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Optimal control problems with oscillations (chattering controls) and concen-
trations (impulsive controls) can have integral performance criteria such that
concentration of the control signal occurs at a discontinuity of the state signal.
Techniques from functional analysis (anisotropic parametrized measures) are ap-
plied to give a precise meaning of the integral cost and to allow for the sound
application of numerical methods. We show how this can be combined with the
Lasserre hierarchy of semidefinite programming relaxations.
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1 Introduction
As a consequence of optimality, various limit behaviours can be observed in optimal control:
minimizing control law sequences may feature increasingly fast variations, called oscillations
(chattering controls [12]), or increasingly large values, called concentrations (impulsive con-
trols [10]). The simultaneous presence of oscillations and concentrations in optimal control
needs careful analysis and specific mathematical tools, so that the numerical methods behave
correctly. Previous work of two of the authors [2] combined tools from partial differential
equation analysis (DiPerna-Majda measures [3]) and semidefinite programming relaxations
(the moment-sums-of-squares or Lasserre hierarchy [9]) to describe a sound numerical ap-
proach to optimal control in the simultaneous presence of oscillations and concentrations. To
overcome difficulties in the analysis, a certain number of technical assumptions were made,
see [2, Assumption 1, Section 2.2], so as to avoid the simultaneous presence of concentrations
(in the control signals) and discontinuities (in the system trajectories).
In the present contribution we would like to remove these technical assumptions and ac-

commodate the simultaneous presence of concentrations and discontinuities, while allowing
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oscillations as well. For this, we exploit a recent extension of the notion of DiPerna-Majda
measures called anisotropic parametrized measures [7], so that it makes sense mathemat-
ically while allowing for an efficient numerical implementation with semidefinite program-
ming relaxations.

To motivate further our work, let us use an elementary example to illustrate the difficulties
that may be faced in the presence of discontinuities and concentrations. Consider the
optimal control problem

inf
u

∫ 1

0
(t+ y(t))u(t)dt

s.t. ẏ(t) = u(t), y(0) = 0, y(1) = 1,
1 ≥ y(t) ≥ 0, u(t) ≥ 0, t ∈ [0, 1]

(1.1)

where the infimum is with respect to measurable controls of time. The trajectory y should
move the state from zero at initial time to one at final time, yet for the non-negative
integrand to be as small as possible, the control u should be zero all the time, except maybe
at time zero. We can design a sequence of increasingly large controls u that drive y from
zero to one increasingly fast. We observe that this sequence has no limit in the space of
measurable functions but it tends (in a suitable weak sense) to the Dirac measure at time
zero. We speak of control signal concentration or impulsive control. The integrand contains
the product yu of a function whose limit becomes discontinuous at a point where the other
function has no limit, hence requiring careful analysis. Here however, this product can be
written yẏ = d

dt
y2

2 and hence the integral term is well defined since
∫ 1

0 yẏdt = y(1)2−y(0)2

2 = 1
2 .

Consequently the cost in (1.1) is equal to
∫ 1

0 tu(t)dt + 1
2 and independent of the actual

trajectory.
This reasoning is valid because ẏ(t) = u(t) in problem (1.1), but this integration trick

cannot be carried out for more general differential equations. For example we cannot solve
analytically the following modified optimal control problem

inf
u

∫ 1

0
(t+ y(t))u(t)dt

s.t. ẏ(t) =
√
ε2 + u2(t), y(0) = 0, y(1) = 1,

1 ≥ y(t) ≥ 0, u(t) ≥ 0, t ∈ [0, 1]

(1.2)

where ε is a given real number. Providing a mathematically sound framework for the analysis
of this kind of phenomenon combining concentration and discontinuity, and possibly also
oscillation (not illustrated by the simple example above), is precisely the purpose of our
paper.

2 Relaxing Optimal Control
Let L : [0, 1]× Rn × Rm → R and F : [0, 1]× Rn × Rm → Rn be continuous functions. For
initial y0 and final conditions y1 in Rn and some integer 1 ≤ p ≤ ∞, the formulation of the
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classical optimal control problem is

v∗ := inf
u

∫ 1

0
L(t, y(t), u(t))dt

s.t. ẏ(t) = F (t, y(t), u(t)), y(0) = y0, y(1) = y1,

y ∈ W 1,1([0, 1];Rn), u ∈ L p([0, 1];Rm)

(2.1)

where W 1,p([0, 1];X) is the space of functions from [0, 1] to X whose weak derivative belongs
to L p([0, 1];X), the space of functions from [0, 1] to X whose p-th power is Lebesgue
integrable.
Consider a minimizing sequence of controls (uk)k∈N ⊆ L p([0, 1];Rm) for problem (2.1)

and the corresponding sequence of trajectories (yk)k∈N ⊆ W 1,1([0, 1];Rn), the space of
absolutely continuous functions. Then the infimum in (2.1) might not be attained be-
cause (uk)k∈N might not converge in L p([0, 1];Rm) and (uk)k∈N might not converge in
W 1,1([0, 1];Rn). To overcome this issue, it has been proposed to relax the regularity as-
sumptions on u. We discuss some of the approaches now in detail.

2.1 Oscillations
The limit of a minimizing sequence for (2.1) might fall out of the feasible space because of
oscillation effects of (uk)k∈N. Consider for example the optimal control problem

inf
u

∫ 1

0
(u(t)2 − 1)2 + y(t)2dt

s.t. ẏ(t) = u(t), y(0) = 0, y(1) = 0,
y ∈ W 1,4([0, 1]), u ∈ L 4([0, 1]).

(2.2)

As the integrand in the cost is a sum of squares, the value is at least zero. To see that
actually it is equal to zero, consider the sequence of controls (uk)k∈N ⊆ L 4([0, 1]) defined
by

uk(t) :=
{

1, if t ∈
[

2l+1
2k , l+1

2k−1

]
, 0 ≤ l ≤ k − 1

−1, otherwise
(2.3)

for k > 1 and u1 := 0. For the corresponding sequence of trajectories (yk)k∈N defined by
yk(t) :=

∫ t
0 uk(s)ds it holds that yk ∈ W 1,4([0, 1]) and yk(1) = 0 as desired. Hence, (uk)k∈N

is a sequence of feasible controls. A short calculation shows that using this sequence the
cost in (2.2) converges to zero. While the limit y∞ := 0 of (yk)k∈N stays in W 1,4([0, 1]), the
sequence of controls (uk)k∈N however does not converge in L 4([0, 1]).
In contrast to that, the sequence of measures defined by dνk(t, u) := δu(t)(du|t)dt converges

weakly to dν(t, u) := 1
2(δ−1 + δ1)(du)dt in the sense that for all f ∈ C ([0, 1]) and g ∈ Cp(R):

lim
k→∞

∫ 1

0

∫
R
f(t)g(u)dνk(t, u) =

∫ 1

0

∫
R
f(t)g(u)dν(t, u) (2.4)

where Cp(R) := {g ∈ C (R) : g(u) = o(|u|p) for |u| → ∞} is the set of continuous functions
of less than p-th growth. Integration then yields

y∞(1) =
∫ 1

0

∫
R
udν(t, u) =

∫ 1

0

∫
R
u1

2(δ−1 + δ1)(du)dt = 0.
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A similar reasoning shows that the cost with respect to ν is zero.
More generally, this observation motivates to relax the regularity assumptions on the con-

trol u in (2.1) and also allow for limits dν(t, u) = dω(u|t)dt of control sequences (uk)k∈N ⊆
L p([0, 1];Rm). In general the measure ω depends on time, i.e., we have a family of probabil-
ity measures ω(.|t)t∈[0,1] ⊂P(Rm), where P(X) denotes the set of probability measures on
X, i.e. non-negative Borel regular measures with unit mass. Such parametrized measures
obtained as limits of a sequence of functions (uk)k∈N ⊆ L p([0, 1];Rm) have been called
Lp-Young measures. For an explicit characterization of these measures see e.g. [8]. For a
comprehensive reference on Young measures and their use in the control of ordinary and
partial differential equations, see [6, Part III].
The relaxed version of (2.1) that now takes into account oscillating control sequences can

be written as

inf
ω

∫ 1

0

∫
Rm
L(t, y(t), u)ω(du|t)dt

s.t.
∫ 1

0

∫
Rm

F (t, y(t), u)ω(du|t)dt = y1 − y0

y ∈ W 1,1([0, 1];Rn), ω(.|t) ∈P(Rm)

(2.5)

where the constraint is a reformulation of the differential equation

ẏ(t) =
∫
Rm

F (t, y(t), u)ω(du|t), t ∈ [0, 1]

with the boundary conditions y(0) = y0 and y(1) = y1.

2.2 Concentrations
Oscillation of the control sequence is not the only reason that prevents the infimum in (2.1)
of being attained. As a second example consider the following problem of optimal control:

inf
u

∫ 1

0
(t− 1

2)2u(t)dt

s.t. ẏ(t) = u(t) ≥ 0, y(0) = 0, y(1) = 1,
y ∈ W 1,1([0, 1]), u ∈ L 1([0, 1]).

(2.6)

Note that the control enters into the problem linearly. The value is zero as the integrand is
positive and using the sequence of controls

uk(t) :=
{
k, if t ∈

[
k−1
2k ,

k+1
2k

]
0, else

(2.7)

the cost converges to zero. As in the previous section neither (uk)k∈N nor any subsequence
converges in L 1([0, 1]). In contrast to the previous example this time (yk)k∈N does not
converge in W 1,1([0, 1]) neither. We hence use the extension BV ([0, 1]), the space of func-
tions with bounded variation, as a relaxed space for the trajectory. Following the same
approach as before we consider the control as a measure dνk(t, u) := δuk(t)(du)dt. As u
appears linearly in (2.6) we can directly integrate with respect to u and define a sequence
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of probability measures (τk)k∈N ⊆ P([0, 1]) by τk(dt) :=
∫
R udνk(t, u). A short calculation

shows that this sequence has the weak limit τ := δ1
2
, i.e. for all f ∈ C ([0, 1]):

lim
k→∞

∫ 1

0
f(t)τk(dt) =

∫ 1

0
f(t)τ(dt).

Note that by integrating before passing to the limit we transfer the unboundedness of the
control into the measurement of time and only keep the direction (i.e. +1 in this example)
of the control. Whereas we observed a superposition of two different controls in the previous
example, here we see a concentration of the control in time. For optimal control problems
with linear growth in the control:

inf
u

∫ 1

0
L(t, y(t))u(t)dt

s.t. ẏ(t) = F (t, y(t))u(t), y(0) = y0, y(1) = y1,

y ∈ W 1,1([0, 1];Rn), u ∈ L 1([0, 1];Rm)

we can therefore build the following relaxation that can take into account concentration
effects of the control:

inf
τ

∫ 1

0
L(t, y(t))τ(dt)

s.t.
∫ 1

0
F (t, y(t))τ(dt) = y1 − y0,

y ∈ BV ([0, 1];Rn), τ ∈P([0, 1]).

(2.8)

See [1] for an application of the moment-sums-of-squares hierarchy for solving numerically
non-linear control problems in the presence of concentration.

2.3 Oscillation and Concentration
The relaxations proposed so far allow to consider controls that are either oscillating in
value or concentrating in time. However it is possible that both effects appear in the same
problem. Consider for example

inf
u

∫ 1

0

u(t)2

1 + u(t)4 + (y(t)− t)2 dt

s.t. ẏ(t) = u(t) ≥ 0, y(0) = 0, y(1) = 1,
y ∈ W 1,1([0, 1]), u ∈ L 1([0, 1]).

(2.9)

The infimum value zero of (2.9) can be approached arbitrarily close by a sequence of controls
(uk)k∈N defined by

uk(t) :=
{
k, if t ∈

[
l
k −

1
2k2 ,

l
k + 1

2k2

]
, 1 ≤ l < k

0, else
(2.10)

for k > 1 and u1 := 1. The idea to capture the limit behaviour of this sequence is to combine
a Young measure on the control and replacing the uniform measure on time by a more general
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measure on time. Note that due to linearity it was possible in Section 2.2 to transfer the
limit behaviour of the control into the measurement of time. In the present example the
control enters non-linearly in the cost, which is why we will need to allow the control to
take values at infinity. We consider a metrizable compactification βUR of the control space
corresponding to the ring U of complete and separable continuous functions (see Section
3.1 for more details). Then the sequence of measures dνk(t, u) := δuk(t)(du|t)dt converges
to dν(t, u) := ω(du)τ(dt) with ω(du) := 1

2(δ0 + δ∞)(du) and τ(dt) := 2dt understood in the
following weak sense for all f ∈ C ([0, 1]) and g0 ∈ U :

lim
k→∞

∫ 1

0

∫
R
f(t)g0(u)(1 + |u|p)dνk(t, u) =

∫ 1

0

∫
βUR

f(t)g0(u)dν(t, u) =
∫
f g0 ν. (2.11)

In the remainder of the paper, we will sometimes use the above right handside compact
notation whenever the variables and domains of integration are clear from the context.
Measures ν ∈P([0, 1]× βURm) obtained as limits of sequences (uk)k∈N ⊆ L p([0, 1];Rm)

in the sense of (2.11) have been called DiPerna-Majda measures. They will be discussed in
more detail in Section 3.1. It turns out that every DiPerna-Majda measure ν ∈P([0, 1]×
βURm) can be disintegrated into a measure τ on time and an Lp-Young measure ω on βURm,
i.e. dν(t, u) = dω(du|t)dτ(t) for some τ ∈P([0, 1]) and ω(.|t) ∈P(βURm).

A relaxed version of (2.1) taking into account both oscillation and concentration effects
can hence be stated as

inf
ν

∫
L0(t, y(t), u) dν(t, u)

s.t.
∫
F0(t, y(t), u)dν(t, u) = y1 − y0,

ν ∈P([0, 1]× βURm)

(2.12)

where
L0(t, y, u) := L(t, y, u)

1 + |u|p , F0(t, y, u) := F (t, y, u)
1 + |u|p . (2.13)

In [2], the moment-sums-of-squares hierarchy is adapted to compute numerically DiPerna-
Majda measures and solve optimal control problem featuring oscillations and concentrations.
However, the approach is valid under a certain number of technical assumptions on the data
L and F , see [2, Assumption 1, Section 2.2]. These assumptions are enforced to prevent the
simultaneous presence of concentration and discontinuity.

2.4 Oscillations, Concentrations and Discontinuities
As mentioned in the introduction, the integrals in (2.1) might not be well defined, as con-
centration effects of the control are likely to cause discontinuities in the trajectory occurring
at the same time. In view of the previous examples we propose to generalize the DiPerna-
Majda measures, which themselves are a generalization of Young measures, even further
and now also relax the trajectory to a measure valued function depending on time and
control. In the sequel we describe accordingly the set of anisotropic parametrized measures.
Then we provide a linear formulation of optimal control problem (2.1) that can cope with
oscillations, concentrations and discontinuities in a unified fashion.
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3 Anisotropic Parametrized Measures
In the following we describe the generalized DiPerna-Majda measures. For this it will be
instructive to review first the classical DiPerna-Majda measures.

3.1 DiPerna-Majda measures
Let U be a complete1 and separable subring of continuous bounded functions from Rm to
R. It is known [4, Sect. 3.12.22] that there is a one-to-one correspondence between such
rings and metrizable compactifications of Rm. By a compactification we mean a compact
set, denoted by βURm, into which Rm is embedded homeomorphically and densely. For
simplicity, we will not distinguish between Rm and its image in βURm. Similarly, we will
not distinguish between elements of U and their unique continuous extensions defined on
βURm.
DiPerna and Majda [3], see also [11], have shown that every bounded sequence (uk)k∈N

in L p([0, 1];Rm) with 1 ≤ p < ∞ has a subsequence (denoted by the same indices) such
that there exists a probability measure τ ∈ P([0, 1]) and an Lp-Young measure ω(.|t) ∈
P(βURm) satisfying for all f ∈ C ([0, 1]) and g0 ∈ U :

lim
k→∞

∫ 1

0
f(t)g0(uk(t))(1 + |uk(t)|p)dt

=
∫ 1

0

∫
βURm

f(t)g0(u)ω(du|t)τ(dt)

=
∫ 1

0

∫
βURm

f(t)g0(u)dν(t, u) =
∫
f g0 ν,

(3.1)

compare with (2.11). The limit measure dν(t, u) := ω(du|t)τ(dt) of such a sequence, or
sometimes the pair (τ, ω), is called a DiPerna-Majda measure.
Note that, letting g0 ≡ 1 ∈ U in (3.1), the measure on time τ can be computed as the

weak limit of the sequence (1 + |uk|p)k∈N, i.e. for all f ∈ C ([0, 1]):

lim
k→∞

∫ 1

0
(1 + |uk|p)dt =

∫ 1

0

∫
βURm

f(t)ω(du|t)τ(dt) =
∫ 1

0
f(t)τ(dt) (3.2)

where the last equality follows from the fact that a Young measure is a probability measure
i.e.

∫
βURm ω(du|t) = 1 for each t ∈ [0, 1].

As a second remark, consider any f ∈ C ([0, 1]) ⊆ L∞([0, 1]) and g0 ∈ U ∩C0(Rm). Then,
as g0( · )(1+ | · |p) ∈ Cp(Rm), the limit in (3.1) is already given by (2.4). This means that the
restriction of a DiPerna-Majda measure (τ, ω) to [0, 1]×Rm is (dt, ω̃), where ω̃(.|t) ∈P(Rm)
is the Young measure generated by (uk)k∈N. Hence the right side of (3.1) can - now again
in full generality - be written as∫ 1

0

∫
Rm

f(t)g0(u)(1 + |u|p)ω̃(du|t)dt+
∫ 1

0

∫
βURm\Rm

f(t)g0(u)ω(du|t)τ(dt). (3.3)

This illustrates clearly that Young measures can only capture oscillations of the sequence
but not concentrations.

1A ring of functions is complete if it contains all constant functions, it separates points from closed subsets
and it is closed with respect to the supremum norm.
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3.2 Generalization
The drawback of DiPerna-Majda measures is that g in (3.1) must be a continuous function.
This does not fit to our aim to study interactions of discontinuities and concentrations.
To go further the simplistic illustration of the introduction, let us consider the following
example.

Example 3.1. Consider a sequence (yk)k∈N ⊂ W 1,1([0, 1]) such that limk→∞ yk = y in
L q([0, 1]) for every 1 ≤ q < +∞. We are interested in the integral

lim
k→∞

∫ 1

0
g(uk(t))h(yk(t))dt

for continuous functions g and h such that |g(u)| ≤ C(1 + |u|) with some constant C > 0,
and where uk := ẏk ∈ L 1([0, 1]) is the weak derivative of yk. If g is the identity then the
calculation is easy, namely the limit equals lim infk→∞H(yk(1))−H(yk(0)) where H is the
primitive of h. In the case of a more general function g, the situation is more involved. For
example for k ≥ 2 let

uk(t) :=


0 if 0 ≤ t ≤ 1

2 ,

k if 1
2 ≤ t ≤

1
2 + 1

k ,

0 if 1
2 + 1

k ≤ t ≤ 1

whose primitive is

yk(t) :=


0 if 0 ≤ t ≤ 1

2 ,

k(t− 1
2) if 1

2 ≤ t ≤
1
2 + 1

k ,

1 if 1
2 + 1

k ≤ t ≤ 1

see Figure 1. it is easy to see that

�

0

0 1�2 1�2 � 1�k �1

y�

t

�

0

0 1�2 1�2 � 1�k �1

u�

t

Figure 1: Sequences (yk, uk)k∈N from Example 3.1.
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lim
k→∞

∫ 1

0
g(uk(t))h(yk(t))dt

=
∫ 1

2

0
g(0)h(0)dt+ lim

k→∞

∫ 1
2 + 1

k

1
2

g(k)h(k(t− 1
2))dt+ lim

k→∞

∫ 1

1
2 + 1

k

g(0)h(1)dt

= 1
2g(0)(h(0) + h(1)) + lim

k→∞

∫ 1
2 + 1

k

1
2

Ḣ(k(t− 1
2))

k
g(k)dt

= 1
2g0(0)(h(0) + h(1)) + (H(1)−H(0)) lim

k→∞

g(k)
k

.

(3.4)

The sequence (uk)k∈N concentrates at 1
2 which is exactly the point of discontinuity of the

pointwise limit of (yk)k∈N. Also notice that uk converges weakly to δ 1
2
in P([0, 1]) when

k → ∞. Hence, the second term on the right-hand side of (3.4) suggests that we should
refine the definition of the pointwise limit of (yk)k∈N at 1

2 by enforcing that is the Lebesgue
measure supported on the interval of the jump. We will make this rigourous in the following.
This also shows that it is very important that the limit of g(u)/u exists when u tends to
infinity.

To cope with the simultaneous presence of oscillations, concentrations and discontinuities,
a new tool was recently introduced in [7], nanemy anisotropic parametrized measures gener-
ated by pairs (yk, uk)k∈N where uk is the control and yk the corresponding state trajectory.
Let us describe now what we need in our optimal control context. First, let us make the
following observation:

Lemma 3.1. Any admissible trajectory of optimal control problem (2.1) is such that y ∈
L∞([0, 1];Y ) for some compact set Y ⊂ Rn, e.g. a ball of sufficiently large radius.

Proof. The function t 7→ y(t) is the integral of a Lesbesgue integrable function, and on a
bounded time interval, it is bounded.

Then, the following result is a special case of [7, Theorem 2]:

Theorem 3.1. Let 1 ≤ p < +∞. Let (uk)k∈N be a bounded sequence in L p([0, 1];Rm) and
(yk)k∈N a bounded sequence in W 1,1([0, 1];Rn). Then there is a (non-relabeled) subsequence
(uk, yk)k∈N, a measure τ ∈P([0, 1]), a measure ω(.|t) ∈P(βURm) parametrized in t ∈ [0, 1]
and a measure υ(.|t, u) ∈P(Y ) parametrized in t ∈ [0, 1] and u ∈ βURm such that for every
f ∈ C ([0, 1]), g0 ∈ U , h0 ∈ C (Y ), it holds

lim
k→∞

∫ 1

0
f(t)g0(uk(t))(1 + |uk(t)|p)h0(yk(t))dt

=
∫ 1

0

∫
βURm

∫
Y
f(t)g0(u)h0(y)υ(dy|t, u)ω(du|t)τ(dt)

=
∫ 1

0

∫
βURm

∫
Y
f(t)g0(u)h0(y)dµ(t, y, u) =

∫
f g0 h0 µ.

(3.5)

The measure dµ(t, u, y) := υ(dy|t, u)ω(du|t)τ(dt), or sometimes the triplet (τ, ω, υ), is called
an anisotropic parametrized measure. Moreover, the Lp-Young measure (τ, ω) is generated
by (uk)k∈N.
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Note that

Example 3.2. Let us revisit Example 3.1 and the calculations of the integral in (3.4). Let
f ∈ C ([0, 1]), let h ∈ C (R) be bounded with primitive denoted by H, and let g := (1 + |.|)g0
where g0 ∈ U corresponding to the two-point (or sphere) compactification βURm = R∪{±∞},
i.e. such that limu→±∞ g0(u) =: g0(±∞) ∈ R. Then it holds

lim
k→∞

∫ 1

0
f(t)g(uk(t))h(yk(t))dt

=
∫ 1

2

0
f(t)g(0)h(0)dt+ lim

k→∞

∫ 1
2 + 1

k

1
2

f(t)g(k)h(k(t− 1
2)))dt+ lim

k→∞

∫ 1

1
2 + 1

k

f(t)g(0)h(1)dt

=
∫ 1

2

0
f(t)g(0)h(0)dt+

∫ 1

1
2

f(t)g(0)h(1)dt+ lim
k→∞

∫ 1
2 + 1

k

1
2

f(t)g(k)
Ḣ(k(t− 1

2))
k

dt

=
∫ 1

2

0
f(t)g(0)h(0)dt+

∫ 1

1
2

f(t)g(0)h(1)dt+ lim
k→∞

∫ 1
2 + 1

k

1
2

f(t)g0(k)Ḣ(k(t− 1
2))1 + k

k
dt

=
∫ 1

2

0
f(t)g(0)h(0)dt+

∫ 1

1
2

f(t)g(0)h(1)dt+ fg0(+∞)(1
2)(H(1)−H(0))

=
∫ 1

0

∫
βURm

∫
Y
f(t)g0(u)h(y)υ(dy|t, u)ω(dut)τ(dt)

where
τ(dt) = λ[0,1] + 2δ 1

2

and

ω(du|t) =
{
δ+∞ if t = 1

2 ,

δ0 otherwise
and

υ(dy|t, u) =


δ0 if t ∈ [0, 1

2) ,
λ[0,1] if t = 1

2 ,

δ1 if t ∈ (1
2 , 1]

where λX denotes the Lebesgue measure on X, and Y = [0, 1].

Example 3.3. Let us revisit the slightly more complicated [7, Example 3], appropriately
scaled on [0, 1]. The trajectory sequence is

yk(t) :=


0 if 0 ≤ t ≤ 1

2 −
1
k ,

k(t− 1
2 + 1

k ) if 1
2 −

1
k ≤ t ≤

1
2 ,

−2k(t− 1
2 −

1
2k ) if 1

2 ≤ t ≤
1
2 + 1

k ,

−1 if 1
2 + 1

k ≤ t ≤ 1

and its weak derivative uk := ẏk is

uk(t) :=


0 if 0 ≤ t ≤ 1

2 −
1
k ,

k if 1
2 −

1
k ≤ t ≤

1
2 ,

−2k if 1
2 ≤ t ≤

1
2 + 1

k ,

0 if 1
2 + 1

k ≤ t ≤ 1

10



see Figure 3.3. Let f ∈ C ([0, 1]), let h ∈ C (R) be bounded with primitive denoted by H, and

y�

t
0

1/2-1/k

1/2�1/k

1

�1

1/2 1

u�

t

0

1/2-1/k

1/2�1/k

�

�2�

1/2 1

Figure 2: Sequences (yk, uk)k∈N from Example 3.3.

let g = (1 + |.|)g0 where g0 ∈ U corresponding to the two-point (or sphere) compactification
βURm = R ∪ {±∞}, i.e. such that limu→±∞ g0(u) =: g0(±∞) ∈ R. Then it holds

lim
k→∞

∫ 1

0
f(t)g(uk(t))h(yk(t))dt

= lim
k→∞

∫ 1
2−

1
k

0
f(t)g(0)h(0)dt+ lim

k→∞

∫ 1
2

1
2−

1
k

f(t)g(k)h(k(t− 1
2 + 1

k
))dt

+ lim
k→∞

∫ 1
2 + 1

k

1
2

f(t)g(−2k)h(−2k(t− 1
2 −

1
2k ))dt+ lim

k→∞

∫ 1

1
2 + 1

k

f(t)g(0)h(−1)dt

=
∫ 1

2

0
f(t)g(0)h(0)dt+

∫ 1

1
2

f(t)g(0)h(−1)dt+ lim
k→∞

∫ 1
2

1
2−

1
k

f(t)g0(k)Ḣ(k(t− 1
2 + 1

k
))1 + k

k
dt

+ lim
k→∞

∫ 1
2 + 1

k

1
2

f(t)g0(−2k)Ḣ(−2k(t− 1
2 −

1
2k ))1 + 2k

−2k dt

=
∫ 1

2

0
f(t)g(0)h(0)dt+

∫ 1

1
2

f(t)g(0)h(−1)dt+ f(1
2)g0(+∞)(H(1)−H(0))

+ f(1
2)g0(−∞)(H(1)−H(−1))

=
∫ 1

0

∫
βURm

∫
Y
f(t)g0(u)h(y)υ(dy|t, u)ω(dut)τ(dt)

where
τ(dt) = λ[0,1] + 3δ 1

2

and

ω(du|t) =
{1

2δ+∞ + 1
2δ−∞ if t = 1

2 ,

δ0 otherwise
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and

υ(dy|t, u) =


δ0 if t ∈ [0, 1

2) ,
λ[0,1] if t = 1

2 and u = +∞,
1
2λ[−1,1] if t = 1

2 and u = −∞,
δ−1 if t ∈ (1

2 , 1]

where λX denotes the Lebesgue measure on X, and Y = [−1, 1].

4 Relaxed Optimal Control with Oscillations, Concentrations and
Discontinuities

To the classical optimal control problem (2.1) we associate the relaxed optimal control
problem

v∗R := inf
µ

∫
L0 µ

s.t.
∫
F0 µ = yT − y0,

µ ∈P([0, 1]× βURm × Y )

(4.1)

which is linear in the unknown measure µ. In contrast, classical problem (2.1) is non-linear
in the unknown trajectory y and control u.

Since optimal control problem (4.1) is a relaxation of the optimal control problem (2.1),
it may happen that the infimum in (4.1) is strictly less than the infimum in (2.1), i.e.
v∗R < v∗. Formulating necessary and sufficient conditions on the problem data F and L
such that v∗R = v∗, i.e. there is no relaxation gap is an open problem. However, if we
know that the anisotropic parametrized measure in problem (4.1) is generated by limits of
functions, then there is no relaxation gap. Let us explain this now.

Assumption 4.1 (Regularity of the data). Let L and F be such that in (2.13) it holds

L0 ∈ C ([0, 1]× βURm × Y ) (4.2)

and

F0 ∈ C ([0, 1]× βURm × Y ;Rn). (4.3)

Moreover, there is a constant cL > 0 such that

L(t, u, y) ≥ cL|u|p (4.4)

for all t, u, y and there is a constant cF > 0 such that

|F (t, u, y1)− F (t, u, y2)| ≤ cF (|u|p + 1)|y1 − y2| (4.5)

for all t, u, y1, y2.

The following result follows from the Carathéodory theorem.

12



Lemma 4.1. Assume that p ≥ 1, u ∈ L p([0, 1];Rm) and y0 ∈ Rn are given. Let further
F : [0, 1]× Rm × Rn → Rn satisfy (4.3) and (4.5). Then

dy(t) = F (t, u(t), y(t))dt , y(0) = y0 (4.6)

has a unique solution y ∈ L∞([0, 1];Y ) with values in a compact subset Y of Rn.

Assume that there is a bounded sequence {uk}k∈N ⊂ L p and that {yk}k∈N ⊂ W 1,1 is
a sequence of corresponding solutions obtained in Lemma 4.1. Then {yk} is uniformly
bounded in W 1,1. Indeed, due to (4.3) we see that

d|yk(t)|
dt

≤
∣∣∣∣dyk(t)dt

∣∣∣∣ = |F (t, uk(t), yk(t))| ≤ cF (1 + |uk(t)|p + |yk(t)|) . (4.7)

Then the Gronwall inequality [5, Appendix B.2.j] implies that supk∈N ‖yk‖W 1,1 < ∞ and
since yk is the integral of an integrable function on a bounded time interval, it holds that
y ∈ L∞([0, 1];Y ) for Y ⊂ Rn a ball of radius supk∈N ‖yk‖L∞ <∞. The limit of the right-
hand side of (4.6) can then be expressed in terms of an anisotropic parametrized measure
µ:

lim
k→∞

F (t, uk(t), yk(t))dt =
∫
βURm

∫
Y
F0(t, u, y)dµ(t, u, y). (4.8)

Thus instead of (4.6) we get the following differential equation

dy(t) =
∫
βURm

∫
Y
F0(t, u, y)dµ(t, u, y) (4.9)

which should be understood in the weak sense, i.e. for all g ∈ C ([0, 1]) it holds∫ 1

0
g(t)dy(t) =

∫ 1

0

∫
βURm

∫
Y
g(t)F0(t, u, y)dµ(t, u, y) =

∫
g F0 µ.

Lemma 4.2. Given an anisotropic parametrized measure µ and an initial condition y0, the
solution y to (4.9) is unique.

Proof. Assume that it is not the case, i.e., that there are two solutions y1, y2 ∈ L∞([0, 1];Y ).
Desintegrating dµ(t, y, u) = υ(dy|t, u)ω(du|t)τ(dt), we get the following relationship for the
difference yd := y1 − y2 because of (4.5)

|ẏd| ≤
∫
Rm
|F (t, u, y1(t))− F (t, u, y2(t))|ωt(du) ≤

∫
Rm

cF (|u|p + 1)ωt(du)|yd(t)|. (4.10)

The right hand side belongs to L 1([0, 1]), therefore the measure dyd(t) is absolutely con-
tinuous with respect to the uniform measure dt. As yd(0) = 0 we have yd(t) = 0 for all
t ∈ [0, 1], by the Gronwall inequality [5, Appendix B.2.j].

In relaxed optimal control problem (4.1) we use an integral formulation of (4.9) incorpo-
rating the initial and terminal conditions:∫ 1

0

∫
βURm

∫
Y
F0(t, u, y)dµ(t, u, y) =

∫
F0 µ = y1 − y0.

13



For each anisotropic parametrized measure µ, we can therefore associate a sequence of
trajectories {yk} ⊂ W 1,1 and controls {uk} ⊂ L p satisfying the differential equation (4.6)
and such that (4.8) holds. Conversely, the limit of each such sequence of trajectories and
controls can be modeled by an anisotropic parametrized measure. The following result of
absence of relaxation gap then follows immediately from the construction of problem (4.1).

Proposition 4.1 (No relaxation gap). Let Assumption 4.1 hold. If for each anisotropic
parametrized measure µ and corresponding sequences {yk, uk} it holds

lim
k→∞

L(t, uk(t), yk(t))dt =
∫
βURm

∫
Y
L0(t, u, y)dµ(t, u, y) (4.11)

then v∗R = v∗.

5 Relaxed Optimal Control with Occupation Measures
In the previous section, we proposed a linear reformulation of non-linear optimal control,
thanks to the introduction of anisotropic parametrized measures. In the current section, we
describe another linear reformulation proposed in [9] and relying on the notion of occupation
measure. The relation between this linear reformulation and the classical Majda-DiPerna
measures was investigated in [2], with the help of a graph completion argument. In the sequel
we show that the generalized Majda-DiPerna measures also fit naturally this framework.
Let v ∈ C 1([0, 1]×Y ). For any admissible trajectory y and control u solving the differential

equation (4.6), it holds∫ 1

0
dv(t, y(t)) = v(1, y(1))− v(0, y(0)) =

∫ 1

0

(
∂v

∂t
(t, y(t)) + ∂v

∂y
(t, y(t)) · ẏ(t)

)
dt.

Optimal control problem (2.1) can then be rewritten as

v∗ = inf
u

∫ 1

0
L(t, u(t), y(t))dt

s.t.
∫ 1

0

(
∂v

∂t
+ ∂v

∂y
· F
)

(t, u(t), y(t))dt = v(1, y1)− v(0, y0), ∀v ∈ C 1([0, 1]× Rn)

y ∈ W 1,1([0, 1];Rn), u ∈ L p([0, 1];Rm).
(5.1)

Definition 5.1 (Occupation measure). Given a control u and a trajectory y solving the
differential equation (4.6), we define the occupation measure µu,y ∈ y ∈P([0, 1]×Rn×Rm)
by

dµu,y(t, u, y) := δy(t)(dy)δu(t)(du)dt.

Geometrically µu,y(A × B × C) is the time spent by the trajectory (t, u(t), y(t)) in any
Borel subset A×B ×C of [0, 1]×Rm × Y . Analytically, integration with respect to µu,y is
the same as integration along (u(t), y(t)) with respect to time. In particular∫ 1

0
L(t, u(t), y(t))dt =

∫ 1

0

∫
Rm

∫
Rn
L(t, u, y)dµu,y(t, u, y) =

∫
L µu,y

14



and for all test functions v ∈ C 1([0, 1]× Y ), it holds that∫ 1

0

(
∂v

∂t
+ ∂v

∂y
· F
)

(t, u(t), y(t))dt =∫ 1

0

∫
Rm

∫
Y

(
∂v

∂t
+ ∂v

∂y
· F
)

(t, u, y)dµu,y(t, u, y) =
∫ (

∂v

∂t
+ ∂v

∂y
· F
)
µu,y.

Using the same arguments as in [2, Proposition 4], we can reformulate optimal control
problem (5.1) as a linear problem on measures, leading to the following relaxed formulation:

v∗M := inf
µ

∫
L0 µ

s.t.
∫ (

∂v

∂t
(1 + |u|p)−1 + ∂v

∂y
· F0

)
µ = v(1, y1)− v(0, y0) ∀v ∈ C 1([0, 1]× Y ),

µ ∈P([0, 1]× βURm × Y ).
(5.2)

Note that µ in the above problem is not necessarily an occupation measure in the sense of
Definition 5.1, but a general probability measure in P([0, 1]× βURm× Y ). For this reason,
the infimum in relaxed problem (5.2) can be strictly less than the infimum in classical
problem (2.1), i.e. v∗M < v∗.

Proposition 5.1 (No relaxation gap). It holds v∗R ≤ v∗M ≤ v∗ and hence if there is no
relaxation gap in relaxed problem (4.1) then there is no relaxation gap in relaxed problem
(5.2).

Proof. Just observe that problem (4.1) corresponds to the particular choice of test functions
v(t, y) := yk, k = 1, . . . , n in problem (5.2). Hence the infimum in (4.1) is smaller than the
infimum in (5.2), which is in turn smaller than the infimum in (2.1), i.e. v∗R ≤ v∗M . Now if
v∗R = v∗ then obviously v∗M = v∗.

6 Numerical example
Once we get to the measure linear problem (5.2), we follow the same strategy as in [2,
Section 4]:

1. compactify the control space by using a change of variables and homogenization;

2. since all the data are polynomial, construct an equivalent moment linear problem
where the unknown are moments of the occupation measure supported on a compact
semialgebraic set;

3. use the moment-sums-of-squares hierarchy as in [9] to obtain a sequence of approxi-
mate moments at the price of solving numerically semidefinite programming problems;

4. from the approximate moments, construct an approximate solution to the optimal
control problem.
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Let us illustrate this strategy on our introductory example (1.2). The trajectory y should
move the state from zero at initial time to one at final time, yet for the non-negative
integrand to be as small as possible, the control u should be zero all the time, except maybe
at time zero. If ε = 1 this problem has a trivial optimal solution u(t) = 0. For ε = 0 as
explained already we can solve the problem by integration by parts because ẏ(t) = u(t).
The integration trick cannot be carried out in the case of ε ∈ (0, 1).
We use the relaxation proposed in Section 5 to formulate problem (1.2) as a measure LP:

inf
µ

∫
(t+ y) u

1 + u
µ

s.t.
∫
∂v

∂t

1
1 + u

+ ∂v

∂y

u

1 + u
µ = v(1, 1)− v(0, 0), for all v ∈ C 1([0, 1]2)

µ ∈P([0, 1]× βR+ × [0, 1]).

(6.1)

Note that we can omit the absolute value in the denominator, as u is constrained to be
non-negative.
We expect the control to concentrate. Therefore let u(t) := r(t)

1−r(t) with r(t) ∈ [0, 1]. Then
the dynamic of y reads

ẏ(t) =
√(

r(t)
1−r(t)

)2
+ ε2 =

√
r(t)2 + ε2(1− r(t))2

1− r(t) .

Introduce the auxiliary variable w(t) such that w(t)2 = r(t)2 + ε2(1− r(t))2. By knowledge
of bounds for ε and r(t) we can conclude that 0 ≤ w(t) ≤ 1. The linear problem on moments
than reads

inf
γ

∫
(t+ y) r γ

s.t.
∫
∂v

∂t
(1− r) + ∂v

∂y
w γ = v(1, 1)− v(0, 0), for all v ∈ R[t, y],

γ ∈P([0, 1]3).

(6.2)

With the following GloptiPoly script we could solve the problem numerically for different
values of the parameter ε and we could guess the analytic optimal solution.
The measure dµ(t, y, u) = τ(dt)ω(du|t)υ(dy|t, u) with

τ(dt) = λ[0,1] + (1− ε)δ0 (6.3)

ω(du|t) =
{
δ∞, t = 0
δ0, t > 0 (6.4)

υ(dy|t, u) =
{

1
1−ελ[0,1−ε], t = 0
δ1−ε+εt, t > 0 (6.5)

is optimal for (1.2) and yields the value (1−ε)2

2 . It is attained by the sequences

uk(t) =
{ √

(k(1− ε) + ε)2 − ε2, t ∈ [0, 1
k ]

0, t > 1
k

, yk(t) =
{

(k(1− ε) + ε)t, t ∈ [0, 1
k ]

εt+ 1− ε, t > 1
k

(6.6)
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Figure 3: Sequence (yk)k=1,2,4,8 from Example 1.2.

see Figure 3.
The numerical methods obtained with GloptiPoly and the SeDuMi semidefinite solver for

the 6th relaxation (i.e. moments of degree up to 12) are reported in Table 1. They match
to 4 significant digits with the analytic moments reported in Table 2.
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