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THE LANCZOS ALGORITHM AND COMPLEX GAUSS QUADRATURE∗
1

STEFANO POZZA†, MIROSLAV S. PRANIĆ‡, AND ZDENĚK STRAKOŠ§2

Abstract. Gauss quadrature can be naturally generalized to approximate quasi-definite linear functionals where3

the interconnections with (formal) orthogonal polynomials, (complex) Jacobi matrices and Lanczos algorithm are4

analogous to those in the positive definite case. In this survey we review these relationships with giving references5

to literature that presents them in several related contexts. In particular, the existence of the n-weight (complex)6

Gauss quadrature corresponds to successfully performing the first n steps of the Lanczos algorithm for generating7

the biorthogonal bases of the two associated Krylov subspaces. The Jordan decomposition of the (complex) Jacobi8

matrix can be explicitly expressed in terms of the Gauss quadrature nodes and weights and the associated orthogonal9

polynomials. Since the output of the Lanczos algorithm can be made real whenever the input is real, the value of the10

Gauss quadrature is a real number whenever all relevant moments of the quasi-definite linear functional are real.11

Key words. quasi-definite linear functionals, Gauss quadrature, formal orthogonal polynomials, complex Jacobi12

matrices, matching moments, Lanczos algorithm.13

AMS subject classifications. 65D15, 65D32, 65F10, 47B3614

1. Introduction. The presented survey examines the interconnection between the Gauss15

quadrature for quasi-definite linear functionals and the Lanczos algorithm for generating the16

biorthogonal bases of the two associated Krylov subspaces.17

We first briefly recall basic results on quasi-definite linear functionals and formal orthogo-18

nal polynomials; see, e.g., the summary in Chihara [7] and in the literature given below. As19

described in [12, Introduction], the term formal orthogonal polynomials was chosen in order20

to avoid the ambiguity of the term general orthogonal polynomials (used, e.g., in [2]) since the21

latter term has often appeared in literature regarding positive definite linear functional. Some-22

times (as in [7]) orthogonal polynomials is used instead of formal orthogonal polynomials,23

i.e., the meaning of the simpler term is extended beyond the classical setting with a positive24

definite linear functional and a Riemann-Stieltjes integral with a non-decreasing distribution25

function; see, e.g., [55], [22], and [41, Section 3.3]. Since no confusion can arise, in what26

follows we will use this simplified terminology.27

Let L be a linear functional on the space P of polynomials with generally complex28

coefficients, L : P → C. The functional L is fully determined by its values on monomials,29

called moments,30

(1.1) L(λ`) = m`, ` = 0, 1, . . . ,
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with the associated Hankel determinants31

(1.2) ∆j =

∣∣∣∣∣∣∣∣∣
m0 m1 . . . mj

m1 m2 . . . mj+1

...
...

...
mj mj+1 . . . m2j

∣∣∣∣∣∣∣∣∣ , j = 0, 1, . . . .

Hankel matrices have been used in the related contexts throughout more than a century by many32

authors; see, e.g., the seminal paper by Stieltjes [53, Sections 8–11, p. 624–630], [7, Chapter33

I], [27, Section 2], and [12, Chapter 1]. The linear functional (1.1) is generally determined34

by an infinite sequence of moments. This survey, however, considers linear functionals35

on finite-dimensional spaces of polynomials which are characterized by finite sequences of36

Hankel determinants (1.2). This approach is appropriate for linear functionals associated with37

finite-dimensional Krylov subspace methods; see [41]. For the infinite-dimensional problems,38

we refer, e.g., to [7, Chapter II, Section 3, in particular Theorem 3.1] and for the relationship39

to infinite dimensional Krylov subspace methods, e.g., to [57], [28] and [43, Chapter 5] that40

contain many references to original works.41

In this survey we focus on quasi-definite linear functionals. Linear functionals that are42

not quasi-definite are, apart from several remarks, beyond the scope of this survey. For results43

in this more general setting we refer an interested reader to [12].44

DEFINITION 1.1 (cf. [7, Chapter I, Definition 3.1, Definition 3.2 and Theorem 3.4]). A45

linear functional L for which the first k+ 1 Hankel determinants are nonzero, i.e., ∆j 6= 0 for46

j = 0, 1, . . . , k, is called quasi-definite on the space of polynomials with complex coefficients47

Pk of degree at most k. In particular, if L has real moments m0, . . . ,m2k and ∆j > 0 for48

j = 0, 1, . . . , k we will say that the linear functional is positive definite on Pk.49

In the sequel we use for simplicity the term quasi-definite linear functional (positive50

definite linear functional) for linear functionals that are quasi-definite (positive definite) on the51

space of polynomials of sufficiently large degree. A quasi-definite linear functional can be52

associated with a sequence of orthogonal polynomials uniquely determined up to multiplicative53

constants.54

DEFINITION 1.2. Polynomials p0, p1, . . . satisfying the conditions55

1. deg(pj) = j (pj is of degree j),56

2. L(pi pj) = 0, i < j,57

3. L(p2j ) 6= 0,58

form a sequence of orthogonal polynomials with respect to the linear functional L.59

Orthogonal polynomials such that L(p2j ) = 1 are known as orthonormal polynomials.60

Proof of the following classical result can be found, e.g., in [7, Chapter I, Theorem 3.1], [42,61

Chapter VII, Theorem 1].62

THEOREM 1.3. A sequence {pj}kj=0 of orthogonal polynomials with respect to L exists if63

and only if L is quasi-definite on Pk.64

A sequence of orthogonal polynomials p0, p1, . . . satisfies the three-term recurrences of65

the form66

(1.3) δjpj(λ) = (λ− αj−1)pj−1(λ)− γj−1pj−2(λ), for j = 1, 2, . . . ,

where we set γ0 = 0, p−1(λ) = 0, p0(λ) = c (c is a given complex number different from
zero), and

αj−1 =
L(λp2j−1)

L(p2j−1)
, δj =

L(λpj−1pj)

L(p2j )
, γj−1 =

L(λpj−2pj−1)

L(p2j−2)
,
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(see [55, Theorem 3.2.1], [7, p. 19], [2, Theorem 2.4]). If the first n + 1 polynomials67

p0, p1, . . . , pn exist, then all δ1, . . . , δn and γ1, . . . , γn−1 are different from zero. The recur-68

rence (1.3) for the first n+ 1 polynomials can be written in the matrix form69

(1.4) λ


p0(λ)
p1(λ)

...
pn−1(λ)

 = Tn


p0(λ)
p1(λ)

...
pn−1(λ)

+ δn


0
0
...

pn(λ)

 ,
where Tn is the irreducible tridiagonal complex matrix

Tn =


α0 δ1

γ1 α1
. . .

. . . . . . δn−1

γn−1 αn−1

 .
We say that Tn is determined by the first 2nmomentsm0,m1, . . . ,m2n−1 ofL. The (2n+1)st70

moment m2n present in (1.2) for j = n affects only the value of δn. Its value must assure that71

∆n 6= 0; otherwise L(p2n) = 0 and therefore pn is not orthogonal polynomial with respect to72

L.73

A linear functional quasi-definite on Pn determines a family of irreducible tridiagonal74

matrices that are diagonally similar where this diagonal similarity is equivalent to rescaling the75

sequence of orthogonal polynomials. Any irreducible tridiagonal matrix is diagonally similar76

to a symmetric irreducible tridiagonal matrix, called complex Jacobi matrix. The properties of77

complex Jacobi matrices are summarized, e.g., in [49, Section 4]. Here we recall the following78

result that is valid for any tridiagonal matrix Tn associated with a sequence (1.4) of orthogonal79

polynomials determined by a quasi-definite linear functional (see [49, Section 5]).80

THEOREM 1.4 (Matching moment property). Let L be a quasi-definite linear functional81

on Pn and let Tn be given by (1.4). Then82

(1.5) L(λi) = m0 e
T
1 (Tn)i e1, i = 0, . . . , 2n− 1.

A proof for the matching moment property was given in [17, Theorem 2] for the linear83

functionals defined by84

(1.6) L(λi) = w∗Aiv, for i = 0, 1, 2, . . . ,

with A a complex matrix and w,v vectors; cf. also [11, Theorem 1]. In [54] it was obtained85

using the Vorobyev method of moments (see [57, in particular Chapter III]). The class of non86

quasi-definite linear functionals of the kind (1.6) is treated in [29, Theorem 2.10]. We point out87

that assuming real moments (with the extension to complex moments being straightforward),88

the matching moment properties in [17], [49] and [29] can be derived from Theorem 5 of [27]89

where this issue is related to the minimal partial realization problem.90

A partial realization of the order 2n of a sequence of moments m0,m1, . . . is the triplet91

{w, A,v} where A is a matrix and w,v are vectors such that92

(1.7) w∗Aiv = mi, for i = 0, . . . , 2n− 1.

The solutions with the smallest dimension are known as minimal partial realizations of the93

order 2n; see, e.g., [26], [37] and [27]. The moments m0, . . . ,m2n−1 define the linear94
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functional L on P2n−1. If L is quasi-definite, then by Theorem 1.4 the triplet A = Tn,95

w = e1, and v = m0e1 gives a solution of the minimal partial realization problem (1.7); cf.96

[27, Theorem 5]. Therefore, as beautifully presented by Gragg and Lindquist in [27] for real97

moments, the matching moment property connects the minimal partial realization problem98

with orthogonal polynomials, Jacobi matrices, Lanczos algorithm, continued fractions, and99

other related topics. The generalization to the case of complex moments is straightforward.100

For L positive definite, the concept equivalent to the minimal partial realization is present101

(without using the name) in the papers by Chebyshev from 1855–1859 [5, 6] and Christoffel102

from 1858 [8]; cf. the comment in [4, p. 23]. An instructive description can be found in103

the seminal paper by Stieltjes on continued fractions published in 1894 [53, Sections 7–8,104

p. 623–625, and Section 51, p. 688–690]; see also [41, Section 3.9.1], the survey by Gautschi105

[21] and the references therein.106

On the other hand, as shown in [7, Chapter I, Theorem 4.4], in the survey [44, Theorem107

2.14] and firstly for the positive definite case by Favard in [13], for any sequence of polynomials108

satisfying109

(1.8) djpj(λ) = (λ− aj−1)pj−1(λ)− cj−1pj−2(λ), j = 1, 2, . . . ,

where

p−1(λ) = 0, p0(λ) = c, c0 = 0, aj , dj , cj , c ∈ C, dj , cj , c 6= 0,

there exists a quasi-definite linear functional L such that p0, p1, . . . , are orthogonal polyno-110

mials with respect to L. In other words, providing that c, dj , cj 6= 0, polynomials generated111

by (1.8) are always orthogonal polynomials. In addition, they are orthonormal if and only if112

cj = dj and p0 is such that L(p20) = 1.113

This also means that for any irreducible tridiagonal matrix Tn, there exists a linear114

functional L quasi-definite on Pn−1 such that Tn is determined by the first 2n moments of115

L. As shown, e.g., in [1, proof of Theorem 2.3], two irreducible tridiagonal matrices Tn and116

T̂n are determined by the first 2n moments of the same linear functional if and only if they117

are diagonally similar, i.e., if Tn = D−1T̂nD, where D is an invertible diagonal matrix. Or,118

equivalently, if and only if119

(1.9) αi = α̂i, i = 0, . . . , n− 1,

and120

(1.10) δi γi = δ̂i γ̂i, i = 1, . . . , n− 1,

where the elements of T̂n are marked with a hat.121

The matching moment property in Theorem 1.4 can also be interpreted as matrix formula-122

tion of a generalized Gauss quadrature for approximation of quasi-definite linear functionals;123

see [45, 49]. Moreover, given the matrix A and the vectors v and w with the associated124

quasi-definite linear functional defined by (1.6), the matrix Tn can be determined, assuming no125

breakdown, by the non-Hermitian Lanczos algorithm. Therefore the non-Hermitian Lanczos126

algorithm can be linked with Gauss quadrature; see [17, Theorem 2].127

A linear functional (1.1) with real moments can be naturally restricted to the space of128

polynomials with real coefficients R ⊂ P . If L is quasi-definite, we can construct real129

monic polynomials orthogonal with respect to L with the corresponding real tridiagonal130

matrix Tn satisfying the matching moment property (1.5). In Chapter 5 of the book [12]131

published in 1983 Draux introduced generalization of the Gauss quadrature formula for132
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approximating the real-valued linear functionals satisfying for quasi-definite functionals133

(1.5). The associated results in [45, 49], obtained independently of [12], can be considered134

as straightforward generalizations to the complex case. Some results in [49] do not have,135

however, a straightforward real setting analogue in [12]. This holds, e.g., for the concept136

of orthonormal polynomials that can have even for real quasi-definite functionals complex137

coefficients.138

The paper is organized as follows. In Section 2 we recall the link of the Lanczos algorithm
for generating biorthonormal bases for the spaces

span{v, Av, . . . , An−1v} and span{w, A∗w, . . . , (A∗)n−1w}

to the Stieltjes procedure for generating orthonormal polynomials. If n is the maximal number139

of steps that can be performed in the Lanczos algorithm without breakdown, then there exists140

no complex Gauss quadrature in the sense of [45, 49] for approximating the functional (1.6)141

with more than n weights. This is presented in Section 3. Section 4 shows that the rows of142

the matrix W−1 in the Jordan decomposition Jn = W ΛW−1 of the complex Jacobi matrix143

Jn can be expressed as a linear combination of some particular generalized eigenvectors of144

Jn. The coefficients in these linear combinations are the Gauss quadrature weights. Section145

5 focuses to quasi-definite functionals with real moments. Then the value of the Gauss146

quadrature is a real number. Using a proper rescaling, the Lanczos algorithm involves only147

computations with real numbers. We conclude with some remarks on the non quasi-definite148

case.149

Throughout the survey we deal with mathematical relationships between quantities that150

are determined exactly. Since the effects of rounding errors to computations using short151

recurrences are substantial, the results of this survey cannot be applied to finite precision152

computations without a thorough analysis. Such analysis is out of the scope of this survey.153

As in the positive definite case, however, understanding of the relationship assuming exact154

computation is a prerequisite for any further investigation.155

2. Orthogonal polynomials and the Lanczos algorithm. Let A be a square complex
matrix and let v be a complex vector of the corresponding dimension. The nth Krylov subspace
generated by A and v is defined by

Kn(A,v) = span{v, Av, . . . , An−1v},

or, equivalently,

Kn(A,v) = {p(A)v : p ∈ Pn−1},

where Pn−1 is the subspace of the polynomials of degree at most n − 1 with complex156

coefficients. The basic facts about Krylov subspaces had been formulated by Gantmacher in157

1934; see [19]. In particular, there exists a uniquely defined integer d = d(A,v), called the158

grade of v with respect toA, so that the vectors v, . . . , Ad−1v are linearly independent and the159

vectors v, . . . , Ad−1v, Adv are linearly dependent. Clearly there exists a polynomial pd(λ)160

of degree d, called the minimal polynomial of v with respect to A, such that pd(A)v = 0. The161

other facts about Krylov subspaces can be found elsewhere; see, e.g., [41, Section 2.2].162

For the given complex matrix A and v 6= 0,w 6= 0 complex vectors, consider the linear163

functional on the space of polynomials with complex coefficients P (see (1.6))164

(2.1) L(p) = w∗p(A)v.

Since for any polynomial p ∈ P we get

p(A)∗ = p̄(A∗),
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with p̄ the polynomial whose coefficients are the conjugates of the coefficients of p, given
p, q ∈ Pn−1 we have

L(pq) = w∗q(A)p(A)v = ŵ∗v̂,

with v̂ = p(A)v ∈ Kn(A,v) and ŵ = q̄(A∗)w ∈ Kn(A∗,w). We give the proof of the165

following elementary fact for completeness.166

THEOREM 2.1. The linear functional L defined by (2.1) determines a sequence of167

orthogonal polynomials p0, . . . , pn−1 if and only if there exist bases v0, . . . ,v`−1 of K`(A,v)168

and w0 . . . ,w`−1 of K`(A∗,w), ` = 1, . . . , n, satisfying the biorthogonality condition169

(2.2) w∗
i vj = 0 for i 6= j, and w∗

i vi 6= 0, i, j = 0, . . . , n− 1.

Proof. Given polynomials p0, . . . , pn−1 orthogonal with respect to L, the vectors vj =
pj(A)v (j = 0, . . . , n − 1) form the basis for Kn(A,v), vectors wi = p̄i(A

∗)w (i =
0, . . . , n− 1) form the basis for Kn(A∗,w), and

w∗
i vj = L(pipj), i, j = 0, . . . , n− 1,

satisfy the biorthogonality condition (2.2). On the other hand, let vj = pj(A)v and wi =
q̄i(A

∗)w satisfy

w∗
i vj = 0 for i 6= j, and w∗

i vi 6= 0, i, j = 0, . . . , n− 1,

and pj and qi are polynomials of degree j and i, respectively. It means that the polyno-170

mial pi is orthogonal to the polynomials q0, q1, . . . , qi−1, and therefore also to polynomials171

p0, p1, . . . , pi−1. The polynomial pi is not orthogonal to qi, and thus L(p2i ) 6= 0.172

We denote p̃0, . . . , p̃n−1 the sequence of orthonormal polynomials with respect to L.173

They satisfy the three-term recurrences (cf. (1.3))174

(2.3) βj p̃j(λ) = (λ− αj−1)p̃j−1(λ)− βj−1p̃j−2(λ), j = 1, 2, . . . , n− 1,

with p̃−1 = 0, p̃0 = 1/
√
m0, and175

(2.4) αj−1 = L(λp̃ 2
j−1), βj−1 = L(λp̃j−2p̃j−1).

Note that βj =
√
L(p̂ 2

j ), with176

(2.5) p̂j(λ) = (λ− αj−1)p̃j−1(λ)− βj−1p̃j−2(λ).

Algorithm 2.2 generates the sequence of the first n orthonormal polynomials p̃j , j =177

0, . . . , n− 1, using the formulas (2.3) and (2.4). In order to avoid ambiguity, we take always178

the principal value of the complex square root, i.e., we consider arg(
√
c) ∈ (−π/2, π/2]. For179

positive definite functionals this algorithm is known as the Stieltjes procedure [52]. Then the180

coefficients βj , j = 1, . . . , n− 1, are positive. The monograph by Gautschi [22] can serve as181

a valuable source of related results as well as of historical information.182

The Lanczos algorithm (introduced in [39] and [40]) gives the matrix formulation of the
Stieltjes procedure; for details we refer to [2, Section 2.7.2], [31, 32, 33], [51, Chapter 7], [24,
Chapter 4], [41, Section 2.4]. Indeed, with

vj = p̃j(A)v, wj = p̃j(A
∗)w, j = 0, . . . , n− 1,
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ALGORITHM 2.2 (Stieltjes Procedure).
Input: linear functional L quasi-definite on Pn−1.
Output: polynomials p̃0, . . . , p̃n−1 orthonormal with respect to L.

Initialize: p̃−1 = 0, β0 =
√
m0 =

√
L(λ0), p̃0 = 1/β0.

For j = 1, 2, . . . , n− 1

αj−1 = L(λp̃ 2
j−1(λ)),

p̂j(λ) = (λ− αj−1)p̃j−1(λ)− βj−1p̃j−2(λ),

βj =
√
L(p̂ 2

j ),

p̃j(λ) = p̂j(λ)/βj ,

end.

ALGORITHM 2.3 (Lanczos algorithm).
Input: complex matrix A, two complex vectors v,w such that w∗v 6= 0.
Output: vectors v0, . . . ,vn−1 that span Kn(A,v) and vectors w0, . . . ,wn−1 that span
Kn(A∗,w), satisfying the biorthogonality conditions (2.2).

Initialize: v−1 = w−1 = 0, β0 =
√
w∗v

v0 = v/β0, w0 = w/β̄0.

For j = 1, 2, . . . , n− 1

αj−1 = w∗
j−1Avj−1,

v̂j = Avj−1 − αj−1vj−1 − βj−1vj−2,

ŵj = A∗wj−1 − ᾱj−1wj−1 − β̄j−1wj−2,

βj =
√
ŵ∗
j v̂j ,

if βj = 0 then stop,

vj = v̂j/βj ,

wj = ŵj/β̄j ,

end.

we have for j = 1, . . . , n− 1

αj−1 = L(λp̃ 2
j−1) = w∗p̃j−1(A)Ap̃j−1(A)v = w∗

j−1Avj−1.

Since β2
j = L(p̂ 2

j (λ)) with the polynomial p̂j defined by (2.5), we get

βj =
√

w∗p̂j(A)p̂j(A)v =
√
ŵ∗
j v̂j , j = 1, . . . , n− 1.

The vectors v0, . . . ,vn−1 satisfy the three-term recurrences (2.3)

βjvj = (A− αj−1)vj−1 − βj−1vj−2, for j = 1, . . . , n− 1.
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Since wj = p̃j(A
∗)w,

β̄jwj = (A∗ − ᾱj−1)wj−1 − β̄j−1wj−2, for j = 1, . . . , n− 1.

The resulting form of the Lanczos algorithm is given as Algorithm 2.3; see, e.g., [10, 9]. The
matrices Vn = [v0, . . . ,vn−1] and Wn = [w0, . . . ,wn−1] satisfy

AVn = VnJn + v̂ne
T
n ,

A∗Wn = WnJ
∗
n + ŵne

T
n ,

with en the nth vector of the canonical basis, Jn the complex Jacobi matrix associated with183

the polynomials p̃0, . . . , p̃n−1,184

(2.6) Jn =


α0 β1

β1 α1
. . .

. . . . . . βn−1

βn−1 αn−1

 ,
and αn−1, v̂n, ŵn are determined at the step n of the Lanczos algorithm∗. The biorthogonality
conditions (2.2) then give

W ∗
nVn = In,

W ∗
nAVn = Jn,

where In is the identity matrix of dimension n. Algorithm 2.3 can be seen as a tool for185

restriction of A to the Krylov subspace Kn(A,v) with the subsequent projection orthogonal to186

Kn(A∗,w). The reduced operator on Kn(A,v) then can be expressed via the complex Jacobi187

matrix Jn. Lanczos algorithm 2.3 is based on orthonormal polynomials. Obviously, any other188

scaling of orthogonal polynomials can be used, i.e., the Lanczos algorithm can be based on189

any sequence of orthogonal polynomials associated with the linear functional (2.1).190

Recall that if L is quasi-definite on Pn−1, then βj =
√
L(p̂ 2

j ) must be different from191

zero for j = 1, . . . , n− 1. Therefore no breakdown can occur in the first n− 1 steps of the192

Lanczos algorithm. There is a breakdown at the step n if and only if βn = 0. This can happen193

in two cases:194

1. one of the vectors v̂n and ŵn is the zero vector,195

2. v̂n 6= 0 and ŵn 6= 0, but ŵ∗
nv̂n = 0.196

In the first case, either Kn(A,v) is A-invariant or Kn(A∗,w) is A∗-invariant. This is known197

as lucky breakdown (or benign breakdown) because the computation of an invariant subspace198

is often a desirable result; see, e.g., [46, Section 5] and [25, Section 10.5.5]. The second case199

is known as serious breakdown; for further details we refer to [50], [36, p. 34], [56, Chapter200

IV], [47], [46, Section 7], and [31, 32, 33]. The previous development is summarized in the201

following Theorem, cf. also [3, 46].202

THEOREM 2.4. Let A ∈ CN×N , v ∈ CN and w ∈ CN be the input for the Lanczos203

algorithm, let mk = w∗Akv, and let ∆k be the corresponding Hankel determinants (1.2) for204

k = 0, 1, . . .. There are no breakdowns at the first n− 1 steps of the Lanczos algorithm if and205

only if206

(2.7)
n−1∏
k=0

∆k 6= 0.

∗The coefficient αn−1 present in Jn and the vectors v̂n and ŵn are well defined even in the case of breakdown
at the step n.
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THE LANCZOS ALGORITHM AND COMPLEX GAUSS QUADRATURE 9

There is a breakdown at the subsequent step n if and only if, in addition to (2.7), ∆n = 0. In207

other words, the Lanczos algorithm has a breakdown at the step n if and only if the linear208

functional (2.1) is quasi-definite on Pn−1, but not on Pn.209

If the matrix A is Hermitian, v = w 6= 0, and d = d(A,v) is the grade of v with respect
to A, then the moments of L defined by (2.1) are real and there exists the non-decreasing
distribution function µ supported on the real axis having d points of increase such that L can
be represented by the Riemann-Stieltjes integral

L(p) =

∫
R
p(λ) dµ(λ), for p ∈ P ;

see, e.g., [24, Section 7.1] and [41, Section 3.5]. Then L is a positive definite linear functional210

on Pd−1, the corresponding Hankel determinants ∆j , j = 0, . . . , d − 1, are positive and211

∆d = 0; see, e.g., [7, Chapter I, Definition 3.1 and Theorem 3.4] and [49, Section 2].212

3. The Gauss quadrature and the Lanczos algorithm. Consider a non-decreasing
distribution function µ(λ) on R having finite limits at ±∞ and infinitely many points of
increase. If all the moments of the Riemann-Stieltjes integral

mi =

∫
R
λi dµ(λ), i = 0, 1, . . .

exist and are finite, then we can define the positive definite linear functional on the space of213

polynomials with real coefficients L : R → R as214

(3.1) L(p) =

∫
R
p(λ) dµ(λ), p ∈ R .

Then the Gauss quadrature is given by the unique n-node quadrature formula which matches
the first 2n moments of the Riemann-Stieltjes integral (3.1). The classical results on the Gauss
quadrature can be found in many books; see, e.g., [55, Chapters III and XV], [7, Chapter
I, Section 6]; [22, Section 1.4], [23, Chapter 3.2], [41, Section 3.2]. The 1981 survey by
Gautschi [21] contains many results as well as historical comments of the matter. In this
section we present results about the extension of the Gauss quadrature for the approximation
of quasi-definite linear functionals L : P → C with generally complex moments

mi = L(λi), i = 0, 1, . . . .

We recall the definition of matrix function; for more information including equivalence to
the other definitions of matrix function see, e.g., [34]. A function f is defined on the spectrum
of the given matrixA if for every eigenvalue λi ofA there exist f (j)(λi) for j = 0, 1, . . . , si−1,
where si is the order of the largest Jordan block of A in which λi appears. Let Λ be a Jordan
block of A of the size s corresponding to the eigenvalue λ. The matrix function f(Λ) is then
defined as

f(Λ) =



f(λ) f ′(λ)
1!

f(2)(λ)
2! . . . f(s−1)(λ)

(s−1)!

0 f(λ) f ′(λ)
1! . . . f(s−2)(λ)

(s−2)!

...
. . . . . . . . .

...
...

. . . . . . f ′(λ)
1!

0 . . . . . . 0 f(λ)


.
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Denoting

A = Wdiag(Λ1, . . . ,Λν)W−1

the Jordan decomposition of A, the matrix function f(A) is defined by

f(A) = Wdiag(f(Λ1), . . . , f(Λν))W−1.

Given a linear functional L on the space of sufficiently smooth functions, consider the215

quadrature of the form (see [12, Chapter 5], [45, Section 2], and [49, Section 7])216

(3.2) L(f) ≈ Gn(f) =
∑̀
i=1

si−1∑
j=0

ωi,j f
(j)(λi), n = s1 + · · · + s`,

with ωi,j the weights, λi the nodes, and si the multiplicity of the node λi. Notice that the217

number of different nodes in (3.2) is equal to `, and ` can be less than n. If we count the218

multiplicities, then the number of nodes is equal to n, that is also the number of weights in219

(3.2). In order to avoid ambiguity, we refer to (3.2) as the n-weight quadrature, instead of220

the n-point or n-node quadrature as is usually done. For any choice of (different) nodes λi,221

i = 1, . . . , `, and their multiplicities si, such that s1 + · · · + s` = n, it is possible to achieve222

that the quadrature (3.2) is exact for any f from Pn−1. As shown in [12, Theorem 5.1] or in223

the proof of Theorem 7.1 in [49], it is necessary and sufficient to take224

(3.3) ωi,j = L(hi,j),

where hi,j are polynomials from Pn−1 such that

h
(t)
i,j (λk) = 1 for λk = λi and t = j,

h
(t)
i,j (λk) = 0 for λk 6= λi or t 6= j,

with k = 1, 2, . . . , `, and t = 0, 1, . . . , si − 1. In this case we say that the quadrature (3.2) is225

interpolatory, since it can be obtained by applying the linear functional L to the generalized226

(Hermite) interpolating polynomial for the function f at the nodes λi of the multiplicities si.227

In [49], it is referred to (3.2) as the n-weight Gauss quadrature approximating the linear228

functionals L on the space of polynomials P if and only if the following three properties are229

satisfied.230

• G1: the n-weight Gauss quadrature attains the maximal algebraic degree of exactness231

2n− 1, i.e., it is exact for all polynomials of degree at most 2n− 1.232

• G2: the n-weight Gauss quadrature is well-defined and it is unique. Moreover, Gauss233

quadratures with a smaller number of weights also exist and they are unique.234

• G3: the Gauss quadrature of a function f can be written as the quadratic form235

m0 e
T
1 f(Jn)e1, where Jn is the complex Jacobi matrix containing the coefficients236

from the three-term recurrences for orthonormal polynomials associated with L;237

m0 = L(λ0).238

In what follows we will refer to this quadrature as complex Gauss quadrature. We will,239

however, use the adjective complex only when it is necessary to emphasize the difference with240

respect to the standard n-node Gauss quadrature described at the beginning of this section.241

The property G3 assumes existence of the first n orthonormal polynomials with respect to242

L, i.e., by Theorem 1.3, it considers only quasi-definite linear functionals on Pn. Naturally,243

we can state the following theorem. The detailed proof and discussion can be found, e.g., in244

[49, Section 7, in particular Corollaries 7.4 and 7.5].245
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THEOREM 3.1. Let L be a linear functional on P . There exists the n-weight complex246

Gauss quadrature, i.e., the quadrature (3.2) having properties G1, G2 and G3, if and only if L247

is quasi-definite on Pn.248

The nodes λi, i = 1, . . . , `, of the n-weight Gauss quadrature (3.2), and their multiplicities249

si, s1 + · · · + s` = n, coincide with:250

• the roots of the n-degree orthonormal polynomial p̃n with respect to L with their251

corresponding multiplicities;252

• the eigenvalues of the complex Jacobi matrix Jn with their corresponding algebraic253

multiplicities;254

see, e.g., [49, Theorem 7.1 and the discussion on p. 21–22]. The weights are given by (3.3).255

Theorem 3.1 says that the definition of the complex Gauss quadrature (3.2) satisfying G1–G3256

cannot be used for non quasi-definite linear functionals. A slightly different definition for257

an arbitrary real-valued linear functional defined on R was given in [12, Section 5]; Draux258

considers Gauss quadrature (3.2) having a maximal possible degree of exactness (which is259

2n− 1 in the quasi-definite case).260

The property G3 is actually a consequence of the properties G1 and G2 [49, Corollary 7.5].261

We formulated it explicitly in order to stress the link of the complex Gauss quadrature with262

complex Jacobi matrices. Complex Gauss quadrature (3.2) for a quasi-definite linear functional263

L : P → C is associated with a complex Jacobi matrix Jn, which is unique, providing that264

the arguments of the off-diagonal complex entries are in (−π/2, π/2]. Moreover, by Favard265

Theorem (see Section 1), any complex Jacobi matrix determines the Gauss quadrature for some266

quasi-definite linear functional. The setting in [12] considers the Gauss quadrature for real267

linear functionals on the space of polynomials with real coefficients L : R → R and therefore268

the link with complex Jacobi matrices (i.e., symmetric irreducible tridiagonal matrices; see269

Section 1) is not given there.270

If the linear functional quasi-definite on Pn is given by (2.1), then the associated complex271

Jacobi matrix (2.6) can be constructed by performing n steps of the Algorithm 2.3; see Section272

2. The property G3 then presents Lanczos algorithm as a matrix formulation of the Gauss273

quadrature (see [17, in particular Theorem 2]). Analogous arguments for the block Lanczos274

algorithm can be found, e.g., in [14, Section 3].275

The same can be stated for any linear functional L quasi-definite on Pn. Given the num-
bers m0,m1, . . . ,m2n such that the Hankel determinants ∆j are nonzero for j = 0, 1, . . . , n
(see (1.2)), there always exist a square matrix A and vectors v and w such that

w∗Akv = mk, k = 0, . . . , 2n.

For instance, take A ∈ C2n+1×2n+1 and v,w ∈ C2n+1 as

A =


0 1

0
. . .
. . . 1

0

 , v =


m0

m1

...
m2n

 , w =


1
0
...
0

 .
Then the first 2n+ 1 moments of L and the first 2n+ 1 moments of the functional L̃(f) =276

w∗f(A)v are equal and L̃ is quasi-definite on Pn. Moreover, the n-weight Gauss quadrature277

for L can be identified with m0e
T
1 f(Jn)e1, where Jn is the complex Jacobi matrix obtained278

at the step n of the Algorithm 2.3 with the input A, v and w. Therefore any complex Gauss279

quadrature given by G1–G3 can be constructed by the Lanczos algorithm.280

We remark that if L is quasi-definite on Pn−1 but it is not quasi-definite on Pn, then the
Lanczos algorithm has a breakdown at the step n; see Theorem 2.4. However, the nth step
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of Algorithm 2.3 still gives the complex Jacobi matrix Jn related to the recurrences of the n
orthonormal polynomials p̃0, . . . , p̃n−1. The quadrature rule L(f) ≈ m0e

T
1 f(Jn)e1 is not

the complex Gauss quadrature since its degree of exactness is larger than 2n− 1, i.e.,

L(λk) = m0e
T
1 (Jn)ke1, k = 0, . . . , j,

where j ≥ 2n; see [49, Sections 7 and 8]. However, since Draux considers in [12] Gauss281

quadrature (3.2) having a maximal possible degree of exactness, the property G3 formulates282

Gauss quadrature in the sense of [12] (in the real setting).283

4. Jordan decomposition of complex Jacobi matrices. Let Jn be an arbitrary n × n284

complex Jacobi matrix. Then there exists a linear functional L quasi-definite on Pn such that285

Jn contains the coefficients from the three-term recurrences for orthonormal polynomials p̃j ,286

j = 0, . . . , n, associated with L. Jn is a non-derogatory matrix (see, e.g., [49, Section 4]), i.e.,287

it has ` distinct eigenvalues λ1, . . . , λ`, all having the geometric multiplicity 1. We write its288

Jordan decomposition as289

(4.1) Jn = Wdiag(Λ1, . . . ,Λ`)W
−1,

where Λi is the Jordan block of dimension si associated with the eigenvalue λi, i = 1, . . . , `.290

For any t = 1, . . . , n there is exactly one integer i between 1 and `, and exactly one integer291

j between 0 and si − 1, such that t = s1 + . . . + si−1 + j + 1 (here, for i = 1, s0 ≡ 0).292

In other words, fixed t uniquely determines i and j, and vice versa, fixed i and j uniquely293

determine t. The tth column wt(i,j) of W can be written as (see [48, p. 274], [38, Lemma 2],294

and [49, Proposition 4.4])295

(4.2) wt(i,j) =
1

j!


0j

p̃
(j)
j (λi)

...
p̃
(j)
n−1(λi)

 ,
where 0j is the zero vector of length j. The next theorem, which can also be derived,296

considering the extension to complex linear functionals and Favard Theorem, from the formulas297

on p. 277 of [48], gives the explicit formula for the rows of W−1.298

THEOREM 4.1. Let Jn = Wdiag(Λ1, . . . ,Λ`)W
−1 be the Jordan decomposition of an

n× n complex Jacobi matrix Jn. Let L be the quasi-definite linear functional on Pn such that
Jn contains the coefficients from the three-term recurrences for the orthonormal polynomials
p̃0, . . . , p̃n with respect to L, and let

∑`
i=1

∑si−1
j=0 ωi,j f

(j)(λi) be the Gauss quadrature for
L defined by (3.2) and (3.3). Then the rth row vTr(i,j) of W−1,

vTr(i,j) = eTr(i,j)W
−1, r = s1 + · · ·+ si−1 + j + 1 (s0 ≡ 0 for i = 1),

has the following representation299

(4.3) vr(i,j) =

si−1∑
ν=j

ν!ωi,ν wt(i,ν−j),

with wt(i,ν−j) defined by (4.2).300

Proof. Let V be the n× n matrix with the rows vr(i,j), r = 1, . . . , n, given by (4.3). We
will show that WV = In, i.e., V = W−1. Denote the kth row of W by aTk , and the mth
column of V by bm and prove that

aTk bm = L(p̃k−1p̃m−1).
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By (4.2) the qth element of ak is

ak,q =
p̃
(j)
k−1(λi)

j!
, q = s0 + s1 + . . .+ si−1 + j + 1,

where for k − 1 < j we have p̃(j)k−1(λi) = 0. Using (4.3), the qth element of bm is

bm,q =

si−1∑
ν=j

ν!ωi,ν
p̃
(ν−j)
m−1 (λi)

(ν − j)!
= j!

si−1∑
ν=j

(
ν

j

)
ωi,ν p̃

(ν−j)
m−1 (λi).

Thus we get, by rearranging the order of summations,301

n∑
q=1

ak,qbm,q =

n∑
q=1

si−1∑
ν=j

(
ν

j

)
ωi,ν p̃

(ν−j)
m−1 (λi)p̃

(j)
k−1(λi)

=
∑̀
i=1

si−1∑
j=0

ωi,j

j∑
u=0

(
j

u

)
p̃
(j−u)
m−1 (λi)p̃

(u)
k−1(λi)

=
∑̀
i=1

si−1∑
j=0

ωi,j(p̃m−1p̃k−1)(j)(λi) = L(p̃k−1p̃m−1),

which gives the result.302

The weights ωi,j defined by (3.3) of the Gauss quadrature in Theorem 4.1 can be expressed303

by the matrix W and its inverse; see [38, Equations (8) and (11)].304

REMARK 4.2. The fact that a complex Jacobi matrix Jn is symmetric is associated with305

the requirement WV = In and therefore the orthogonal polynomials p̃j , j = 0, . . . , n, being306

orthonormal. The previous development can be easily modified for the Jordan decomposition307

Tn = Wdiag(Λ1, . . . ,Λ`)W
−1 of an arbitrary irreducible tridiagonal matrix Tn. The repre-308

sentation (4.2) of the columns of W will then use the orthogonal polynomials pj satisfying the309

three-term recurrences with the coefficients given by Tn (see, e.g., [49, Proposition 4.4]),310

(4.4) wt(i,j) =
1

j!


0j

p
(j)
j (λi)

...
p
(j)
n−1(λi)

 .
The matrix V with the rows defined by (4.3) satisfies

WV = diag(L(p20), . . . ,L(p2n−1)),

i.e.,

W−1 = V diag(1/L(p20), . . . , 1/L(p2n−1)).

The rows of W−1 can then be written as311

(4.5) vr(i,j) =

si−1∑
ν=j

ν!ωi,ν w̃t(i,ν−j),
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with312

(4.6) w̃t(i,j) =
1

j!


0j

p
(j)
j (λi)/L(p2j )

...
p
(j)
n−1(λi)/L(p2n−1)

 ;

cf. [48] where the real monic orthogonal polynomials are considered.313

5. The Gauss quadrature for linear functionals with real moments. Let us now focus314

on a quasi-definite linear functional L : P → C which has real moments mj = L(λj), for315

j = 0, 1, . . . . Restricting L to the space of polynomials with real coefficients R gives a316

real-valued linear functional. We can still use the complex Gauss quadrature Gn described in317

Section 3 to approximate L and its restriction toR. At first glance, the idea of approximating318

such a functional by the quadrature with complex nodes and weights does not seem attractive.319

As we will see, however, the value of Gn(f) is, for suitable f , always a real number.320

As presented above, in [12, Chapter 5] Draux defined a slightly different Gauss quadrature321

for arbitrary real-valued linear functional defined on the space of polynomials with real322

coefficientsR. Using Draux definition based on the maximal degree of exactness, it is possible323

to approximate real-valued linear functionals which are not quasi-definite, which means that,324

in general, Draux quadrature does not satisfy the properties G1–G3 in Section 3. If L is a linear325

functional with real moments quasi-definite on the space of polynomials with real coefficients,326

then the complex Gauss quadrature Gn is equal to the n-weight quadrature defined by Draux.327

In general, we have the following statement.328

THEOREM 5.1. Let L be a quasi-definite linear functional on Pn whose moments
m0, . . . ,m2n−1 are real, and let Gn be the associated Gauss quadrature (3.2),

Gn(f) =
∑̀
i=1

si−1∑
j=0

ωi,j f
(j)(λi).

Then the following holds:329

1. The nodes λi, i = 1, . . . , `, are real or appear in complex conjugate pairs, i.e., for330

any λi /∈ R with multiplicity si there is a node λm = λi with the same multiplicity.331

2. For any λi ∈ R we have ωi,j ∈ R, j = 0, . . . , si − 1. If λi /∈ R and λm = λi, then332

ωm,j = ωi,j for j = 0, . . . , si − 1.333

3. If f is a real-valued function satisfying f (j)(λ̄i) = f (j)(λi) for i = 1, . . . , ` and334

j = 0, . . . , si − 1, then Gn(f) is a real number.335

Proof. The monic orthogonal polynomials π0, π1, . . . , πn associated with L satisfy

πj(λ) = (λ− αj−1)πj−1(λ)− ηj−1πj−2(λ), j = 1, 2, . . . , n,

with α0 = m1/m0, π−1(λ) = 0, π0(λ) = 1, and

αj−1 =
L(λπ2

j−1)

L(π2
j−1)

, ηj−1 =
L(π2

j−1)

L(π2
j−2)

, j = 2, . . . , n .

The moments of L are real, which implies that αj−1, ηj−1 ∈ R for j = 2, . . . , n, and the336

polynomials πj , j = 0, . . . , n have real coefficients. Since the roots of πn are the nodes337

λ1, . . . , λ` with the corresponding multiplicities s1, . . . , s`, we have proved the first statement.338
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Let Tn be the tridiagonal matrix associated with π0, . . . , πn. Then Tn is real and has the
eigenvalues λ1, . . . , λ` with the multiplicities s1, . . . , s`. We will prove the second statement
by induction on j, using the Jordan decomposition

Tn = Wdiag(Λ1, . . . ,Λ`)W
−1

with (4.4), (4.5), and (4.6). If λi is not real, then there exists the eigenvalue λm = λi, with
sm = si. Since πk(λ̄) = πk(λ) for k = 0, . . . , n, then

wt(i,j) = wu(m,j), w̃t(i,j) = w̃u(m,j), j = 0, . . . , si − 1.

Fix j = si − 1 = sm − 1 as the base case of the inductive proof. Then expression (4.5) gives

(vr(i,si−1))
T = (si − 1)!ωi,si−1(w̃t(i,0))

T ,

(vq(m,sm−1))
T = (si − 1)!ωm,sm−1(w̃t(i,0))

∗.

Using (vr(i,si−1))
Twr(i,si−1) = 1 and (vq(m,sm−1))

Twr(i,si−1) = 1 with the two previous
equations, it follows that

1

ωi,si−1
= (si − 1)! (w̃t(i,0))

Twr(i,si−1) and
1

ωm,sm−1
= (si − 1)! (w̃t(i,0))Twr(i,si−1) .

Hence ωi,si−1 = ωm,sm−1, which finishes the initial step. Let us fix j between 0 and
si − 2 and let ωi,k = ωm,k, k = j + 1, . . . , si − 1, be the inductive assumptions. Then
(vt(i,j))

Twt(i,j) = 1 and (4.5) give

si−1∑
ν=j

ν!ωi,ν (w̃r(i,ν−j))
Twt(i,j) = 1.

The first summand on the left-hand side of the previous equation can be written as339

j!ωi,j (w̃r(i,0))
Twt(i,j) = 1−

si−1∑
ν=j+1

ν!ωi,ν (w̃r(i,ν−j))
Twt(i,j)

= 1−
si−1∑
ν=j+1

ν!ωm,ν (w̃q(m,ν−j))T wu(m,j)

= j!ωm,j (w̃q(m,0))Twu(m,j)

= j!ωm,j (w̃r(i,0))
Twt(i,j).

Therefore ωi,j = ωm,j for j = 0, . . . , si−1. If, on the other hand, λi is real, then an analogous340

induction gives ωi,j ∈ R, j = 0, . . . , si − 1. In this case, the vectors wt(i,j) and w̃t(i,j) are341

real, which finishes the proof of the second part of the statement.342

Finally, if f is a real-valued function satisfying f (j)(λ̄i) = f (j)(λi) for i = 1, . . . , ` and343

j = 0, . . . , si − 1, then Gn(f) is real by construction.344

As shown in the proof of Theorem 5.1, if L is a linear functional with real moments345

quasi-definite on Pn, then there exists a irreducible real tridiagonal matrix Tn associated with346

the monic orthogonal polynomials π1, . . . , πn. Therefore by (1.9) all the tridiagonal matrices347

determined by a quasi-definite linear functional with real moments have real numbers on the348
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ALGORITHM 5.2 (Lanczos algorithm in the real number setting).
Input: real matrix A, two real vectors v,w such that w∗v 6= 0.
Output: vectors v0, . . . ,vn−1 that span Kn(A,v) and vectors w0, . . . ,wn−1 that span
Kn(A∗,w), satisfying the biorthogonality conditions (2.2).

Initialize: v−1 = w−1 = 0, γ0 = 0, ŝ = 1, s = 1,

v0 = v/||v||, w0 = w/(w∗v0).

For j = 1, 2, . . . , n

αj−1 = s ·w∗
j−1Avj−1,

v̂j = Avj−1 − αj−1vj−1 − γj−1vj−2,

ŵj = A∗wj−1 − αj−1wj−1 − γj−1wj−2,

s = sign (ŵ∗
j v̂j),

if s = 0 then stop,

δj =
√
|ŵ∗

j v̂j |,

γj = s · ŝ · δj ,
ŝ = s,

vj = v̂j/δj ,

wj = ŵj/δj ,

end.

main diagonal. Moreover, by (1.10) the elements at the super-diagonal of the corresponding349

(complex symmetric) Jacobi matrix are either real or pure imaginary. Notice that a complex350

Jacobi matrix Jn is real if and only if it is determined by a linear functional positive definite351

on Pn; see, e.g., [44, Theorem 2.14].352

The previous discussion can now be applied to the Lanczos algorithm with a real input.353

For the given real matrix A and v 6= 0,w 6= 0 real vectors, the moments of the linear354

functional L : P → C defined by355

(5.1) L(p) = w∗p(A)v, p ∈ P

are real. The output after n steps of the Lanczos algorithm is real if and only if the algorithm
is based on orthogonal polynomials satisfying the three-term recurrences with real coefficients.
Since Algorithm 2.3 is based on orthonormal polynomials, its n steps cannot result in a real
output unless the functional (5.1) is positive definite on Pn. If this assumption cannot be used,
the output of the Lanczos algorithm is real providing that the algorithm is based on monic
orthogonal polynomials. However, in this case there is no further rescaling of the vectors v̂j
and ŵj , j = 0, 1, . . . . If the rescaling of the vectors v̂j , ŵj is required (for any reason), then
one can use the following modification; cf. [30, Section 2, in particular equation (2.21a)]. The
polynomials p0 = p̃0, . . . , pj−1 = p̃j−1 are constructed by Algorithm 2.2 as long as they have
real coefficients, i.e., as long as L(p̂ 2

k ), k = 0, . . . , j − 1, is positive. When L(p̂ 2
j ) is negative,

then we rescale p̂j in the following way:

δj =
√
|L(p̂ 2

j )|, pj =
p̂j
δj
.
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Thus we get the sequence of orthogonal polynomials such that L(p2j ) is either 1 or -1. The
other coefficients from the three-term recurrences are also real. They are given by

γj =
L(λpj−1pj)

L(p2j−1)
=
L(p2j )

L(p2j−1)
δj =

{
δj , if L(p2j−1) · L(p2j ) = 1
−δj , if L(p2j−1) · L(p2j ) = −1,

αj =
L(λp2j )

L(p2j )
=

{
L(λp2j ), if L(p2j ) = 1
−L(λp2j ), if L(p2j ) = −1.

The resulting form of the Lanczos algorithm involving only real number computations is given356

as Algorithm 5.2; see, e.g., Algorithm 1 with equation (2.21a) in [30]. The tridiagonal matrix357

Tn = W ∗
nAVn obtained by the first n iterations of the algorithm has sub- and super-diagonal358

elements such that δj = γj or δj = −γj , for j = 1, . . . , n− 1.359

6. Conclusion. The survey presents in the comprehensive form the Lanczos algorithm360

as a matrix representation of the complex Gauss quadrature, with pointing out many related361

results published in various contexts previously. The weights ωi,j of the Gauss quadrature (3.2)362

appear in the representation (4.3) of the rows of W−1 from the Jordan decomposition (4.1)363

of the corresponding complex Jacobi matrix. When the moments of the quasi-definite linear364

functional approximated by the Gauss quadrature Gn are real, the non-real nodes and weights365

of Gn come in the conjugate pairs. Therefore the value of Gn(f) is a real number whenever366

the real-valued function f satisfies f (j)(λ̄i) = f (j)(λi) for i = 1, . . . , ` and j = 0, . . . , si− 1.367

This property is linked with the fact that if the input is real, then the Lanczos algorithm with368

an appropriate rescaling can be performed in the real number setting.369

If the linear functional L is not quasi-definite on Pn, then the maximal algebraic degree370

of exactness of the n-weight quadrature (3.2) is not given a priori (see Section 3). The371

well-known Theorem 1.3 shows that it is not possible to define a sequence of n orthogonal372

polynomials for a linear functional which is not quasi-definite on Pn (it should be recalled373

that throughout the paper, as pointed out at the beginning of Section 1, the term orthogonal374

polynomials covers also the widely used term formal orthogonal polynomials). Therefore375

it is not trivial to extend the Gauss quadrature and the Lanczos algorithm to the case of376

a non quasi-definite linear functional. In order to extend the discussed results to the non377

quasi-definite case, it is required to define a sequence of polynomials q0, q1, . . . , qn satisfying378

some relaxed orthogonality conditions; see, e.g., [12, Chapter 1]. These polynomials satisfy379

short recurrences that generalize the three-term recurrences (1.3) (see, e.g., [26, p. 222–223],380

Remark 1.2 in [12, p. 71] and Theorem 2 in [27]). The polynomials qj , j = 0, . . . , n,381

determine the Gauss quadratures with at most n weights as defined in [12, Chapter 5] for the382

case of real-valued linear functionals, and they are at the basis of the look-ahead strategies383

for the Lanczos algorithm; see, e.g., [15, 18, 16, 32] and [35, Section 6.3]. Moreover, the384

matching moment property for arbitrary linear functionals is also related to the minimal partial385

realization problem for a general sequence of moments; see [27, Section 3]. Assuming real386

moments (with the extension to complex moments being straightforward) the results about the387

Gauss quadrature for an arbitrary linear functional, and about minimal partial realization of a388

general sequence of moments were published in the same year (1983) by Draux [12, Chapter389

5] and by Gragg and Lindquist [27]. We remark that the Gauss quadrature from [12] and390

the minimal partial realization described in [27] are equivalent. Further connections between391

Gauss quadrature for arbitrary linear functionals on the space of polynomials with complex392

coefficients, the look-ahead Lanczos algorithm, and the minimal partial realization problem393

will be considered elsewhere.394
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