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DECOMPOSITION INTO SUBSPACES PRECONDITIONING:
ABSTRACT FRAMEWORK

JAKUB HRNCIR *, IVANA PULTAROVA t, AND ZDENEK STRAKOS

Abstract. The paper re-considers the abstract infinite-dimensional framework of operator preconditioning based on
decomposition into subspaces. Such framework has been developed in early 90’s in the works of Nepomnyaschikh, Matsokin,
Oswald, Griebel, Dahmen, Kunoth, Riide and others, with inspiration from particular applications, e.g. to fictitious domains,
additive Schwarz methods, multilevel methods etc. In our exposition we aim at the simplest possible framework that is on one
side general and avoids using features that are specific to particular methods or applications formulated in finite-dimensional
spaces, and on the other side allows to cover most of the widely used approaches. Motivated by the work of Faber, Manteuffel
and Parter published in 1990 we will use the concepts of norm equivalence and spectral equivalence of infinite-dimensional
operators, which goes beyond the works mentioned above. Although the emphasize is more on the exposition that uses minor
modifications of results published previously than on new results, we believe that the text also clarifies and strengthens
several points that might be of general interest. The second part with the subtitle Applications will show how the presented
framework is used for comparison of different methods. It will be published separately.

Key words. Decomposition into infinite-dimensional subspaces, operator preconditioning, stable splitting, norm and
spectral equivalence of operators, additive Schwarz methods, multilevel methods.

1. Introduction. Numerical solution of boundary value problems formulated via partial differential
equations (PDEs) consists of several tightly interconnected steps. First the mathematical model is
analyzed, which leads to the appropriate concept of solution of the infinite-dimensional problem, such
as the weak solution using the associated function spaces. Then the problem is discretized, giving a finite-
dimensional matrix-vector representation, and subsequently an approximate solution of the discretized
problem is computed. Although it is of no particular importance in this text, we emphasize that the
discretized problem is not solved exactly, apart from trivial cases. In solving large discretized problems,
an approximate solution is typically computed iteratively. In order to ensure computational efficiency (in
the sense of computing time or energy consumption), the discretized problem is typically transformed into
a problem that is easier to solve via the given iterative process. Such transformation is historically called
preconditioning.

In the recent book [31] it is argued that formulation of the infinite-dimensional problem using function
spaces, its discretization, preconditioning and computation of an approximate solution using appropriate
stopping criteria should be considered as inseparable parts of a single effort. As argued by many
authors, it is useful to link preconditioning considered in algebraic matrix computations with the infinite-
dimensional operator formulation of the problem and with its discretization using the concept of operator
preconditioning.

1.1. Operator preconditioning. The ideas of operator preconditioning were developed in the 90’s
independently by several authors; see, e.g., Klawonn [26, 27] and Arnold, Falk and Winther [1, 2]. They
were immediately used and further developed in many works. Even before that, a seminal paper by Faber,
Manteuffel and Parter [15] analyzed closely related concepts of norm equivalence and spectral equivalence
of operators, with references to the early papers of D’Yakonov [13, 14] and Gunn [20, 21]. Another
line of development can be represented by the works of Matsokin and Nepomnyaschikh [33, 37, 36, 35],
Oswald [39, 40, 41] and Dahmen and Kunoth [11], which are closely related to the multilevel methods
and multilevel preconditioning; see the summary and the list of references in the paper by Axelsson and
Karatson [5] and in the introduction to Chapter 2 of the book [44]. Classical related references are, e.g.,
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[6, 7,8, 16, 19, 25, 32, 47, 49]. This paper will build upon [31] and, motivated by [15], [44, Chapter 2], [43,
Section 3], and [42, Chapter 4], it will revisit an abstract formulation of operator preconditioning based
on the idea of decomposition of a Hilbert space into a finite number of infinite-dimensional subspaces.

We will now outline the main ideas, with detailed descriptions (including references to the literature)
provided further in the text. Using a real (infinite-dimensional) Hilbert space V and its dual V# consisting
of all linear bounded functionals from V to R, we will consider the functional equation in V#

Au=0b, where A:V >V# beV# wecV. (1.1)
We will assume that A is linear, bounded, coercive, and self-adjoint
(Au,v) = (Av,u) for all u,v € V.

Some statements given throughout the text allow for a more general setting. By the Lax-Milgram lemma
the solution u € V of (1.1) always exists and it continuously depends on the right-hand side b € V#.
The given setting represents, e.g., the weak formulation of linear second-order elliptic PDEs that generate
self-adjoint operators; see, e.g., [31, Chapters 1-3]. It is worth noting that although the original differential
operator is in the classical formulation typically unbounded, the representation (1.1) using the appropriate
Sobolev spaces uses bounded operators A : V — V# and bounded functionals b € V#.

Operator preconditioning can in its general form be formulated using the Riesz representation theorem.
Considering any inner product (-,-)« : V X V — R on V (that is, in general, different from the inner
product (-, -)y that is associated with the definition of the Hilbert space V') and the associated Riesz map
T. : V# 5 Vit is possible to write the problem (1.1) as an equation in the solution space V:

nwAu=7b, TA:V =V, 17.beV, uweV. (1.2)

Since T, represents an isometry, the operator 7.4 on V is bounded and coercive, and it is self-adjoint with
respect to the inner product (-, -)..

Equivalently, operator preconditioning can be formulated using a linear, bounded, coercive, and self-
adjoint operator B:V — V# that defines the B-inner product

() VXV -oR (wv)g:=(Bw,v) forallw,veV, (1.3)

where (-,-) : V# x V is the duality pairing associated with V and V#. Using the Riesz map 75 determined
by (-,-)s and the easily derived equality 75 = B~ : V# — V, the problem (1.2) is written as

B'Au=B"', B'A:V-V, BlbeV, ucV. (1.4)

The question to be addressed next is which relationship between the operators A and B can ensure
that the transformed (preconditioned) problem (1.4) can be easily solved by a particular iterative method.

1.2. Norm and spectral equivalence, condition and spectral number. This question is, in
general, very difficult to handle. For stationary iterative methods (and, more generally, for methods based
on contraction) the question can be addressed by an appropriate single-number characteristic, such as the
condition number. This is also where the term preconditioning founds its origin. For highly nonlinear
iterations such as Krylov subspace methods, any single-number characteristic is insufficient for describing
convergence behavior and its use can be highly misleading; see, e.g., [31, Chapter 11], [30, Chapter 5],
and [18]. In relation to the abstract Schwarz theory the point is made very clear in [42, Section 4.1,
pp. 83-84]. Nevertheless, single-number characteristics can even in such cases be useful as first indicators,
and for powerful preconditioners it can even provide the desired information whenever the guaranteed
number of the resulting iterations is very small. We are well-aware of the limitations of single-number
characteristic descriptions, as can be documented by the front cover of the monograph [30] where the
presented figure symbolizes several misconceptions related to condition number bounds for the conjugate
gradient method widespread in literature. For the reasons mentioned above we nevertheless use single
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number characteristics throughout this paper. In particular, we will use the concepts of norm equivalence
and spectral equivalence of operators as presented in [15], and the related condition number and spectral
number characteristics of the preconditioned operators. The presented abstract framework goes therefore
beyond, e.g., [45, Section 4] and other works where the investigation boils down to the study of spectral
equivalence.

Consider the operators A, B given above. The operators A and B are called V#-norm equivalent on
V if there exist constants 0 < a < 3 < oo such that

_Wgﬁ, for all w € V,w # 0, (1.5)
[ Bw|ly#

and they are called spectrally equivalent on V' if there exist constants 0 < 7 < § < oo such that

(Aw, w)

v < B, w) <4, forall weV,w#0, (1.6)

see [15, Section 1.1, relation (1.16) and Section 1.2, relation (1.20)]. If « is close to 8 respectively - is close
to &, then (1.5) respectively (1.6) represent a strong (geometric) relationship between the operators A and
B, and we can expect that this will positively affect properties of the preconditioned operator B~'A. Such
properties are in literature on operator preconditioning typically characterized by the condition number

K(B™LA) == 1B~ Al cvan A Bl c vy (1.7)

Motivated by algebraic preconditioning of linear algebraic systems with finite matrices (see also [15,
Section 1.1, in particular relations (1.12) and (1.13)]), we will introduce the spectral number of the pair
A, B that is linked with another view to preconditioning (1.1) using the operator B. With the Riesz map
7: V# — V defined by the inner product (-, )y, 7.4 and 7B are linear, bounded and coercive operators on
V that are self-adjoint with respect to (-, )y . Taking the (uniquely determined) square root (see, e.g., [17,
Theorem 6.6.4])

(TB)Y?: vV =V, (1.8)
the preconditioned system (1.4) can be rewritten as
(TB)"Y2 7 A (vB) Y ?w = (rB) Y2 1, (1.9)

where w = (TB)l/ 2u. This substantiates the introduction of the spectral number of the pair A, B, related
to the preconditioned operator Q := (7B)~'/27 A(rB)~Y? .V =V,

fAB) = SRrevlly =1 (TB) PR AGE) 132 2)y  swbeey oy @22y )
’ ' inf,uev, lollv=1 ((TB)71/27‘A(TB)71/2’U, U)V infvevv lo]lv=1 (QU, U)V ’ '

which is determined by the shortest interval that contains the spectrum of @, with more details given in
the next section. We will also prove that (1.10) can be rewritten in terms of norms as

SuPzéVJVHy:lHCQZHV

infyev, oy =1 |QUllv’

k(A,B) = (1.11)
which does not seem entirely obvious and the proof does not seem to be present in literature (see
Theorem 2.1 in Section 2 and its proof given in Appendix, in particular relations (7.4) and (7.6)).

We point out that the condition number x(B~1A) should not be confused with the spectral number
#(A,B). Since B7!'A is not generally self-adjoint, there is no simple relationship between these two
characteristics. Even more important, it should be emphasized that the concepts of norm and spectral
equivalence of infinite-dimensional operators are not equivalent. For finite matrices norm equivalence
deals with the singular values while the spectral equivalence with the eigenvalues (or, more generally, with
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the field of values). For linear compact infinite-dimensional operators that are positive and self-adjoint
the norm equivalence implies spectral equivalence but not vice versa; see [15]. For more general setting
the relationship between these two concepts seems unresolved; see [23]. Even within the setting with
linear, bounded, coercive and self-adjoint operators it is useful to investigate both concepts'. This allows
generalizations that can be used in a wider context.

In this paper we will not investigate in full the relationship between (1.5), (1.6), (1.7), and (1.10).
There seem to be much to be done in that direction and therefore such investigation is beyond the scope
of this text; see [23]. We will use (1.5) and (1.6) for stating some basic results about (1.7) and (1.10).

1.3. Decomposition into subspaces. The outlined setting will be used for the description of
preconditioners based on decomposing the Hilbert spaces V and V# into a finite number of infinite-
dimensional subspaces. This enables construction of preconditioners for each individual subspaces with
using them subsequently for assembling the global preconditioner.

The bounds derived using the norm and spectral equivalence on the infinite-dimensional operator
level are independent of any discretization (see, e.g., [22]) and, as reproduced below, they carry over (in
the norm equivalence case with an additional technical term depending on the discretization basis) to
Galerkin discretizations using finite-dimensional subspaces. This is important because the bounds on
convergence of iterative methods for solving algebraic problems that can be subsequently developed are
automatically independent of discretization (apart from the technicality mentioned above). In most of the
published literature the investigation proceeds from particular discretizations and preconditioning, and the
generality of the bounds has to be proved for each approach separately. In other words, infinite-dimensional
results are essentially identified with their finite-dimensional applications, and the information on whether
the spaces are finite or infinite-dimensional is not used. Infinite-dimensional results are applied directly
with the constants associated with the finite dimensional problems. Therefore it can be more difficult to
see whether the possible ill-conditioning is negatively influenced by the inappropriate discretization.

The presented setting is minimalistic in assumptions yet it covers many traditional approaches. It
can be used beyond the finite element method (FEM) and structures. While using infinite-dimensional
Hilbert spaces is essential, we do not consider decompositions to infinite many subspaces. The reason
is twofold. First, no practical method used in computations can benefit from such setting. Second,
even from the purely mathematical point of view we consider infinite decompositions artificial with no
substantial mathematical contribution. The difficulties of infinite decompositions in comparison with finite
decompositions are in literature simply resolved by strong assumptions on unconditional convergence of
the associated infinite series.

In the presented general infinite-dimensional setting we avoid features such as fictitious spaces,
additional mappings and projections, which helps in simplicity of the whole exposition and clarity of
the statements. The fictitious space lemma from [33], [37, Lemma 2.3], [35, Lemma 2.2] that is used,
e.g., as a base of derivation in [42, Chapter 4], within our notation states the equivalence of (1.6) with
(see [15, 23])

'ygwgd forall f e V#, f+#£0, (1.12)

(f,ATLf)
i.e., the operators A and B given above are spectrally equivalent with the constants v < § if and only
if the inverses B~! and A~! are spectrally equivalent with the same constants. As mentioned above,
the simplicity of the chosen framework and notation will help in the subsequent comparison of various
approaches.

1.4. Structure of the paper. Section 2 presents the description of the basic setting and notation.
Section 3 recalls the concept of operator preconditioning and gives the bounds on the condition number

ISpectral equivalence (1.6) is in literature called also norm equivalence, which refers to the fact that for A, B as above it
represents estimating the ratio of the energy norms defined by the operators A and B. Without making a distinction from
the concept of norm equivalence (1.5), this ambiguity of notation can lead to further misunderstandings.
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and the spectral number of the infinite-dimensional preconditioned operator. It is pointed out in detail
that the condition number of the preconditioned problem should in general be distinguished from its
spectral number. Section 4 gives consequences for the matrix formulations of the discretized problem
when the general Galerkin discretization is used. Abstract splitting-based preconditioning is described
and investigated in Section 5. This section also presents error bounds based on the residual of the
preconditioned problem and on the locally preconditioned residuals. The link to the well-known context of
stable splitting is briefly outlined in Section 6. The paper closes with conclusions. The appendix presents
the proof of the characterization of the coercivity constant of the operator via the norm of its inverse,
which seems to be absent in the literature. We have chosen the proof that illustrates the difference between
the finite-dimensional and infinite-dimensional setting.

Within the paper we consider linear operators on real Hilbert spaces (i.e. real complete inner product
spaces). Whenever the results on the infinite-dimensional operators A and B presented in this paper are
linked with the results on their finite-dimensional analogues (matrices) that arise from discretization, it is
understood that within our setting .4 and B are bounded operators on infinite-dimensional Hilbert spaces
that have bounded inverses. Therefore, by standard functional analysis results (see, e.g. [31, p. 63], [3,
p. 282], [28], [10, p. 174], [12, p. 486], and [4, p. 98]), A and B cannot be considered as limits of their
discretized counterparts in any norm (a sequence of compact operators can converge in norm only to
a compact operator).

For algebraic vectors v respectively for matrices A we will always denote by ||v|| respectively ||A|| the
Euclidean norm respectively the associated induced (operator) matrix norm equal to the largest singular
value of the matrix A.

2. Basic setting. The following notation is mostly adopted from [31]. Let V be a real Hilbert space
with the inner product (-,-)y : V x V — R and the associated norm | - ||y := 1/(-,-)v. Let further V#
denote the dual space of bounded (continuous) linear functionals on V' with the duality pairing

(): VXV SR (2.1)
and the dual norm

[fllve = sup  (fv).

veV, [lvflv=1

The Riesz representation theorem associated with the inner product (-,-)y provides an isometric
isomorphism between V and V# given through the Riesz map 7 : V# — V. For each f € V# there
exists a unique 7f € V such that

(tf,0)v = (f,v) forallveV, (2.2)
with
I fllv = 1 fllv# (2.3)
Throughout this text we will consider the equation (1.1) or, equivalently,
tofindueV: (Au,v)=(buv) forall veV. (2.4)
In terms of an associated symmetric bounded (continuous) bilinear form
a(,-): VxV =R, a(u,v) == (Au,v) for all u,v eV (2.5)
the equation (2.4) is expressed as

tofindueV: a(u,v)=(bv) foral veV. (2.6)
5
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As mentioned above, A is assumed to be linear, bounded, coercive and self-adjoint, with the associated
boundedness and coercivity constants defined as

Ca:= sup | Av|y# < oo, (2.7)
veV, |lv]lv=1

and

ca = inf  (Av,v) > 0; (2.8)
VeV, |jv|lv=1
note that under the given assumptions A represents an isomorfism between V and V# (by the Lax-Milgram
theorem) and therefore A~! exists and represents an isomorfism between V# and V. Obviously

a(v,v) > callv||} forall veV,
la(w,v)| < Callw|v]vllvy forall w,ve V.

We will further use well known results from the spectral theory of self-adjoint operators in Hilbert
spaces; see, e.g. [17, Section 6.5]. Because they are formulated (using our notation) for the operators from
V to V, we will use them for the operator 7.A. From the self-adjointness of A with respect to the dual
map (-, ) we deduce the self-adjointness of 7.4 with respect to the inner product (-,-)y, and from the fact
that 7 is an isometric isomorfism from V# to V we have

sup [ Aully = Al ey = [Mlleqvm = s [Aulye. (2.9)
u€V, [ullv=1 u€V, [lullv=1

The coercivity of A allows us to restrict further considerations regarding the spectrum of 7.4 to the positive
part of the real line. The spectrum of 7.4 lies in the closed interval [m 4, M 4],

0<my:= inf  (Au,u) < (Au,u) = (TAu,u)y < My = sup  (Au,u). (2.10)

u€V, [lullv=1 u€V, fullv =1

Moreover, the lower bound m 4 and the upper bound M 4 belong to the spectrum of the operator 7.4 but
they need not be eigenvalues of 7.4; see [17, Theorem 6.5.9].

It is worth noticing that while the coercivity constant c4 in (2.8) is expressed as the lower extremal
point of the spectral interval determined by (2.10), i.e. ¢4 = m 4, the boundedness constant C 4 is expressed
in terms of the norms Cy = ||[TA|zv,v) = || Allzev,v#). We will therefore complete the description by
relating C4 to the upper extremal point M4 in (2.10) and by relating c4 to the norm of the inverse
operator ||[A™!|zq#,v). This relationship is used in literature but we have not been able to locate its
proof (it is not difficult but it does not seem to be a one-line observation). The statement is formulated
as the following theorem. Its proof is included in Appendix.

THEOREM 2.1. Let A:V — V# be a linear, bounded, coercive and self-adjoint operator. Using the
standard definition of the operator norm, the boundedness constant C 4 and the coercivity constant c4 can
be expressed as

Cy= ||A||L(V,V#) = sup (Au,u) = My, (2.11)

weV, [lullv=1

1 -1
cA=myg = inf Av,v) = ={|A! # . 2.12
ev i = S 1lye—t Ay A e ) (2.12)
Using this result,
ATz (v [0l < alv,0) < Al e llollf for all ve V. (2.13)

Now consider a linear, bounded, coercive, and self-adjoint operator B : V. — V# that will play
within our setting the role of a B-preconditioner for the functional equation (1.1), with Cz and c¢p defined
analogously to (2.7) and (2.8), respectively. Using the operator B, we introduce the B-inner product (1.3)

(,)B: VXV =R, (w,v)g:={(Bw,v) forallw,veV
6
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and the associated Riesz map
mVH SV, feV¥tsmfeV

defined by

(t8f,v)5 == (f,v) forall feV# veV. (2.14)
Using this and the definition of the B-inner product,

(75, v)s = (Brsf.v) = (f,0) (= (rf,0)v ),
and therefore the Riesz map 75 associated with B is given simply by
s=B"1.V# SV (2.15)

3. Norm and spectral equivalence in operator preconditioning. Operator preconditioning
can be introduced in several ways. We prefer using the relationship with the Riesz map. Considering any
inner product (.,.), : V x V — R and the associated Riesz map 7. : V# — V defined by

(Tofy0) :i=(f,v) forallveV,
the formulation (2.4) of (1.1)
(Au—1b,v) =0 forallveV
(the weak formulation of the PDE problem) can be equivalently written as
(1o (Au) — b, v), =0 forallv €V,

and, consequently, as transformation of the equation Au = f in the space V# of bounded linear functionals
on V into the equation in the solution space V,

wAu=1b, T.A: V>V, wueV, rnbeV. (3.1)

This transformation is called operator preconditioning. It can motivate or directly lead to the construction
of acceleration techniques used in order to improve the behavior of iterative methods for solving associated
discretized problems.

With the choice of the inner product (.,.), = (.,.)g determined via the operator B as above, the
transformed problem (3.1) can simply be written as

B'Au=8B"", B1'A: V=V, ueV, BlbeV, (3.2)

which resembles the standard algebraic preconditioning of linear algebraic systems. It is worth recalling
in this context the bounds on the condition number (1.7)?

k(BLA) = 1B Al cvn AT Bl vy

Since
-1 -1 4 Az
1B Allcvvy=sup  |[BAzlly = sup B s (| Azl y#
2€V, ||2llv =1 2€V, |12|lv =1 Az ]|y # v
_ C4
< sup 1B~ fllv  sup [l Az|lys = == (3.3)
FEVE I fllyn=1 2€V, ||z|lv=1 ‘B

2We point out that in the literature motivated by preconditioning, the condition number x(B~1A) is often confused with
the spectral number #(A, B); see (1.7) and (1.10).
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and, analogously,

_ C
A 1BHL(V,V) < *B, (3.4)
CA
we get an upper bound
CuxC
K(BLA) < A 25 = k(A)k(B). (3.5)
cr CA

THEOREM 3.1 (Norm equivalence and condition number). Assuming that the linear, bounded, coercive
and self-adjoint operators A and B are V#-norm equivalent on V, i.e. there exist 0 < a < 8 < 0o such
that

[Awlly+

< <B, foral weV,w+#0, 3.6
Bl (30
then
1B~ All vy < 8, (3.7)
_ 1
A= Bl vy < o (3.8)
Consequently,
_ _ - B
R(B~1A) == 1B Al v A Bllzvivy < o (3.9)
Proof. For the Riesz map 7 defined by (2.2) we have, using (3.6) and (2.3), that
<MrAvlly 5 o we v,w £ o0, (3.10)
[7Buw|lv
Substituting w = (7.4) "*u and w = (7B) v, we get
[[ullv ITA(TB) " vlv
a<—— 1V <8 and a< 2L WV o (3.11)
[7B(r.A)~ tully [vllv
respectively, for all u,v € V, u # 0, v # 0, and thus
_ 1 _
ITB(rA) vy < -, and ITA(TB) lzvivy < B (3.12)

Denote by Q* the adjoint operator to @ : V' — V; and recall that [|Q*||z(v,v) = [|Qllz(v,v). From the
self-adjointness of 7.4 and (78)~! we have for all u,v € V,

(+B) 7 A u, )y = (rB) " rAv, w)y = (7B) " u, mAv)y = (v, mA(TB) )y = (rA(B) u, v)y,
and thus ((7B)~'7.A)* = rA(rB)~", which results in
I(mB) " r Al vy = I(TB) T 1A | cvvy = [TATB) ey (3.13)
Similarly,
1A 7Bl cvivy = TB(TA) ey (3.14)

Considering an arbitrary w € V, w # 0, (3.13) and (3.11), we get

1B~ Awlly _ B 7 rAwlly _ [[(7B) " T Awlly _ 3 (3.15)

[[wllv [[wllv [wllv
8
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which proves (3.7). Similarly, for arbitrary w € V, w # 0, using (3.14) and (3.11) we get

A= Bully _ AT 7 rBully _ [[(TA) " rBully _

= < -, (3.16)
[[w]ly [[w|ly [[w]ly

Q| =

which proves (3.8). Relation (3.9) then trivially follows. O
For j3 close to o the bound (3.9) proves that the condition number x(B~1A) is small irrespectively of the
values of the constants c4, C4, cg and Cg.
COROLLARY 3.2. Inequalities (3.7) and (5.8) in Theorem 3.1 mean
A= Bw|y 1

<p, ——— <=, forallvyweV,v#0,w#0.
[[wllv a

1B~ Av|lv

[ollv
Substituting v = A1 f and w = B~1g, we get

1B~ fllv A gllv _ 1

=i <, T < 2 forallf,ge VT, 0, 0
Ay =0 By S frathe eV IE0 e 7
or, equivalently
1B~ llv
a<—2L < B, foralfeV?, 0. 3.17
1A f ][y f f f# (3.17)

We have just shown that (3.6) implies (3.17). Analogously, (3.17) implies (3.6). Thus the V#-norm
equivalence of A and B on V with constants o and  in the form (3.6) is equivalent to the V-norm
equivalence of B~ and A=' on V# with the same constants in the form (3.17).

REMARK 3.1. The self-adjointness of A and B is used in the proof only for the commutativity argument
in (3.15). Theorem 3.1 and Corollary 3.2 therefore hold also for commuting non self-adjoint operators
A, B:V — V# (i.e., within our setting, satisfying TATB = TBTA) that are bounded and coercive.

THEOREM 3.3 (Spectral equivalence and spectral number). Assuming that the operators A and B are
spectrally equivalent on V', i.e. there exist 0 < v < 6 < oo such that

ygmgﬁ, for all we V,w#0, (3.18)
then
SUD, v 12— B)~V2rA(rB) Y22, 2

#(A, B) = —DzeVellzllv=] (B)” PorAlrB) v <2 (3.19)

infy,ev, o)y =1 ((TB)*l/QTA(TB)*l/Qv,v)V y

Proof. From (3.18) we have for all w € V, w # 0
(TAw, w)y

< <. 3.20
7= (TBw,w)y ~ (3:20)

For 7B : V — V consider the uniquely determined linear, bounded, coercive and self-adjoint square root
(7B)'/2 . V — V such that (7B)Y/2(7B)Y/? = 7B. Thus (1Bw,w)y = ((1B)Y?w, (1B)'/?w)y for w € V.
Substituting w = (78)~'/2v in (3.20), we get for all v € V, v # 0

(TA(TB) 20, (1B)"/?v)y

< <4
= (v,0)v -
and, using the self-adjointness of (713)~1/2
~1/2 ~1/2
Y < ((tB) TA(TB) v, 0)y <5
('Ua U)V
9
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This leads to

sup (78)71/27.,4(7'8)71/22,2) <4,
z€V, ||zllv=1 v

inf ( B) "2 A(rB _1/211,11) >,
vevipih, = \(B) (rB) v ="
which yields (3.19). O
We note that within our setting we have trivially
c Aw, w C
—A§<7>§—A, for allw € V, w # 0, (3.21)
Cp ~ (Bw,w) ~ cp
which, however, does not consider a possible link between A and B, and it can be therefore impractical.
In the following section we will examine the condition and the spectral numbers of the preconditioned
discretized system matrix that aroses from the general Galerkin discretization without any reference to
a specific construction of the discretization basis.

4. Condition and spectral numbers of the matrix representations of discretized operators.
In order to perform numerical computations, the problem (1.1) must first be discretized. Using an
N-dimensional subspace V;, C V, the abstract Galerkin discretization looks for the approximation
up € Vi, up = u € V satisfying

(Aup, —b,v) =0 forallv e V. (4.1)

In other words, the discretized approximation u gives the residual b — Auj, € V# that is orthogonal to
the subspace V}, with respect to the duality pairing (-,-). This property is called Galerkin orthogonality.
The same residual restricted to Vh# is identically zero, which results in the discretized functional equation
below. Considering the restriction Ay : Vi, — Vh# of the operator A such that

(Apw,v) =  (Aw,v) for allw,v € V,, (4.2)
and the restriction by, : V3, — R of the functional b to Vh#, (4.1) is written as
(Apup, —bp,v) =0 forallv eV, (4.3)
or, in the operator form, as the equation in the N-dimensional functional space
Apup =bp, un € Vi, b€ Vi, Ap Vi = VFL (4.4)

Considering further the inner product (.,.)p and the associated restricted Riesz map 73, : Vh# — Vi, we
finally get the abstract form of the preconditioned discretized problem

TB,h-Ahuh = T57hbh, up € Vi, by € Vh#’ Ap Vi, — Vh#' (4.5)

We note that the subscript h is used for convenience of notation in possible mesh-based implementations
(using, e.g., the finite element method, where it characterizes the size of the mesh elements). The abstract
formulation used here is, however, more general and it is independent of any notion of mesh or mesh-related
discretization.

4.1. Matrix representations of the discretized problem. The matrix formulation of the
discretized problems is obtained in a standard way. Consider a basis ®;, = (¢1,...,¢n) of Vi, and the
canonical dual basis ® = (¢7,...,¢%) of Vh#,?’

<¢f&, ¢;) = 6ij, i,j=1,...,N, or, using matrix notation, (‘I’#)*‘I’h =1y,

3Here for simplicity of notation we omit the subscript A in the individual basis functions.

10
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where Iy denotes the N x N identity matrix. We wish to construct a linear algebraic system
M, 'Apx, = M; by, AR, My, € RVY x, e RY, by € RY, (4.6)

where A} represents the discretized operator Ay, M,:l the discretized preconditioner 73, by the
discretized right-hand side functional by, and xj the coordinates of the approximate solution uy in the
basis @y, (recalling that z* means the transpose of the vector z)

Xp = (<¢Téa uh>v cey <¢ﬁ7uh>)*
This algebraic system is obtained using the following equalities

Apup, = Ap®pxy, = OF Ajxy,

where
Aty = @ A An= (a0 0) = (e el) (4.7)
or, using symbolic notation,
A} = (ADy)" @y, (4.8)
and
8,nARUL = TB R ARPLX] = TB,h(I)#AhXh = &, M; " Apxp,
TB.0bn = TR ®] by, = &, M, by,
where
e = BM M= (B0 6() (4.9)

or, using symbolic notation,
M, = (B®,)" . (4.10)

Here the representation of the restricted Riesz map 75 is based on the equalities that hold for any
N-dimensional vectors v and f, with f = <I>h#f, v=®pv, TB7h(I)# = &, M, for some M, € RVXN,

v = (f,0) = (T84 f,0)5 = (51 ®] £, 8,v) = (DM £, ®,v)5 = (BO,M,f, &,v) = v* M, M, f,
and therefore M, = M;l,
TEa®) = &M, (4.11)
Finally, the preconditioned algebraic system can indeed be written in the form (4.6)
M, 'Ayx, = M;, 'by,

or, using the factorization M, = M}/2Mi/2, as

M, ~2AM, 2 (M) k) = M, by, (4.12)
or
A%, =D}, (4.13)
11
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where
A =M, V2AM, 2 % =Mk, b =M, Py

It is worth noticing that the discretized form of the problem (4.6) allows many different factorizations
of My,. Instead of the square root of the operator My, we can consider an arbitrary decomposition
M, = L, L}, which can be more practical computationally. Then we can write

A ), = bj,, (4.14)
having in this case
L, 'An (L) (Lixp) =L, 'bp,  Ayp =Ly 'Ap(Ly)"", x):=Lix,, bl =L, b
Due to
Ly M (L) 7 = LMy (M2 () ) = Ty (4.15)
we have
(Lmy?) = ()
ie. LglMlll/ ?is an orthogonal matrix. For any given Lj there is therefore an orthogonal transformation
M2 o My (M, 2L) = L,

from M,ll/2 to Ly,.

The transformed system (4.14) can moreover be obtained mathematically equivalently (this term is used
in order to indicate that mathematical equivalence does not necessarily mean equivalent computational
efficiency or accuracy in practical computations) by first orthogonalizing the discretization basis with
respect to the B-inner product

Bip=Bn(Lf) " OF, = ®FLn, B = (o, 8h), OF, = (817, 6%)
which indeed gives (using the symbolic notation My, = (B®,)*®;)
(B®.p)* @y, = Ly 1 (B®y) @y (Ly) ! = Ly "My, (L) ! =1y,

and subsequently forming the matrix of the algebraic system (4.13) using (4.7) with the basis ®;, replaced
by @, 1; cf. [31, Chapter 8.

In summary, there is a deep connection between discretization of the infinite-dimensional problem
and preconditioning of the discretized algebraic system. In addition, any algebraic preconditioning can be
viewed as orthogonalization of the discretization basis with respect to the appropriate inner product; for
details see [31].

4.2. Condition and spectral number of the preconditioned system matrix. The question
of the rate of convergence of an iterative method applied to the preconditioned algebraic system (4.13) is
typically reduced to estimates based on the condition number of the preconditioned system matrix. We
will leave aside the question when such an approach leads to descriptive results and which (more or less
restrictive) assumptions must be considered whenever it is applied to practical problems; for a detailed
discussion of these topics we refer to [31, Section 5.2 and Chapter 11] and [30, Section 3.5 and Chapter 5].
In the rest of this section we will describe bounds on the condition and spectral numbers of the matrices
A (that include also the special choice At’h) and M;lAh in terms of the properties of the operators A
and B. The following theorem that generalizes the results from [15, Section 3, in particular Theorem 3.10]
is a finite-dimensional analogue to Theorem 3.1.

12
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THEOREM 4.1 (Norm equivalence and condition number). Consider the assumptions of Theorem 3.1.
Let Sy, be the Gram matriz of the discretization basis ®, = (¢1,...,6n) of Vi TV, (Sw)ij = (did5)y»
and Ay, My, be determined by (4.8) and (4.10), respectively. Then the condition number of the matriz
M;lAh 18 bounded as

_ - - B
(M Ap) = M, A [[A, ™M < = k(). (4.16)

Proof. For w = ®,y, y € RV, we have

(@7 Ay, u 7 ALy, ©,2)
lwlye = [GF Anyllye = sup ‘TeAa¥eud g (@h Any, Paz)
ueVi,uzo  llullv 2eRN, 220 || Pnzllv
z*Apy z"Any

= Sup = sup .
zERN | 240 | ®rzv zERN | 240 \Vz*Shz

Setting z = S, 12y and using (S, 1/2) =S, 172 Jeads to

*S_l/ZAhy —1/2
[Aw|y# = sup h = (IS, * Anyll.
veRN  v#£0 HV”
Analogously
2
1Bwllvs+ = |9 Myuyly+ =[S,/ *My].
Then
8 | Awllys Bolye
— = sup —_— u _—
O weV, w0 || Bwl|y# veV, v#£0 | Av]|y

, [Awlly+ || Bvl|y
sup —
weVi, w0 [|1BWllv# vev,, vzo [AV]ly#

-1 ~1/2
e I8Aw S, My
- 1/2 1/2
weRN, w20 ||S, /"My w|| verN, v#£0 [|S, T TApV||
g-1/2 1/2 ~1/2 _1gl/2
o ISaAM sy IS, * My A 'S, 2]
yERN  y£0 Iyl z€RN | z£0 1zl
~1/2 C1al/2) ja—1/2 —1gl/2
= |18, 2 AnM; 1S, 2 IS, M, AL S . (4.17)
Since for any G € RV *Y we have
12y _ 1GS,*wll _ (Amin(81))'/2[GS),*w]|
@S}/ = sup - sw s
werN, w0 |[W]l werN, w20 (Amin(Sn))/2[w]|
IGS,/*w]
> (Amin(Sn))"/? T = Qi (Su) 2 G, (4.18)
weRN , w#£0 ||Sh W”
and, using ||S;1/2G|| = ||G*S,:1/2||7 we get analogously
—1/2 — * _
15,2 Gl > Aanax (852G | = (ma(S0)) 2[1G| (4.19)

Finally, applying (4.18) and (4.19) to (4.17) yields

e YL M | e VIS
mm(s ) —1 —1
> AyM A
Z Yo (S1) [ARM [ [MaA |
mln(sh) -1 —1
= M, A A M
RO g A M|

13
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which finishes the proof. O
Using the coordinates in the transformed basis ®;p, for any z € V}, we have the following useful
equality

23 = (2.2)5 = (D112, Pr.nz)s = ||2]*.

We will now turn to the spectral number

) -1/2 -1/2
i(Ap, My) : SUPzeRN, |lzl| =1 (Mh AnM,, Z’Z) Amax (M5, ' Ap) K(Agp) (4.20)
hy Vp ) = = — = t.h) :
infveRN, Ivi=1 (M;l/zAhM;1/2V, V) >\min(Mh 1Ah)

Clearly, the spectra of the matrices M 'Aj, and L, ' Aj,(L;)~! are identical, and therefore the spectral
number #(Aj,, M) is determined via the extremal eigenvalues of L; ' Ay, (L}) ™. While for the symmetric
positive definite matrix the condition number is given as a ratio of extremal eigenvalues, the same is not
in general true for the nonsymmetric matrix. Analogously to the derivation in [31, Chapter 8],

. max|u||=1 u*At,hu
K(A/u Mh) =

min|y|=1 v*A v
max||y|=1 u* ((A¢}, #5))ij=1,.. N u
minjy =1 v* (<A¢§, t))ij=1,..NV

MaXye v, ulls=1 (AU, )

mingev, , jlofs=1(Av, v)

(A, @)
= 4.21
5.5’ (4.21)
where 4, ||@||g = 1 gives the maximum and 9, |||z = 1 the minimum, respectively. Since
15115 = (Bo,9) < Csloll3,
|allz = (Ba,a) > cslally,
we get
N (A, @)
Ap,Mp) =k(An) =
R(Ap, My) = K( t,h) (A%, 5)
_ lal (Aa/lalyv, a/lalyv)
15113 (Av/l|ollv, 5/[15]lv)
_Cs A) _CsCa w22)
cg (Aw,w) ~ ¢ ca
where z = a/|d|v, ||z]|lv = 1, w = 9/||9|lv, |lw|ly = 1. Summarizing, we get independently of the
discretization parameter h the following analogue of (3.5):
;‘%(Ah,Mh) = K(At,h) < H(B)KZ(A) (423)

For related statements (in a more general setting) we refer, e.g., to [22, Theorem 2.1 and relation (3.2)].
The following theorem is a finite-dimensional analogue to Theorem 3.3.

THEOREM 4.2 (Spectral equivalence and spectral number). Consider the assumptions of Theorem 3.3,
and Ay, My, determined by (4.8) and (4.10), respectively. Then the spectral number &(Ap, My,), which
is equal to the condition number of the symmetric matriz Ay = LleAh(L;‘L)_l for any Ly, such that
M,;, = L,L;, is bounded as

l%(Ah,Mh) = K(At’h) S . (424)

2>
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Proof. From (4.21) and (4.15), considering ||u|lz = 1, ||9]|s = 1,
(Au,w) (Bv,v)

’%(Ahth) = ’%(At,h) = <Bﬂ H> <A5 5)

0
< —, 4.25
= 5 ( )

yielding the assertion. O
This can give a much stronger bound than (4.23). For related early results that can further illustrate the
difference between (4.23) and (4.24) we refer, e.g., to [15] and [48, Sections 4.1 and 4.2].

5. Abstract description of the splitting-based preconditioning. We will now use the operator
preconditioning framework of the previous sections in order to describe splitting-based preconditioning.
Here we will not consider particular approaches developed for particular problems using various specific
assumptions. Following the ideas in [42, Section 4.1], [44, Section 2.1], [43, 19], and the motivation
decsribed in Section 1.3, the goal is to present as simple as possible abstract framework that will underline
the common basic principles for a variety of different approaches published in literature. For specific
problems and using specific assumptions, the abstract framework can be used for deriving properties
of specific methods. This can contribute towards easier description of the relationship between various
methods and towards their easier comparison.

We will use the setting of the problem (1.1) and (2.4)—(2.6), i.e.

Au=1b (5.1)
in the functional space V#, or, using the bilinear form,
a(u,v) = (b,v) forall veV, (Au,v)=a(u,v).
We are now going to transform (5.1) into the form (cf. (3.2))
M PAu=M"1b, MTAV =V, ueV, M1tbeV, (5.2)

where the preconditioning M is constructed using a decomposition (splitting) of the space V into a finite*
collection of (nontrivial) subspaces {V;} cs that are not necessarily nested, V; C V, each complete with

respect to its own inner product (-,-); : V; x V; — R and the associated norm || - ||;, such that
V:ZVj’ ie., vzz:vj,vjEVj, forallv e V. (5.3)
j€J jeJ
For each V; we can consider its dual V}# with the duality pairing identical to (2.1) and the norm || - ||;‘;E
induced by | - ||;. We will assume the continuous embedding V; < V, see, e.g., [9, Section 6.6]
ey, |Jull} < ||uH? forallu € Vj, 0 <cy,;, j€J (5.4)

For V; finite-dimensional, (5.4) always holds true (all norms on finite-dimensional V; are trivially
topologically equivalent). Thus (5.4) is nontrivial only in the case of V; (and thus V') infinite-dimensional.
Then the assumption (5.4) avoids a possible pathological situation when a converging sequence of elements
from V; C V may diverge in V. Moreover, the assumption (5.4) guarantees that any functional from V#
restricted to V; belongs to Vj#. Indeed, let f € V#, then

1= sup A0 ol ~ 1w 1

wevyuzo |l wevy,uzo lullv ull; = /ev; wev,uzo lullv = /ey,

Ifllv#.  (5.5)

4Since this text is motivated by numerical methods and, in particular, by the construction of preconditioning, with no loss
of generality it is sufficient to consider splitting of the Hilbert space V' into a finite number of subspaces that can be infinite-
dimensional. This setting is convenient since it simplifies the exposition of the abstract splitting-based preconditioning. As
mentioned in Section 1.3, we also consider a finite number of subspaces, which is the choice fully justified, in our opinion,
also from the purely mathematical reason.
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The necessity of (5.4) for V# C Vj# is an open question.
The splitting-based preconditioning M will be composed of the individual preconditionings at the
subspaces Vj, j € J. Let B; be a linear, bounded, coercive, and self-adjoint operator

Bj:V; — Vj#, (Bju,v) = (Bjv,u) forall u,veVj, (5.6)
with the associated bilinear form 8; : V; x V; = R
B;(u,v) := (Bju,v), forallu,veV.

Analogously to (2.7), (2.8) and Theorem 2.1, for j € J

Cp, ==  sup ||ij||j# < o0, (5.7)
vev;, foll;=1
1
cB; = inf  (Bjv,v) = — >0, (5.8)
' veV, oll=1" SUPrev# | 1| #=1 ”Bj 1ij
and
e, lull§ < B;(u,u) < C, [lull3. (5.9)

In other words, B; is coercive and bounded on Vj, j € J. The operator B; (the bilinear form 8;) defines
on Vj the inner product®

() Vi x Vi =R, (w,v)p, :=Bj(w,v) = (Byw,v) foralw,veV, (5.10)
with the corresponding Riesz map
T8, :Vj#—>Vj, fer#l—>Tij€Vj
defined by
(78, f,v)B; := (f,v) forall fe Vj#, v eV (5.11)
Clearly, analogously to the construction presented in Section 2,
(78, f,v)B;, = (B, f,v) = (f,v), forall fe Vj#, veV;
and therefore
78, =B,V = V. (5.12)

We will now construct a splitting-based preconditioning M~ in (5.2). For any v € V and j € J we
have

(Au,v) = (Bj_l.Au, v)p;, forallveVj,
and
(b,v) = (B;lb, v)p, forallve Vj

under the assumption (5.4) we have V# C Vj# and therefore Bj_l.Au and B]-_lb are well-defined. Combining
the last two equations gives

(Au — b,v) = (Bj_lAu - Bj_lb, v)p, forallveVj,

5Here we do not need the form 8;(, ). We introduce this notation for convenience. Part of the literature uses the bilinear
form formulation instead of the operator formulation.
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and therefore on each subspace Vj, j € J, we can formulate the preconditioned equation
—1 4, _ -1
B; Au=B;"b, (5.13)

that must be satisfied by the solution u € V' of Au = b. Consequently, from Au = b we get

D OB Au=| Y Bt |,

jed jeJ
or, equivalently,

M A= M"Tb, M=) B (5.14)
jeJ

Using the properties of the operator A, of the particular decomposition V' =3 jed Vj, and of the particular
preconditioning operators Bj,j € J, the goal is to prove the equivalence of (5.14) and (5.1) and, in
addition, prove results that are as strong as possible on the conditioning and other relevant properties of
the preconditioned problem (5.14) and of its matrix representations obtained by discretization.%

We start with proving the equivalence of (5.14) and (5.1). By construction, the unique solution
u = A" of (5.1) solves also (5.14). It remains to prove that u = A~1b is the only solution of (5.14).

THEOREM 5.1. Let the splitting of the Hilbert space V satisfy (5.8) and (5.4), and let the splitting-
based preconditioning M~ be defined by (5.6)-(5.14). Then (5.14) has the unique solution u = A~1b,
and for M=t we have

1
IMT fllv <3 ——Ifllve  forall feVF

jes Bi

Proof. Let (5.14) have two different solutions, i.e., there exists g € V#, g # 0, such that M~1g = 0.
Then

0= (g M g)= <g,Zleg> => (9.87'gy=>_(B;'9.B; '), =>_IB; gll3,,
jed jed jeJ T e
i.e.,
IB; gl =0 forallje . (5.15)

Since g # 0, there exists a z € V such that (g,z) # 0. Consider a decomposition z = >
j € J. Then

jeJ %ir Aj € Vj?

0# <gvzzj> = Z<g’zj> = Z (Bjilgﬂzj)gjv

JjeJ jedJ jed

and thus at least one term in the last sum, say (B,;l g,zk)Bk, must be non-zero. This contradicts (5.15)
and completes the proof of the first statement. Using (5.8) and (5.4) (and thus (5.5)), we have

1 1
B, Y|l < —|IfIIFf < ——
18,7411l < o IE < e s,

C)3J1/

and thus,

1 1
M7l = DB <D =Bl < D [ fllve,

Cy/. CR.
jeJ v ges VY jes BtV

6This text does not deal with particular matrix representations that are in practice based on further specific assumptions.
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which completes the proof. O
Theorem 5.1 proves that M~ is bounded with

_ _ 1
Ml gvr vy = sup IMT flly < Cppr = < 00. (5.16)

FeEV#, |Ifllyx=1 jes CBiCV;
We will now show that M ™! is also coercive and define its bounded and coercive inversion
M= (M) V s V# (5.17)

(see the analogy with the operator B in Sections 2 and 3). In order to accomplish this, we will assume
there exists a Cy < oo such that”

|ul|3 = . iEfZ ZHuJH? SCSHUH%/ for allu € V. (5.18)
WV u=2ijes i | iey

REMARK 5.1. Let (5.18) be replaced by a stronger assumption that there exists a positive constant C
such that

S w2 < Cllully . forallu=> uj,u; €Vj,j€J. (5.19)
jeJ jeJ

Then for any u € V' the decomposition u = ZjeJ uj, uj € Vy, j € J, is unique. Indeed, let u = ZjeJ uj; =

ZjeJ vj, uj,v; € Vj, and let there exist at least one m € J such that wy, # vpm. Then 0 = ZjeJ(uj —vj),
and one has

2 2

0<Y uj—v 3 <CI> (wy—v)| =C|D uj = vf| =0,

jeJ jeJ Vv jeJ jeJ v

which contradicts Wy, # V. The assumption (5.19) is, however, too strong and in the consequence too
restrictive. Therefore it is not further considered.

THEOREM 5.2. Let the splitting of the Hilbert space V' satisfy (5.3), (5.4) and (5.18), and let the
splitting-based preconditioning M~ be defined by (5.6)-(5.14). Then

171w < X2 (UF1F)" for ait eV,

jeJ
and for M~! we have

1

m”ﬂﬁ/# forall feV#.
J j

(fMLf) >

Proof. In order to prove the first statement, we consider for u € V its arbitrary fixed decomposition
U= Zje]uja u; € Vj, j€J. Then

2

2 2 2
(f7U>2<f,ZuJ'> = (Do (fup | < Do1Fud ] < [ DI sl

jeJ jeJ jeJ jeJ

< () S s 2

keJ jeJ

"In, e.g., [44, Definition 2.1.1], [19, 43] the norm |jul|s defined in (5.18) is called the additive Schwarz norm in V with
respect to the splitting (5.3); see Section 6 below.
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This must hold for any decomposition of u, therefore also for those with . ; [|uj||? arbitrarily close to
lul|3. Consequently, for all u € V,

o < ¢ Y (1)l

keJ

and

2
e = s (Fu<csY (I01F)

weV, ||lu|ly=1 keJ

For proving the second statement we use the inequality

1 2
-1 # #
(f.B; f>ZC—Bj(||f||j> . forall f € VF#. (5.20)
It follows from
2 2
(1) (1Bjull?) | (Byu, v)?
sup ~——>Z— = sup ————2— = sup — sup ~——
fevj#,f;é() <f7 Bj 1f> u€Vj, u#0 <Bjuv u> u€eV;, u#0 <Bjuvu>v€Vj,v;ﬁ0 HU”?
B; B; B;
< sup sup (Bju, u){B;v, v) '71}’2@ = sup < JU’2U> = Cg,,
u€Vy, u#0 vV}, v#£0 <£%UWU>HU”j vEVj, v#0 HU”j

IN

where we used the Cauchy-Schwarz inequality (Bju,v)? = (u,v)% ||uH%j ||U||%j. With (5.20)

J

. B B 1 2 1 2
(f M f) = <f7ZBj 1f> =3B 23 e (M) 2 g 2 (1)

jeJ jeJ jeJ 7 7 jed

——IfI?
- CS maX;ej ng v
which finishes the proof. O
Theorem 5.2 proves that M ™! is coercive with
1

inf M >y =— >0, 5.21
fEV#,HfHV#:1<f f> M CS maneJ CB]‘ ( )

We note the little ambiguity in notation. Here the definition of Cy-1 (see (5.16)) and cpq-1 (see (5.21))
anticipate the particular construction of M~! and they are not defined as the boundedness and coercivity
constants for a general operator M~!. For simplicity of notation we use this and do not introduce another
symbols.

COROLLARY 5.3. Let the splitting of the Hilbert space V' satisfy (5.3), (5.4) and (5.18), and let the
splitting-based preconditioning M~ be defined by (5.6)—(5.14). Then the operator

M= (M V o v# (5.22)
is bounded and coercive with
1
Cmi=  sup  [Mollyx < , (5.23)
veV, |lv|lv=1 CMm-1
1

(Muv,v) >

(5.24)

C =

inf .
veV, |lv]lv=1 Cr—1
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Proof. The existence of the bounded operator M follows from the Lax-Milgram lemma applied to
M1, The bound (5.23) follows from (5.21) using the substitution f = Muv/||Mov||y#,

Cpm—1 S inf <f,M_1f> — inf <M’U7:> S inf HMUHV#QHUHV
FeEVHE, [Iflly#=1 veV,v#0 [|[Mullf, ~ vevivzo [ Mulf,
R 1 o
veV,v#0 || Moy % SUPy eV, vot0 % M| 2(v,v#)

The bound (5.24) is a consequence of (2.12) used for M, and of (5.16); see also Theorem 5.1. O

Up to now, we have studied the properties of M~! and of M that plays the role of the preconditioning
operator B from Sections 2 and 3. In the following, our aim is to prove the norm and spectral equivalence,
and some two-sided error bounds using the properties of M~'A. We will use the norms of M~'A4 and
A~ M defined in the standard way

M Al zvvy = sup M Aully, AT Ml zvy = sup AT Mulv.
u€V, [Jullv=1 u€V, |lullv=1
Obviously,
M All vy < IMT s vy llAlLzovv#), AT Mllzvvy < TA s ) IMIcov#y,

and correspondingly to (3.3), (3.4) and (3.5), we have the V-norm equivalence of A=! and M~! on
V# stated in the following theorem. Corollary 3.2 shows that within our setting the lower and upper
bounds on || Aw|y# /|| Mw|y# for w € V, w # 0, and on [|M~Lf|v /|| A~ f|ly for f € V#, f # 0, hold
simultaneously. In other words, the V#-norm equivalence of A and M on V and the V-norm equivalence
of M~" and A~" on V# represent equivalent properties of the pair of operators A and M. This allows to
consider any of these two forms of norm equivalence appropriately to the specific context. In the case of the
splitting-based preconditioning the form using M~! seems more appropriate, because M~ is constructed
as the primary object using the operators B;l, j € J; see (5.14). The following theorem just reformulates
the inequality (3.5).

THEOREM 5.4 (Norm equivalence). Let the linear operator A satisfy (2.7) and (2.8). Let the splitting
of the Hilbert space V satisfy (5.3), (5.4) and (5.18), and let the splitting-based preconditioning M~1 be
defined by (5.6)-(5.14). Then A~' and M~ are V-norm equivalent on V¥,

- M fllv _ Ca
M7IA = Sup Hiéf, 5.25
| lcevv eV 10 [A—Lf|[v e ( )
- A fllv _ Cpm
ATIM =, sup ATl S 5.26
| lcevvy revi pzo My x (5.26)
CuC
RMTTA) < A7 — (A)R(M) (5.27)
CM CA
and
-1
1 em _ AT v Cme Gy
C < L < I < 2 < P maxCp, forallf e VT, 0. (5.28
AZCBJC‘/j T Cyq T MTUfllv T ca T oca sed B; f f f# ( )

jeJg

Proof. The statement follows from the previous considerations; see also Theorem 3.1. O
The two-sided error bounds introduced in the next theorem hold for an arbitrary approximate solution
v eV of (5.1), (5.14); see also [44, Theorem 2.6.1] that uses the finite-dimensional setting.
THEOREM b5.5. Let the splitting of the Hilbert space V satisfy (5.3), (5.4) and (5.18), and let the
splitting-based preconditioning M~ be defined by (5.6)-(5.14). Let u be the solution of (5.1), (5.14).
20
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Then for any v € V we have

-1

C
S (B A - B )| < v —ully < =2 maxCy, | S (8 v — B} ')

cA jeJ

Ca)

CB;Cv;

jeJ jeJ % jeJ v
Proof. The statement follows from
M (Av = b)lly = [MTI A = w)llv < M7 Al llv = ully,  forallv e V
and
lv—ully = AT MM A —w) v < AT Mz [(MTH(Av = b)) ]lv,
which give
W ;(5;1,4@ — B1b) V <o —ullv < A Ml vy ;(5;1,4@ — B-1) V

Using (5.25), (5.26), and (5.28) finishes the proof. O

The following theorem states the spectral equivalence of A and M without using any specific
relationship between A and M. The result therefore reduces to (3.21) in Section 3.

THEOREM 5.6 (Spectral equivalence). Let the linear self-adjoint operator A satisfy (2.7) and (2.8). Let
the splitting of the Hilbert space V' satisfy (5.3), (5.4) and (5.18), and let the splitting-based preconditioning
ML be defined by (5.6)-(5.14). Then A and M are spectrally equivalent and

cA (Azz <Cz

Il _ 5
Csmax;cs Cp, — (/\/lz z) forallz eV, 240 (5.29)

CB Cy;

Proof. The statement follows from (3.21) using (5.16), (5.21), (5.23), and (5.24). O
Let w be the solution of (5.1), (5.14). Motivated by [44, Chapter 2], we consider the locally
preconditioned residual associated with v € V

ri=B Av - B b =B A(v—u) €V, je. (5.30)
Clearly, for all v; € V},
(75, v5)8, = (A(v —u),v;) = a(v — u,v;) = a(v,v;) — (b,v;). (5.31)

As a consequence of splitting the problem (5.1) into the set of problems (5.13)—(5.14), we have an
(a posteriori) error estimate based on the norms of the locally preconditioned residuals, which is motivated
by [44, Theorem 2.6.2]. Before introducing the theorem, we prove a useful lemma.

LEMMA 5.7. Let the linear self-adjoint operator A satisfy (2.7) and (2.8). Let the splitting of the
Hilbert space V' satisfy (5.3), (5.4) and (5.18), and let the splitting-based preconditioning M~ be defined
by (5.6)—(5.14). Then

AL M AZ) < C M Az, 2), 5.32
a(M Az, M A2) Akz%% a(M1 Az, 2) (53)
cJ
and
CA 1
- < . .
Comaxc) Cn, a(z,z) <a(M™ Az, 2) (5.33)
21
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Proof. We have

2 2
a (M Az, M Az) < CAMTT ARG = Ca | Y B Az|| < Ca [ Y1851 Az,
jeJ % JjeJ
2 2
1 1
<Cy B Az <Oy B 1Az
jezj (3% H J H = \/W HBj
S Cud o D (B A B AL,
keJ B,.C jeJ
=y (Az,B71Az) = Cy <Az, B.—lAz>
];] CBLCV, ]g] / ];] CB CV, ];] !
1
=C Az, M7 Az) = C S MTAZ),
A %; CB. v < z Z> A %; P a(z z)

which yields (5.32). For proving (5.33) we consider an arbitrary decomposition of z € V| z = >
zj € Vj, j € J. Then

jeJ %

a(z,z)=a | z, sz = Za (2,25) = Z(Az,zj> = Z(B;lAz,zj)gj

jeJ jeJ jed =
1/2 1/2
< [ (B Az, B Az, > (728,
= JeJ
1/2 1/2
< Z(AZ,B;1A2> ZCBj\\Zjllf
jEJ jeJ
1/2
< max [, (Az M1 A2 ;II%HQ
J

Considering ;. ; sz||? arbitrarily close to its infimum over all possible decompositions of z,

a(z,z) < maxq/CB a(z, M A2)Y?||z||ls < \/Cs max,/C’Bj a(z, MY A) Y| 2|y

jeJ

V! ic7/Cs,
< ° m;i}/(éiJ 5i a(z, MY A2)Y2a(z, 2)'/?,
A

which yields (5.33). O

THEOREM 5.8. Let the splitting of the Hilbert space V' satisfy (5.3), (5.4) and (5.18). Let the linear
self-adjoint operator A satisfy (2.7) and (2.8), and let the splitting-based preconditioning M~ be defined
by (5.6)—(5.14). Let u be the solution of (5.1), (5.14). Then

a(v—u, MA@ —u)) ZHTJHB

jeJ

and

. -1 2
min ey CxB. 1 _ Csmaxje s Cj. _
= ’(})C ) S < o=l £ =5 3 2
A k A

ke “Bx jeJ jeJs

22
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Proof. We have forv eV, 7; = Bj_lA(v —u),
175115, = (75.75)8, = (A(v —w), 7;) = a(v —u, B " A(v — u))
and thus

STIIFIE, =a (v —u, MA@ — ).

jeJ
Then, using (5.33),

1 Csmax,cjCp.
o —ul? < —alv—u,v—u) < =975
cA

a(v —u, M A(v — u))

¢
CS maX;ecj CB, _ Cs maX e g CBV _
= S Y Il < S Y O I3
A jeJ A jed

Cy max]eJ CB

< ———2 Y lInll3
jeJ
which gives the upper bound. A straightforward calculation gives

-1
min;e y g, 1 minge s g, 1 1, _
e (x ) i< Mg (L) s L
2 |

C C C C
kes BrVe jes keg BetVe jer Bi

Sé(Z 1c> > o lmlE, = (Z ! ) a(v —u, ML A(v — u)).
A \ke d ke

C cp,. C
7 BV jeJ 7 “BrCVy

Using
a(v —u, M A(v — u))? < a(M AW —u), M A(w —u)) a(v —u,v — u)

and (5.32) gives

a(v —u, M~PA(v — u)) <C’AZ

keJ

alv —uU,v—1u
p—— a(v —u,v —u)

and finally

1
L<—alv—uv—u)<|v—ul?,
Ca

which completes the proof. O

The bound for ||[v — u|ly of Theorem 5.5 is given in terms of the norm of the sum of the locally

preconditioned residuals HZ jesTi

of the local norms } . ; [7;]|3. Tn particular, from Theorem 5.5 we have

-2 2 2

_ CE _
er < —ul? < —ma}(CB er =: Ry,
A 1% A v

Ll = CAZ

CB;Cv;

while from Theorem 5.8 we obtain

-1
minjeJCBv 1 _
Lyi= —¢5 f(ZC - ) D15 < llo = ullf < > lImsll5 = R
A ke “BEVi jeT jed
23

Cs maxjeJ B

, while the bound of Theorem 5.8 is in terms of the sum of squares
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For the upper bounds R; and Ry we get

2 2
R O Tiern], s (Sieolmilv) s (zj@\\fj\\j/rcvj) >
By _ Tl _ mlv) ! o5 L
PR SO X el 11 el Il

and R; > R, i.e. Theorem 5.8 gives at least as good an upper bound as Theorem 5.5, if and only if

2
DAl <Cs | Y om (5.34)
jeJ i€l |y
cf. (5.18). If the residual splitting satisfies (5.34), then we get for the lower bounds L; and Lo

L 1 I 1 1\ 1)
€

- > il g S > cs§j

Ly minjeyep; \ £ cBocvy > jes ITill7 — minjes e, £ CBLCv; C’s ey,

keJ

and

Ly 1
— <
Ly ™ minjey cp,

~ min c CB,C
jeJ B (kJEJ By CVy

(]

CBLCV;, ZJEJ ||’Fj||3 N minjEJ CB; CBLCVR ZjeJ H’FJH]2

1 >_1 (Zje] ||fj||v)2 1 ( 1 >_1 (Zje] 17511 /ﬁ)Q
keJ

keJ

—1
Z 1 < maXgeJg CBk Z 1 Z - maXgeJg CBk
ey cy; — minjeycg, minge j cg,

c
kes vk JeJ Vi

Finally,

R1 R2 RlLQ _
<L1> / (Lz) LRy =0 mch Z “ B, ey,

Summarizing, comparison of the bounds of Theorem 5.5 and Theorem 5.8 is problem- and mesh-dependent.

6. Stable splitting. The splitting of V' defined by (5.3) is in literature called stable providing that
there are constants cg > 0 and Cgs > 0 such that

csllulli < Jlull§ < Cslully, for allu € V. (6.1)

As pointed out in [44, Remark 2.1.3], for V finite-dimensional all its splittings are trivially stable.
The issue is then not the existence but the value of the constants cg and Cs. The stable splitting
assumption (6.1) can be easily linked with the assumptions (5.4) and (5.18) above (the last one coincides
with the right inequality in (6.1)). This gives unique solvability of (5.14)® and it will allow to apply results
formulated in the previous sections.

LEMMA 6.1. The left inequality of (6.1) is fulfilled if and only if (5.4) holds.

Proof. Assuming csljul|? < ||ul|Z for u € V, we have for u; € V}, j € J,

1 1
2 2 2
Usj < —luillg < —|luqll5. 6.2
sl < Cs” ills < CSH ]”g (6.2)

Thus setting cy, := cg, j € J, we get (5.4). Here (6.2) shows that if cgllul[}, < [lul|§ for all u € V,
then (5.4) is satisfied with the same universal constant cg valid for all j € J, which does not exclude the

8Using our notation, the operator equation (2.18) from [44, Theorem 2.1.1] is identical to the transformed system (5.14)
from Section 5.

24



http://ncmm.karlin.mff.cuni.cz

NCMM/2018/06

Preprint:

v

NECAS CENTER FOR MATHEMATICAL MODELING

option that (5.4) is also satisfied for some constants cy, larger than cs. On the other hand, assuming (5.4),
we get for any u € V' and for any decomposition u = Zje] uj, u; € Vi, j € J,

2 2 2
1 1
= | < {Clwlv | < (T =lwls | <X =Sl 63

jeJ v jeJ jeJ Vi jedJ I keJ

Since (6.3) holds for any decomposition of u, we get by considering »_, . ; lug||? arbitrarily close to its
infimum

1 . 1
lullf <> — in Do lwlli =3 CfVIIU\Ig (6.4)

Cy, Vi, u=>_, "
jerjukEku EkEJUk]CEJ jeJ i

Thus setting cg := (ZjeJ c(/jl) ' yields the first inequality of (6.1). It is worth noting that if for some
constant ¢ we have cy, = ¢, j € J in (5.4), then the value of cg derived for (6.4) is ¢/|J|, and we are unable
to deduce (5.4) from the left inequality of (6.1) with the same constant ¢ but with the much weaker ¢/|J|.
Here we denote by |J] the size of the index set J. O
Using (6.1) instead of (5.4) and (5.18), the statements of Theorems 5.1, 5.4, 5.6, and 5.8 can be easily
modified.

REMARK 6.1. In some published works the setting corresponds to that used above, and the subspaces
Vi, 3 € J, are not required to be nested. In most of the hierarchical approaches, however, it is additionally
assumed that the splitting is based on nested subspaces

VicWwc---cVen V=V, J={1,2,...,k}. (6.5)
In addition to that, some works define also the subspaces W;, j € J such that (with V, := {0})
Vici@W; =V, jeJ, j#0, (6.6)

giving an equivalent splitting representation

V:ZV}:ZWJ‘. (6.7)

Jje€J JjeJ

The individual preconditioners can then be constructed by the subtraction of projectors onto the individual
hierarchical levels; see, e.g. [46, Section 13.2.2] and the references given there.

7. Conclusions. In the presented construction of the splitting-based preconditioning M we have not
used any specific information about the operator A except of being bounded, coercive and self-adjoint.
As in the variety of approaches, methods and theoretical results published in literature, we therefore
can not expect to prove, in general, that the condition number x(M~1A) of the operator M~1A in the
operator equation (5.14) (see Theorem 5.4) is small. Similarly, we can not expect to prove that the
constants determining the spectral equivalence of the operators A and M are close to each other (see
Theorem 5.6), with implications to the discretized problem, cf. Section 4.2. Apart from the condition
number of the Gram matrix Sy, in (4.16), Theorems 4.1 and 4.2 give the bounds for the condition number
and the spectral number of the discretized preconditioned operator, respectively, that are independent of
the discretization, but not more.

We believe however, that the presented generally formulated results can serve as a basis for an easier
comparison of existing approaches that can be put into the given framework. Incorporating an appropriate
information about the operator A into the construction of the preconditioning M can lead to stronger
results on the condition number and/or the spectral number of the preconditioned operators and of their
discretizations; for recent examples see, e.g. [24, 29, 34, 38, 45]. Results of further work in this direction
will be reported in the subsequent part of this work.
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Within the given framework we concentrate on the condition number H(M;lAh) and on the spectral
number R(Ap,Mp) defined by (4.16) and (4.20), respectively; see also (4.24). As emphasized in the
introduction, one should always be aware that, in general, these single number characteristics are (as any
other single number characteristics) insufficient for describing convergence behavior of Krylov subspace
methods. In this context we note that an arbitrary decomposition M}, = LjLj leads to the uniquely
determined spectral number &(A}, My,), and different choices of Ly, which are all related via orthogonal
transformations, see Section 4.1, result in the same convergence behavior of the preconditioned conjugate
gradient method despite the fact that they can be associated with different transformations of the
discretization bases. It is worth noticing that here the same convergence behavior does not necessarily
mean the same computational cost as the computational cost per iteration can be different for different
choices of Ly,.

A work on the inner structure of the spectrum of the preconditioned operator in relation to the
particular problem and its preconditioning is in progress and the results will be reported elsewhere. Such
work will extend our investigation of the efficiency of operator preconditioning beyond single-number
characteristics.

Appendix. In the Appendix we give the proof of the following theorem.

THEOREM 2.1. Let A:V — V# be a linear, bounded, coercive and self-adjoint operator. Using the
standard definition of the operator norm, the boundedness constant C 4 and the coercivity constant c4 can
be expressed as

Ca=[Allzvvs) = VSHUFG 1<AU7U> = Ma, (7.1)
ueV, ||lu||lv=
1 -1
cAa=my = inf Av,v) = ={]A! . 7.2
AT A e B = e e AT A ) 72

Proof. The equality (7.1) is well known. It follows from the following sequence of equalities

Ca=Allzvve) =lITAlcovyy = sup  (TAu,u)y = sup  (Au,u) = Ma. (7.3)
weV, ||lu|ly=1 weV, ||lu|lvy=1

Here we used the fact that for any self-adjoint operator S in a Hilbert space V

2
1Sl zev,vy = sup |Sz||lv = sup (Sz,S’z)‘l// = sup [(Sz, 2)v]; (7.4)
z€V, ||z[lv=1 2€V, ||z|lv=1 2€V, || z]lv=1

see [9, Theorem 4.10.1, p. 220], [17, Theorem 6.5.1]. The second statement (7.2) was published without
proof in [31, Section 3.3]. Since ¢4 = m4, it remains to prove that

1

= inf
SUP rev#, || f|l,»=1 A= fllv  wevjullv=1

[[Aully+, (7.5)

map =

where the second equality results from the substitution f = Au/||Au||y#, u € V. Equivalently, it remains
to prove that

my = inf  (TAu,u)y = inf |7 Aul|v (7.6)
weV, ||lully=1 weV, ||lully=1

Clearly (tAu,u)y < ||TAulv||u|v, therefore the inequality

myg < inf ITAullyv
weV, ||lully=1

is trivial. In order to prove the opposite inequality

ma > inf | Aullv,
u€V, [Jullv=1
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we use the fact that m 4 belongs to the spectrum of 7.4 and therefore there exists a sequence {vg}r=12, .
in V, |lvgl]ly = 1, such that

lim |7 Avg — mavg|lv = 0; (7.7)
k—o0

see [17, Corollary 6.5.6]. We will finish the proof by contradiction. Assume that

my < inf lrAully — A
weV, ||lully=1

for some A > 0. Using the Cauchy-Schwarz inequality,

T Avr, — mavi||} = [|[TAvg ||} + m? — 2ma(T Avy, vg)v

> [T Ave|l5 +mZ = 2mallrAlly = ([T Avelly —m.a).

Then

T Avy — mavg||3 > A? forallk =1,2,...,

which gives the contradiction with (7.7) and completes the proof. O
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