
= −

a′λ(|∇vq,r0k,c (x)|)
|∇vq,r0k,c (x)|

[
bq(|x|)(bq)′(|x|)

(
bq(|x|) +

k · x
|x|

)
+ bq(|x|)(bq)′(|x|)x · k

|x|
+ (bq)′(|x|) (k · x)2

|x|2
+ bq(|x|)

( |k|2
|x|
− (k · x)2

|x|3
)]

=
a′λ(|∇vq,r0k,c (x)|)
|∇vq,r0k,c (x)|

(bq)′(|x|)
(
|x| − bq(|x|)

(bq)′(|x|)

)( |k|2
|x|
− (k · x)2

|x|3
)

− a′λ(|∇vq,r0k,c (x)|)(bq)′(|x|)|∇vq,r0k,c (x)|.

Next, taking into account once again (2.34), the relation (2.30) and the fact that
ωq,r0 solves equation (2.28), we find

L2(x) = −aλ(|∇vq,r0k,c (x)|) div

(
ã(|∇ωq,r0(x)|)∇ωq,r0(x)

ã(|∇ωq,r0(x)|)

)
=
aλ(|∇vq,r0k,c (x)|)ã′(|∇ωq,r0(x)|)

ã(|∇ωq,r0(x)|)
∇|∇ωq,r0(x)| · ∇ωq,r0(x)

=
aλ(|∇vq,r0k,c (x)|)ã′(bq(|x|))

ã(bq(|x|))
(bq)′(|x|)bq(|x|).

In conclusion, after a simple algebraic manipulation, we have
(2.37)

L(x) =
a′λ(|∇vq,r0k,c (x)|)
|∇vq,r0k,c (x)|

(bq)′(|x|)
(
|x| − bq(|x|)

(bq)′(|x|)

)( |k|2
|x|
− (k · x)2

|x|3
)

− aλ(|∇vq,r0k,c (x)|)(bq)′(|x|)
(
a′λ(|∇vq,r0k,c (x)|)|∇vq,r0k,c (x)|

aλ(|∇vq,r0k,c (x)|)
− ã′(bq(|x|))
ã(bq(|x|))

bq(|x|)
)
.
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We now focus on estimating the resulting term and show its nonnegativity. To
this end, we first relate bq(|x|) and |∇vq,r0k,c (x)| and provide some basic estimates

for sufficiently large values of bq(|x|). Since |k| ≤ K, we deduce from (2.34) that
for M1 := 2K > 0 there holds

(2.38) bq(|x|) ≥M1 =⇒ bq(|x|) ≤ 2|∇vq,r0k,c (x)| ≤ 4bq(|x|).

¿From now on, we drop the indices, since they do not vary at this point and only
make the calculation look complicated. Also, we will not write the x-dependence
of v and b explicitly. Therefore, the formula (2.37) reduces to

(2.39)

L(x) =
a′λ(|∇v|)
|∇v|

b′
(
|x| − b

b′

)( |k|2
|x|
− (k · x)2

|x|3
)

− aλ(|∇v|)b′
(
|∇v|a

′
λ(|∇v|)
aλ(|∇v|)

− b ã
′(b)

ã(b)

)
=: L̃1(x) + L̃2(x).

In the study of the sign of L(x), we distinguish two cases - either a′λ(|∇v|) ≤ 0, or
a′λ(|∇v|) > 0.

Case a′λ(|∇v|) ≤ 0. We first focus on the term L̃1. We note that b is positive
decreasing and therefore −b′ is non-negative. Also, by the use of the Cauchy-
Schwarz inequality,

(2.40) 0 ≤ |k|2
(

1− (k · x)2

|k|2|x|2

)
≤ |k|2 ≤ K2

and we see that both expressions in brackets in L̃1 are non-negative. Therefore,
L̃1(x) ≥ 0.

Concerning the sign of L̃2(x), aλ is non-negative and b′ is non-positive. There-
fore, we need to focus on the large bracket. First we rewrite it in terms of F instead
of a using (1.4),

(2.41)
a′λ(|∇v|)|∇v|
aλ(|∇v|)

− ã′(b)

ã(b)
b = |∇v|F

′′
λ (|∇v|)
F ′λ(|∇v|)

− b F̃
′′(b)

F̃ ′(b)
.

Then the value of (2.41) is non-negative for sufficiently large values of b (that means,
comparable with |∇v|). More precisely, we use (2.5) to get

|∇v|F
′′
λ (|∇v|)
F ′λ(|∇v|)

≥ 1

|∇v|1−δ
≥ 1

21−δb1−δ

for |∇v| ≥ λ0 and b ≥ M1. It follows from (2.38) that we just require that b ≥
max{M1, 2λ0}. Next, using the definition of F̃ ′ (see (2.24)) we have

b
F̃ ′′(b)

F̃ ′(b)
=

1

b+ 1
≤ 1

b
.

Consequently, we see that

|∇v|F
′′
λ (|∇v|)
F ′λ(|∇v|)

− b F̃
′′(b)

F̃ ′(b)
≥ 1

b
(2δ−1bδ − 1).

Therefore, if we set

(2.42) M2 := max{2λ0,M1, 2
1−δ
δ },

and consider that b ≥M2, we obtain nonnegativity of L.
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Case a′λ(|∇v|) > 0. Using the discussion above, we realize that now L̃1(x) ≤ 0.

However, not everything is lost, as we will shortly see that the term L̃2(x) can in
this case dominate in such way that L(x) will finally be non-negative. To prove
that, we need to dive into the study of L(x) a bit deeper.

Let us first split the term L̃2(x) further into two parts l2(x) and l3(x), so that

L̃2(x) = −a′λ(|∇v|)b′|∇v|+ aλ(|∇v|)b′b ã
′(b)

ã(b)
=: l2(x) + l3(x).

Due to the investigation provided above (aλ is positive, b′ is non-positive and (2.25)
holds) we immediately see that l2(x) ≥ 0 and l3(x) ≥ 0. We will remember the

latter and use the l2(x) in combination with L̃1(x) to get

(2.43) L = L̃1+L̃2 ≥ l2+L̃1 = −a
′
λ(|∇v|)
|∇v|

b′

(
|∇v|2−

(
|x|− b

b′

)( |k|2
|x|
− (k · x)2

|x|3
))

and this sum is non-negative provided so is the expression in the large bracket.
With the use of the definition of b, see (2.26) and the identity (2.24), we see that

b(r)

1 + b(r)
=

q

rd−1
.

Hence applying derivative with respect to r, we obtain

b′

(1 + b)2
= −(d− 1)

q

rd
= −d− 1

r

q

rd−1
= −d− 1

r

b

1 + b
.

Thus, after a simple algebraic manipulation, we get

(2.44) − b

b′
=

r

(d− 1)(1 + b)
≤ r.

Finally, this estimate in (2.43), we see that

|∇v|2 −
(
|x| − b

b′

)( |k|2
|x|
− (k · x)2

|x|3
)
≥ |∇v|2 − 2|k|2 ≥ |∇v|2 − 2K2.

Thus, if b ≥ max{M1, 4K} then it follows from (2.38) that

|∇v|2 −
(
|x| − b

b′

)( |k|2
|x|
− (k · x)2

|x|3
)
≥ b2

4
− 2K2 ≥ 2K2 ≥ 0

and therefore going back to (2.43), we see that L ≥ 0. Hence, if we set

(2.45) M := max{M1,M2, 2K},
then the first inequality in (2.33) holds true for all x ∈ Rd\Br0(0) with bq(|x|) ≥M ,
and the proof of the lemma is complete. �

2.6. Completion of the proof. This part of the proof is very similar to [1,
Section 4] but for readers convenience, we describe it also here, since in our setting
the computations can be done easier.

Once the true barrier function from Lemma 2.2 is at our disposal, we can return
to study the normal derivative, with the aim to prove an estimate of the form (2.18).
Therefore, following the discussion in Section 2.3, we see that for every x0 ∈ ∂Ω,
we need to find barriers fulfilling (2.22) and (2.23) for some r > 0 with the uniform
control

(2.46) ‖ub‖1,∞ ≤ C(‖u0‖1,1,Ω, F )
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with the constant independent of x0, r and λ and µ. We shall finally see why the
uniform exterior ball condition plays the key role for the analysis. First, since Ω is
by assumption of class C1 and satisfies an exterior ball condition, we find positive
(from now fixed) constants r0, L, Ld and N depending only on Ω such that we can
suppose that an arbitrary boundary point x0 ∈ ∂Ω is given, after an orthogonal
transformation, by x0 = (0,−r0) (we use the notation x = (x′, xd)) and that we
have the inclusions

Γ := {x ∈ Rd : |x′| < L, f(x′) = xd} ⊂ ∂Ω,

Ω+ := {x ∈ Rd : |x′| < L, f(x′)− Ld < xd < f(x′)} ⊂ Ω,

Ω− := {x ∈ Rd : |x′| < L, f(x′) < xd < f(x′) + Ld} ⊂ Rd \ Ω,

with a function f ∈ C1(−L,L)d−1 fulfilling ‖f‖1,∞ ≤ N , f(0′) = −r0 and Dif(0) =
0 for all i = 1, . . . , d − 1. Furthermore, we can assume that r0 is fixed such that
Br0(0) ⊂ Ω− holds and that for all x ∈ Γ we have

(2.47) M∗(|x| − r0) ≥ |x− x0|2

with some constant M∗ depending only on Ω and r0. From now on, we consider
some fixed x0 ∈ ∂Ω.

Next, we introduce the barrier function. For arbitrary δ ∈ (0, 1) (to be specified
later), we fix

q := (1− δ)d−1rd−1
0

and consider functions bq and ωq,r0 introduced in (2.26) and (2.27). Using them,
we introduce the function vq,r0k,c from (2.32) with the specific choices k := ∇u0(x0)

and c = u0(x0)−∇u0(x0) · x0, that is, with

(2.48) vq,r0k,c (x) = ωq,r0(x) +∇u0(x0) · (x− x0) + u0(x0).

Note that vq,r0k,c is well defined outside the ball Br0(0) and so it is well-defined also

in Ω+. In addition, it is clear that |k| ≤ ‖∇u0‖∞ holds, hence, we fix K := ‖∇u0‖∞
and also the number M (depending only on F and this K) according to Lemma 2.2.

Next, we specify the maximal value of δ. If we define δmax ∈ (0, 1/2) by the
relation

(2.49) (1− 2δmax)d−1 := max

{
M

M + 1
,

M∗‖u0‖1,∞
1 +M∗‖u0‖1,∞

}
,

where M∗ comes from (2.47) and M from Lemma 2.2, and rmax as

(2.50) rmax :=
(1− δmax)r0

1− 2δmax

then for all x ∈ Brmax
(x0) \ Br0(x0) and arbitrary δ ∈ (0, δmax), we get by using

(2.26) that

bq(|x|) ≥ bq(rmax) =
q

rd−1
max − q

=
(1− δ)d−1rd−1

0

(1−δmax)d−1rd−1
0

(1−2δmax)d−1 − (1− δ)d−1rd−1
0

=
(1− 2δmax)d−1

(1−δmax)d−1

(1−δ)d−1 − (1− 2δmax)d−1
≥ (1− 2δmax)d−1

1− (1− 2δmax)d−1

= max{M,M∗‖u0‖1,∞},

(2.51)
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where for the last inequality we used (2.49). Consequently, using Lemma 2.2, we
see that vq,r0k,c satisfies the first inequality in (2.22). Thus it remains to show that it
also satisfies the second inequality and to choose δ uniformly, i.e., depending only
on u0, F and Ω in order to get the uniform control on |∇vq,r0k,c |.

Next, we want to identify a part of Γ on which vq,r0k,c (x) ≥ u(x) = u0(x) holds,
that is, where

(2.52) ωq,r0(x) +∇u0(x0) · (x− x0) + u0(x0)− u0(x) ≥ 0.

¿From the Taylor expansion of u0 and the C1,1-regularity assumption on u0 we
know that

|u0(x)− u0(x0)−∇u0(x0) · (x− x0)| ≤ ‖u0‖1,∞|x− x0|2,

so to verify (2.52) it is enough to check where

(2.53) ωq,r0(x)− ‖u0‖1,∞|x− x0|2 ≥ 0

holds. Using the definitions of bq in (2.26) and of ωq,r0 in (2.27), combined with
the fact that (F ′)−1 is monotonically increasing, we have for all x ∈ Γ

ωq,r0(x) ≥ (|x|−r0)(F ′)−1

(
(1− δ)d−1rd−1

0

|x|d−1

)
= (|x|−r0)

(1− δ)d−1rd−1
0

|x|d−1 − (1− δ)d−1rd−1
0

.

Consequently, in order to guarantee (2.53) and thus (2.52) it is sufficient, in view
of (2.47), to have

(1− δ)d−1rd−1
0

|x|d−1 − (1− δ)d−1rd−1
0

≥M∗‖u0‖1,∞,

which is indeed true for all x with r0 ≤ |x| ≤ rmax, by the choices of the parame-
ter δmax in (2.49) and of the radius rmax in (2.51). Thus, we have verified

(2.54) u(x) ≤ vq,r0k,c (x) for all x ∈ Γ with r0 ≤ |x| ≤ rmax.

We have already verified that vq,r0k,c is a supersolution, i.e., satisfies (2.22)1 in

Brmax(x0) and that also fulfills (2.22)2 on Γ∩Brmax(x0). Hence, to show the validity
of (2.22), we need to show that it also satisfies (2.22)2 on ∂(Brmax

(x0) ∩ Ω). This
shall now be done by a proper choice of a local neighborhood and of δ ∈ (0, δmax).

Since r0 and rmax are already fixed (and depend only on on Ω, F and u0), we
can find two constants L∗ and L∗d ≤ Ld sufficiently small such that

Γ∗ := {x ∈ Rd : |x′| < L∗, f(x′) = xd} ⊂ ∂Ω,

Ω∗+ := {x ∈ Rd : |x′| < L∗, f(x′)− L∗d < xd < f(x′} ⊂ Ω ∩ (Brmax
\Br0),

Ω∗− := {x ∈ Rd : |x′| < L∗, f(x′) < xd < f(x′) + Ld} ⊂ Rd \ Ω.

Having introduced this notation, we see with help of (2.51) and (2.54) that vq,r0k,c

solves (2.22)1 in the relative neighborhood Ω∗+ of x0 and satisfies vq,r0k,c ≥ u on Γ∗,

for all δ < δmax. Our goal is to show vq,r0k,c ≥ u on the remaining part of ∂Ω∗+.

We start the proof by noting that there exists a positive η > 0 (independent of
δ) such that

|x| ≥ r0 + η
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for all x ∈ ∂Ω∗+ \Γ∗, which follows from the choices of r0 and Ω∗+. Hence, from the
definition of vq,r0k,c in (2.48) and of ωq,r0 in (2.27) we find

(2.55) vq,r0k,c (x) ≥
∫ r0+η

r0

bq(r) dr − C∗(Ω)‖u0‖1,∞.

On the other hand, we know ‖u‖∞ ≤ ‖u0‖∞ from (2.12). Thus, in order to show
that vq,r0k,c ≥ u on ∂Ω∗+, we need to choose δ ∈ (0, δmax) such that

(2.56)

∫ r0+η

r0

bq(r) dr ≥ C∗(Ω)‖u0‖1,∞ + ‖u0‖∞.

Using the definition of bq in (2.26) and the substitution formula, we deduce that∫ r0+η

r0

bq(r) dr =

∫ r0+η

r0

(1− δ)d−1rd−1
0

rd−1 − (1− δ)d−1rd−1
0

dr

= r0

∫ 1+ η
r0

1

(1− δ)d−1

td−1 − (1− δ)d−1
dt

≥ r0(1− δ)d−1(
1 + η

r0

)d−2

∫ 1+ η
r0

1

td−2

td−1 − (1− δ)d−1
dt

≥ r0(1− δmax)d−1

(d− 1)
(

1 + η
r0

)d−2
ln

(
(1 + η

r0
)d−1 − (1− δ)d−1

1− (1− δ)d−1

)
.

It is important to notice that the right hand side tends to ∞ as δ → 0+. Con-
sequently, using the above inequality, we can fix δ ∈ (0, δmax) (depending only
on Ω, F and u0) such that (2.56) holds true. Hence, we have constructed the upper
barrier function ub on the relative neighborhood Ω+ of x0. The lower barrier ub
is, however, constructed in the very similar manner. As the domain is of class C1

and satisfies the uniform exterior ball condition, by the same procedure we can
prove existence of both upper and lower barriers in every point on the boundary
∂Ω. Thus, these can be merged to form an upper and lower barrier for the function
uλ,µ on whole ∂Ω.

To summarize, thanks to the existence of barriers, we obtain (2.21). Since the
W 1,∞-norm of barriers depends only on F , u0 and Ω and most importantly is
independent of λ and µ. Hence, using (2.17), we can choose λ sufficiently large in
order to have (2.13), which implies (2.4) and finishes the proof.
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