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Abstract. We analyze a phase-field approximation of a sharp-interface model for two-
phase materials proposed by M. Šilhavý [32, 33]. The distinguishing trait of the model
resides in the fact that the interfacial term is Eulerian in nature, for it is defined on the
deformed configuration. We discuss a functional frame allowing for existence of phase-
field minimizers and Γ-convergence to the sharp-interface limit. As a by-product, we
provide additional detail on the admissible sharp-interface configurations with respect to
the analysis in [32, 33].

1. Introduction

This paper addresses the equilibrium of a two-phase elastic medium, whose stored
energy takes the form

F0(y, ζ) = Fbulk(y, ζ) + F int
0 (y, ζ)

:=

∫
Ω

(
(ζ ◦ y)W1(∇y) + (1− ζ ◦ y)W0(∇y)

)
dx+ γ Per

(
{ζ = 1}, y(Ω)

)
. (1.1)

Here, y : Ω → R3 stands for the deformation of the medium with respect to its refer-
ence configuration Ω ⊂ R3 and W0, W1 are the elastic energy densities of the two pure
phases [30]. The Eulerian phase indicator ζ : y(Ω) → {0, 1} is defined on the deformed
configuration y(Ω) instead. Note that solely pure phases are allowed. The stored energy
of the medium includes an elastic bulk part Fbulk(y, ζ), consisting of an integral on the
reference configuration, and an interface contribution F int

0 (y, ζ), featuring the perimeter
of the phase {ζ = 1} in y(Ω), where γ > 0 is a surface-tension coefficient. With respect to
classical hyperelastic theory, the novelty in (1.1) is that the interface is measured in the
deformed configuration, giving rise to a variational model of mixed Lagrangian-Eulerian
type.

The choice of the elastic energy F0 is inspired by the notion of interface polyconvex
energy, introduced by M. Šilhavý in the series of contributions [31, 32, 33]. The explicit
form in (1.1) is in fact just a first example in the wider class considerer therein, where
the general interfacial term reads∫

∂E\∂Ω

Ψ(n,∇Sy × n, (cof∇Sy)n) dS. (1.2)

1
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Here, dS is the infinitesimal area element (in the reference configuration), and Ψ : R15 →
R is a positively 1-homogeneous convex function depending on the normal n to the inter-
face, on the surface gradient ∇Sy of the deformation, and on the cofactor of the surface
gradient. More precisely, Ψ = Ψ(n,F × n, cof Fn), where F ∈ R3×3 is a placeholder of
the surface gradient of the deformation and F × n : R3 → R3 is defined for all a ∈ R3

as (F × n)a := F(n × a). Note that Fn = 0, because n inevitably lives in the kernel of
F. A rigorous definition would ask to cope with the possible nonsmoothness of y, the
existence of the surface gradient ∇Sy, and also whether n does exist at the phase inter-
face, which in turn relates with the regularity of phase 1 in the reference configuration,
for E = y−1({ζ = 1}) in (1.2). The specific interfacial term in (1.1) corresponds to the
choice [33, Ex. 5.7]

Ψ̃(n,F× n, cof Fn) := γ|cof Fn|. (1.3)

Indeed, it is a standard matter to check that (cof∇Sy)n = (cof∇y)n. Then, a formal
application of the change-of-variables formula for surface integrals [11] gives∫

∂E\∂Ω

Ψ̃(n,F× n, cof Fn) dS = γ

∫
∂E\∂Ω

|(cof∇y)n| dS = γ

∫
∂y(E)\∂y(Ω)

dSy. (1.4)

As dSy is the infinitesimal area element in the deformed configuration y(Ω), we have
checked that, along with choice (1.3), the interfacial energy term measures indeed the
surface of the interface in the deformed configuration. This is consistent with the definition
of F int

0 from (1.1).

Our main results are the existence of minimizers of F0 (Theorem 2.3) and the viability
of a phase-field approach (Theorem 2.4) to such sharp-interface model via the diffuse-
interface energies for ε > 0

Fε(y, ζ) = Fbulk(y, ζ) + F int
ε (y, ζ) := Fbulk(y, ζ) +

∫
y(Ω)

(ε
2
|∇ζ|2 +

1

ε
Φ(ζ)

)
dξ. (1.5)

Note that the diffuse-interface term F int
ε (y, ζ) is still Eulerian, but the phase indicator

ζ takes now values in the interval [0, 1]. Here and throughout the paper, ξ stands for
the variable in the deformed configuration y(Ω). The function Φ in (1.5) is a classical

double-well potential with minima at 0 and 1, and
∫ 1

0

√
2Φ(s) ds = γ. By checking

the Γ-convergence of Fε to F0 we essentially deliver a version of the Modica-Mortola
Theorem [24] in the deformed configuration. Instrumental to this is the discussion of the
interplay of deformations and perimeters in deformed configurations, which constitutes
the main technical contribution of our paper (Theorem 2.2).

Let us mention that variational formulations featuring both Lagrangian and Eulerian
terms are currently attracting increasing attention. A prominent case is that of magne-
toelastic materials [16], where Lagrangian mechanical terms and Eulerian magnetic effects
combine [6, 7, 23, 29]. Mixed Lagrangian-Eulerian formulations arise in the modeling of
nematic polymers [5, 6], where the Eulerian variable is the nematic director orientation,
and in piezoelectrics [28], involving the Eulerian polarization instead. An interplay of
Lagrangian and Eulerian effects occurs already in case of space dependent forcings, like
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in the variable-gravity case [18], as well as in specific finite-plasticity settings [34], where
elastic and plastic deformations are composed. Most notably, such mixed formulations
arise naturally in the study of fluid-structure interaction, where the deformed body defines
the (complement of the) fluid domain [27].

The plan of the paper is as follows. We present in detail our assumptions on the in-
gredients of the models in Section 2. In particular, we specify the class of admissible
deformations and state a characterization of sets of finite perimeter with respect to de-
formed configurations (Theorem 2.2). Subsection 2.4 contains the statements of our main
existence and approximation results. These are put in relation with the former theory by
M. Šilhavý in Subsection 2.5. We check in Section 3 that admissible deformations are ac-
tually homeomorphisms, so that, in particular, the deformed configuration is well defined.
The proof of the Characterization Theorem 2.2 is presented in Section 4, along with a
suite of results on perimeters in deformed configurations. The existence of minimizers to
F0 (Theorem 2.3) is proved in Section 5. Eventually, Section 6 proves the Γ-convergence
of the phase-field diffuse-interface energies Fε to the sharp-interface limit F0 (Theorem
2.4).

2. Main results

We devote this section to specifying the functional frame (Subsections 2.1-2.3) and
stating our main results (Subsection 2.4). The relation of our results with the former
existence theory by M. Šilhavý is also discussed (Subsection 2.5).

We first introduce some basic notation. We denote by B(a, ε) := {z ∈ Rn | |z− a| < ε}
the open ball of radius ε > 0 centered at a ∈ Rn. If Ω ⊂ Rn is an open set, Cm(Ω;Rk)
denotes the space of continuous maps on Ω with values in Rk that admit continuous
derivatives up to the order m ≥ 0. Cm

c (Ω;Rk) is the subspace of compactly supported
maps. For p ∈ [1,+∞), W 1,p(Ω;Rk) denotes the standard Sobolev space, and W 1,p

loc (Ω;Rk)
denotes its local counterpart. The space of finite vector Radon measures on Ω with values
in Rk is denoted byM(Ω,Rk) and it is normed by the total variation | · |(Ω). Mloc(Ω;Rk)
denotes the space of locally finite vector Radon measures. Furthermore, BV (Ω;Rk) stands
for the space of maps with bounded variation. See e.g. [2] for references. With slight abuse
of notation, we occasionally replace Rk in the target space by a set. For a measurable set
E ⊂ Ω, we denote the n-dimensional Lebesgue measure by |E| and the m-dimensional
Hausdorff measure by Hm(E). By χE we denote the characteristic function of E. The
perimeter of E in Ω is classically defined as [2, Def. 3.35]

Per(E,Ω) := sup

{∫
E

divϕ dx | ϕ ∈ C∞c (Ω;Rn), ‖ϕ‖∞ ≤ 1

}
.

Given y : E → R3, we will use the notation Ey := y(E).
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2.1. Finite distorsion and finite perimeter. Let us start by defining the function
classes that we are going to be dealing with.

Definition 2.1 (Finite distorsion). Let Ω ⊂ Rn for n ≥ 2 be an open set. A Sobolev
map y ∈ W 1,1

loc (Ω;Rn) with det∇y ≥ 0 almost everywhere in Ω is said to be of finite
distorsion if det∇y ∈ L1

loc(Ω) and there is a function K : Ω → [1,+∞] with K < +∞
almost everywhere in Ω such that |∇y|n ≤ K det∇y. For a mapping y of finite distorsion,
the (optimal) distorsion function Ky : Ω→ R is defined as

Ky :=

{
|∇y|n/det∇y if det∇y 6= 0
1 if det∇y = 0.

The relation of our theory to the former one by M. Šilhavý is encoded in the following
characterization result for sets of finite perimeters in the actual configuration. Although
it will be later applied just for n = 3, we state the characterization here for general
dimension, for we believe that it could be of independent interest.

Theorem 2.2 (Characterization of sets of finite perimeter). Let Ω ⊂ Rn be an open
set, n ≥ 2. Suppose that E ⊂ Ω is a measurable set and that y ∈ W 1,n

loc (Ω;Rn) is a
homeomorphism of finite distorsion. Then Per(Ey,Ωy) < ∞ if and only if there exists a
finite Radon measure py,E ∈M(Ω;Rn) such that there holds∫

E

cof (∇y) : ∇ψ dx =

∫
Ω

ψ · dpy,E ∀ψ ∈ C∞c (Ω;Rn). (2.1)

In this case, Per(Ey,Ωy) = |py,E|(Ω).

A proof of this characterization is provided in Section 4.

In the following, we call py,E a Šilhavý measure if it is a finite Radon measure and it
fulfills (2.1) for some y and E within the assumption frame of Theorem 2.2. This naming is
hinting to the relevance that such measures enjoy within the theory by M. Šilhavý [31, 32],
see Subsection 2.5 below. Theorem 2.2 proves in particular that, given an admissible
deformation y, Šilhavý measures correspond one-to-one to sets of finite perimeter in the
deformed configuration Ωy.

Notice in particular that, by taking y to be the identity map on Ω, Theorem 2.2 reduces
to the classical characterization of sets E of finite perimeter in Ω [2, Thm. 3.36], namely
those sets such that there exists a finite measure pE with∫

E

divψ dx =

∫
Ω

ψ · dpE ∀ψ ∈ C∞c (Ω;Rn).

2.2. Admissible states. From now on let the open, bounded, and Lipschitz domain Ω ⊂
R3 indicate the reference configuration. The body undergoes a deformation y : Ω → R3,
which is assumed to be a Sobolev mapping of finite distorsion. We will in fact ask that
y is orientation-preserving, i.e., det∇y > 0 almost everywhere in Ω. It is well known
that positivity of det∇y ensures only the local injectivity of y [11]. However, it is shown
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by Ciarlet and Nečas [12] that if y ∈ W 1,p(Ω;R3) for some p > 3, det∇y > 0 almost
everywhere, and additionally the so-called Ciarlet-Nečas condition∫

Ω

det∇y(x) dx ≤ |Ωy| (2.2)

holds, then almost every point in Ωy has only one preimage. Under such assumptions, as
we will thoroughly discuss in Section 3, everywhere injectivity (so that the deformation is
a homeomorphism) can be further enforced by requiring that the distorsion function Ky

is in Lq(Ω) for some q > 2.

Therefore, we define the set of admissible deformations as

Y :=

{
y ∈ W 1,p(Ω;R3) | det∇y > 0 a.e. ,

∫
Ω

det∇y(x) dx ≤ |y(Ω)|, Ky ∈ Lq(Ω)

}
(2.3)

where p > 3 and q > 2 are fixed. We shall check in Section 3 that admissible deformations
are homeomorphisms, see Theorem 3.5. In particular, the deformed configuration Ωy is
an open set.

We consider a material with two different phases (e.g., two martensitic variants of a
shape memory alloy) which we indicate with the subscripts 0 and 1. To indicate the
portion E ⊂ Ω of the reference configuration where one finds phase 1, one defines z : Ω→
{0, 1} and ζ : Ωy → {0, 1} to be the characteristic functions of E and Ey, respectively. In
particular, we have that z = ζ ◦ y.

The set of admissible states (y, ζ) is defined as

Q := {(y, ζ) | y ∈ Y, ζ ∈ BV (Ωy; {0, 1})}.

Similarly, we define the set of admissible states for the phase-field approximation as

Q := {(y, ζ) | y ∈ Y, ζ ∈ BV (Ωy; [0, 1])}.

2.3. Assumptions on the bulk energy. We assume that W0 and W1 are polyconvex
[3], i.e., for F ∈ R3×3

Wi(F ) :=

{
hi(F, cof F, detF ) if detF > 0,

∞ otherwise
(2.4)

for some convex functions hi : R19 → R, i = 0, 1. In addition, we assume Wi to be
coercive, frame-indifferent, and unbounded as detF → 0+. More precisely, for i = 0, 1,
we assume that there exist C > 0 such that

Wi(F ) ≥ C

(
|F |p +

|F |3q

(detF )q
− 1

)
∀F ∈ R3×3, p > 3, q > 2, (2.5)

Wi(RF ) = Wi(F ) ∀R ∈ SO(3), F ∈ R3×3 , (2.6)

Wi(F )→∞ as detF → 0+ (2.7)
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where SO(3) is the special orthogonal group SO(3) = {R ∈ R3×3 | RRT = I, detR = 1}.
The third term on the right-hand side of (2.5) ensures that deformation gradients F = ∇y
with finite energy will have a q-integrable distorsion function F 7→ |F |3/ detF . Notice
that F 7→ |F |3/ detF is polyconvex on the set of matrices with positive determinant.

Eventually, we specify boundary conditions by imposing admissible deformations to
match a given deformation y0 at the boundary ∂Ω. To this aim, we assume that

∃(y0, ζ0) ∈ Q with F0(y0, ζ0) <∞ (2.8)

and define
Qy0 := {(y, ζ) ∈ Q | y = y0 on ∂Ω}.

Analogously, we consider

Qy0 := {(y, ζ) ∈ Q | y = y0 on ∂Ω}.

2.4. Main results. We are now in the position of stating the main results of the paper,
which concern existence for the sharp-interface minimization problem and convergence of
the phase-field approximation.

Theorem 2.3 (Existence of minimizers). Under assumptions (2.4)-(2.8) the functional
F0 admits a minimizer on Qy0.

A proof of this statement is in Section 5.

Our second main result delivers a Modica-Mortola-type approximation via the function-
als Fε from (1.5), corresponding indeed to diffuse-interface models. Under the additional
assumption that the current configuration Ωy is a Lipschitz domain (which is not neces-
sarily true for general y ∈ W 1,p(Ω;R3)) we have the following

Theorem 2.4 (Phase-field approximation). Under assumptions (2.4)-(2.8), for any ε > 0
the functional Fε admits a minimizer on Qy0. If Ωy0 is a Lipschitz domain and εk → 0,

then, for every sequence (yk, ζk) of minimizers of Fεk on Qy0, there exists (y, ζ) ∈ Qy0

such that, up to not relabeled subsequences,

i) yk → y weakly in W 1,p(Ω;R3), |Ωyk∆Ωy| → 0, and ‖ζk − ζ‖L1(Ok) → 0 as k →∞,

where Ok := Ωyk ∩ Ωy.
ii) (y, ζ) minimizes F0 on Qy0.

2.5. Relation with Šilhavý’s theory. Before moving on, let us comment on our results
in light of the theory by M. Šilhavý [31, 33]. To this end, we need to clarify the definition
of the general interfacial-energy term in (1.2), which requires introducing some measure
theoretic setting. We recall that the reduced boundary of a finite perimeter set E in Ω
is defined as the set of points x of Ω such that x ∈ supp |∇χE| and such that the limit

nE(x) := limε→0
−∇χE(B(x,ε))
|∇χE |(B(x,ε))

exists and satisfies |nE(x)| = 1 (see [2, Def. 3.54]). We say

that nE is the outer measure-theoretic unit normal to E. We let

Q := {(y, z) | y ∈ W 1,p(Ω), det∇y > 0 a.e. in Ω, z ∈ BV (Ω; {0, 1})}.



A PHASE-FIELD APPROACH TO EULERIAN INTERFACIAL ENERGIES 7

For any pair (y, z) ∈ Q, let E := {z = 1}, let S denote the reduced boundary of the finite
perimeter set E in Ω, and let nE denote the corresponding outer measure-theoretic unit
normal. Following [32, Def. 3.1], we denote by Q0 ⊂ Q the set of all pairs (y, z) ∈ Q
for which there exists a finite Radon measure my,E := (ay,E, hy,E, py,E) ∈M(Ω;R15) such
that ay,E := nEH2

|S and such that there hold (2.1) and∫
E

∇y (∇× ψ) dx =

∫
Ω

ψ dhy,E ∀ψ ∈ C∞c (Ω;R3). (2.9)

Consider a positively 1-homogeneous convex function Ψ : R15 → R such that

Ψ(A) ≥ C|A| for some C > 0 and all A ∈ R15. (2.10)

If |my,E| denotes the total variation of my,E, the interfacial energy is then defined as

F int
Šilhavý

(y, z) :=


∫

Ω

Ψ

(
dmy,E

d|my,E|

)
d|my,E| for (y, z) ∈ Q0,

+∞ otherwise.
(2.11)

On the other hand, the bulk energy in the reference configuration is defined as

F̃bulk(y, z) :=

∫
Ω

(
z W1(∇y) + (1− z)W0(∇y)

)
dx

where Wi are assumed to satisfy (2.4), (2.6)-(2.7), and Wi(F ) ≥ C|F |p for i = 0, 2 and

some p > 3. Under such assumptions on Wi and (2.10), Šilhavý proves that F̃bulk(y, z) +
F int

Šilhavý
(y, z) admits a minimizer on {(y, z) ∈ Q0 | y = y0 on ∂Ω}, see [32, Thm. 3.3]

and [33, Thm. 1.2]. Our Characterization Theorem 2.2 shows in particular that, under
the further assumption of y being a homeomorphism, the perimeter of the image set
Ey = {z = 1}y is finite in Ωy. More specifically, Theorem 2.2 provides a characterization
of those deformations that admit a Šilhavý measure py,E ∈M(Ω;R3).

The existence result of Theorem 2.3 refers to the specific case (1.3) within the larger
class (1.2). As such, the global coercivity assumption (2.10) is not required.

3. Admissible deformations are homeomorphisms

The aim of this section is to check that the continuous representative of the class of the
admissible deformation y ∈ Y (2.3) is injective, hence a homeomorphism between Ω and
Ωy, see Theorem 3.5 below. We break down the argument into Lemmas, which we believe
to be of an independent interest. Let us start with a definition.

Definition 3.1 (almost-everywhere injectivity). We say that y : Ω → R3 is almost-
everywhere injective if there exists ω ⊂ Ω such that |ω| = 0 and y(x1) 6= y(x2) for every
x1, x2 ∈ Ω \ ω satisfying x1 6= x2.
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Given y : Ω → R3, ξ ∈ R3, and a subset ω ⊂ Ω, we define the Banach indicatrix
N(ξ, y, ω) by

N(ξ, y, ω) := #{x ∈ ω | y(x) = ξ} , (3.1)

where the right-hand-side denotes the cardinality (i.e., the number of elements) of the
set. The map y : Ω → R3 is said to satisfy Lusin’s condition N if it maps negligible
sets to negligible sets, namely |ωy| = 0 for all ω ⊂ Ω such that |ω| = 0. Moreover, it
satisfies Lusin’s condition N−1 if the preimage of any negligible set is negligible, namely
|y−1(ω)| = 0 for all ω ⊂ Ωy such that |ω| = 0.

Any continuous map y ∈ W 1,p(Ω;R3), p > 3, satisfies the Lusin’s condition N [21,
Theorem 4.2]. This implies the validity of the area formula with equality [21, Theorem
A.35]. If in addition det∇y > 0 almost everywhere in Ω, y satisfies Lusin’s condition
N−1 as well [8, Thm. 8.3, Lem. 8.3-8.4]. This in particular implies that the continuous
representative of y ∈ Y fulfils both Lusin’s N and N−1 condition.

Let us present a first result on almost-everywhere injectivity, see [19, Prop. 3.2] for a
similar argument.

Lemma 3.2 (Ciarlet-Nečas implies almost-everywhere injectivity). Let y ∈ W 1,p(Ω;R3)
be continuous, p > 3, and det∇y > 0 almost everywhere in Ω. If the Ciarlet-Nečas
condition (2.2) holds, then y is almost-everywhere injective in the sense of Definition 3.1.

Proof. The map y satisfies Lusin’s condition N . Hence, the area formula holds with
equality. The Ciarlet-Nečas condition (2.2) implies that

|Ωy| ≤
∫
y(Ω)

N(ξ, y,Ω) dξ =

∫
Ω

det∇y dx ≤ |Ωy|,

which entailsN(ξ, y,Ω) = 1 for almost every ξ ∈ Ωy. The set ω := {ξ ∈ y(Ω) |N(ξ, y,Ω) >
1} is hence negligible. Since by [8, Thm. 8.3, Lem. 8.3-8.4] y satisfies Lusin’s condition
N−1, we get that |{x ∈ Ω | y(x) ∈ ω}| = 0 as well, which corresponds to the statement. �

Maps that are almost-everywhere injective still include rather nonphysical situations,
for a dense, countable set of points could be mapped to a single point. We shall hence
present a result in the direction of everywhere injectivity.

Lemma 3.3 (a.e. injectivity and openness imply injectivity). Let y : Ω→ R3 be contin-
uous, almost-everywhere injective, open (maps open sets to open sets), and fulfill Lusin’s
condition N. Then, y is everywhere injective in Ω.

Proof. Assume by contradiction that y is not everywhere injective, i.e. that there exist
x1, x2 ∈ Ω with x1 6= x2 such that y(x1) = y(x2) =: a. The openness of y implies
that Ωy is open. We can hence find ε > 0 such that B(a, ε) ⊂ Ωy. Continuity implies
that y−1(B(a, ε)) ⊂ Ω is open. As x1, x2 ∈ y−1(B(a, ε)) one can find two open disjoint
neighborhoods U, V such that x1 ∈ U , x2 ∈ V and Uy ∩ V y 3 a. As Uy and V y are both
open their intersection is also open and therefore |Uy ∩ V y| > 0, i.e. N(ξ, y,Ω) > 1 for
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every ξ ∈ Uy ∩ V y. On the other hand, the pre-image of Uy ∩ V y must have a positive
measure because y satisfies Lusin’s condition N . This contradicts almost-everywhere
injectivity and concludes the proof. �

Let us now recall a sufficient condition for the openness of a map.

Lemma 3.4 ([21, Thm. 3.4]). Let y ∈ W 1,p(Ω;R3) for some p > 3. Assume that Ky ∈
Lq(Ω) for some q > 2. Then y is either constant or open.

We are finally in the position of stating the main result of this section.

Theorem 3.5 (Admissible deformations are homeomorphisms). The continuous repre-
sentative of y ∈ Y is everywhere injective on Ω.

Proof. Let y ∈ Y be the continuous representative of the equivalence class. Lemma 3.4
implies that y is either constant or open. However, it cannot be constant because it
is almost everywhere injective by Lemma 3.2. Hence, it is open. By Lemma 3.3, y is
everywhere injective on Ω. By the Invariance of Domain Theorem y is a homeomorphism
between Ω and Ωy. �

4. Šilhavý measure and perimeter: Proof of Theorem 2.2

Within this section, Ω is assumed to be an open subset of Rn, n ≥ 2. In particular,
we are not restricting here to n = 3. We are interested in properties of Sobolev homeo-
morphisms y in relation to sets of finite perimeter. In case y is bi-Lipschitz, sets of finite
perimeter are mapped onto sets of finite perimeter, see [2, Theorem 3.16] whereas the
same property does not hold for y in W 1,p with p <∞. The aim of this section is that of
proving Theorem 2.2, which characterizes pairs (y, E) (y is a Sobolev map and E ⊂ Ω is
a measurable set) such that Ey is of finite perimeter in Ωy. We start by preparing some
preliminary result.

Proposition 4.1 (Perimeter = total variation of the Šilhavý measure). Assume that
E ⊂ Ω is measurable, y ∈ W 1,n

loc (Ω;Rn) is a homeomorphism, and there exists a vector
Radon measure py,E ∈Mloc(Ω;Rn) such that (2.1) holds. Then, Per(Ey,Ωy) = |py,E|(Ω).
In particular, if we assume that py,E is finite, we get that the perimeter of Ey in Ωy is
finite as well.

Proof. A homeomorphism in W 1,n
loc (Ω;Rn) satisfies the Lusin’s condition N [26, Thm. 3]

and is almost-everywhere differentiable [21, Cor. 2.2.5]. Thanks to the Lusin’s condition
N , the area formula holds with equality and gives

Per(Ey,Ωy) = sup

{∫
Ey

divϕ(ξ) dξ | ϕ ∈ C∞c (Ωy;Rn), ‖ϕ‖∞ ≤ 1

}
= sup

{∫
E

divϕ(y(x)) det∇y(x) dx | ϕ ∈ C∞c (Ωy;Rn), ‖ϕ‖∞ ≤ 1

}
.
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Note that the identity

(divϕ) ◦ y det∇y = cof∇y : ∇(ϕ ◦ y) (4.1)

holds almost everywhere in Ω. Indeed, we may write divϕ = ∇ϕ : I (where I is the identity
matrix), and relation (4.1) follows from the chain-rule formula ∇(ϕ ◦ y) = (∇ϕ ◦ y)∇y,
which is valid almost everywhere in Ω, and from the matrix identity (cof A)AT = I detA.
Therefore, we get

Per(Ey,Ωy) = sup

{∫
E

cof (∇y) : ∇(ϕ ◦ y) dx | ϕ ∈ C∞c (Ωy;R3), ‖ϕ‖∞ ≤ 1

}
. (4.2)

As y ∈ W 1,n
loc (Ω;Rn), we have cof∇y ∈ Lrloc(Ω) with r = n/(n− 1). Formula (2.1) can be

extended by continuity to all test functions in the class W 1,n(Ω;Rn)∩C0
c (Ω;Rn) since py,E

is a measure and the conjugated exponent of r is n. Fix now ϕ ∈ C∞c (Ωy;R3) and notice
that there holds ϕ ◦ y ∈ C0

c (Ω;Rn), as y is a homeomorphism and hence y−1(supp(ϕ))
is compact in Ω. Moreover, since y ∈ W 1,n

loc (Ω;Rn), we have that ϕ ◦ y ∈ W 1,n(Ω;Rn).
Therefore, ϕ ◦ y is an admissible test function for equality (2.1).

From (4.2) and the extension of (2.1) to W 1,n(Ω;Rn) ∩ C0
c (Ω;Rn) we obtain

Per(Ey,Ωy) = sup

{∫
Ω

(ϕ ◦ y) · dpy,E | ϕ ∈ C∞c (Ωy;Rn), ‖ϕ‖∞ ≤ 1

}
. (4.3)

On the other hand, the total variation of py,E is, by definition,

|py,E|(Ω) = sup

{∫
Ω

f · dpy,E(x) | f ∈ C0
c (Ω;Rn), ‖f‖∞ ≤ 1

}
. (4.4)

From (4.3) and (4.4) it immediately follows that

Per(Ey,Ωy) ≤ |py,E|(Ω). (4.5)

In order to establish the reverse inequality, one has to prove that any f ∈ C∞c (Ω;Rn)
can be uniformly approximated by functions of the form ϕ ◦ y, with ϕ ∈ C∞c (Ωy;Rn).
Fix f ∈ C0

c (Ω;Rn) and K := supp(f). Then Ky is compact in Ωy. On Ky, define the
function g := f ◦ y−1, which can be extended to g ∈ C0

c (Ωy;Rn) by setting g = 0 outside
Ky. For all ε > 0 choose now ϕε ∈ C∞c (Ωy;Rn) with supΩy |g − ϕε| < ε. Then, one has
that supΩ |f − ϕε ◦ y| < ε, which provides the desired approximation. �

The proof of Theorem 2.4 follows from checking the converse statement of Proposition
4.1. In order to achieve this, a crucial role is played by the following result on Sobolev
homeomorphisms of finite distorsion due to Csörnyei, Hencl, and Malý [13], see also
[20, 22].

Proposition 4.2 ([13, Theorem 1.2]). Let y ∈ W 1,n−1
loc (Ω;Rn) be a homeomorphism of

finite distorsion. Then y−1 ∈ W 1,1
loc (Ωy;Rn) and is of finite distorsion.
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Taking advantage of the latter result, we can now proceed to the proof of Theorem 2.2.

Proof of Theorem 2.2. Given Proposition 4.1, we are left with the converse statement.
Namely, for all E ⊂ Ω measurable and all y ∈ W 1,n

loc (Ω;Rn) homeomorphism of finite
distorsion with Per(Ey,Ωy) < ∞ we should find a finite Radon measure (the Šilhavý
measure) such that relation (2.1) holds.

Let ψ ∈ C∞c (Ω;Rn) with ‖ψ‖∞ ≤ 1 be given. Since y is a homeomorphism, we have
that ψ ◦ y−1 ∈ C0

c (Ωy;Rn). By Proposition 4.2, we also get ψ ◦ y−1 ∈ W 1,1(Ωy;Rn). Let
ε > 0 and ϕε ∈ C∞c (Ωy;Rn) be defined by ϕε := (ψ ◦ y−1) ∗ ρε, where ρε(x) = ε−dρ(x/ε)
and ρ is the standard unit symmetric mollifier in Rn. Notice that, by choosing ε0 small
enough one has that the support of ϕε is compact in Ωy for any 0 < ε < ε0. Moreover,
‖ϕε‖∞ ≤ 1 and ϕε converge strongly to ψ ◦ y−1 in W 1,1(Ωy;Rn) as ε → 0. As y satisfies
the Lusin’s condition N the area formula holds with equality, hence∫

Ey

div(ψ◦y−1) dξ =

∫
Ey

I : (∇ψ)◦y−1∇y−1 dξ =

∫
E

(det∇y) I : ∇ψ (∇y−1◦y) dx. (4.6)

Since ∇y−1(y(x)) = (∇y(x))−1 holds at any differentiability point x of y such that
det∇y(x) > 0, hence almost everywhere in the set {det∇y > 0}, from (4.6) we deduce∫

Ey

div(ψ ◦ y−1) dξ =

∫
{det∇y>0}

(det∇y) I : ∇ψ (∇y)−1 dx

=

∫
{det∇y>0}

det∇y (∇y)−T : ∇ψ dx =

∫
E

cof∇y : ∇ψ dx.

(4.7)

Notice that the last equality in (4.7) follows from the fact that y is of finite distorsion,
which implies cof∇y = 0 almost everywhere on {det∇y = 0}. Similarly, by the area
formula and by (4.1) we obtain∫

E

cof∇y : ∇(ϕε ◦ y) dx =

∫
E

det∇y I : (∇ϕε) ◦ y dx =

∫
Ey

divϕε dξ. (4.8)

Since divϕε converges to div(ψ ◦ y−1) in L1(Ωy) as ε→ 0, from (4.8) we get

lim
ε→0

∫
E

cof∇y : ∇(ϕε ◦ y) dx =

∫
Ey

div(ψ ◦ y−1) dξ.

By combining the latter with (4.2) and (4.7), with we deduce∫
E

cof∇y : ∇ψ dx = lim
ε→0

∫
E

cof∇y : ∇(ϕε ◦ y) dx

≤ sup

{∫
E

cof∇y : ∇(ϕ ◦ y) dx | ϕ ∈ C∞c (Ωy;Rn), ‖ϕ‖∞ ≤ 1

}
= Per(Ey,Ωy).

We have hence checked that

sup

{∫
E

cof∇y : ∇ψ dx | ψ ∈ C∞c (Ω;Rn), ‖ψ‖∞ ≤ 1

}
≤ Per(Ey,Ωy) <∞.
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This implies that the distributional divergence of χEcof∇y is a finite measure on Ω. �

The Šilhavý measure pE,y given by Theorem 2.2 is the distributional divergence of
−χEcof∇y. Therefore, in order to have that Per(Ey,Ωy) < ∞, Theorem 2.2 requires
χEcof∇y to be a divergence measure field. By strengthening the assumptions one may
obtain improved characterizations of the divergence of such fields, see for instance [1, 10,
31]. In particular, we can prove the following.

Proposition 4.3 (Support of the Šilhavý measure). Under the assumptions of Proposition
4.1 let Per(E,Ω) <∞. Then, pE,y is concentrated on the closure of the reduced boundary
of E in Ω.

Proof. Let yε := y ∗ ρε, with ρε(x) = ε−dρ(x/ε) and ρ be the standard mollifier. Since yε
is smooth, χE is a function of bounded variation, and the cofactor is divergence-free, we
readily have that div(χEcof∇yε) = cof∇yε∇χE is a measure concentrated on the reduced

boundary of E in Ω. Notice that cof∇yε converges to cof∇y in L
n/(n−1)
loc (Ω;Rn×n), so that

integration by parts entails

−
∫

Ω

ψ · d(div(χEcof∇yε)) =

∫
Ω

χEcof∇yε : ∇ψ dx→
∫
E

cof∇y : ∇ψ dx =

∫
Ω

ψ · dpE,y

as ε→ 0, for every ψ ∈ C∞c (Ω;Rn). For all ε > 0, the measure div(χEcof∇yε) is concen-
trated on the reduced boundary of E in Ω. We hence conclude that pE,y is concentrated
on the closure of the reduced boundary. �

In case y−1 ∈ W 1,n
loc (Ωy;Rn) the characterization of Theorem 2.4 can be applied to the

inverse deformation y−1. Note that such regularity of the inverse follows for instance for
mappings with Ln−1 distorsion, see [22]. Therefore, We have the following

Corollary 4.4 (Characterization for the inverse deformation). Suppose that E ⊂ Ω
is a measurable set and that y ∈ W 1,n

loc (Ω;Rn) is a homeomorphism of finite distorsion
with Ky ∈ Ln−1(Ω). Then, Per(E,Ω) < ∞ if and only if the distribution pEy ,y−1 :=
−div(χEycof∇y−1) is a finite Radon measure on Ωy.

5. Existence of minimizers: Proof of Theorem 2.3

The aim of this section is to discuss the existence of minimizers of both F0 and Fε on
the respective sets of admissible deformations. This in particular proves Theorem 2.3 as
well as the existence statement in Theorem 2.4.

We start by establishing some preliminary result on the convergence of the deformed
domains and phase configurations associated to a Y-converging sequence of deformations.
A crucial tool in this direction is the semicontinuity of the perimeter in the deformed
configuration, when both the ambient sets Ωyk and the finite perimeter sets Fk ⊂ Ωyk

vary along a sequence, see Proposition 5.4. This will prove to be essential for the Γ-limit
result stated in Section 6.
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We shall make use of the following equiintegrability result for inverse Jacobians of
mappings of integrable distorsion, which is inspired by the work of Onninen and Tengvall
[25].

Lemma 5.1 (Equiintegrability of det∇y−1
k ). Let yk : Ω→ Ωyk be homeomorphisms with

uniformly Lq-integrable distorsion for q > 2 (namely, ‖Kyk‖Lq(Ω) is bounded independently
of k). Then, det∇y−1

k are equiintegrable on Ωyk .

Proof. From [25, Theorem 1.4] we have that∫
Ωyk

|∇y−1
k |

3 logs(e + |∇y−1
k |) dξ ≤ C

∫
Ω

Kq
yk

dξ,

where s = 2(q−2) and C is a constant depending only on q. Notice that by the elementary
inequality | detF | ≤ 6|F |3, we have

|∇y−1
k |

3 logs(e + |∇y−1
k |) ≥

1

6
3−s det∇y−1

k logs
(

e3 +
1

6
det∇y−1

k

)
.

We conclude that∫
Ωyk

det∇y−1
k logs

(
e3 +

1

6
det∇y−1

k

)
dξ ≤ C ′

∫
Ω

Kq
yk

dξ,

where C ′ depends only on q. The latter right-hand side is uniformly bounded. This
entails that the superlinear function of the determinant on the left-hand side is uniformly
bounded as well. This implies the equiintegrability of the sequence of the determinants
of the inverses. �

Lemma 5.2 (Convergence of deformed configurations). Let y, yk ∈ Y such that yk → y
weakly in W 1,p, p > 3 (hence uniformly). Then,

(i) For any open sets A,O such that A ⊂⊂ Ωy ⊂⊂ O, one has A ⊂ Ωyk ⊂ O for k
large enough. In particular, |Ωy∆Ωyk | → 0;

(ii) If ‖Kyk‖Lq(Ω) ≤ c uniformly, by letting Ok := Ωy ∩ Ωyk , there holds

|Ω \ (y−1(Ok) ∩ y−1
k (Ok))| → 0.

Proof. Ad (i): Let V be open and such that A ⊂⊂ V ⊂⊂ Ωy. Since A and ∂V are disjoint
compact sets, we have that d(A, ∂V ) =: 2δ > 0. Let U = y−1(V ) ⊂⊂ Ω and Vk = yk(U).
Since y, yk ∈ Y are homeomorphisms on U , we have ∂V = y(∂U) and ∂Vk = yk(∂U). As
p > 3, we have that yk → y in C(Ω;R3), thus ‖y − yk‖∞ < δ for k large enough. Hence,
for any boundary point ξ ∈ ∂Vk, we have that d(ξ, ∂V ) < δ for k large, which yields
A ⊂ Vk ⊂ Ωyk owing to d(A, ∂V ) = 2δ.

As O ⊃⊃ Ωy we deduce as above that d(∂O,Ωy) =: 2δ for some δ > 0, which im-
mediately yields the inclusion Ωy + B(0, δ) ⊂ O. Then, since ‖y − yk‖∞ < δ we have
that

Ωyk ⊂ Ωy +B(0, δ) ⊂ Ωy +B(0, δ) ⊂ O.
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In order to check that |Ωy∆Ωyk | → 0, observe that Ωy can be approximated in measure
by open sets A` ⊂⊂ Ωy (Ωy can be approximated by internal compact sets). Moreover,
Ωy can be approximated in measure by external open sets O` ⊃ Ωy. Since Ω is a bounded
Lipschitz domain, by Lusin’s N property for (a W 1,p extension of) y and the fact y(∂Ω) ⊃
∂(Ωy), it follows that |∂(Ωy)| = 0, i.e. |Ωy| = |Ωy|.

Ad (ii): Since y−1(Ok) ⊂ Ω and y−1
k (Ok) ⊂ Ω, it is sufficient to prove

|y−1(Ok)| → |Ω|, |y−1
k (Ok)| → |Ω|.

Firstly, |Ωy \Ok| → 0 by (i). Hence, since det∇y−1 ∈ L1(Ωy),

|y−1(Ok)| =
∫
Ok

det∇y−1 dξ →
∫

Ωy

det∇y−1 dξ = |Ω|.

Secondly,

|y−1
k (Ok)| =

∫
Ok

det∇y−1
k dξ =

∫
Ωyk

det∇y−1
k dξ −

∫
Ωyk\Ok

det∇y−1
k dξ =

= |Ω| −
∫

Ωyk\Ωy

det∇y−1
k dξ.

By Lemma 5.1, the determinants ∇y−1
k are equiintegrable. Since |Ωyk \ Ωy| → 0, the

statement follows. �

Lemma 5.3 (Convergence of the phases). Let y, yk ∈ Y such that yk → y weakly in W 1,p,
for p > 3, and have uniformly Lq-bounded distorsion, for q > 2. Let ζ ∈ L∞(Ωy, [0, 1]) and
ζk ∈ L∞(Ωyk , [0, 1]). Finally, let z = ζ ◦y, zk = ζk ◦yk ∈ L∞(Ω; [0, 1]) and Ok := Ωy ∩Ωyk .
Then,

‖ζ − ζk‖L1(Ok) → 0 ⇒ ‖z − zk‖L1(Ω) → 0.

Proof. By introducing the shorthand Ek := y−1(Ok)∩y−1
k (Ok) ⊂ Ω, we start by observing

that
‖zk − z‖L1(Ω) ≤ |Ω \ Ek|+ ‖zk − z‖L1(Ek).

As |Ω \ Ek| → 0 by Lemma 5.2, we are left to prove that +‖zk − z‖L1(Ek) → 0. One uses
the triangle inequality to write

‖zk − z‖L1(Ek) ≤ I
(1)
k + I

(2)
k ,

with

I
(1)
k := ‖ζk ◦ yk − ζ ◦ yk‖L1(Ek), I

(2)
k := ‖ζ ◦ yk − ζ ◦ y‖L1(Ek)

The Lq-bound on the distortion and Lemma 5.1 entail that the sequence det∇y−1
k is

equiintegrable. Let ρ : [0,+∞) → [0,+∞) (monotonically increasing) be a modulus of
equiintegrability for the sets {det∇y−1

k }k≥1 ∪ {det∇y−1}, i.e., for any measurable set
A ⊂ R3 we ask for limt→0+ ρ(t) = 0 and∫

Ωy∩A
det∇y−1 dξ ∨ sup

k

∫
Ωyk∩A

det∇y−1
k dξ ≤ ρ(|A|).
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Now, fix δ > 0 and change variable x 7→ ξ in the integral in I
(1)
k getting

I
(1)
k =

∫
yk(Ek)

det∇y−1
k |ζk − ζ| dξ ≤ ρ(|Ak(δ)|) + δ|Ω|, (5.1)

where Ak(δ) := {ξ ∈ Ok | |ζk(ξ) − ζ(ξ)| > δ}. Since ‖ζ − ζk‖L1(Ok) → 0 one has that
|Ak(δ)| < δ for k large enough.

In order to control I
(2)
k , let ζδ ∈ C0(Ωy,R) be a (uniformly) continuous L1 approximation

of ζ such that ‖ζδ − ζ‖L1(Ωy) is so small that

|A(δ)| < δ for A(δ) := {ξ ∈ Ωy | |ζδ(ξ)− ζ(ξ)| > δ}

We write I
(2)
k ≤ J

(1)
k + J

(2)
k + J

(3)
k , with

J
(1)
k = ‖ζ ◦ yk − ζδ ◦ yk‖L1(Ek), J

(2)
k = ‖ζδ ◦ yk − ζδ ◦ y‖L1(Ek), J

(3)
k = ‖ζδ ◦ y − ζ ◦ y‖L1(Ek).

Now, similarly to (5.1), we can write

J
(1)
k + J

(3)
k ≤ 2ρ(|A(δ)|) + 2δ|Ω| ≤ 2

(
ρ(δ) + δ|Ω|

)
. (5.2)

Finally, since ζδ is uniformly continuous and |Ω| < +∞, if ωδ is the modulus of uniform
continuity of ζδ, we get

J
(2)
k ≤ ωδ(‖y − yk‖∞)|Ω|. (5.3)

By combining (5.1) and (5.3) and using the fact that δ is arbitrary, we obtain the state-
ment. �

The following result concerns the semicontinuity of the perimeter of sets in the deformed
configuration along sequences of suitably converging sets and deformations. This is based
on the characterization result from Theorem 2.2.

Proposition 5.4 (Lower semicontinuity of the perimeter). Let (yk, ζk) ∈ Q, y ∈ Y, ζ ∈
L∞(Ωy, {0; 1}) with y, yk satisfying the assumptions of Lemma 5.3. Let F = {ξ ∈
Ωy | ζ(ξ) = 1}, F = {ξ ∈ Ωyk | ζk(ξ) = 1} and assume |Fk∆F | → 0. If I :=
lim infk→+∞ Per(Fk,Ω

yk) <∞, then

Per(F,Ωy) ≤ I and (y, ζ) ∈ Q;

Proof. Letting E = y−1(F ), and Ek = y−1
k (Fk), we have by Theorem 2.2 that

Per(Fk,Ω
yk) = |pyk,Ek

|.

By applying Lemma 5.3 to ζ = χF , ζk = χFk
we deduce that χEk

→ χE in L1(Ω).
Moreover, since ∇yk → ∇y weakly in Lp(Ω), the convergence cof∇yk → cof∇y holds
weakly in Lp/2(Ω). Therefore, for any test function ψ ∈ C∞c (Ω;R3), as k →∞ we have∫

Ω

ψ · dpyk,Ek
=

∫
Ω

χEk
cof∇yk : ∇ψ dx→

∫
Ω

χEcof∇y : ∇ψ dx =: py,E(ψ),
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where the last equality is a definition of the distribution on the right side. By the lower
semicontinuity of the total variation, we have that |py,E| ≤ I. We conclude by Theorem 2.2
as Per(F,Ωy) = |py,E|. �

After this preparatory discussion, we eventually move to the existence proof for min-
imizers. First we show that the diffuse-interface functional Fε admits a minimizer for
every ε > 0. Such existence result is part of the statement of Theorem 2.4. Indeed, we
restate it here in a slightly more general form, in which the Dirichlet boundary condition
is imposed only on a subset of the boundary of positive H2-measure, as it is customary
in elasticity theory.

Proposition 5.5 (Existence for the diffuse-interface model). Under assumptions (2.4)-
(2.7), let Γ0 ⊂ ∂Ω be relatively open in ∂Ω with H2(Γ0) > 0. Moreover, let ε >

0 and (y0, ζ0) ∈ Y × W 1,2(Ωy; [0, 1]) be such that the set Q̃(y0,Γ0) := {(y, ζ) ∈ Y ×
W 1,2(Ωy; [0, 1]) | y = y0 on Γ0} is nonempty and Fε(y0, ζ0) < ∞. Then, there is a mini-

mizer of Fε on Q̃(y0,Γ0).

Proof. Let (yk, ζk) ∈ Q̃(y0,Γ0) be a minimizing sequence for Fε. The coercivity (2.5) and the
generalized Friedrichs inequality imply that one can extract a not relabeled subsequence
such that yk → y weakly in W 1,p(Ω;R3). The boundary condition and the Ciarlet-Nečas
condition (2.2) are readily preserved in the limit. Moreover, one has that the distorsion
Ky ∈ Lq(Ω) as the function F → |F |3/ detF is polyconvex and Fk = ∇yk are weakly
converging. We conclude that y ∈ Y and y = y0 on Γ0.

For every δ > 0, let Oδ := {ξ ∈ Ωy| dist(ξ, ∂Ωy) > δ} ⊂⊂ Ωy. By Lemma 5.2 we have
that Ωy = ∪δOδ and Oδ ⊂ Ωyk for k large. Denote by ηk and Hk the trivial extensions
on R3 of ζk and ∇ζk respectively. The coercivity of F int

ε implies that one can extract
not relabeled subsequences such that ηk → η weakly* in L∞(R3) and Hk → H weakly in
L2(R3). Set now ζ := η|Ωy . For every ξ0 ∈ Oδ and B(ξ0, r) ⊂ Oδ we have that ηk → η
weakly in W 1,2(B(ξ0, r)). This implies that H = ∇η = ∇ζ almost everywhere in B(ξ0, r).
Moreover, by possibly extracting again one has that ηk → η strongly in L2(B(ξ0, r)).
As every ξ ∈ Ωy belongs to some Oδ for δ small enough, we get that H = ∇ζ almost
everywhere in Ωy. It is also easy to see that η = 0, H = 0 almost everywhere on the
complement of Ωy due to the uniform convergence of yk. Indeed, if ξ0 6∈ Ωy then there are
two open disjoint neighborhoods of ξ0 and Ωy. Let O ⊃ Ωy be the open neighborhood of
Ωy. Then for k large enough Ωyk ⊂ O (Lemma 5.2), i.e. ηk = 0, Hk = 0 in a neighborhood
of ξ0. Consequently, η(ξ0) = 0, H(ξ0) = 0 at least if ξ0 is a Lebesgue point of η and H.

The latter argument shows that ηk → η pointwise almost everywhere in the complement
of Ωy. Up to possibly extracting again, we hence have that ηk → η pointwise almost
everywhere in R3 as well. In fact, the pointwise convergence in Ωy follows since ηk → η
strongly in L2(B(ξ0, r)) for any B(ξ0, r) ⊂⊂ Ωy and |η − ηk| ≤ 1 almost everywhere.
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Using the Fatou Lemma, we find

lim inf
k→∞

F int
ε (yk, ζk) = lim inf

k→∞

∫
R3

(ε
2
|Hk|2 +

1

ε
Φ(ηk)

)
dξ ≥

∫
R3

(ε
2
|H|2 +

1

ε
Φ(η)

)
dξ

=

∫
Ωy

(ε
2
|∇ζ|2 +

1

ε
Φ(ζ)

)
dξ = F int

ε (y, ζ) (5.4)

which shows the weak lower semicontinuity of the interfacial energy.

To show the weak lower semicontinuity of the bulk contribution, we write it as

F̃ bulk(y, z) =

∫
Ω

(
z(x)W1(∇y(x)) + (1− z(x))W0(∇y(x))

)
dx,

Notice that the integrand is continuous in z and convex in ∇y and in its minors. Let now
zk := ζk ◦yk and recall from Lemma 5.3 entails that zk → z = ζ ◦y in L1(Ω). By applying

[17, Cor. 7.9] we get that lim infk→∞ F̃ bulk(yk, zk) ≥ F̃ bulk(y, z). Consequently,

lim inf
k→∞

F bulk(yk, ζk) = lim inf
k→∞

F̃ el(yk, zk) ≥ F̃ bulk(y, z) = F bulk(y, ζ). (5.5)

Together with (5.4), the latter proves that (y, ζ) is a minimizer of Fε on Q̃(y0,Γ0) by means
of the direct method [14]. �

We conclude this Section by providing a proof of Theorem 2.3.

Proof of Theorem 2.3. Let (yk, ζk) ∈ Qy0 be a minimizing sequence for F0. As in the proof
of Proposition (5.5), we can assume, up to extraction of a not relabeled subsequence, that
yk → y weakly in W 1,p for some y ∈ Y.

Letting Fk = {ζk = 1}, we can identify the sequence of states with (yk, Fk). Since the in-
terface energy is bounded along the sequence (yk, Fk), the sets Fk have uniformly bounded
perimeters, namely, Per(Fk,Ω

yk) ≤ c. For ` ∈ N, let O` := {x ∈ Ωy| dist(x, ∂Ωy) >
2−`} ⊂⊂ Ωy. As O` ⊂ Ωyk for k large enough due to Lemma 5.2, for any given ` ∈ N we
have that lim supk Per(Fk, O

`) ≤ c. We can hence find a measurable set G` ⊂ O` and a
not relabeled subsequence Fh such that

|(Fh∆G`) ∩O`| → 0 for h→∞.
For all `′ > ` we can further extract a subsequence Fh′ from Fh above in such a way
that |(Fh′∆G`′) ∩ O`′ | → 0 and G`′ ∩ O` = G`. From the nested family of subsequences
corresponding to ` = 1, 2, . . . we extract by a diagonal argument a further subsequence
Fk′ . By setting F := ∪`G` and, owing to O` ↗ Ωy, we get that

|(Fk′∆F ) ∩ Ωy| → 0.

Now, the set F has finite perimeter in Ωy as a consequence of Proposition 5.4. By letting
ζ = χF |Ωy we then have that (y, ζ) ∈ Qy0 .

One is left to check that F0(y, ζ) ≤ lim inf F0(yk, ζk), which follows from the lower
semicontinuity of F0. Indeed, the lower semicontinuity of bulk part of F0 follows by the
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argument of Proposition 5.5. As concerns the interface term, one just needs to recall
Proposition 5.4. �

6. Convergence of phase-field approximations: Proof of Theorem 2.4

This section is devoted to the proof of the convergence Theorem 2.4. The argument
relies on Γ-convergence [9, 15]. In particular, we prove a Γ-lim inf inequality for the
interfacial part in Proposition 6.1 and construct a recovery sequence in Proposition 6.2.
Let us start by the former.

Proposition 6.1 (Γ-lim inf inequality). Let (yk, ζk), (y, ζ) ∈ Q be such that

i) lim infk→+∞F int
εk

(yk, ζk) <∞ for some sequence εk → 0,
ii) yk → y weakly in W 1,p(Ω;R3), p > 3,

iii) limk→+∞ ‖ζk − ζ‖L1(Ok) = 0, with Ok := Ωyk ∩ Ωy.

Then, there exists Ey ⊂ Ωy measurable such that

ζ = χEy and γPer(Ey,Ωy) ≤ lim inf
k→+∞

F int
εk

(yk, ζk).

In particular, one has that (y, ζ) ∈ Q.

Proof. Moving from Proposition 5.4, the proof proceeds along the lines of the classical
Modica-Mortola Γ-convergence result [24]. As lim infk→+∞F int

εk
(y, ζ) < ∞ and Φ(s) = 0

only for s = 0, 1, we have that ζ = χF , for some measurable set F ⊂ Ωy. By using the
coarea formula we deduce that

F int
εk

(yk, ζk) =

∫
Ωyk

(εk
2
|∇ζk|2 +

1

εk
Φ(ζk)

)
dξ

≥
∫

Ωyk

√
2Φ(ζk) |∇ζk| dξ =

∫ 1

0

√
2Φ(s) Per({ζk > s},Ωyk) ds

Given any δ ∈ (0, 1) and s ∈ [δ, 1− δ] one has that

|{ξ ∈ Ωyk | ζk > s}∆F | ≤ 1

δ
‖ζk − ζ‖L1(Ok) + |Ωyk∆Ωy|

Therefore, by applying Lemma 5.2 we get

|{ξ ∈ Ωyk | ζk > s}∆F | → 0 ∀s ∈ [δ, 1− δ].

Owing to Proposition 5.4 we obtain

Per(F,Ωy) ≤ lim inf
k→+∞

Per({ζk > s},Ωyk) ∀s ∈ [δ, 1− δ].
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Hence, as δ ∈ (0, 1), by applying the Fatou Lemma one gets

lim inf
k→+∞

F int
εk

(yk, ζk) ≥
∫ 1

0

√
2Φ(s) lim inf

k→+∞
Per({ζk > s},Ωyk) ds

≥
∫ 1−δ

δ

√
2Φ(s) lim inf

k→+∞
Per({ζk > s},Ωyk) ds

≥
∫ 1−δ

δ

√
2Φ(s) · Per(F,Ωy) ds

and the assertion follows as
∫ 1−δ
δ

√
2Φ(s) ds→ γ for δ → 0. �

The existence of a recovery sequence is a direct consequence of the classical Modica-
Mortola theorem [24] as soon as we assume that Ωy is a Lipschitz domain. Although
this Lipschitz continuity could fail to hold for general deformations, we can enforce it by
asking y0(Ω) to be a Lipschitz domain where y0 is the imposed boundary deformation,
see, e.g., [4] for a similar argument. Note that the Lipschitz assumption on Ωy was not
needed for the Γ-lim inf inequality of Proposition 6.1.

Proposition 6.2 (Recovery sequence). If (y, ζ) ∈ Qy0, y0(Ω) ⊂ R3 being a Lipschitz
domain, and F = {ζ = 1}, there exists a sequence ζk ⊂ W 1,2(Ωy; [0, 1]) such that

lim
k→∞
‖ζk − ζ‖L1(Ωy) = 0 and γPer(F,Ωy) + F bulk(y, ζ) = lim

k→∞
Fεk(y, ζk).

Proof. The sequence ζk is delivered by the classical Modica-Mortola construction [24] ap-
plied to the functional F int

ε (y, ζ) with y fixed. In fact, once the interface part convergence,
the bulk part also follows because F bulk(y, ζ) is strongly continuous in ζ. �

We eventually combine the Γ-lim inf inequality of Proposition 6.1 and the recovery-
sequence construction of Proposition 6.2 in order to prove Theorem 2.4.

Proof of Theorem 2.4. Existence of minimizers (yk, ζk) for Fεk has already been checked
in Proposition 5.5. Let (y0, ζ0k) be the recovery sequence for (y0, ζ0) whose existence is
proved in Proposition 6.2. By comparing with (y0, ζ0k) one gets that

F el(yk, ζk) + F int
εk

(yk, ζk) = Fεk(yk, ζk) ≤ Fεk(y0, ζ0k) < C <∞

where we have used the fact that F int
εk

(y0, ζ0k) → F int
0 (y0, ζ0). The latter bound and

the coercivity (2.5) ensures that yk → y weakly in W 1,p(Ω;R3) and |Ωy∆Ωyk | → 0 by
Lemma 5.2, for some not relabeled subsequence. On the other hand, since Ωyk contains
any open set A ⊂⊂ Ωy for large k, the latter bound on F int

εk
(yk, ζk) yields strong L1(A)

compactness for the sequence ζk. This implies the existence of ζ ∈ L∞(Ωy; [0, 1]) such
that ‖ζk − ζ‖L1(Ok) → 0 for some not relabeled subsequence, as in the proof of Theorem
2.3. Proposition 6.1 ensures that ζ is a characteristic function and

F int
0 (y, ζ) ≤ lim inf

k→∞
F int
εk

(yk, ζk).
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Moreover, for all (ỹ, ζ̃) ∈ Qy0 Proposition 6.2 ensures that there exists a recovery sequence

ζ̃k such that Fεk(ỹ, ζ̃k) → F0(ỹ, ζ̃). As the bulk term Fbulk is lower semicontinuous, we
conclude that

F0(y, ζ) ≤ lim inf
k→∞

Fεk(yk, ζk) ≤ lim inf
k→∞

Fεk(ỹ, ζ̃k) = F0(ỹ, ζ̃).

Hence, (y, ζ) minimizes F0 on Qy0 . �
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[12] Ciarlet, P.G., Nečas, J: Injectivity and self-contact in nonlinear elasticity. Arch. Ration. Mech. Anal.
97 (1987), 171–188.
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