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Abstract. Steady �ows of an incompressible homogeneous chemically reacting �uid
are described by a coupled system, consisting of the generalized Navier�Stokes equa-
tions and convection - di�usion equation with di�usivity dependent on the concentra-
tion and the shear rate. Cauchy stress behaves like power-law �uid with the exponent
depending on the concentration. We prove the existence of a classical solution for
the two dimensional periodic case whenever the power law exponent is above one and
less than in�nity.

1. Introduction

The main goal of the paper is to prove the existence of a classical solution to a class of

models describing the steady �ow of an incompressible homogeneous chemically reacting

�uid. More speci�cally, we are interested in regularity properties of the velocity v : Ω→
Rd, the pressure π : Ω→ R and the concentration distribution c : Ω→ R+ that solve the

following system of partial di�erential equations

div(v ⊗ v)− divS(c,Dv) = −∇π + f ,

divv = 0,

div cv − divqc(c,∇c,Dv) = −div g

(1.1)

in a domain Ω ⊂ Rd. Here f : Ω → Rd represents a given density of the volume

forces, Dv : Ω → Rd×d denotes the symmetric part of the velocity gradient ∇v and

S(c,Dv) : Ω → Rd×d is the constitutively determined part of the Cauchy stress tensor,

qc(c,∇c,Dv) : Ω → Rd is the concentration �ux and g : Ω → Rd represents a source

term for the chemical concentration. The �rst equation in (1.1) is the balance of linear

momentum, the second one is the incompressibility constraint and the last equation

(convection�di�usion�reaction) describes the conservation of the chemical concentration.

Although, we will be interested only in two dimensional results, i.e., for d = 2, we keep

the notation for general dimension in this introductory part in order to comment all

available results completely.
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This model was developed by Málek & Rajagopal in [20] to simplify the description of

�ows of complicated mixtures. Indeed, it was shown in [20] that it is a proper model for

mixtures, where there is just one component that in�uences the mechanical properties

of the �uid and this in�uence is then encoded into the Cauchy stress. The concentration

of this particular component then ful�ls the third equation in (1.1). This model with a

proper choice of the form for S and qc can be used for many complex materials as blood,

synovial �uids, or in general biological �uids for example, see the thesis of Pust¥jovská

[22] or the corresponding paper [16].

1.1. Constitutive relations and boundary conditions. The system (1.1) must be

equipped with the boundary conditions for c and v and completed by the constitutive

relations for the Cauchy stress tensor S and the concentration �ux qc. Since we are

interested in the regularity theory, we simplify the paper by considering the spatial

periodic conditions for v and c. Although such a setting is nonphysical, it will be clear

from the proof that we could obtain interior regularity result for realistic (e.g. Dirichlet

condition) boundary conditions. Thus, in our setting the domain Ω will always be a cube

[0, 1]d and all involved quantities are assumed to be periodic with respect to the cube

[0, 1]d. In addition the emphasis will be given to two dimensional setting.

Concerning the form of the concentration �ux, we shall assume that

(1.2) qc(c, ξ,A) := K(c, |A|)ξ for all (c, ξ,A) ∈ R× Rd × Rd×d,

where K : R2 → Rd×d is a continuous mapping ful�lling for all (c, ξ,A) ∈ R×Rd×Rd×d

|K(c, |A|)| ≤ K2,

K(c, |A|)ξ · ξ ≥ K1|ξ|2,
(1.3)

where K1, K2 are positive constants.

For the part of the Cauchy stress S, we consider that it is of the form

(1.4) S(c,D) = 2ν(c, |D|)D,

where ν : R2 → R is a generalized kinematic viscosity. Furthermore, we require that

there exist numbers 1 < p− ≤ 2 ≤ p+ <∞ and a Lipschitz continuous function p : R→
[p−, p+] such that for all (c,D) ∈ R× Rd×d we have∣∣∣∣∂S(c,D)

∂D

∣∣∣∣ ≤ K2(1 + |D|)p(c)−2,(1.5)

∂S(c,D)

∂D
· (B⊗B) ≥ K1(1 + |D|)p(c)−2|B|2,(1.6) ∣∣∣∣∂S(c,D)

∂c

∣∣∣∣ ≤ K2(1 + |D|)p(c)−1 log(2 + |D|),(1.7)

where we used the notation (B⊗B)ijhk = BijBhk. As a direct consequence of assump-

tions (1.4)�(1.7) one can also obtain that (after a possible change of constants K1 and

K2) for all (c,D) there holds (see [19, Chapter 5] for detailed proof)

(1.8) K1(1 + |D|)p(c)−2 ≤ ν(c, |D|) ≤ K2(1 + |D|)p(c)−2.

The typical model we have in mind is of the form

(1.9) S(c,D) = (1 + γ(c) + |D|2)
p(c)−2

2 D,
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where γ is a smooth bounded nonnegative function. Note that for proper functions p and

γ, the model (1.9) satis�es assumptions (1.5)�(1.7). It is important to notice that the

presence of a function p dependent on the concentration c in the exponent is essential

from the modelling point of view. It was well documented in [21, 22, 16] that the model

(1.9) with properly chosen power function p best �ts the experimental data. Therefore,

it is also our goal to cover this case in the paper.

1.2. Notion of weak solution and main result. Since the constitutive relation in-

volve the p-growth, which possibly depends on the concentration and therefore also on

the spatial variable x, we need to introduce the corresponding Sobolev and Lebesgue

spaces with variable exponent. Since, we also deal with the spatially periodic conditions,

we �x the mean values of corresponding functions over the set Ω to zero. Hence, for a

given function p and periodic c ∈ C0,α(R2) for some α > 0, we introduce

C∞per,div := {v ∈ C∞(Rd;Rd) :

ˆ
Ω

v = 0, divv = 0, v is Ω-periodic},

W
1,p(c)
per,div := {C∞per,div}

‖·‖1,p(c)
, W

−1,p′(c)
per,div := (W

1,p(c)
per,div)∗,

where we use the equivalent norm ‖v‖1,p(c) := ‖∇v‖p(c). Since p(c) is Hölder continuous
and 1 < p− ≤ p+ < ∞, these spaces are re�exive and separable. In addition, we also

know that the the Korn inequality holds true, i.e., there exists a constant C depending

only on p and c such that

(1.10) ‖v‖1,p(c) ≤ C‖Dv‖p(c).

Notice here that the constant C depends on c via the modulus of continuity of c. For

details about the variable exponent function spaces we refer to [12]. Next, we also keep

notation for standard Lebesgue and Sobolev spaces and the subscript per will denote that

we consider Ω-periodic functions having zero mean value over Ω.

With this choice of function spaces we can de�ne notion of a weak solution.

De�nition 1. Let be f ∈ W−1,(p−)′

per,div and g ∈ Lqper(Ω,Rd) for some q > d. Let S satisfy

(1.5)�(1.7). We say that a couple (c,v) is a weak solution to (1.1) if

(1.11) c ∈W 1,2
per(Ω) ∩ C0,α(Ω), v ∈W 1,p(c)

per,div,

for some α > 0 and the system (1.1) is ful�lled in the following senseˆ
Ω

S(c,Dv) : Dψ dx =

ˆ
Ω

(v ⊗ v) : ∇ψ dx+ 〈f ,ψ〉 ∀ψ ∈ C∞per,div,(1.12)

ˆ
Ω

K(c, |Dv|)∇c · ∇ϕdx =

ˆ
Ω

(cv + g) · ∇ϕdx ∀ϕ ∈W 1,2
per .(1.13)

In addition we have the following existence result.

Theorem 1. Let all assumptions of De�nition 1 be satis�ed and

(1.14) p− >
2d

d+ 2
.

Then there exists a weak solution provided that one of the following holds

i) p is independent of c,

ii) p− > d/2.
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Proof. We do not prove this result here since it is an easy modi�cation of corresponding

proofs in [4, 5, 6], where the same system (1.1) is treated but completed by Dirichlet

boundary condition. We would like to mention that the case with p being independent

of c is treated in [4]. The case of general p but with the restriction p− > 3d/(d + 2) is

proved in [5] and the case when (1.14) holds is discussed in [6]. �

1.3. Main results. We see that the existence analysis can be understood as a completed

task but the regularity of the solution remains open. Our goal is to show the existence

of a classical solution in case that d = 2. The key result is the following.

Theorem 2. Let all assumptions of De�nition 1 be satis�ed with d = 2. Assume in

addition that f ∈ L2+2r(Ω;R2) with some r > 0. Then there exists a couple (c,v) that is

a weak solution in sense of De�nition 1, which ful�lls in addition

(1.15) Dv ∈ C0,α
per (Ω;R2).

In addition, if p, S and K are smooth mappings and f and g are smooth vector�valued

functions, then the constructed weak solution is smooth as well.

The system (1.1) with the constitutive equations (1.2) and (1.9) have been studied by

many authors during last decades for the case p constant or the case when p(x) is a

given Hölder continuous function. However, we are still far from saying that the theory

is uni�ed and satisfactory. While for two dimensional case, we know that the velocity

gradient is always Hölder continuous, see [11], [17] and [18], the results for three dimen-

sional setting is indeed incomplete, see [2], [3] and [23]. To our best knowledge, we have

only partial regularity result, see [13], or the global result but only for small data, see [8]

and [7]. In any dimension there is a result of partial regularity, see [1]. It is remarkable,

that this lack of regularity results, or more precisely, the analytical problems are coming

from the fact that we have to deal with the nonlinearity depending on the symmetric

gradient. The case when the nonlinearity is depending only on the full gradient, was

successfully treated in [9] and [10] for constant p. The problem we have to face in this

paper is even more delicate. We do not know the variable exponent p a priori but it is

a part of the solution. Therefore, we have to develop a new technique that is capable

to handle this problem. In view of the results for given p, we also �rst naturally focus

only on two dimensional case, see Theorem 2. It is however notable, that even for more

dimensional setting one can still derive the estimates for the second derivatives of the

velocity �eld, which then lead to the partial regularity result as in [13], which we will

discuss in the forthcoming paper. Finally we want to point out here, that the method

used in the paper is based on the Hole-Filling technique of Widman (see [24]) and proper

Poincaré weighted inequalities, and is completely new in the setting of non-Newtonian

�uids.

2. Approximative problem, existence of its solution and uniform

W 2,2-regularity

We start the proof by de�ning an auxiliary approximation. Fixing arbitrary A > 1, c ∈ R
and B ∈ Rd×d, we de�ne

θA(B) := (2 + min{A2, |B|2}) 1
2 ,

νA(c,B) := ν(c,min{A, |B|}).
(2.1)
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Then, we introduce the approximated stress tensor SA by

(2.2) SA(c,Dv) := νA(c, |Dv|)Dv

and the corresponding approximated problem

div(v ⊗ v)− divSA(c,Dv) = −∇π + f ,

divv = 0,

div cv − divqc(c,∇c,Dv) = −div g.

(2.3)

Next, we will prove the existence of a solution (c,v) to (2.3) and show that v ∈ C1,α for

some α. Finally, our main goal will be to �nd a constant A > 1 (typically su�ciently

large) such that the solution of (2.3) satis�es

(2.4) ‖Dv‖∞ ≤ A.

Then evidently, v is not only the solution to (2.3) but solves also the original problem

(1.1). Consequently, we will get the existence of C1,α solution to the original problem.

The rest of this section is devoted to the construction of a solution to (2.3) and to the

proof of a priori estimates that will be independent of the choice of parameter A. Since

the rigorous proof of the existence result for general dimension d ≥ 2 was established

in [5, 6] for Dirichlet boundary data, we mention here only the parts essential for our

studies and skip the details.

To end this introductory part, we just recall basic properties of SA which are direct

consequences of assumptions (1.5)�(1.7) and also of the de�nition (2.2). Hence, for all

c ∈ R and any C,B ∈ R2×2 we have (the interested reader can �nd the proof in [19])∣∣∣∣∣∂SAij(c,B)

∂Bkl

∣∣∣∣∣ ≤ Cθp(c)−2
A (B),(2.5)

∂SAij(c,B)

∂Bkl
CijCkl ≥ λθp(c)−2

A (B)|C|2,(2.6) ∣∣∣∣∂SA(c,B)

∂c

∣∣∣∣ ≤ C log(θA(B))θ
p(c)−2
A (B)|B|,(2.7)

where λ and C are positive constant that are independent of A.

2.1. Galerkin approximation and the �rst a priori estimates. In this section we

consider the problem (2.3) but for simplicity we avoid writing SA and keep writing S.

Nevertheless, we derive estimates that will not depend on A. In case that some parts

of the estimates are A-dependent, we clearly denote it in what follows. Also to simplify

the notation, we use a symbol C to denote a generic constant whose value can however

change line to line.

Although the �rst part of the existence proof is almost identical to the procedure de-

veloped in [5, 6] we recall the main steps here for the sake of clarity. First, we take

{wi}∞i=1 the basis of W 1,2
per,div composed of eigenfunctions of the Stokes operator such

that
´

Ω
wi ·wj dx = δij . Due to the periodic boundary conditions, the basis consists of

functions {wi}∞i=1 ful�lling for some positive λi (see also [19])

(2.8) −∆wi = λiwi in Ω.
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Similarly, we consider {zi}∞i=1 a basis of W 1,2
per such that

´
Ω
zizj dx = δij . Then for

positive, �xed n,m ∈ N, we look for a couple (vn,m, cn,m) given by

(2.9) vn,m :=

n∑
i=1

αn,mi wi, cn,m :=

m∑
i=1

βn,mi zi,

where αn,m and βn,m solve the following system of algebraic equations (since f ∈ L2, we

can replace the duality pairing appearing in (1.12) by the integral)ˆ
Ω

−(vn,m ⊗ vn,m) : ∇wi dx+

ˆ
Ω

S(cn,m,Dvn,m) : Dwi dx =

ˆ
Ω

f ·wi dx,(2.10)

for all i = 1, . . . , n,
ˆ

Ω

K(cn,m, |Dvn,m|)∇cn,m · ∇zj dx =

ˆ
Ω

(cn,mvn,m + g) · ∇zj dx(2.11)

for all j = 1, . . . ,m. The existence of a solution to (2.10)�(2.11) can be shown by the

�xed point theorem and we refer the interested reader to [5] for details. In addition,

following step by step [5] we can let m→∞ to obtain a solution (vn, cn) ∈ (C∞per,W
1,2
per)

to the following problemˆ
Ω

−(vn ⊗ vn) : ∇wi dx+

ˆ
Ω

Sn : Dwi dx =

ˆ
Ω

f ·wi dx, for all i = 1, . . . , n,(2.12)

ˆ
Ω

K(cn, |Dvn|)∇cn · ∇ϕdx =

ˆ
Ω

(cnvn + g) · ∇ϕdx, for all ϕ ∈W 1,2
per(Ω),(2.13)

where vn is given by

(2.14) vn :=

n∑
i=1

αni wi.

Here, we also used the abbreviation Sn := S(cn,Dvn). Next, we derive the �rst a priori

estimates. Multiplying the i-th equation in (2.12) by αni and taking the sum over i =

1, . . . , n, setting ϕ := cn in (2.13), and using integration by parts and the fact that

divvn = 0, we get the following two identitiesˆ
Ω

SA(cn(x),Dvn) : Dvn dx =

ˆ
Ω

f ·wi dx,

ˆ
Ω

K(cn, |Dvn|)∇cn · ∇cn dx =

ˆ
Ω

g · ∇cn dx.
(2.15)

Hence, employing (2.2) and the Sobolev embedding W 1,1 ↪→ L2, one gets from the �rst

identity that there exist c1 > 0 such that

c1

ˆ
Ω

|Dv|p− dx− C ≤ λ
ˆ

Ω

θ
p(c)−2
A (Dvn)|Dvn|2 dx ≤ λ‖f‖2‖vn‖1,p− .

Thus using the Korn inequality and the assumptions on f , we observe

(2.16) ‖vn‖p
−

1,p− ≤ C
ˆ

Ω

θ
p(c)−2
A (Dvn)|Dvn|2 + 1 dx ≤ C

(
‖f‖(p

−)′

2 + 1
)
≤ C.

Consequently, using the embedding theorem and the fact that p− > 1, we obtain that

for some q̃ > 2 there holds

(2.17)

ˆ
Ω

|vn|q̃ dx ≤ C.
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Next, we focus on estimates for cn that follows from the second identity in (2.15). First,

using the assumption on K, see (1.3), and the Hölder inequality, we deduceˆ
Ω

|∇cn|2 dx ≤ C
ˆ

Ω

|g||∇cn| dx ≤ C‖g‖2‖∇cn‖2

and, from the Sobolev-Poincaré embedding, the Young inequality and the assumption on

g it follows

(2.18) ‖cn‖21,2 ≤ C
ˆ

Ω

|∇cn|2 dx ≤ C‖g‖22 < C.

We would like to emphasize at this place that the estimates (2.16) and (2.18) are inde-

pendent of n ∈ N and A > 1, which will be used in what follows.

2.2. Improvement of the integrability of ∇cn. Through the paper, it is absolutely

essential that the concentration will be Hölder continuous. Since we are interested in

dimension two, we can obtain such Hölder continuity result by showing that ∇cn ∈ Lq(Ω)

for some1 q > 2. Such an improvement of the integrability of the concentration gradient

will be proven by using the reverse Hölder inequality.

To do so, we �rst denote

g̃ := cnvn + g.

Next, we de�ne q0 := min{q, (q̃ + 2)/2}, where q̃ comes from (2.17). Then, by using the

Hölder inequality, the embedding theorem and the a priori estimate (2.18), we deduce

(2.19) ‖g̃‖q0 ≤ ‖g‖q + ‖cnvn‖ q̃+2
2
≤ C

(
‖g‖q + ‖vn‖q̃‖cn‖ q̃(q̃+2)

q̃−2

)
≤ C.

Next, for arbitrary x0 ∈ R2 and R ∈ (0, 1) we test the equation by ϕ = (cn−cnR)η2, where

we denote the mean value over the ball B(x0, R) with the subscript R. The function η is a

cut-o� function, i.e., η ∈ C∞0 (B(x0, R)), 0 ≤ η ≤ 1, η ≡ 1 in B(x0, R/2) and |∇η| ≤ k/R,
extended periodically with respect to Ω. Moreover we extend to R2 periodically with

respect to Ω all functions and obtain that (2.13) is ful�lled in R2. Then employing ϕ as

test function we get that (using also the de�nition of g̃)ˆ
R2

K(cn, |Dvn|)|∇cn|2η2 dx+

ˆ
R2

K(cn, |Dvn|)∇cn · ∇(η2)(cn − cnR) dx

=

ˆ
R2

g̃ · ∇(η2)(cn − cnR) dx+

ˆ
R2

g̃ · ∇cnη2 dx.

(2.20)

Employing the properties of η, the assumption (1.3) and the Young inequality, the identity

(2.20) becomesˆ
B(x0,

R
2 )

|∇cn|2 dx ≤ C
ˆ
B(x0,R)

|cn − cnR|2

R2
dx+ C

ˆ
B(x0,R)

|g̃|2 dx.(2.21)

Using the Sobolev-Poincaré inequality, we can estimate the �rst term on the right hand

side as (here
ffl
B(x0,R)

denotes the mean value integral)

ˆ
B(x0,R)

|cn − cnR|2

R2
dx ≤ CR2

( 
B(x0,R)

|∇cn| dx

)2

.

1This is a simple typically 2D alternative to the approach presented in [5], where the Hölder continuity
of cn is proved by the De Giorgi-Nash-Moser technique.
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Hence, substituting this inequality into (2.21) and dividing both sides by R2, we obtain

(2.22)

 
B(x0,

R
2 )

|∇cn|2 dx ≤ C

( 
B(x0,R)

|∇cn| dx

)2

+ C

 
B(x0,R)

|g̃|2 dx.

Finally, recalling (2.19), we have g̃ ∈ Lq0 with q0 > 2. Thus, we can employ the reverse

Hölder inequality, see in [15] or in [14, Proposition 1.1 (on page 122)] and conclude that

(2.23) |∇cn| ∈ L2+δ
loc (Ω)

for certain δ > 0 that depends only on q0 and C and we have the estimate

(2.24)

( 
B(x0,

R
2 )

|∇cn|2+δ dx

) 1
2+δ

≤ C
( 

B(x0,R)

|∇cn|2 dx
) 1

2

+C

( 
B(x0,R)

|g̃|2+δ dx

) 1
2+δ

.

Consequently, it follows from (2.16) and (2.18) and the embedding theorem that

(2.25) ‖cn‖
C0,

δ
2+δ (R2)

+ ‖∇cn‖L2+δ(Ω) ≤ C

where δ > 0 and C > 0 are constants independent of A and n.

2.3. Global uniform W 2,2 estimates for vn. In this section we derive the main start-

ing estimate that will be uniform with respect to A and n and will play the crucial role for

deriving the Hölder continuity of the velocity gradient. It is important since the quality

of this estimate determines how strict are our assumption on p− and p+. We still work

with the approximation {vn, cn} ful�lling (2.12) and (2.13) and suppress dependence on

n and A. However, the constant λ is �xed by (2.6) and the constant C may vary line to

line but will not depend on n or A, but can depend on data only.

Multiplying the i-th equation in (2.12) by λiα
n
i and taking the sum over i = 1, . . . , n,

which is nothing else than testing by −∆v in virtue of (2.8), and using the fact that in

dimension two it holds (using integration by parts)

ˆ
Ω

(v ⊗ v) : ∇∆v dx =

2∑
i,j,k=1

ˆ
Ω

∂xkvj∂xjvi∂xkvi dx = 0,

for v ∈ C∞per(Ω) we get

(2.26) −
ˆ

Ω

S : D(∆v) dx = −
ˆ

Ω

f ·∆v dx.

After integration by parts we arrive at

(2.27)

ˆ
Ω

∂xk [S(c(x),Dv)
]

: ∂xk(Dv) dx = −
ˆ

Ω

f ·∆v dx,

where we used the Einstein summation convention. First, we focus on the term on the

left hand side. We apply the derivative to the corresponding term and denoteˆ
Ω

∂xk [S(c(x),Dv)
]

: ∂xk(Dv) dx

=

ˆ
Ω

(∂cS : ∂xk(Dv))∂xkc dx+

ˆ
Ω

∂DS : (∂xk(Dv)⊗ ∂xk(Dv)) dx =: F1 + F2.

The good term F2 can be estimated by (2.6) as

(2.28) F2 ≥ λ
ˆ

Ω

θ
p(c)−2
A (Dv)|∇Dv|2 dx.
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So we focus on the worse term F1. By virtue of (2.7), it holds

|F1| ≤ C
ˆ

Ω

|∇c| log(θA(Dv))θ
p(c)−2
A (Dv)|Dv||∇Dv| dx.

Now we apply the Hölder inequality with the exponent (2+δ), where δ appears in (2.25),

the exponent 2 and exponents α > 2 and β > 2, (which will be from now �xed, depending

thus only on already �xed δ > 0) such that

1 =
1

2 + δ
+

1

α
+

1

β
+

1

2

to get

(2.29) |F1| ≤ C‖∇c‖2+δ‖ log(θA(Dv))‖α‖θ
p(c)−2

2

A (Dv)|Dv|‖β‖‖θ
p(c)−2

2

A (Dv)∇Dv|‖2.

The �rst term can be simply estimated by (2.25). For the second term we use the fact

that log(s) ≤ Csp−/α for s > 1 and due to the a priori bound (2.16), we have that

‖ log(θA(Dv))‖α ≤ C‖1 +Dv‖p
−/α
p− ≤ C.

Thus, (2.29) reduces to

(2.30) |F1| ≤ C‖θ
p(c)−2

2

A (Dv)|Dv|‖β‖‖θ
p(c)−2

2

A (Dv)∇Dv|‖2.

Finally, abbreviating η := θA(Dv)(p(c)−2)/2Dv, we also have by using (2.16) and that

p− ≤ 2

‖η‖p− ≤ C, |∇η| ≤ Cθ
p(c)−2

2

A (Dv)|∇Dv|+ C|∇c| log(θA(Dv))θ
p(c)−2

2

A (Dv)|Dv|

and, using again the Hölder inequality and the same procedure as above, we have

(2.31) ‖η‖1,2 ≤ C
(

1 + ‖θ
p(c)−2

2

A (Dv)|∇Dv|‖2 + ‖η‖β
)
.

Consequently, for given β we can �nd σ ∈ (0, 1) such that after using the interpolation

theorem, we have with the help of (2.31) that

‖η‖β ≤ C(β)‖η‖σp−‖η‖
1−σ
1,2 ≤ C

(
1 + ‖θ

p(c)−2
2

A (Dv)|∇Dv|‖1−σ2 + ‖η‖1−σβ

)
.

Since σ > 0 we can use the Young inequality to move the last term to the left hand side

to obtain the �nal estimate

(2.32) ‖η‖β ≤ C + C‖θ
p(c)−2

2

A (Dv)|∇Dv|‖1−σ2 .

Combining (2.30) and (2.32) and the Young inequality, we deduce

(2.33) |F1| ≤ C + C‖θ
p(c)−2

2

A (Dv)∇Dv|‖2−σ2 ≤ C +
λ

4
‖θ

p(c)−2
2

A (Dv)∇Dv|‖22.

It remains to estimate the term on the right hand side of (2.27). Using the Hölder and

the Young inequalities, the assumption on f and the uniform estimate (2.16), we �nd

(2.34)

∣∣∣∣ˆ
Ω

f ·∆v dx

∣∣∣∣ ≤ C ˆ
Ω

|f | θ
2−p(c)

2

A (Dv) θ
p(c)−2

2

A (Dv)|∇Dv| dx

≤ ‖f‖2+2r‖θ
p(c)
2

2−p(c)
p(c)

A (Dv)‖ 2(1+r)
r
‖θ

p(c)−2
2

A (Dv)∇Dv|‖2

≤ C‖θ
p(c)
2

A (Dv)‖
2(2−p−)

p−

2(1+r)
r

2−p−
p−

+
c

4
‖θ

p(c)−2
2

A (Dv)∇Dv|‖22.
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Hence, inserting estimates (2.34), (2.33) and (2.28) into (2.27), we obtain

(2.35) ‖θ
p(c)−2

2

A (Dv)∇Dv‖2 ≤ C

(
1 + ‖θ

p(c)
2

A (Dv)‖
2−p−

p−

2(1+r)
r

2−p−
p−

)
with the constant C independent of A (and also of n). In addition, it also follows from

(2.31), (2.32) and the de�nition of η that

(2.36) ‖θ(p(c)−2)/2
A (Dv)Dv‖1,2 ≤ C

(
1 + ‖θ

p(c)
2

A (Dv)‖
2−p−

p−

2(1+r)
r

2−p−
p−

)
.

Consequently, we can use the embedding theorem to obtain that for any β ∈ (1,∞) there

holds

(2.37) ‖θ
p(c)
2

A (Dv)‖β ≤ ‖θ(p(c)−2)/2
A (Dv)Dv‖β ≤ C(β)‖θ(p(c)−2)/2

A (Dv)Dv‖1,2.

Thus, setting β := 2(1+r)
r

2−p−
p− in (2.37), inserting this inequality into (2.36), using the

fact that (2− p−)/p− < 1 and the Young inequality, we deduce that

(2.38) ‖θ(p(c)−2)/2
A (Dv)Dv‖1,2 ≤ C.

Then, it directly follows from (2.36) and (2.37) that

(2.39) ‖θ
p(c)−2

2

A (Dv)∇Dv‖2 ≤ C

and

(2.40) ‖θ
p(c)
2

A (Dv)‖β ≤ ‖θ(p(c)−2)/2
A (Dv)Dv‖β ≤ C(β)

with the constant C independent of n and A. In addition, it also follows from (2.40), the

de�nition of θA and the fact that p− > 1 that

(2.41) ‖Dv‖β ≤ C(β), ‖θ
p
2

A(Dv)‖1,2 ≤ C,

for any β ∈ (1,∞).

2.4. Limit n → ∞. Thanks to the regularity estimate (2.41) and recalling also (2.25),

we can use the compact embedding and the monotone operator theory to let n→∞ in

(2.12)�(2.13) to deduce the existence of a couple (cA,vA) ful�lling
ˆ

Ω

−(vA ⊗ vA) : ∇w + SA(DvA) : Dw dx =

ˆ
Ω

f ·w dx for all w ∈W 1,2
per,div,(2.42)

ˆ
Ω

K(cA, |DvA|)∇cA · ∇ϕdx =

ˆ
Ω

(cAvA + g) · ∇ϕdx for all ϕ ∈W 1,2
per(Ω).(2.43)

Moreover, thanks to uniform estimates (2.25) and (2.38), and due to the de�nition of

θA(Dv), we know that

(2.44) vA ∈W 2,2
loc (Rd;Rd), cA ∈ C0, δ

2+δ (R2) ∩W 1,2+δ
per

for a suitable δ > 0, and they ful�ll the estimates (2.25), (2.39) uniformly with respect

to A > 1.
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3. Proof of the main theorem

This section is devoted to the proof of the main theorem. First, we recall and improve

some standard results in the regularity theory. Then we localize the estimate arising in

Subsection 2.3. Next, we use the hole �lling technique to show the sharp Cα estimates

and we also trace the precise dependence on the parameter A. Finally, we combine such

result with the uniform bound (2.38) to show an estimate which is independent of A.

To end this introductory part, we recall some standard notation that will be used for

localization. For any x ∈ R2 and R > 0 the symbol BR(x) denotes the ball centered at x

and radius R. Similarly, we denote the annulus AR(x) := B2R(x) \ BR(x). Often, in

case it is clear from context, we will omit writing the center x. Further, we introduce a

notation for a function with zero average. For a function f de�ned on a measurable set

U we de�ne

(f)0,U := f − (f)U ,

where

(f)U :=

 
U

f dx =
1

|U |

ˆ
U

f dx.

For U = AR we shorten the notation to (f)0,R.

3.1. Auxiliary estimate. We recall here the standard hole �lling lemma (see [24]),

where we however sharply trace the dependence on all constants.

Lemma 1 (Hole Filling Lemma). Let g ∈ L1
loc(R2) and α, β and ν be positive constants.

Assume that for all 0 < R ≤ R0 ≤ 1 the following inequality holds true

(3.1)

ˆ
BR

|g| dx ≤ α
ˆ
AR

|g| dx+ βRν .

If we de�ne

(3.2) µ := min

{
ν

2
, log2

(
1 + α

α

)}
then for all R ∈ (0, R0) there holds

(3.3)

ˆ
BR

|g| dx ≤ Rµ
(

2ν
ˆ
BR0

|g|
Rµ0

dx+
β

2
ν
2 − 1

)
.

Proof. We add α

ˆ
BR

|g| dx to both sides of (3.1) and after division the result by (1 +α),

we get

(3.4)

ˆ
BR

|g| dx ≤ α

1 + α

ˆ
B2R

|g| dx+
β

1 + α
Rν .

Next, we add to both sides ε−1Rνβ/(α+ 1) with some ε > 0, that will be speci�ed later,

and divide the result by Rµ to obtainˆ
BR

|g|
Rµ

dx+
βε−1

1 + α
Rν−µ ≤ α

1 + α

ˆ
B2R

|g|
Rµ

dx+
(1 + ε−1)β

1 + α
Rν−µ

=
α2µ

1 + α

ˆ
B2R

|g|
(2R)µ

dx+ 2µ−ν(ε+ 1)
ε−1β

1 + α
(2R)ν−µ.

(3.5)
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Hence, denoting

η(R) :=

ˆ
BR

|g|
Rµ

dx+
ε−1β

1 + α
Rν−µ,

we obtain from (3.5) that

(3.6) η(R) ≤ η(2R) max

{
α2µ

1 + α
, 2µ−ν(ε+ 1)

}
.

Finally, setting ε := 2
ν
2 − 1 > 0, we can use the de�nition of µ, see (3.2), to deduce that

max

{
α2µ

1 + α
, 2µ−ν(ε+ 1)

}
≤ 1.

Consequently, (3.6) reduces to

(3.7) η(R) ≤ η(2R).

Thus, for any R > 0 we can �nd m ∈ N such that 2mR ∈ (R0/2, R0) and iterating (3.7),

we see that (using also the fact that µ ≤ ν and R0 ≤ 1)

η(R) ≤ η(2mR) =

ˆ
B2mR

|g|
(2mR)µ

dx+
ε−1β

1 + α
(2mR)ν−µ

≤ 2ν
ˆ
BR0

|g|
(R0)µ

dx+
β

2
ν
2 − 1

.

(3.8)

Using the de�nition of η, we see that (3.3) easily follows. �

3.2. Local estimates of second gradient. In this section we closely follow the proce-

dure developed in Section 2.3 but we will focus on localized estimate.

Lemma 2. Let v be the solution determined in (2.42)-(2.44), then for any x0 ∈ R2 and

any R ∈ (0, 1) it holds

(3.9)

ˆ
BR(x0)

θ
p(c)−2
A (Dv) |∇Dv|2 dx ≤ CRν + C

ˆ
AR(x0)

θ
p(c)−2
A (Dv)

|(∇v)0,R|2

R2
dx,

where the positive constants C and ν are independent of A.

Proof. We omit writing x0 in what follows. We also proceed here formally assuming that

all test functions are smooth2 enough. Let τR ∈ C1
0(B2R) be a cut-o� function such that

τR = 1 on BR and |∇τR| ≤ C
R on B2R \BR and consider w := −div((∇v−∇vT )0,Rτ

2
R)

as a test function in (2.42). Note that w is divergence free, but just belongs to L2 so we

put the derivative on S and v⊗v. Next, we repeat almost step by step the computations

in Section 2.3 with the necessary changes due to the localization. Hence, we evaluate

and estimate all terms arising by using w as a test function and for these estimates we

repeatedly use (2.5)�(2.7), integration by parts, the Hölder, the Poincaré and the Young

inequalities. First, for the convective term, we have (using integration by parts twice and

2Such a procedure can be however for our problem justi�ed rigorously
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the Young inequality)

∣∣∣∣ˆ
R2

(v ⊗ v) : ∇w dx

∣∣∣∣ =

∣∣∣∣ˆ
R2

∇v : (v ⊗w) dx

∣∣∣∣
=

∣∣∣∣ˆ
R2

∇v : (v ⊗ div((∇v −∇vT )0,Rτ
2
R)) dx

∣∣∣∣
≤
ˆ
B2R

(|∇2v||v|+ |∇v|2)|((∇v −∇vT )0,R|τ2
R dx

≤ λ

4

ˆ
R2

θ
p(c)−2
A (Dv)|∇Dv|2τ2

R dx+ C

ˆ
B2R

|v|2θ2−p(c)
A |(∇v −∇vT )0,R|2 + |∇v|3 dx

≤ λ

4

ˆ
R2

θ
p(c)−2
A (Dv)|∇Dv|2τ2

R dx+ C

ˆ
B2R

|v|6θ3(2−p(c))
A + |∇v|3 dx.

Finally, for the second integral, we can use estimates (2.40)�(2.41), the embedding the-

orem and the Korn inequality to obtain

∣∣∣∣ˆ
R2

(v ⊗ v) : ∇w dx

∣∣∣∣ ≤ λ

4

ˆ
R2

θA(Dv)p(c)−2|∇Dv|2τ2
R dx+ CR‖|v|6θ3(2−p(c))

A + |∇v|3‖2

≤ λ

4

ˆ
R2

θA(Dv)p(c)−2|∇Dv|2τ2
R dx+ CR

For the term with f , we again use the Hölder, the Poincaré and the Young inequality, and

recalling that due to the assumptions we know that f ∈ L2(1+r)(Ω;R2) and the uniform

estimates (2.39) and (2.41), we have

∣∣∣∣ˆ
R2

f ·w dx

∣∣∣∣ ≤ ˆ
R2

|f ||∆v|τ2
R dx+ C

ˆ
AR

|f |
∣∣(∇v −∇vT )0,R

∣∣
R

dx

≤ C
ˆ
B2R

|f |θ
2−p(c)

2

A θ
p(c)−2

2

A |∇Dv| dx

+ C

(ˆ
AR

|f |2+2r dx

) 1
2+2r

(ˆ
AR

|∇Dv|
2+2r
1+2r dx

) 1+2r
2+2r

≤ C‖f‖2+2r‖θ
p(c)−2

2

A ∇Dv‖2
(ˆ

B2R

θ
2−p(c)

2
2(1+r)
r

A dx

) r
2(1+r)

+ C‖f‖2+2r

(ˆ
AR

θ
(2−p(c)) 1+r

1+2r

A (θ
p(c)−2
A |∇Dv|2)

1+r
1+2r dx

) 1+2r
2+2r

≤ C
(ˆ

B2R

θ
(2−p(c))(1+r)

r

A dx

) r
2(1+r)

≤ ‖θ
(2−p(c))(1+r)

r

A ‖
r

2(1+r)

2 R
r

2(1+r) ≤ CR
r

2(1+r) .

The last term we need to estimate is the one with S. We use the inequalities (2.5)�

(2.7), integration by parts, the Hölder inequality, the Poincaré inequality and the Young

inequality and also the uniform estimates (2.25) and (2.39)�(2.41) to obtain (we proceed
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here without details since the very similar procedure was already used in Section 2.3)

−
ˆ
R2

divS ·w dx =

ˆ
R2

divS · div((∇v −∇vT )0,Rτ
2
R) dx

=

ˆ
R2

divS · div((∇v)0,Rτ
2
R)− (divS⊗∇τ2

R) : ((∇vT )0,R) dx

≥
ˆ
R2

∇S : ∇2vτ2
R dx−R−1C

ˆ
AR

|∇S||(∇v)0,R|τR dx

≥ c
ˆ
R2

θ
p(c)−2
A |∇Dv|2 τ2

R dx− C
ˆ
R2

log(θA(Dv))θ
p(c)−2
A (Dv)|Dv||∇Dv||∇c|τ2

R dx

− CR−1

ˆ
AR

θ
p(c)−2

2

A |∇Dv|τRθ
p(c)−2

2

A |(∇v)0,R| dx

− CR−1

ˆ
AR

log(θA(Dv))θ
p(c)−2
A (Dv)|Dv||(∇v)0,R||∇c| dx

≥ 3c

4

ˆ
R2

θ
p(c)−2
A |∇Dv|2 τ2

R dx− C
ˆ
B2R

log2(θA(Dv))θ
p(c)−2
A (Dv)|Dv|2|∇c|2 dx

− CR−2

ˆ
AR

θ
p(c)−2
A |(∇v)0,R|2 dx

− CR−1

ˆ
B2R

log(θA(Dv))θ
p(c)−2
A (Dv)|Dv||(∇v)0,R||∇c| dx.

Next, we can estimate the second and the last integral as follows (using (2.25) and (2.41))

ˆ
B2R

log2(θA(Dv))θ
p(c)−2
A (Dv)|Dv|2|∇c|2 dx

≤ C‖∇c‖2L2+δ(B2R)‖(1 + |Dv|)p
++1‖

L
2+δ
δ (B2R)

≤ ‖∇c‖2L2+δ(B2R)‖(1 + |Dv|)p
++1‖

L
2(2+δ)
δ (B2R)

R
δ
δ+2 ≤ CR

δ
δ+2 .

The last integral is estimated similarly (using Korn inequality)

R−1

ˆ
B2R

log(θA(Dv))θ
p(c)−2
A (Dv)|Dv||(∇v)0,R||∇c| dx

≤ CR−1‖∇c‖L2+δ(B2R)‖(1 + |Dv|)p
++1‖

L
2+δ
1+δ (B2R)

≤ CR−1‖∇c‖L2+δ(B2R)‖(1 + |Dv|)p
++1‖

L
4(2+δ)
δ (B2R)

R
3δ+4

2(2+δ) ≤ CR
δ

2(2+δ) .

Thus, de�ning

ν := min

{
δ

2(2 + δ)
,

r

2(1 + r)

}
and summarizing all above inequalities, we �nally deduce (3.9). �

3.3. Covering by proper balls. We use the uniform estimate (2.25), which is indepen-

dent of A, to specify a proper covering of Ω. We take arbitrary positive ε0 ≤ 1/10 and

�nd R0 ≤ 1 such that for all x, y ∈ R2 ful�lling |x−y| ≤ 8R0, we have |p(x)−p(y)| ≤ ε0.

Then we can �nd a �nite number of points {xi}Ni=1 such that ∪Ni=1BR0/2(xi) is covering
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of Ω. In addition, we de�ne

p−i := inf
x∈B8R0

(xi)
p(c(x)), p+

i := sup
x∈B8R0

(xi)

p(c(x)),

p−i (R) := inf
x∈B8R(xi)

p(c(x)), p+
i (R) := sup

x∈B8R(xi)

p(c(x)).

Finally, we also introduce constants related to balls B8R0(xi), which give the upper and

the lower estimate for θA

ci0(A) := (1 + |A|2)
max{2,p+

i
}−2

2 ,

ci1(A) := (1 + |A|2)
min{2,p−

i
}−2

2 .

(3.10)

Indeed, it directly follows from the de�nition (2.1) that

(3.11)
ci0(A) ≥ λθA(Dv(x)) for all x ∈ B8R0(xi),

ci1(A) ≤ CθA(Dv(x)) for all x ∈ B8R0
(xi).

3.4. The hole-�lling inequalities. In this subsection, we derive the hole-�lling in-

equality that follows from the estimate (3.9). However, we split the estimate into two

parts. The �rst one deals with the case when p(c(x)) is su�ciently large and the sec-

ond one for the opposite case. In the following, we keep the notation from the covering

introduced in the preceding section. Thus, the �rst result for large p is the following.

Lemma 3 (Hole-�lling inequality I). There exists a uniform constant C, which is inde-

pendent of A and ε0 such that for any xi being a center of a ball from the covering intro-

duced in Section 3.3, which ful�lls p(c(xi)) ≥ 3, any y ∈ B2R0(xi) and any R ∈ (0, R0)

there holds

(3.12)

ˆ
BR(y)

θ
p(c)−2
A |∇Dv|2 dx ≤ C

(
Rν +

ˆ
AR(y)

θ
p(c)−2
A |∇Dv|2 dx

)
,

where ν > 0 comes from (3.9).

Proof. We use (3.9) to get the result. For this purpose, we need to estimate the integral

on the right hand side of (3.9). Assume that the center xi is �xed such that p(c(xi)) ≥ 3.

Then from the properties of the covering and from the fact that ε0 < 1, wee see that

p−i ≥ 2. We also de�ne

(3.13) η := θ
p(c)
2

A (Dv)

and also to shorten the notation, we simply write θA instead of θA(Dv) in what follows.

We start with a simple estimate for arbitrary x0 ∈ BR(xi) and arbitrary R ∈ (0, R0).

Note that B2R(x0) ⊂ B4R0(xi).

(3.14)

ˆ
AR

θ
p(c)−2
A

|(∇v)0,R|2

R2
dx ≤ C

ˆ
AR

|η − (η)AR |
2(p(c)−2)
p(c)

|(∇v)0,R|2

R2
dx

+

ˆ
AR

∣∣∣∣∣|(η)AR |
2(p(c)−2)
p(c) − |(η)AR |

2(p
−
i

(R)−2)

p
−
i

(R)

∣∣∣∣∣ |(∇v)0,R|2

R2
dx

+

ˆ
AR

|(η)AR |
2(p
−
i

(R)−2)

p
−
i

(R)
|(∇v)0,R|2

R2
dx =: I1 + I2 + I3.
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Next we take arbitrary q > 1 and use the Hölder, the Poincaré and the John-Nirenberg

inequality to obtain

(3.15)

I1 ≤ R−2

(ˆ
AR

|η − (η)AR |
2q′(p(c)−2)

p(c) dx

) 1
q′
(ˆ

AR

|(∇v)0,R|2q dx
) 1
q

≤ C(q)R−
2
q

ˆ
AR

1 + |η − (η)AR |
2q′(p+

i
−2)

p
+
i

R2
dx


1
q′ (ˆ

AR

|∇Dv|
2q
q+1 dx

) q+1
q

≤ C(q)

1 + ‖η‖
2(p

+
i
−2)

p
+
i

BMO

 ˆ
AR

|∇Dv|2 dx ≤ C
ˆ
AR

θ
p(c)−2
A |∇Dv|2 dx,

where for that last inequality we used the embedding W 1,2 ↪→ BMO, the uniform

bound (2.41) and the fact that p(c) ≥ 2 in AR and that θA ≥ 1. To estimate I2,

we �rst recall the inequality valid for all B ≥ 1 and r ≥ s

(3.16) Br −Bs =

ˆ 1

0

d

dt
Btr+(1−t)s dt =

ˆ 1

0

Btr+(1−t)s lnB(r − s) dt ≤ (r − s)Br lnB.

Then using (3.16) in I2, together with the Poincaré inequality and the fact that p+(R) ≥
p(c) ≥ p−(R) ≥ 2, we obtain

(3.17)

I2 ≤ C

∥∥∥∥∥∥(η)
2(p(c)−2)
p(c)

AR
− (η)

2(p
−
i

(R)−2)

p
−
i

(R)

AR

∥∥∥∥∥∥
L∞(AR)

ˆ
AR

|∇Dv|2 dx

≤ C(η)2
AR

∥∥∥∥p(c)− 2

p(c)
− p−i (R)− 2

p−i (R)

∥∥∥∥
L∞(B4R(xi))

ˆ
AR

θ
p(c)−2
A |∇Dv|2 dx

≤ C(η)2
AR‖p(c)− p

−
i (R)‖L∞(B4R(xi))

ˆ
AR

θ
p(c)−2
A |∇Dv|2 dx

Next, since η ∈ Lβ for any β ∈ (1,∞) due to (2.41), moreover since the function p is

Lipschitz and c ∈ C0, δ
2+δ uniformly with respect to A, we have for all β ∈ [1,∞)

(η)2
AR‖p(c)− p

−
i (R)‖L∞(B4R(xi)) ≤ C(β)R−

4
βR

δ
2+δ .

Hence, setting β := 4(δ + 2)/δ and substituting the above estimate into (3.17), we get

(3.18) I2 ≤ C
ˆ
AR

θ
p(c)−2
A |∇Dv|2 dx.

Finally, we focus on estimate for I3. First, since (η)AR and p−i (R) are constants, we can

use the standard Sobolev-Poincaré inequality and the using the triangle and the Hölder
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inequality, we obtain

(3.19)

I3 ≤
ˆ
AR

|(η)AR |
2(p
−
i

(R)−2)

p
−
i

(R)
|(∇v)0,R|2

R2
dx ≤ C

(ˆ
AR

|(η)AR |
p
−
i

(R)−2

p
−
i

(R)
|∇Dv|
R

dx

)2

≤ C

(ˆ
AR

|(η)AR − η|
p
−
i

(R)−2

p
−
i

(R)
|∇Dv|
R

dx

)2

+ C

(ˆ
AR

|η|
p
−
i

(R)−2

p
−
i

(R)
|∇Dv|
R

dx

)2

≤ C‖η‖
2(p

+
i
−2)

p
+
i

BMO

ˆ
AR

|∇Dv|2 dx+ C

ˆ
AR

η

2(p
−
i

(R)−2)

p
−
i

(R) |∇Dv|2 dx

≤ C
ˆ
AR

θ
p(c)−2
A |∇Dv|2 dx,

where for the last inequality we used (2.41), the embedding theorem, the John-Nirenberg

inequality and the fact that 2 ≤ p−i ≤ p(c) in AR. Consequently, substituting estimates

(3.15), (3.18) and (3.19) into (3.14) and combining the result with (3.9), we obtain (3.12).

�

The second hole-�lling inequality is related to small values of p(c).

Lemma 4 (Hole-�lling inequality II). There exists a uniform constant C, which is inde-

pendent of A and ε0 such that for any xi being a center of a ball from the covering intro-

duced in Section 3.3, which ful�lls p(c(xi)) ≤ 3/2, any y ∈ B2R0(xi) and any R ∈ (0, R0)

there holds

(3.20)

ˆ
BR(y)

θ
p(c)−2
A |∇Dv|2 dx ≤ C

(
Rν +

ˆ
AR(y)

θ
p(c)−2
A |∇Dv|2 dx

)
,

where ν > 0 comes from (3.9).

Proof. Similarly as before, we just need to estimate the integral on the right hand side

of (3.9). Assume that the center xi is �xed such that p(c(xi)) ≤ 3/2. Then from the

properties of the covering and from the fact that ε0 < 1/2, we see that p+
i < 2. We also

recall the de�nition of η, see (3.13), i.e., η := θ
p(c)
2

A (Dv) and since η ≥ 1, it follows from

(2.41) that

(3.21) ‖η‖BMO + ‖η−1‖BMO ≤ C

with constant C independent of A. Next, we use the Hölder and the Poincaré inequality

to get (keeping the notation for AR) for arbitrary q ∈ (1,∞)

(3.22)

ˆ
AR

θ
p(c)−2
A

|(∇v)0,R|2

R2
dx ≤ C

R2

(ˆ
AR

θ
(p(c)−2)q′

A dx

) 1
q′
(ˆ

AR

|(∇v)0,R|2q dx
) 1
q

≤ C

R2

(ˆ
AR

θ
(p(c)−2)q′

A dx

) 1
q′
(ˆ

AR

|∇Dv|
2q

1+q dx

) q+1
q

≤ C

(ˆ
AR

θ
(p(c)−2)q′

A

R2
dx

) 1
q′
(ˆ

AR

θ
q(2−p(c))
A

R2
dx

) 1
q ˆ

AR

θ
p(c)−2
A |∇Dv|2 dx
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Hence, if we show that for some q

(3.23)

(ˆ
AR

θ
(p(c)−2)q′

A

R2
dx

) 1
q′
(ˆ

AR

θ
q(2−p(c))
A

R2
dx

) 1
q

≤ C,

then following the proof of Lemma 3 we get (3.20).

To show (3.23), we �rst notice that due to the choice of ε0 and the fact that p(c(xi)) ≤ 3/2

we have that p(c) < 2 in B8R. Hence, we can estimate the second integral in (3.23) as

follows
ˆ
AR

θ
q(2−p(c))
A

R2
dx =

ˆ
AR

η
2q(2−p(c))

p(c)

R2
dx

≤ C
ˆ
AR

|η − (η)AR |
2q(2−p(c))

p(c) + |(η)AR |
2q(2−p(c))

p(c)

R2
dx

≤ C

(
1 +

ˆ
AR

|(η)AR |
2q(2−p(c))

p(c)

R2
dx

)
≤ C + C|(η)AR |

2q(2−p−
i

(R))

p
−
i

(R) ,

where we used (3.21) and the fact that η ≥ 1. Next, using this estimate in (3.23) and

the facts that θA ≥ 1 and p(c) ≤ 2, we have(ˆ
AR

θ
(p(c)−2)q′

A

R2
dx

) 1
q′
(ˆ

AR

θ
q(2−p(c))
A

R2
dx

) 1
q

≤ C

( 
AR

θ
(p(c)−2)q′

A |(η)AR |
2q′(2−p−

i
(R))

p
−
i

(R) dx

) 1
q′

≤ C

( 
AR

θ
(p(c)−2)q′

A

∣∣∣∣∣|(η)AR |
2q′(2−p−

i
(R))

p
−
i

(R) − |(η)AR |
2q′(2−p(c))

p(c)

∣∣∣∣∣ dx
) 1
q′

+ C

( 
AR

θ
(p(c)−2)q′

A |(η)AR |
2q′(2−p(c))

p(c) dx

) 1
q′

≤ C

( 
AR

∣∣∣∣∣|(η)AR |
2q′(2−p−

i
(R))

p
−
i

(R) − |(η)AR |
2q′(2−p(c))

p(c)

∣∣∣∣∣ dx
) 1
q′

+ C

 
AR

∣∣∣∣ (η)AR
η

∣∣∣∣
2q′(2−p(c))

p(c)

dx

 1
q′

.

(3.24)

Then using (3.16), (2.41) and (2.25), we have (compare with the estimates above (3.18))

 
AR

∣∣∣∣∣|(η)AR |
2q′(2−p−

i
(R))

p
−
i

(R) − |(η)AR |
2q′(2−p(c))

p(c)

∣∣∣∣∣ dx ≤ C(p+
i (R)− p−i (R))|(η)AR |

2q′(2−p−)

p−
+1

≤ C

and using (3.21) and the fact that η ≥ 1 we deduce

 
AR

∣∣∣∣ (η)AR
η

∣∣∣∣
2q′(2−p(c))

p(c)

dx ≤ C(q)

 
AR

∣∣∣∣ (η)AR − η
η

∣∣∣∣
2q′(2−p(c))

p(c)

dx+ C(q) ≤ C(q).
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Consequently, substituting two above estimates into (3.24), setting for example q := 2,

we get (3.23). The rest of the proof is the same as the proof of Lemma 3. �

The last hole-�lling inequality, where however the constants will depend on A, is related

to any values of p(c) but we need it to deal with the case 3
2 ≤ p(c) ≤ 3.

Lemma 5 (Hole-�lling inequality III). Let y ∈ B2R0
(xi), where xi is a center of a ball

from the covering introduced in Section 3.3. Then for any R ∈ (0, R0) there holds

(3.25)

ˆ
BR(y)

θ
p(c)−2
A |∇Dv|2 dx ≤ C

(
Rν +

ci0(A)

ci1(A)

ˆ
AR(y)

θ
p(c)−2
A |∇Dv|2 dx

)
,

where ν > 0 comes from (3.9), R0 from the covering and C is independent of A, R0 and

ε0.

Proof. Thus we consider y ∈ B2R0
(xi) for some i and consider balls BR(y) but omit

writing x0. We again use (3.9) to get the result and all we need is just to estimate the

integral on the right hand side of (3.9). Hence, using (3.10), (3.11) and the Poincaré

inequality, we have (we omit writing here the dependence on A, which is however hidden

in the de�nition (3.10))

(3.26)

ˆ
AR

θ
p(c)−2
A

|(∇v)0,R|2

R2
dx ≤ Cci0

ˆ
AR

|(∇v)0,R|2

R2
dx ≤ Cci0

ˆ
AR

|∇Dv|2 dx

≤ Cci0
ci1

ˆ
AR

θ
p(c)−2
A |∇Dv|2 dx.

Substituting this inequality into (3.9), we obtain (3.25). �

3.5. Proof of the main theorem. We proceed here as follows. In the �rst step, we

show that ∇v is Hölder continuous but with the modulus of continuity dependent on

A. In the second step, we however show that we can choose A such that (2.4) holds.

Consequently, v will be a solution to the original problem and therefore belonging to C1,µ

with some µ > 0. Then we can use the standard regularity result for the Stokes system

with continuous coe�cients to prove the full regularity of solution. Since the last step is

quite classical in the theory of PDE's we omit the proof here.

Step 1: Non-uniform C1,µ estimates. We shall start with the following result that

will directly imply Hölder continuity of Dv and consequently also ∇v. However, this

result will depend on A. Nevertheless, this estimate will be used further to obtain the

�nal result. Note that through this section we keep the notation for ci0 and c
i
1 from (3.10)

as well as the covering by balls BR0
(xi).

Lemma 6 (Key estimate). There exists uniform constants C and ν > 0 independent of

A and ε0 such that for any xi, any y ∈ BR(xi) and all R ∈ (0, R0), we have

(3.27)

ˆ
BR(y)

θ
p(c)−2
A |∇Dv|2 dx ≤ CRµi

(
1 +R−µi0

)
,

where µi is given by

(3.28) µi := min

{
ν

2
, log2

(
ci1(A) + Cci0(A)

Cci0(A)

)}
Furthermore, there exists µ0 > 0 independent of A and ε0 such that if p(c(xi)) ≥ 3 or

p(c(xi)) ≤ 3/2 then (3.27) holds with µ0 instead of µi, where µ0 is independent of A.



20 A. ABBATIELLO, M. BULÍ�EK, AND P. KAPLICKÝ

Proof. We omit writing y or xi in what follows. We de�ne g := θ
p(c)−2
A

∣∣∇2v
∣∣2 and we

see from Lemma 5 that it satis�es

(3.29)

ˆ
BR

g dx ≤ CRν +
Cci0(A)

c1(A)

ˆ
AR

g dx.

Thus, we can use Lemma 1 to obtain (note that the de�nition (3.28) corresponds to

(3.2))

(3.30)

ˆ
BR

θ
p(c)−2
A |∇Dv|2 dx ≤ Rµi

(
1 +

ˆ
BR0

θ
p(c)−2
A |∇Dv|2

Rµi0

dx

)
.

Consequently, using (2.39), we deduce (3.27). For the second part of the proof, we use

the estimates stated in Lemma 3 and Lemma 4 (here the assumptions p(c(xi)) ≥ 3

or p(c(xi)) ≤ 3/2 come from) and using again Lemma 1, we get (3.27) but with µ0

independent of A. �

From Lemma 6 we can deduce that ∇v is Hölder continuous. Indeed, de�ning µ :=

mini µi and observing that

θ
p(c)−2
A ≥ (c1(A))p

−−2,

we have from (3.27) that for any y ∈ R2 and any R ∈ (0, R0) (using the point-wise

estimate |∇2v| ≤ C|∇Dv|) thatˆ
BR(y)

|∇2v|2 dx ≤ C(A)Rµ.

Thus, using the Morrey embedding, we get that v ∈ C1,µ2 . However, µ depends on A and

our goal is to show independent estimate.

Step 2: Choice of A such that ‖Dv‖∞ ≤ A. We start with a simple consequence of

Lemma 6.

Lemma 7 (Key estimate for θA). There exists uniform constants C and ν > 0 inde-

pendent of A and ε0 such that for any xi, any y ∈ BR(xi) and all R ∈ (0, R0), we

have

(3.31)

ˆ
BR(y)

|∇θ
p(c)
2

A |2 dx ≤ CRmin{µi, δ
2(2+δ)

} (1 +R−µi0

)
,

where µi is given by (3.28) and δ comes from (2.25). Furthermore, there exists µ0 >

independent of A and ε0 such that if p(c(xi)) ≥ 3 or p(c(xi)) ≤ 3/2 then (3.31) holds

with µ0 instead of µi, where µ0 is independent of A.

Proof. First, using the de�nition of θA we have

|∇θ
p(c)
2

A |2 ≤ C
(
θ
p(c−2)
A |∇Dv|2 + θp

++1
A |∇c|2

)
.

Next, thanks to (2.25) and (2.41), we can use the Hölder inequality to getˆ
BR

θp
++1
A |∇c|2 dx ≤ CR

δ
2(2+δ) .

Hence, combining these estimates with (3.27) we deduce (3.31). �

Now, we have everything prepared to prove the main result of the paper.
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Proof of the main theorem. We show, that if A is su�ciently large then (2.4) holds true.

Hence, assume that A is �xed (but will be chosen later), we �x ε0 := 1/20 and corre-

sponding covering BR0/2(xi). Assume for a contradiction that there is y ∈ Ω such that

|Dv(y)| > A. Due to the properties of covering, we can �nd i such that y ∈ BR0/2(xi)

and we have that

(3.32) (1 +A)
p
−
i
2 ≤ ‖θ

p
2

A‖L∞(BR0/2
(xi)) ≤ C‖θ

p
2

A‖C0,min{µi
2
, δ
4(2+δ)

}
(BR0/2

(xi))
.

Next, we can use the equivalence of Campanato spaces L2,2+µ with the space of Hölder

continuous functions C0,µ2 , with the the embedding constant
C(R0)

µ
, see e.g. [15],

‖u‖C0, µ2 (BR0
(xi))

≤ C(R0)

µ

(
‖u‖2L2(BR0

(xi))
+ sup
x∈BR0

(xi)

sup
R∈(0,R0)

R−2−µ
ˆ
BR(x)

|u(y)− (u)BR(x)|2 dy

) 1
2

≤ C(R0)

µ

(
‖u‖2L2(BR0

(xi))
+ sup
x∈BR0

(xi)

sup
R∈(0,R0)

R−µ
ˆ
BR(x)

|∇u(y)|2 dy

) 1
2

,

where for the second inequality we used the Poincaré inequality. Thus, applying the

above inequality to θ
p
2

A , using the uniform estimate (2.41) and the estimate in Lemma 7,

we �nd that

‖θ
p
2

A‖
C0,

min{µi,
δ

2(2+δ)
}

2 (BR0
(xi))

≤
(
C(R0, δ)

µi
+ 1

)(
‖u‖21,2 + sup

x∈BR0
(xi)

sup
R∈(0,R0)

R−min{µi, δ
2(2+δ)

}
ˆ
BR(x)

|∇θ
p
2

A(y)|2 dy

) 1
2

≤ C(R0)

(
1

µi
+ 1

)
,

Thus, inserting this estimate into (3.32), we get

(3.33) (1 +A)
p
−
i
2 ≤ C(R0)

(
1

µi
+ 1

)
.

Hence, in case we know that p(c(xi)) ≥ 3 or p(c(xi)) ≤ 3/2 we have that µi = µ0, where

µ0 is a constant depending only on data. So (3.33) reduces to

(3.34) (1 +A)
p
−
i
2 ≤ C.

In the opposite case, we use the de�nition of µi, see (3.28) to get

(1 +A)
p
−
i
2 ≤ C(R0)

(
1

log2(1 + c1i (A)/(Cci0))
+ 1

)
≤ C

(
1 +

ci0(A)

ci1(A)

)
≤ C

(
1 +Amax{2,p+i }−min{2,p−i }

)
,

(3.35)
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where we used ln(1 + x) ≥ x/2 for x ∈ (0, 1) and the de�nition (3.10). Since

max{2, p+
i } −min{2, p−i } =


p+
i − p

−
i ≤ ε0 if p+

i ≥ 2, p−i ≤ 2,

2− p−i ≤ |p
−
i − 2| if p+

i ≤ 2, p−i ≤ 2,

p+
i − 2 ≤ ε0 + |p−i − 2| if p+

i ≥ 2, p−i ≥ 2,

which follows from the fact that |p+
i − p

−
i | ≤ ε0, we have from (3.35) that

(1 +A)
p
−
i
2 ≤ C

(
1 +Aε0+|p−i −2|

)
≤ C (1 +A)

p
−
i
2

2(ε0+|p−
i
−2|)

p
−
i .(3.36)

Finally, since we consider only the case when p(c(xi)) ∈ (3/2, 3) and ε0 = 1/20, we have

that p−i ∈ [3/2− ε0, 3], we deduce

(1 +A)
p
−
i
2 ≤ Cfin (1 +A)

p
−
i
2

24
29(3.37)

with Cfin independent of A. Consequently, choosing A so large that

(1 +A)
p
−
i
2

5
29 > Cfin,(3.38)

we see that (3.37) cannot be true, and therefore it contradicts the assumption ‖Dv‖∞ ≥
A. Hence, the proof is complete. �
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