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Abstract. We present a model describing unsteady flows of a heat conducting mixture com-

posed from L constituents in two and three dimensional bounded domain. We assume that
the flow of the mixture is described only by the barycentric velocity, and that the fluid is non-

Newtonian. In addition, we assume that the diffusion flux depends also on the temperature

gradient, describing the Soret effect, and that the heat flux depends also on the chemical poten-
tials gradient, describing the Dufour effect. We briefly show under which assumptions on the

constitutive equations the model obeys the first and the second laws of thermodynamics and for

a large class of physically well-motivated constitutive relations we establish the existence of a
weak solution. For simplicity we restrict ourselves only onto the linear models, i.e., the diffusion

and the heat flux depend linearly on the temperature and chemical potentials gradients.

1. Introduction

We deal with a class of models for incompressible fluid mixture, where the diffusion of each
constituent and also the heat flux are driven by the chemical potentials gradient and by the
temperature gradient as well. Our main goals are to identify the possible structure of the fluxes that
is in agreement with the laws of thermodynamics and to start the mathematical exploitation of such
models, which means in our case to establish the existence of a weak solution. We want to extend
the existing mathematical theory developed in [6, 25, 26, 27] (for the analysis of compressible
models, we refer the interested reader to [1, 11]) in many directions. First, in [6] the authors
considered the simplified model of a mixture with only two constituents neglecting all thermal
effects. Second, the series of papers [25, 26, 27] deals even with the ionized mixtures with thermal
effect but is not capable to cover the Soret and the Dufour effects. In addition in this series
the models does not fulfill the second law of thermodynamics. All these drawbacks from papers
mentioned above are not presented in the model studied here and as the main improvement in
comparison to previous works can be understood the use of the chemical potentials directly in
the model and a priori estimates in view of the thermodynamics of the model. Primary, we do
not want to derive a new classes of models for fluid mixtures but to present a new view of rather
standard models1. It is also worth of noticing that the model presented here is compatible with
the so-called GENERIC framework and in fact it extends the models obtained in [30] and give
the answer on the question about the existence of the weak solution. For other relevant works
inspired by GENERIC, we refer to [15] or [29].

At the very beginning, we would like to emphasize that the basis of the paper is the use
of the barycentric velocity as the only macroscopic velocity, see e.g. [9, 23] for more complete
description of such an assumption. We use the linear treatment of the chemical reactions, as used
e.g. in [16] which can be also understood as a good summary of the theory of linear irreversible
thermodynamics and we also refer to [13] for particular examples of diffusion laws for the chemical
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concentrations. A similar treatment of chemical reactions appears already in [22] and the gradient
structure of chemical reactions is emphasized in [20], where in contrast to this paper the free
energy approach is used.

The structure of the paper is following. In Section 2 we formulate the model we are interested in
and we also specify all necessary conditions that follow from the laws of thermodynamics. Further,
we also specify precisely the assumptions on the constitutive equations and give several physically
well-motivated examples fulfilling such assumptions. In Section 3, we introduce the function spaces
and auxiliary results, formulate the definition of a weak solution and finally state main theorems
of the paper. The last two sections are devoted to the proofs of the theorems.

2. Formulation of the model

This section is devoted to the description of a general physical background of the model and
we also discuss here what are the necessary assumptions on the data and on the model to have its
physical consistency. For much more sophisticated discussion, we refer here to [21, 24, 28], where
the rational thermodynamics for mixtures is explained in more details, see also [12, 14, 18].

Hence for a given time interval I := (0, T ) and given Lipschitz bounded domain Ω ⊂ Rd with
dimension d = 2, 3, we denote Q := I × Ω and consider that the flow takes place in Q. First,
we assume that a mixture consists from L constituents, where L ∈ N is given. Each constituent
is described by its own density ρi : Q → R+ and the velocity vi : Q → Rd, where i = 1, . . . , L.
Consequently the balance of mass for each constituent takes the form

(2.1) (ρi),t + div(ρivi) = ri in Q, for all i = 1, . . . , L,

where ri denotes the production rate of the i-th constituent which can depend on a macroscopic
quantities (see below for precise assumption). For simplicity we denote the vector r := (r1, . . . , rL).
Then we introduce the total density of the fluid % : Q→ R+ and the barycentric velocity v : Q→
Rd as

(2.2) % :=

L∑
i=1

ρi, v :=

∑L
i=1 ρivi
%

.

The key simplification and the heart of the modelling here is that we assume in the paper that
the only macroscopic velocity is the barycentric one and we model all balance laws in terms of v
instead of taking into account all vi’s. Thus, taking the sum in (2.1) with respect to i = 1, . . . , L,
we observe the balance of the total mass

(2.3) %,t + div(%v) =

L∑
i=1

ri in Q.

Second, we replace vi in (2.1) by the barycentric velocity v and model the error, i.e., the quantity
(ρivi − ρiv) as a flux (diffusion) qc := (q1

c , . . . ,q
L
c ) : Q → Rd×L, which will be specified later.

Thus, (2.1) reduces to

(2.4) (%ci),t + div(%civ + qic) = ri in Q, for all i = 1, . . . , L,

where the vector of concentrations c = (c1, . . . , cL) is defined as

(2.5) ci :=
ρi
%
, i = 1, . . . , L.

Next, the balance of linear momentum takes the form (we omit the external body forces for
simplicity)

(2.6) (%v),t + div(%v ⊗ v)− div T = 0 in Q.

Here T : Q → Rd×d is the Cauchy stress tensor (that is supposed to be symmetric due to the

balance of angular momentum). Next, we introduce the balance of the total energy E = %|v|2
2 +%e,

which is given as the sum of the kinetic energy and the internal energy e : Q→ R+,

(2.7) E,t + div(Ev)− div (Tv) + div qe = 0 in Q,
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where we denoted qe : Q → Rd the flux of the internal energy e and we assume that there are
no volume sources of the global energy. The final simplification we make, is the assumption that
the mixture as a whole is homogeneous, i.e., we assume that % = const in Q and for simplicity
but without loss of generality we set % ≡ 1 in what follows. Consequently, we also require the
incompressibility constraint

(2.8) div v = 0 in Q,

and we assume that the Cauchy stress T can be decomposed as

(2.9) T := −pI + S,

where p : Q → R denotes the mean normal stress (the pressure) and S : Q → Rd×d is the
constitutively determined part of the Cauchy stress.

To close the system we need to specify the boundary and the initial conditions. We assume
that the body is mechanically and energetically isolated and that there is no flux of chemical
concentration through the boundary, i.e., we prescribe the following boundary conditions on I×∂Ω

v = 0,(2.10)

qic · ν = 0 for i = 1, . . . , L,(2.11)

qe · ν = 0,(2.12)

where ν denotes the unit outward normal vector at I × ∂Ω. Finally, we consider the following
initial conditions

v(0) = v0, c(0) = c0, e(0) = e0,(2.13)

that are supposed to be satisfied in Ω.

2.1. Mechanical and thermodynamical consistency of the model. In this subsection we
show the natural requirement on the constitutive relations that ensures the consistency of the
considered model. We also recall that the density % is assumed to be identically equal to one.
First natural assumption is that the mass is conserved and therefore it follows from (2.3) that
necessarily

(2.14)

L∑
i=1

ri = 0.

Next, since qic = (ρivi − ρiv), it directly follows from (2.2) that

(2.15)

L∑
i=1

qic =

L∑
i=1

ρivi − ρiv = 0,

which represents the necessary structural assumption on the flux qc.
Finally, we show which restrictions on the model parameters follows from the second law of

thermodynamics. For this purpose we first derive2 the equation for internal energy. Taking the
scalar product of (2.6) with v, using (2.8) and (2.9), we can formally deduce the following identity
for the kinetic energy

(2.16)

(
|v|2

2

)
,t

+ div

(
v

(
|v|2

2
+ p

))
− div(Sv) + S · ∇v = 0.

Thus, subtracting (2.16) from (2.7) we get the following identity for the internal energy

(2.17) e,t + div (ev + qe) = S · ∇v in Q.

In what follows we consider that the thermodynamics of the model can be expressed by the
primitive quantities (c, e) and according to the second law of thermodynamics, we assume that

2Note that such approach can be justified only for sufficiently smooth solution. If the kinetic energy identity

(2.16) is not valid, which is the case if we cannot test (2.6) by v, the resulting equality (2.17) must be changed by

the inequality. We refer to [2] and [3] for more details.
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there exists an entropy s = s∗(e, c), where s∗ : R+ ×RL → R is a concave function. Moreover, we
require the validity of the entropy inequality, i.e.,

(2.18) s,t + div(sv + qs) ≥ 0 in Q,

where qs : Q → Rd is the entropy flux. In order to “recover” (2.18) from (2.4) and (2.17), we
define the temperature θ := θ∗(e, c) and the vector of re-scaled chemical potentials ζ := ζ∗(e, c),
where the functions θ∗ and ζ∗ are defined as

(2.19) θ∗ :=
1

∂es∗
, ζ∗ := −∂cs∗.

Then, multiplying the i-th equation in (2.4) by −ζi summing the result over i = 1, . . . , L, and
multiplying (2.17) by θ−1 and finally summing the resulting identities, using (2.19) and (2.8), we
find that

(2.20) s,t + div
(
sv +

qe
θ
− qcζ

)
=

S · ∇v
θ

+

(
qe · ∇

1

θ
− qc · ∇ζ

)
− r · ζ.

Comparing (2.18) and (2.20) we see that the right hand side of (2.20) must be nonnegative. Thus,
to simplify the situation we require in what follows that each term3 on the right hand side has a
correct sign, i.e.,

S · ∇v ≥ 0,(2.21)

r · ζ ≤ 0,(2.22)

qc · ∇ζ − qe · ∇
1

θ
≤ 0.(2.23)

Note that (2.21)–(2.22) directly implies the restrictions on S and r that will be even strengthen
in the following subsection. We focus in the rest of this part on the restriction (2.23) and we still
keep in mind that we want to model the cross effects caused by the temperature and the chemical
potential gradients. Thus, for the flux qc we consider the following generalization of the Fick law

(2.24) qc := qζ(c, θ,∇ζ) + qθ(c, θ,∇θ).
It means that while qζ is driven mainly by the gradient of ζ, the second part of the flux qθ is
driven mainly by the gradient of the temperature, i.e., describing the Soret effect. Similarly, we
assume that the heat flux is also given by the sum representing two independent phenomena, i.e.,

(2.25) qe := qθ(c, θ,∇θ) + qζ(c, θ,∇ζ),

where again the first part models the heat flux caused by the temperature gradient, i.e., the Fourier
law, and the second models the Dufour effect, i.e., flux driven by gradient of ζ. Thus, substituting
(2.24)–(2.25) into (2.23) and using the facts that qζ is independent of the temperature gradient
and similarly that qθ is independent of the gradient of ζ we see that it reduces to the following
set of conditions

qζ · ∇ζ ≤ 0,

−qθ · ∇
1

θ
≤ 0,

qθ · ∇ζ − qζ · ∇
1

θ
≤ 0.

(2.26)

In addition, since due to the assumed structure of qθ and qζ , we immediately see from (2.26)3

that necessarily

qθ · ∇ζ = qζ · ∇
1

θ
,(2.27)

which represents the key restriction on the structure of fluxes in order to guarantee (2.18), i.e.,
the second law of thermodynamics.

3Note that it is in fact very natural if we assume that each term depends on a different quantity. On the other
hand we could again split (2.23) onto two parts and require that qe · ∇ 1

θ
≥ 0 and −qc · ∇ζ ≥ 0. However, this

would immediately lead to the fact that the Soret and the Dufour effects are forbidden in the model, which is not

the case considered here.
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2.2. Assumptions on constitutive relations. Here, we describe the precise assumptions on
the model. We would like to emphasize once again here, that we are not interested in developing
the most general theory and the most general model. We only want to introduce a model that
is able to capture the cross-effects and which is thermodynamically consistent. To simplify the
notation, we first introduce the so-called Gibbs simplex as

G =

{
x ∈ RL :

L∑
i=1

xi = 1; xi ≥ 0 for all i = 1, . . . , L

}
.

Then we denote ` := (1, . . . , 1) and G′ := `⊥ and denote the orthogonal projection P`, that will
be frequently used in what follows, as

P` : RL → G′.

Note that

P`x := x− (x · `)
|`|2

`.

Then we specify the assumptions that will finally guarantee (2.21)–(2.23). The first assumption
is related to the source term r.

(A1) We assume that r = r∗(c, θ, ζ) : RL × R+ × RL → RL is continuous and there exist
0 < r1 ≤ r2 <∞ and q ∈ [1,∞) such that for all (c, θ, ζ) ∈ RL × R+ × RL there holds

P`r∗(c, θ, ζ) = r∗(c, θ, ζ),

r∗(c, θ, ζ) · ζ ≤ −r1|P`ζ|q,
|r(c, θ, ζ)| ≤ r2(1 + |ζ|)q−1.

(2.28)

Note here, that (2.28)1 is just the condition (2.14) and (2.28)2 is a stronger version of (2.22). The
reason why we assume such stronger assumption is that it will help us to establish the minimum
principle for concentration c which will follow from the assumptions on the entropy introduced
below. Moreover, it follows from (2.28)1 that such coercivity cannot be prescribed in term of ζ
and therefore the term on the right hand side of (2.28)2 depends only on P`ζ. The last assumption
in (2.28) is then the corresponding growth estimate, depending now on the whole ζ and not only
on its projection P`ζ.

Next, we introduce the assumption on the structure of the flux qc.

(A2) We assume that that the flux qc is given as

(2.29) qic = (q∗c (c, θ,∇θ,∇ζ))i := −
L∑
j=1

M ij(c, θ)∇ζj −mi(c, θ)∇1

θ
,

where M : RL × R+ → RL×Lsym is continuous symmetric matrix-valued function and m :

RL × R+ → RL is continuous vector-valued function. Moreover, we require the following
coercivity and growth assumptions: there exist 0 < M1 ≤ M2 < ∞ such that for all
(c, θ, ζ) ∈ RL × R+ × RL there holds

(2.30)
M1|P`ζ|2 ≤

L∑
i,j=1

M ij(c, θ)ζiζj , |M(c, θ)| ≤M2,

|m(c, θ)| ≤M2 min(1, θ).

In addition, the following compatibility conditions are assumed:

(2.31)

L∑
i=1

M ij(c, θ) =

L∑
i=1

mi(c, θ) = 0.

Note here, that (2.31) is the necessary assumption for flux given by (2.29) in order to guarantee
(2.15). Next, in (2.30), the “maximal” possible definiteness of the corresponding matrix is assumed.
Moreover, it follows from (2.31) that

(2.32) q∗c (c, θ,∇θ,∇ζ) = q∗c (c, θ,∇θ,∇(P`ζ)).
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Note here, that the setting (2.29) corresponds to the splitting (2.24), where we just set

qiζ := −
L∑
j=1

M ij∇ζj , qθ := −mi∇1

θ
,

and we also see that from (2.30) it directly follows (2.26)1.
Concerning the heat flux qe we consider the following generalization of the Fourier law:

(A3) We assume that qe is given as

qe = q∗e(c, θ,∇θ,∇ζ) := −κ(c, θ)∇θ −
L∑
i=1

mi(c, θ)∇ζi,(2.33)

where κ : RL×R+ → R+ is continuous and there exist 0 < κ1 ≤ κ2 <∞ such that for all
(c, θ) ∈ RL × R+ there holds

(2.34) κ1 ≤ κ(c, θ) ≤ κ2.

Similarly as above, it directly follows from (2.33) and (2.31) that

(2.35) q∗e(c, θ,∇θ,∇ζ) = q∗e(c, θ,∇θ,∇(P`ζ)).

To compare such setting with the previous subsection, we recall (2.25) and by the use of (2.33),
we see that

qθ := −κ(c, θ)∇θ, qζ := −
L∑
i=1

mi(c, θ)∇ζi.

Note that (2.26)2 is then a direct consequence of (2.34) and the identity (2.27) then follows from
(2.33) and (2.29).

Next, for the constitutively determined part of the Cauchy stress we assume the following:

(A4) We assume that S is given as

S := S∗(c, θ,D(v)),

where D(v) := 1
2 (∇v + (∇v)T ) is the symmetric part of the velocity gradient. Moreover,

we assume that S∗(c, θ,D) : RL × R+ × Rd×dsym → Rd×dsym is continuous symmetric matrices-
valued mapping and that there exist q ∈ (1,∞) and 0 < ν1 ≤ ν2 < ∞ such that for all
(c, θ) ∈ RL × R+ and all D,B ∈ Rd×dsym there holds

(2.36)
S∗(c, θ,0) = 0, S∗(c, θ,D) ·D ≥ ν1|D|r − ν2, |S∗(c, θ,D)| ≤ ν2(1 + |D|r−1),

(S∗(c, θ,D)− S∗(c, θ,B)) · (D−B) ≥ 0.

Note that (2.36) is rather standard assumption on the Cauchy stress and represents its r-coercivity,
(r − 1)-growth and the monotonicity. Moreover, from (2.36) one can directly obtain (2.21) as a
consequence of the monotonicity. Such model is capable to describe a lot of standard fluids. In
fact we could even include a more general model based on the maximal monotone graph setting
(suitable eg. for the Bingham fluid) but for simplicity we do not consider it here and refer the
interested reader to [4, 5] for more details.

Finally we specify the assumptions on the entropy. The first and the key restriction is that the
entropy is split:

(A5) The entropy s = s∗(c, e) satisfies

s = s∗(c, e) := s∗c (c) + s∗e(e).(2.37)

The assumption (2.37) plays the crucial role in the analysis, particularly in deriving a proper
a priori estimates for the temperature and temperature gradient. On the other hand the following
set of condition is quiet standard and ensures the nonnegativity of the temperature, gives the
growth condition for the heat capacity and in particular enable us to prove that c ∈ G. We start
with the assumptions on s∗e.
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(A6) The function s∗e : R+ → R is strictly increasing concave C2 function. Moreover, there exist
positive constants C1 and C2 such that for all e ∈ R+ there holds

s∗e(e) ≤ C1 ln e+ C2(e+ 1),(2.38)

C1

e
≤ ∂es∗e(e) ≤

C2

e
,(2.39)

C1 ≤ −
∂2
e2s
∗
e(e)

(∂es∗e(e))
2
≤ C2.(2.40)

The temperature θ = θ∗(e) is then defined as

θ∗ :=
1

∂es∗e

and it directly follows from (2.39) that

(2.41) C−1
2 θ∗(e) ≤ e ≤ C−1

1 θ∗(e).

Finally, we specify the assumptions on s∗c .

(A7) The function s∗c : [0,∞)L → R is a concave continuous function such that s∗ ∈ C2((0,∞)L)
and there exists a positive constant C1 such that for all c, x ∈ RL there holds

(2.42) C1|x|2 ≤ −
L∑

i,j=1

∂2
cicjs

∗
c (c)xixj .

In addition, we assume that for all K > 0 there exists ε > 0 such that

(2.43) |∂csc(c)| ≤ K =⇒ ci ≥ ε for all i = 1, . . . , L.

The vector of chemical potentials ζ = ζ∗(c) is then defined as

ζ∗ := −∂cs∗c .

While the assumption (2.42) is rather standard, the implication (2.43) is required in the paper
to provide that the concentrations are nonnegative. Indeed, since we do not assume any further
structural properties of q∗c and r∗, which would lead to the minimum principle for c and which
would lead to rather nonphysical setting, we combine (2.28)2 with (2.43). Then a uniform posi-
tivity for all component of c follows from (2.43) provided we control ζ. This will be however the
consequence of the entropy inequality and the assumption (2.28)2.

2.3. Examples for Cauchy stress, entropy and the diffusion matrix. Several typical ex-
amples of constitutive relations that satisfy (A1)–(A7) is presented in this subsection. We do not
discuss so much the most general possible setting for the Cauchy stress and our prototype model
case that satisfies the required assumption is of the form

S∗(c, θ,D) := ν0(c, θ)(1 + |D|2)
r−2
2 D,

which is often called the Ladyzhenskaya model. For much better description and for more general
setting we refer to [5].

Next, the prototype (frequently used) example of the entropy is the following

s∗(c, e) = a ln e− b
L∑
i=1

ci ln ci a, b > 0

and it is evident that the assumptions (A5)–(A7) are satisfied.
Concerning the diffusion matrices, we present here two examples. The first one is generated by

the procedure introduced in [30] (see also the identical technique for less general setting in [13]).
Thus, the first model example is given by the following multiplication

M(c, θ) = MT
2 (c, θ)M1(c, θ)M2(c, θ),
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where M1 and M2 are defined as (we do not sum over repeating indices)

M ij
1 = fi(c, θ)δij ,

M ij
2 = δij − fj(c, θ)

f(c, θ) · `
.

with f := (f1, . . . , fL) being a continuous function such that fi ≥ C1 > 0. It is easy to check that
M1 is positively definite and kerM2 = span{`}. The resulting matrix is

M ij = fi(c, θ)

(
δij −

fj(c, θ)

f(c, θ) · `

)
and it is obvious that it fulfills (A2). The second example is then related to the case when we
want the linear diffusion with no cross effects in L− 1 components. For such cases, it seems to be
appropriate to use the matrix of the following form

M ij(c, θ) :=


fj(c, θ)δij for i < L & j < L,
−fj(c, θ) for i = L & j < L,
−fi(c, θ) for i < L & j = L,
f(c, θ) · `− fL(c, θ) for i = L & j = L,

which is useful mainly for dilute solutions. Again the functions fi are continuous and bounded
from below. Moreover, it directly follows from the definition that (2.31) is satisfied. To check also
(2.30), we first notice that for all x ∈ RL such that xL = 0, we have

(2.44) Mx · x ≥ C1|x|2.
Consequently, we see that for arbitrary x ∈ RL

Mx · x = M(x− xL`) · (x− xL`) + x2
LM` · `− xLMx · `− xLM` · x

= M(x− xL`) · (x− xL`) ≥ C1|x− xL`|2,

where for the second equality we used (2.31) and for the final inequality we use (2.44). However,
using the Young inequality, we see that

|x− xL`|2 = |x|2 + x2
L|`|2 − 2xLx · ` ≥ |x|2 + x2

L|`|2 −
(x · `)2

|`|2
− x2

L|`|2

= |P`x|2

and (2.30) follows.

3. Function spaces, auxiliary results and definition of a weak solution

In this section we introduce all necessary notation, the definition of a weak solution to (2.4)–
(2.13) provided that the assumptions (A1)–(A7) hold, and introduce the main theorems of the
paper. Thus, we use the standard notation for the Lebesgue space of scalar-, vector- and tensor-
valued functions, i.e., Lp(Ω), Lp(Ω;Rd) and Lp(Ω;Rd×d). In the similar way we introduce also

the corresponding Sobolev spaces W 1,p and the Sobolev spaces with zero trace W 1,p
0 . Further, to

simplify the notation, we set

W 1,p
0,div := {v ∈W 1,p

0 (Ω;Rd) : div v = 0},

L2
0,div := W 1,2

0,div

‖·‖2
.

Next, for X being a Banach space, we denote W k,p(0, T ;X) the standard Sobolev-Bochner space.
In addition, byM(0, T ;X) we always mean the space of X-valued measures. Further, to simplify

the notation, for any a ∈ Lp and b ∈ Lp′ we set

(a, b) :=

∫
Ω

ab dx

and we use the same notation also for vector- or tensor-valued functions. Moreover, by the symbol
a⊗ b we will denote matrix with entries (a⊗ b)ij := aibj .
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3.1. Definition of a weak solution and main results. Hence, having defined the proper
function spaces, we can introduce the notion of a weak solution as follows.

Definition 3.1. Let Ω ⊂ Rd be an open bounded Lipschitz domain and d = 2, 3. Assume that
(A1)–(A7) are satisfied with r ≥ 3d+2

d+2 and q > 2. Moreover, assume that the initial data fulfill

v0 ∈ L2
0,div,(3.1)

c0 ∈ G a.e. in Ω,(3.2)

e0 ∈ L1(Ω),(3.3)

s∗(c0, e0) ∈ L1(Ω).(3.4)

We say that (v, e, c,S,qc,qe, s, θ, ζ, r) is a weak solution to (2.4)–(2.13) if

v ∈ Lr(0, T ;W 1,r
0,div) ∩W 1,r′(0, T ; (W 1,r

0,div)∗),

c ∈ L2(0, T ;W 1,2(Ω;RL)), c ∈ G a. e. in Q,

c,t ∈
(
L2(0, T ;W 1,2(Ω;RL)) ∩ Lq

′
(0, T ;Lq

′
(Ω;RL))

)∗
,

qc ∈ L2(0, T ;L2(Ω;RL×d)),

qe ∈ Lp(0, T ;Lp(Ω;Rd)) for all 1 ≤ p < d+ 2

d+ 1
,

e ∈W 1,1(0, T ;W−1,1(Ω)),

e, θ ∈ L∞(0, T ;L1(Ω)) ∩ Lp(0, T ;W 1,p(Ω)) for all 1 ≤ p < d+ 2

d+ 1
,

S ∈ Lr
′
(0, T ;Lr

′
(Ω;Rd×dsym)),

ln θ ∈ L∞(0, T ;L1(Ω)) ∩ L2(0, T ;W 1,2(Ω)),

s,t ∈M(0, T ;W−1,1(Ω)),

ζ ∈ Lq(0, T ;Lq(Ω;RL)),

P`ζ ∈ L2(0, T ;W 1,2(Ω;RL)),

r ∈ Lq
′
(0, T ;Lq

′
(Ω;RL))

and for almost all t ∈ (0, T ) the following equalities hold

〈v,t,w〉 − (v ⊗ v,∇w) + (S,∇w) = 0 for all w ∈W 1,∞
0,div,(3.5)

〈c,t,u〉 − (c⊗ v,∇u)− (qc,∇u) = (r,u) for all u ∈W 1,∞(Ω;RL),(3.6)

〈e,t, u〉 − (ev,∇u)− (qe,∇u) = (S · ∇v, u) for all u ∈W 1,∞(Ω),(3.7)

and we also assume that the entropy inequality is satisfied in the following sense

〈s,t, u〉 −
(
sv +

qe
θ
− qcζ,∇u

)
≥
(

S · ∇v
θ

, u

)
+

(
qe · ∇

1

θ
− qc · ∇ζ, u

)
− (r · ζ, u)(3.8)

for all nonnegative u ∈ W 1∞(Ω). Moreover, we require that the following identities hold almost
everywhere in Q

S = S∗(c, θ,D(v)),(3.9)

qc = q∗c (c, θ,∇ζ,∇θ),(3.10)

qe = q∗e(c, θ,∇ζ,∇θ),(3.11)

r = r∗(c, θ, ζ),(3.12)

θ = θ∗(e),(3.13)

s = s∗e(e) + s∗c (c),(3.14)

ζ = ζ∗(c).(3.15)
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In addition, we assume that the initial data are attained in the following sense

(3.16) lim
t→0+

‖v(t)− v0‖2 + ‖c(t)− c0‖2 + ‖e(t)− e0‖1 = 0.

Having a notion of a weak solution we formulate the main results of the paper. First, the easier
one, is the weak stability result for any sequence of sufficiently smooth solution.

Theorem 3.1. Let Ω ⊂ Rd be a Lipschitz domin with d = 2, 3 and T > 0 be arbitrary. Assume
that (A1)–(A7) are satisfied wit r ≥ 3d+2

d+2 and q > 2. Let (vn, en, cn,Sn,qnc ,q
n
e , ζ

n, θn, sn, rn) be
a sequence of smooth weak solutions in the sense od Definition 3.1 corresponding to initial data
(vn0 , e

n
0 , c

n
0 ) and let

(3.17) lim
n→∞

‖vn0 − v0‖2 + ‖en0 − e0‖1 + ‖cn0 − c0‖2 + ‖s∗(en0 , cn0 )− s∗(e0, c0)‖1 = 0.

Then we can extract a subsequence that we do not relabel and we can find (v, e, c,S,qc,qe, ζ, θ, s, r)
being a weak solution in the sense of Definition 3.1 with the initial data (v0, e0, c0) such that

(vn, en, cn,Sn,qnc ,q
n
e , ζ

n, θn, sn, rn) ⇀∗ (v, e, c,S,qc,qe, ζ, θ, s, r)

in the weak∗ topology of the spaces introduced in Definition 3.1.

The proof of Theorem 3.1 is based on the entropy estimates and on monotone operator theory.
In fact the only difficulty is to prove the attainment of the initial data. Although the relatively
simple and standard proof, we present it here. The reason is twofold. First, we show that the the
choice of the function spaces in Definition 3.1 is adequate and corresponds to the nature of the
problem. Second, it is a preparation for the proof of the second result of the paper - the following
existence theorem.

Theorem 3.2. Let Ω ⊂ Rd be a Lipschitz domain with d = 2, 3 and T > 0 be arbitrary. Assume
that (A1)–(A7) are satisfied wit r ≥ 3d+2

d+2 and q > 2. Then for arbitrary initial data fulfilling

(3.1)–(3.4) there exists a weak solution in the sense of Definition 3.1.

Also the proof of Theorem 3.2 is based on the entropy estimates and monotone operator theory.
This is also the reason why we restrict ourselves onto the case r ≥ 3d+2

d+2 . Although it might seem
to be a trivial task in view of Theorem 3.1, it is not the case. In fact, one has to find a proper
approximative scheme that allows one to get a priori estimate coming from the entropy inequality.
But since for such an estimate the very special choice of the test function is used, the usual
Galerkin approximation and/or fixed point technique cannot be easily applied. Further, we would
like to emphasize here, that according to our best knowledge, it is the first existence theorem, for
a model capable to describe the Soret and the Dufour effect as well.

Moreover, the uniform estimates can be in principle obtained even for all r ≥ 2d
d+2 and the only

limitation in the proof of the main theorem is the passage to the limit in the term on the right
hand side of the equation for the internal energy. However, following the ideas from [10], we can
“redefine” the notion of a weak solution such that we replace (3.7) by the balance of the global
energy (2.7) (which can be even integrated over Ω) to get still consistent definition of a weak
solution. (Here consistent means that if the solution in the sense of this new definition is smooth
then it is also a solution to the original problem.) But for such refine notion of a weak solution,
we can follow the method developed in [5] and [7] and to establish the existence of a weak solution
for all r > 2d

d+2 . But since, it is only the technical extension and the heart of the proof relies on
getting a priori estimates, we do not present it here for simplicity.

3.2. Auxiliary results. In this part, we recall some know facts used later in the proofs of the
main theorem. First, the following simple relation

P`(∇ζ) = ∇(P`ζ)

valid for all RL-valued functions ζ will be used in what follows. We recall the Korn inequality.

Lemma 3.3 (Korn inequality (see [19])). Let Ω be an open bounded Lipschitz domain and let

1 < p <∞ be arbitrary. Then there exists C(p,Ω) such that for all v ∈W 1,p
0 (Ω;Rd) there holds

(3.18) ‖v‖1,r ≤ C(p,Ω)‖D(v)‖r.
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We also recall the following interpolation inequality.

Lemma 3.4 (Interpolation (see e.g. [3])). Let Ω be an open bounded Lipschitz domain. Then for
all p ≥ 2d

d+2 there exists C(p,Ω) such that for all u ∈W 1,p(Ω) there holds

(3.19) ‖u‖
(d+2)p
d

(d+2)p
d

≤ C‖u‖
2p
d

2 ‖u‖
p
1,p.

We end this auxiliary part by formulation an algebraic lemma that will finally enable us to get
proper estimates from the entropy inequality.

Lemma 3.5. Let s∗c satisfy (A7) and let

ζ∗(c) := −∂cs∗c (c).

Then there exists C > 0 such that for all c ∈ (0, 1)L there holds

(3.20) (ζ∗(c))i ≤ C, and |(ζ∗(c))i| ≤ C

ci
for all i = 1, . . . , L.

Moreover, there exists C > 0 such that for all c ∈ G we have

(3.21) |ζ∗(c)| ≤ C(1 + |P`ζ∗(c)|).

Proof. First for any 0 ≤ a ≤ 2, and any c ∈ (0, 2)L, we set

ca := (a, c2, . . . , cL).

Then for any 0 ≤ a ≤ b ≤ 2, we can use the concavity of s∗c (which implies that ζ1(ct) is
nondecreasing function of t) to deduce that

(ζ∗(ca))1 ≤ s∗c (ca)− s∗c (cb)

b− a
≤ (ζ∗(cb))

1.

Thus, setting a = c1 and b = 2 we have for all c ∈ (0, 1)L that

(ζ∗(c))1 ≤ s∗c (c)− s∗c (c2)

2− c1
≤ C.

Similarly, setting b := c1 and a = 0 we get

(ζ∗(c))1 ≥ s∗c (c0)− s∗c (c)

c1
≥ −C

c1
,

from which the estimate (3.20) directly follows. To prove (3.21), we first note that for any c ∈ G
there exists i such that 1 ≥ ci ≥ 1

L . For simplicity, assume that i = L. Then, it follows from

(3.20) that |ζ∗L| ≤ CL. Consequently, using the Young inequality, we get

|ζ∗(c)|2 = |P`ζ∗(c)|2 +
1

L
(ζ∗(c) · `)2

= |P`ζ∗(c)|2 +
1

L

(
L−1∑
i=1

(ζ∗(c))i

)2

+
2

L
(ζ∗(c))L

L−1∑
i=1

(ζ∗(c))i +
1

L
((ζ∗(c))L)2

≤ |P`ζ∗(c)|2 +
L− 1

L

L−1∑
i=1

((ζ∗(c))i)2 +
2

L
(ζ∗(c))L

L−1∑
i=1

(ζ∗(c))i +
1

L
((ζ∗(c))L)2

≤ |P`ζ∗(c)|2 +
L− 1

2

L
|ζ∗(c)|2 + C(L)((ζ∗(c))L)2 ≤ |P`ζ∗(c)|2 +

L− 1
2

L
|ζ∗(c)|2 + C(L).

Hence, moving the second term on the right hand side onto the left hand side, it is not difficult to
observe the validity of (3.21). �
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4. Proof of Theorem 3.1

We start with the proof of a priori estimates that also justify the choice of the function spaces
specified in Definition 3.1. At this point we would like to refer to [2, 3] for more details concerning
the estimated for the heat equation with a priori L1 right hand side. First, we denote (3.5)n–(3.8)n
the identities valid for the n-th weak solution. Thus, setting w := vn in (3.5)n and integrating
with respect to time over (0, t), we deduce (the convective terms vanishes) the energy identity

(4.1) ‖vn(t)‖22 + 2

∫ t

0

(Sn,D(vn)) dτ = ‖vn0‖22.

Hence using (2.36), the Korn inequality, the interpolation inequality (3.19) and (3.17), we obtain

(4.2) sup
t∈(0,T )

‖vn(t)‖22 +

∫ T

0

‖S‖r
′

r′ + ‖vn‖r1,r + ‖vn‖
(d+2)r
d

(d+2)r
d

dt ≤ C

and consequently from (3.5)n it follows (here we use the fact that r > 3d+2
d+2 ) that

(4.3)

∫ T

0

‖vn,t‖r
′

(W 1,r
0,div)∗

dt ≤ C.

Next, we set u := `ϕ in (3.6)n, where ϕ ∈W 1,∞ is arbitrary, and by using (A1) and (A2), we
deduce that

(4.4) 〈(cn · `),t, ϕ〉 − ((cn · `)vn,∇ϕ) = 0,

which is nothing else than the transport equation for the quantity cn · `. Bust since cn0 · ` ≡ 1 in
Ω we see that

cn · ` ≡ 1 a.e. in Q.

Moreover, since ζn are assumed to be smooth we can use (2.43) to observe

cni ≥ 0 a.e. in Q for all i = 1, . . . , L.

Consequently, we get

(4.5) cn ∈ G a. e. in Q.

Similarly, setting u ≡ 1 in (3.7)n and integrating the result with respect to time over (0, t), we get∫
Ω

en(t) dx =

∫ t

0

∫
Ω

Sn ·D(vn) dx dτ +

∫
Ω

en0 dx.

Since the entropies are assumed to be smooth, we see from (2.39) that e ≥ 0 and therefore using
(3.17), (2.36) and (4.2)

(4.6) sup
t∈(0,T )

‖en(t)‖1 ≤ C.

Finally, setting u ≡ 1 in (3.8)n and integrating the result with respect to time over (0, t) we have∫
Ω

sn(t)− sn0 dx ≥
∫ t

0

∫
Ω

Sn · ∇vn

θn
+ qne · ∇

1

θn
− qnc · ∇ζn − rn · ζn dx dτ.(4.7)

First, since en are nonnegative it follows from (2.39) that also θn are nonnegative. Consequently,
using (2.36) we see that also the first term on the right hand side is nonnegative. Moreover, using
(2.29) and (2.33) and the assumptions on the structure q∗e and q∗c (see assumptions (A2)–(A3)),
we deduce from (4.7) that∫

Ω

sn(t)− sn0 dx ≥
∫ t

0

∫
Ω

κ(cn, θn)|∇θn|2

(θn)2
+M(cn, θn)∇ζn · ∇ζn − rn · ζn dx dτ.(4.8)

Thus, using (3.17), (4.6), (2.38), (2.28), (2.34) and (2.30) (note here, that we use the fact that P`
and ∇ commute) we obtain

sup
t∈(0,T )

‖ ln en(t)‖1 +

∫ T

0

‖∇ ln θn‖22 + ‖∇P`ζn‖22 + ‖P`ζn‖qq dt ≤ C.(4.9)
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In addition, using (3.21), we deduce from (4.5) and (4.9) that

(4.10)

∫ T

0

‖ζn‖qq dt ≤ C.

Consequently, it follows from (2.28), (2.30), (2.31), (4.9) and (4.10) that4

(4.11)

∫ T

0

‖rn‖q
′

q′ + ‖qnc ‖22 dt ≤ C.

Thus, using (4.2), (4.11) we can deduce from (3.6)n that

(4.12) ‖cn,t‖(Lq(0,T ;Lq(Ω;RL))∩L2(0,T ;W 1,2(Ω;RL)))∗ ≤ C.

Finally, using (2.42) and (4.9), we can also derive the uniform bound on ∇cn. Indeed, it follows
from (2.42) that

C1|∇cn|2 ≤ ∇ζn · ∇cn = ∇P`ζn · ∇cn +
∇(ζn · `) · ∇(cn · `)

|`|2
= ∇P`ζn · ∇cn,

where the last identity follows from (4.5). Thus, integrating the result over Q, using the Young
inequality and the a priori estimate (4.9) we obtain

(4.13)

∫ T

0

‖cn‖21,2 dt ≤ C.

Next, we focus on further estimates on the internal energy en and consequently on the temper-
ature θn. We basically follow the standard procedure for the heat equation with L1-right hand
side (see eg. [3] for details), which is possible since we already control the term involving ∇P`ζn
in qe. Thus, setting u := (1 + en)−λ with arbitrary λ ∈ (0, 1) in (3.7)n, we get (using the fact the
the convective term vanishes and also the fact that the term on the right hand side is nonnegative)

d

dt

∫
Ω

(1 + en)1−λ dx ≥ −λ(1− λ)

∫
Ω

qne · ∇en

(1 + en)1+λ
dx.

Thus, integrating this with respect to time over (0, T ), using (4.6), (2.33) and (2.31), we obtain∫ T

0

∫
Ω

κ(cn, θn)∇θn · ∇en

(1 + en)1+λ
dx dt ≤ C(λ) + C(λ)

∫ T

0

∫
Ω

|∇P`ζn||∇en|(1 + en)−1−λ dx dt.

Hence, using (2.34) and (2.39) to get lower bound for the term on the left hand side, and using
the Young inequality to move the corresponding term from the right hand side, we deduce

(4.14)

∫ T

0

∫
Ω

|∇en|2

(1 + en)1+λ
dx dt ≤ C(λ) + C(λ)

∫ T

0

‖∇P`ζn‖22 dt ≤ C(λ),

where the last inequality follows from the a priori bound (4.9). Consequently, using (4.6) and
(4.14) we get that

sup
t∈(0,T )

‖(1 + en)
1−λ
2 ‖2 +

∫ T

0

‖(1 + en)
1−λ
2 ‖21,2 dt ≤ C(λ).

Consequently, from the interpolation inequality (3.19) it follows that

(4.15)

∫ T

0

‖en‖
d+2
d −ε
d+2
d −ε

dt ≤ C(ε−1) for all ε > 0.

4Here we heavily use the assumption (2.30), from which it follows that

|qc| ≤ C (|∇P`ζn|+ |∇ ln θn|) .



14 M. BULÍČEK AND J. HAVRDA

Going back to the estimates for the gradient of en, we use the Hölder inequality to conclude∫ T

0

‖∇en‖
d+2−ε
d+1
d+2−ε
d+1

dt =

∫ T

0

∫
Ω

(
|∇en|2

(1 + en)1+λ

) d+2−ε
2(d+1)

(1 + en)(1+λ)( d+2−ε
2(d+1)

) dx dt

≤

(∫ T

0

∫
Ω

|∇en|2

(1 + en)1+λ
dx dt

) d+2−ε
2(d+1)

(∫ T

0

∫
Ω

(1 + en)(1+λ)( d+2−ε
d+ε ) dx dt

) d+ε
2(d+1)

.

Thus, using (4.14) with λ = ε/d and (4.15), we see that

(4.16)

∫ T

0

‖∇en‖
d+2−ε
d+1
d+2−ε
d+1

dt ≤ C(ε−1) for all ε > 0

and consequently in view of (2.40) we have

(4.17)

∫ T

0

‖∇θn‖
d+2−ε
d+1
d+2−ε
d+1

dt ≤ C(ε−1) for all ε > 0.

Since it follows from (2.31), (2.33) and (2.34) that

|qne | ≤ C (|∇θn|+ min(1, θn)|∇(P`ζn)|) ,

it is evident that by using (4.9) and (4.17) we can deduce that

(4.18)

∫ T

0

∥∥∥∥qne
θn

∥∥∥∥2

2

+ ‖qne ‖
d+2
d+1−ε
d+2
d+1−ε

dt ≤ C(ε−1) for all ε > 0.

Finally, having all above estimates it follows from (3.7)n that (note here that d = 2, 3 in order to
bound the convective term)

(4.19)

∫ T

0

‖en,t‖(W 2,d(Ω))∗ ≤ C.

Thus, having (4.2), (4.3), (4.5), (4.6), (4.9)–(4.13), (4.15), (4.16)–(4.19) we can extract a sub-
sequence that we do not relabel such that

vn ⇀ v weakly in W 1,r′(0, T ; (W 1,r
0,div)∗) ∩ Lr(0, T ;W 1,r

0,div),(4.20)

cn ⇀∗ c weakly∗ in L2(0, T ;W 1,2(Ω;RL)) ∩ L∞(0, T ;L∞(Ω;RL)),(4.21)

cn,t ⇀ c,t weakly in
(
L2(0, T ;W 1,2(Ω;RL)) ∩ Lq(0, T ;Lq(Ω;RL))

)∗
,(4.22)

en ⇀ e weakly in Ls(0, T ;W 1,s(Ω)) for all s ∈ [1,
d+ 2

d+ 1
),(4.23)

en,t ⇀
∗ e,t weakly∗ in M(0, T ; (W 2,d(Ω))∗),(4.24)

θn ⇀ θ weakly in Ls(0, T ;W 1,s(Ω)) for all s ∈ [1,
d+ 2

d+ 1
),(4.25)

qne ⇀ qe weakly in Ls(0, T ;Ls(Ω;Rd)) for all s ∈ [1,
d+ 2

d+ 1
),(4.26)

qnc ⇀ qc weakly in L2(0, T ;L2(Ω;Rd×L)),(4.27)

Sn ⇀ S weakly in Lr
′
(0, T ;Lr

′
(Ω;Rd×d)),(4.28)

ζn ⇀ ζ weakly in Lq(0, T ;Lq(Ω;RL)),(4.29)

rn ⇀ r weakly in Lq
′
(0, T ;Lq

′
(Ω;RL)),(4.30)

P`ζn ⇀ P`ζ weakly in L2(0, T ;W 1,2(Ω;RL)).(4.31)
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Moreover, using the Aubin-Lions lemma, (4.9) and (4.18), we can strengthen the above convergence
results to obtain

vn → v strongly in Ls(0, T ;Ls(Ω;Rd)) for all s ∈ [1,
(d+ 2)r

d
),(4.32)

cn → c strongly in Ls(0, T ;Ls(Ω;RL)) for all s ∈ [1,∞)(4.33)

en → e strongly in Ls(0, T ;Ls(Ω)) for all s ∈ [1,
d+ 2

d
),(4.34)

θn → θ strongly in Ls(0, T ;Ls(Ω)) for all s ∈ [1,
d+ 2

d
),(4.35)

ln θn ⇀ ln θ weakly in L2(0, T ;L2(Ω)),(4.36)

qne
θn

⇀
qe
θ

weakly in L2(0, T ;L2(Ω,Rd)).(4.37)

All above convergence results allows us to conclude that (v, c, e, θ,S,qe,qc, r) satisfies (3.5)–
(3.6). Moreover, using the Fatou lemma we can also conclude from (4.6), (4.9) and (4.34) that

(4.38) sup
t∈(0,T )

‖e(t)‖1 + ‖ ln e(t)‖1 ≤ C.

In addition, if we are able to identify the weak limit of the term Sn ·D(vn) we can obtain (3.7).
Thus, it remains to check the validity of the entropy inequality (3.8), the attainment of the initial
data (3.16) and the constitutive equations (3.9)–(3.15) together with the identification of the limit
of the sequence Sn ·D(vn).

First, the attainment of v0 and c0 is standard for parabolic like equations and we refer e.g.
to [19] for detailed proof. Then we can easily identify S by using the monotone operator theory.
Indeed, setting w := v in (3.5) and integrating the result over (0, T ) we get the energy identity

(4.39) ‖v(T )‖22 + 2

∫ T

0

(S,D(v)) dt = ‖v0‖22.

Next, letting n→∞ in (4.1), using weak lower semi-continuity and (3.17), we can observe that

(4.40) lim sup
n→∞

∫ T

0

(Sn,D(vn)) dt ≤
∫ T

0

(S,D(v)) dt.

Due to the growth assumptions on S∗ (2.36) and the convergence results (4.33) and (4.35), we can
use the Lebesgue dominated convergence theorem, to conclude that for any symmetric-matrices
valued A ∈ Lr(0, T ;Lr(Ω;Rd×d))

(4.41) S∗(cn, θn,A)→ S∗(c, θ,A) strongly in Lr
′
(0, T ;Lr

′
(Ω;Rd×d)).

Moreover, from the monotonicity of S∗, see (2.36), we also have

(4.42)

∫ T

0

(Sn − S∗(cn, θn,A),D(vn)−A) dt ≥ 0.

Hence, letting n→∞ in (4.42), using (4.40), (4.41) and (4.28), we get

(4.43)

∫ T

0

(S− S∗(c, θ,A),D(v)−A) dt ≥ 0 for all A ∈ Lr(0, T ;Lr(Ω;Rd×d))

and with the help of the Minty method we can deduce (3.9). Moreover, setting A := D(v) in
(4.42), using (3.9) and (4.40) we obtain

(4.44) (Sn − S∗(cn, θn,D(v))) · (D(vn)−D(v))→ 0 strongly in L1(0, T ;L1(Ω)).

However, from this it directly follows (using (4.41) again) that

(4.45) Sn ·D(vn) ⇀ S ·D(v) weakly in L1(0, T ;L1(Ω))
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and we can thus identify the term on the right hand side of (3.7). In addition, due to the weak
convergence (4.45) (and consequently the uniform equi-integrability of the corresponding term)
we can strengthen the convergence result (4.24) in the following way

en,t ⇀ e,t weakly in L1(0, T ; (W 2,d(Ω))∗).(4.46)

Next, due to the continuity of s∗, ζ∗, θ∗, r∗ and the convergence results (4.33), (4.34), (4.29)
and (4.30), it is easy to observe that (3.12)–(3.15) hold. To get validity also for (3.10)–(3.11),
we use (2.32) and (2.35) and using the linearity of q∗e and q∗c in the last two variables, the weak
convergence results (4.25) and (4.31) and the strong convergence result (4.33) and (4.34) it is not
difficult to deduce the validity of (3.10)–(3.11).

Finally, we show the attainment of e0 and the validity of the entropy inequality (3.8). To do
so, we set u = χ(0,t)v in (3.8)n with arbitrary nonnegative v ∈W 1∞(Ω) and after integration over
(0, T ) we get

(4.47)

∫
Ω

(sn(t)− sn0 )v dx−
∫ t

0

(
snvn +

qne
θn
− qnc ζ

n,∇v
)
dτ

≥
∫ t

0

(
Sn · ∇vn

θn
, v

)
+

(
qne · ∇

1

θn
− qnc · ∇ζn, v

)
− (rn · ζn, v) dτ ≥ 0.

Next, combining (4.30), (4.31), (4.33) and the continuity of ζ∗ we see that

qnc ζ
n ⇀ qcζ weakly in L1(0, T ;L1(Ω;Rd)).

Consequently, using also (4.36), (4.37), (4.32) we can easily let n → ∞ in the second term on
the left hand side of (4.47). Moreover, using (4.6), the strong convergence results (4.33), (4.34),
the structural assumption on the entropy s∗ (2.38), the fact that s∗c is bounded and the strong
convergence of the initial data (3.17), we can use the Fatou lemma to pass to the limit also in
the first term on the left hand side of (4.47) with the inequality sign. In addition, having all
convergence results above, we can use the Fatou lemma and also the weak lower semicontinuity of
norms to pass to the limit also in terms on the right hand side with inequality sign and consequently
to obtain (3.8). Moreover, neglecting the nonnegative terms on the right hand side we also have

(4.48)

∫
Ω

(s∗(e(t), c(t))− s∗(e0, c0))v dx−
∫ t

0

(
sv +

qe
θ
− qcζ,∇v

)
dτ ≥ 0.

In addition, using the fact that c0 is already attained, and the assumption on s∗c the relation (4.48)
implies that

(4.49) lim inf
t→0+

∫
Ω

(s∗e(e(t))− s∗e(e0))v dx ≥ 0

for all nonnegative v ∈ W 1,∞(Ω) and consequently also for all nonnegative v ∈ C(Ω). Similarly,
having (4.46), we can first deduce that

e ∈ C([0, T ]; (W 2,d(Ω)∗))

and using also (4.45), we can let n→∞ in the weak formulation (3.7)n to get∫
Ω

(e(t)− e0)v dx =

∫ t

0

(ev + qe,∇v) + (S,D(v)v) dτ.

Consequently, we see that

(4.50) lim
t→0+

∫
Ω

(e(t)− e0)v dx = 0

for all v ∈ C(Ω). But since e0 ∈ L1(Ω) and e is nonnegative, we conclude that

(4.51) e(t) ⇀ e0 weakly in L1(Ω)

as t→ 0+. Indeed, from (4.50) it follows that

(4.52) e(t) ⇀∗ e0 weakly∗ in M(Ω).
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Moreover, it follows from (4.38) and (4.52) that by using the Biting lemma, we can extract a
subsequence (which we do not relabel) and we can also find a nondecreasing sequence Ωk ⊂
Ωk+1 ⊂ Ω such that

(4.53) e(t) ⇀ e0 weakly in L1(Ωk)

and for any ε > 0 there exists k such that |Ω \ Ωk| ≤ ε. Thus, for any u ∈ L∞(Ω) we have

lim
t→0+

(e(t)− e0, u) = lim
t→0+

∫
Ω\Ωk

e(t)u dx+ lim
t→0+

∫
Ωk

(e(t)− e0)u dx−
∫

Ω\Ωk
e0u dx

= lim
t→0+

∫
Ω\Ωk

e(t)u dx−
∫

Ω\Ωk
e0u dx.

Finally, using the nonnegativity of e and the fact that e0 ∈ L1(Ω) we see that

| lim
t→0+

(e(t)− e0, u)| ≤ C(u)

∣∣∣∣∣ lim
t→0+

∫
Ω\Ωk

e(t) dx

∣∣∣∣∣+ δ(k), δ(k)
k→∞→ 0.

Thus, using (4.50) with v ≡ 1, and the weak convergence of e(t) on Ωk, we see that

lim
t→0+

∫
Ω\Ωk

e(t) dx = lim
t→0+

∫
Ω

e(t) dx− lim
t→0+

∫
Ωk

e(t) dx =

∫
Ω

e0 dx−
∫

Ωk

e0 dx

=

∫
Ω\Ωk

e0 dx ≤ δ(k).

Thus, (4.51) holds at least for a subsequence. But since the whole sequence already converges due
to (4.52) we see that (4.51) necessarily holds.

To get also the strong convergence result we use (4.49). Since s∗e is strictly concave, the above
weak convergence and the inequality (4.49) implies that necessarily

e(t)→ e0 a.e. in Ω.

Consequently, we get that

lim
t→0+

‖e(t)− e0‖1 = 0,

which finishes the proof of Theorem 3.1.

5. Proof of Theorem 3.2

This section is devoted to the proof of the main theorem of this paper. In the previous subsec-
tion, we have already observed, that having a priori estimates, it is not difficult to deduce weak
sequential compactness. However, for having a priori estimates we need to chose a very special
test function, which makes the proof of the existence indeed very complicated. Thus, inspired by
[3], we introduce a cascade of Galerkin approximative problems and a cascade of the truncation
functions that enable us to get the desired a priori estimate.

First, we introduce the approximative entropies that enable us to get the a priori estimates for
the approximative problem with no difficulties. Thus, for arbitrary ε, δ ∈ (0, 1) we introduce the
following approximations. First, in order to guarantee nonnegativity of each ci, we introduce the
following ε-approximation of the entropy sc as

(5.1) s∗,εc (c) := s∗c (c) + ε

L∑
i=1

ln ci.

Note here, that if we control |s∗,ε| then it directly follows that ci > 0 almost everywhere in Q.
Since such approximation in fact makes the problem even more difficult, we mollify s∗,ε and define

sε,δc ∈ C2(RL;R) as

s∗,ε,δc (c) :=

 s∗,εc (c) if for all i = 1, . . . , L there holds δ ≤ ci ≤
2

δ
,

concave otherwise,
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such that for all c ∈ RL

−C(δ)(|c|2 + 1) ≤ s∗,ε,δc (c) ≤ −C−1(δ)|c|2 + C(δ),∣∣∣∂2
cicjs

∗,ε,δ
c (c)

∣∣∣ (1 + |c|) +
∣∣∂csε,δc (c)

∣∣ ≤ C(δ)(1 + |c|),

∂2
cicjs

∗,ε,δ
c (c)xixj ≤ −C−1(δ)|x|2.

(5.2)

Consequently, we introduce the notation for the vectors of chemical potential as

(5.3) ζ∗,ε(c) := −∂cs∗,ε(c), ζ∗,ε,δ(c) := −∂cs∗,ε,δc (c).

Moreover, similarly as in Lemma 3.5 we can show that there exists a constant C > 0 independent
of ε ∈ (0, 1) such that for all c ∈ G we have

(5.4) |ζ∗,ε(c)|2 ≤ C(1 + |P`ζ∗,ε(c)|2).

Indeed, assume that c ∈ G. Then there must be at least one component that is large or equal
to 1/L. Thus, for simplicity assume that cL ≥ 1/L. Then it follows from Lemma 3.5 that
(ζ∗(c))L ≤ C. However, using the definition of ζ∗,ε we also get

|(ζ∗,ε(c))L| =
∣∣∣∣(ζ∗(c))L − ε

cL

∣∣∣∣ ≤ C(L).

Consequently, repeating the proof of Lemma 3.5 we deduce that

|ζ∗,ε(c)|2 = |P`ζ∗,ε(c)|2 + |ζ∗,ε(c)− P`ζ∗,ε(c)|2 = |P`ζ∗,ε(c)|2 +
1

L

(
L∑
i=1

(ζ∗,ε(c))i

)2

≤ |P`ζ∗,ε(c)|2 +
L− 1

L
|ζ∗,ε(c)|2 + C|(ζ∗,ε(c))L||ζ∗,ε(c)|

and (5.4) follows from the Young inequality. Moreover, using the definition of the approximation
and also using Lemma 3.5 once again, we see that for all i = 1, . . . , L and all c ∈ G

(ζ∗,ε(c))i = (ζ∗(c))i − ε

ci
≤ (ζ∗(c))i ≤ C,

which directly implies that

(5.5) |ζ∗(c)| ≤ C(1 + |ζ∗,ε(c)|) for all c ∈ G.

Next, in order to simplify the analysis concerning the temperature θ, we redefine s∗e as follows

s∗,δe (e) :=

 s∗e(e) if δ ≤ e ≤ 2

δ
,

concave otherwise,

such that s∗,δe ∈ C2(R and

(5.6) |∂es∗,δe |+ |∂2
e2s
∗,δ
e (e)| ≤ C(δ) for all e ∈ R.

Then we naturally set θ∗,δ as

(5.7) θ∗,δ(e) :=
1

∂es∗,δ(e)
.

Finally, due to such approximations we need to correct the corresponding terms in the equations
and therefore we define

Tδ(s) :=



0 0 ≤ s ≤ δ,

1 2δ ≤ s ≤ 1

δ
,

0
2

δ
≤ s,

linear otherwise
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and we also define the vector-valued analogue of this truncation Tδ : RL → R as

Tδ(c) :=

L∏
i=1

Tδ(ci).

Then, we are directly led to introduce an approximation to (3.5)–(3.7), where we just replace
all fluxes and the source terms by the following

(5.8)

q∗,δc (e, θ, c,∇ζ,∇θ) := Tδ(c)Tδ(e)q∗c (θ, c,∇ζ,∇θ),

q∗,δe (e, θ, c,∇ζ,∇θ) := Tδ(c)Tδ(e)q∗e(θ, c,∇ζ,∇θ),

r∗,δ(e, θ, c, ζ) := Tδ(c)Tδ(e)r∗(θ, c, ζ).

Note here, that this is just an idea how to prove the existence and in fact one need to add to the
equations some terms that ensure the compactness of the desired quantities. But having (5.8) in
mind, we see that we do not deal with troubles in the constitutive equations as e or ci tends to
zero or infinity.

5.1. (m,n, l)-Galerkin (ε, δ)-approximation. First, we find a basis of W d+1,2(Ω;Rd) ∩W 1,r
0,div

consisting of {wi}∞i=1 that is in addition orthogonal in L2(Ω;Rd). Note that from embedding

theorem we directly obtain that wi ∈ W 1,∞
0 (Ω;Rd). Moreover, due to the density we have that

it is also basis of W 1,r
0,div. The finite dimensional spaces V n is then defined as the linear span of

{wi}ni=1. Similarly, let {ui}∞i=1 is a basis of W 1,2(Ω), which is orthogonal in L2 and also in W 1,2

and we denote Wm the linear span of {ui}mi=1. Finally, we denote Pn1 and Pm2 , the orthogonal

projections as Pn1 : W d+1,2(Ω;Rd) ∩W 1,r
0,div → V ndiv and Pm2 : W 1,2(Ω)→Wm, respectively.

Finally, we define (m,n, l, ε, δ) approximative problem in the following way: for fixed ε, δ ∈ (0, 1)
and m,n, l ∈ N to find

vn,m,l,ε,δ(t, x) :=

n∑
i=1

αn,m,l,ε,δi (t)wi(x),

cn,m,l,ε,δ(t, x) :=

m∑
i=1

βn,m,l,ε,δi (t)ui(x),

en,m,l,ε,δ(t, x) :=

l∑
i=1

γn,m,l,ε,δi (t)ui(x).

where αn,m,l,ε,δi : [0, T ] → R, βn,m,l,ε,δi : [0, T ] → RL and γn,m,l,ε,δi : [0, T ] → R are continuous
functions with the initial data given by
(5.9)

vn,m,l,ε,δ(0) := Pn1 (v0), cn,m,l,ε,δ(0) := (Pm2 (cδ0)1, . . . , P
m
2 (cδ0)L), en,m,l,ε,δ(0) := P l3(eε,δ0 ),

where cε,δ0 is defined as

(5.10) cε,δ0 :=
c0

1 + max(ε, δ)L
+

max(ε, δ)`

1 + max(ε, δ)L

and eε,δ0 is given by

(5.11) eε0 := min(ε−1, e0) + max(ε, δ).

Moreover, we require the validity of the following identities:

(5.12) (vn,m,l,ε,δ,t ,w)− (vn,m,l,ε,δ ⊗ vn,m,l,ε,δ,∇w) + (Sn,m,l,ε,δ,∇w) = 0 for all w ∈ V ndiv,

(5.13)
(cn,m,l,ε,δ,t ,u) + ε(∇cn,m,l,ε,δ,∇u)− (cn,m,l,ε,δ ⊗ vn,m,l,ε,δ,∇u)− (qn,m,l,ε,δc ,∇u)

= (rn,m,l,ε,δ,u) for all u ∈ (Wm)L,
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(5.14)
(en,m,l,ε,δ,t , u) + ε(∇en,m,l,ε,δ,∇u)− (en,m,l,ε,δvn,m,l,ε,δ,∇u)− (qn,m,l,ε,δe ,∇u)

= (Sn,m,l,ε,δ · ∇vn,m,l,ε,δ, u) for all u ∈W l,

where (we recall the definition (5.8))

qn,m,l,ε,δc := q∗,δc (en,m,l,ε,δ, θn,m,l,ε,δ, cn,m,l,ε,δ,∇ζn,m,l,ε,δ,∇θn,m,l,ε,δ),(5.15)

qn,m,l,ε,δe := q∗,δe (en,m,l,ε,δ, θn,m,l,ε,δ, cn,m,l,ε,δ,∇ζn,m,l,ε,δ,∇θn,m,l,ε,δ),(5.16)

Sn,m,l,ε,δ := S∗(θn,m,l,ε,δ, cn,m,l,ε,δ,D(vn,m,l,ε,δ)),(5.17)

rn,m,l,ε,δ := r∗,δ(en,m,l,ε,δ, θn,m,l,ε,δ, cn,m,l,ε,δ, ζn,m,l,ε,δ),(5.18)

and in addition

θn,m,l,ε,δ := max
(
0, θ∗,δ(en,m,l,ε,δ)

)
,(5.19)

ζn,m,l,ε,δ := Pm2
(
ζ∗,ε,δ(cn,m,l,ε,δ)

)
.(5.20)

Due to the continuity of all approximative constitutive relations (5.15)–(5.20), the short time
existence directly follows from the Carathéodory theory. Moreover, using a priori estimates estab-
lished below, we can extend the solution onto the whole time interval (0, T ). Thus, we continue
with the estimates independent of l and with limit l → ∞. In what follows, we denote by C a
constant that is uniform with respect all approximative parameters. Moreover, we will clearly
denote any dependence on the approximative parameters in the rest of the proof.

5.2. Limit l→∞. This subsection is devoted to the limit passage l→∞. For simplicity we avoid
writing indexes m,n, ε, δ and we keep only the index l. However, if some estimate will depend on
these parameters we clearly denote it. First, setting w := vl in (5.12) we deduce the following
energy identity

(5.21)
1

2

d

dt
‖vl(t)‖22 + (Sl,∇vl) = 0.

Hence, using (2.36) and the Korn inequality we find that

(5.22) sup
t∈(0,T )

‖vl(t)‖22 +

∫ T

0

‖vl‖r1,r + ‖Sl‖r
′

r′ dt ≤ C.

Note that due to our choice of the basis we can also deduce from (5.22) that

(5.23)

∫ T

0

‖vl‖2r1,2r + ‖Sl‖2r
′

2r′ dt ≤ C(n).

Next, setting u := el in (5.14) and using (2.36), we get

(5.24)
1

2

d

dt
‖el(t)‖22 + ε‖∇el‖22 − (qle,∇el) ≤ C‖el‖2(1 + ‖vl‖r2r).

Moreover, using (A3), the fact that θ∗,δ is a nondecreasing function of e and the presence of
cut-off functions Tδ and Tδ in definition of q∗,δe (see (5.8)), we can estimate the third term on the
left hand side with the help of the Young inequality as

(5.25) −(qle,∇el) ≥ −
ε

2
‖∇el‖22 − C(ε, δ)‖∇cl‖22.

Thus, inserting (5.25) into (5.24) we get

(5.26)
d

dt
‖el(t)‖22 + ε‖∇el‖22 ≤ C‖el‖2(1 + ‖vl‖r2r) + C(ε, δ)‖∇cl‖22.

Finally, setting u := cl in (5.13), using (5.16), the assumption (A2), the presence of cut-off

functions in the definition of q∗,δc (see the definition (5.8)) and the continuity of the projection Pm2 ,
we immediately deduce with the help of the Young inequality that

(5.27)
d

dt
‖cl(t)‖22 ≤

ε

2
‖∇el‖22 + C(ε, δ)‖∇cl‖22.
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Next, using the fact that all norms on finite dimensional spaces are equivalent, in particular the
following inequality

(5.28) ‖∇cl‖22 ≤ C(m)‖cl‖22,

and summing (5.26) and (5.27), we obtain

(5.29)

d

dt

(
‖el(t)‖22 + ‖cl(t)‖22

)
+ ε‖∇el‖22

≤ C‖∇vl‖2r2r + C(ε, δ, n,m)
(
‖el‖22 + ‖cl(t)‖22

)
.

Consequently, the Gronwall inequality implies that

(5.30) sup
t∈(0,T )

(
‖cl(t)‖22 + ‖el(t)‖22

)
+

∫ T

0

‖el‖21,2 dt ≤ C(ε, δ, n,m).

In addition, using (5.15), (5.16) and keeping in mind the presence of cut-off functions, we can
deduce that

(5.31)

∫ T

0

‖qle‖22 + ‖qlc‖22 dt ≤ C(n,m, ε, δ).

Finally, using (5.22), (5.30) and (5.28), we can observe from (5.12)–(5.14) that

(5.32)

∫ T

0

‖cl,t‖22 + ‖vl,t‖22 + ‖el,t‖2−1,2 dt ≤ C(ε, δ, n,m).

Thus, it follows from (5.22), (5.30), (5.28), (5.31), (5.32) and the Aubin-Lions lemma that we can
extract a subsequence that we do not relabel such that

vl ⇀ v weakly in W 1,2(0, T ;V n),(5.33)

vl → v strongly in C(0, T ;V n),(5.34)

cl ⇀ c weakly in W 1,2(0, T ; (Wm)L),(5.35)

cl → c strongly in C(0, T ; (Wm)L),(5.36)

el ⇀ e weakly in W 1,2(0, T ;W−1,2(Ω)) ∩ L2(0, T ;W 1,2(Ω)),(5.37)

el → e strongly in L2(0, T ;L2(Ω)),(5.38)

qle ⇀ qe weakly in L2(0, T ;L2(Ω;Rd)),(5.39)

qlc ⇀ qc weakly in L2(0, T ;L2(Ω;Rd×L)),(5.40)

Sl ⇀ S weakly in L2r′(0, T ;L2r′(Ω;Rd×d)),(5.41)

rl ⇀ r weakly in L2(0, T ;L2(Ω;RL)).(5.42)

Thus, using (5.2), (5.3), (5.6), (5.7), (5.36), (5.38) and the continuity of the projection Pm2 we see
that

θl ⇀ θ weakly in L2(0, T ;W 1,2(Ω)),(5.43)

θl → θ strongly in L2(0, T ;L2(Ω)),(5.44)

ζl → ζ strongly in C(0, T ;W 1,2(Ω;RL)),(5.45)

where

θ := max
(
0, θ∗,δ(e)

)
,(5.46)

ζ := Pm2
(
ζ∗,ε,δ(c)

)
.(5.47)
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Having all above convergence results and using the linear dependence of qle and qle on ∇θl, we can
easily identify the limit in all fluxes to deduce that

qc = q∗,δc (θ, c,∇ζ,∇θ),(5.48)

qe = q∗,δe (θ, c,∇ζ,∇θ),(5.49)

S = S∗(θ, c,D(v)),(5.50)

r = r∗,δ(θ, c, ζ).(5.51)

In addition, it is the also easy to let l→∞ in (5.12)–(5.14) to conclude

(5.52) (v,t,w)− (v ⊗ v,∇w) + (S,∇w) = 0 for all w ∈ V ndiv.

(5.53) (c,t,u) + ε(∇c,∇u)− (c⊗ v,∇u)− (qc,∇u) = (r,u) for all u ∈ (Wm)L.

(5.54)
(e,t, u) + ε(∇e,∇u)− (ev,∇u)− (qe,∇u) = (S · ∇v, u)

for all u ∈W 1,2(Ω) and a.a. t ∈ (0, T ).

Moreover, it is standard to prove at this level the attainment of initial conditions and we have

(5.55) v(0) = Pn1 (v0), c(0) = Pm2 (cε,δ0 ), e(0) = eε,δ0 .

5.3. Limit m → ∞. This section is devoted to the limit passage m → ∞. Thus, we denote
the solution constructed in the previous subsection by superscript m and omit writing all other
superscripts for simplicity. Before we let m → ∞, we recover the minimum principle for the
internal energy em. Hence, setting u := min(0, em − δ) in (5.54) we see due to the presence of
Tδ(e

m) in qme and due to the nonpositivity of the right hand side gurantueed by (2.36) that

d

dt
‖min(0, em − δ)‖22 ≤ 0.

Thus, using (5.55), we directly obtain that

(5.56) en,m ≥ δ almost everywhere in Q.

Consequently, it follows from the definition of s∗,δe and (5.7) that we can replace (5.46) by

θm := θ∗(em)(5.57)

without any change in (5.52)–(5.54).
Next, we derive m-independent estimate that will help us to let m → ∞. First, we can follow

the procedure from the previous subsection to easily derive the following estimates

sup
t∈(0,T )

‖vm(t)‖22 +

∫ T

0

‖vm‖r1,r + ‖Sm‖r
′

r′ dt ≤ C.(5.58) ∫ T

0

‖vm,t ‖22 + ‖vm‖2r1,2r + ‖Sm‖2r
′

2r′ dt ≤ C(n).(5.59)

Next, we set u := 1 in (5.54) and with the help of (5.58) we see that

(5.60) sup
t∈(0,T )

‖em(t)‖1 ≤ C + ‖em(0)‖1 ≤ C,

where the last inequality follows from (5.55) provided that ε, δ ≤ 1. Next, since em ≥ δ we have
due to (2.39) that also θm ≥ C−1

2 δ and consequently we can set

u :=
1

θm
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in (5.54) and after using (5.49) and (2.33) we observe (note that we use here that div vm = 0
which leads to the fact that the convective term vanishes)

(5.61)

d

dt

∫
Ω

s∗e(e
m) dx = −ε

∫
Ω

∂2
e2s
∗
e(e

m)|∇em|2 dx+

∫
Ω

Sm ·D(vm)

θm
dx

+

∫
Ω

Tδ(cm)Tδ(e
m)
κ(cm, θm)

(θm)2
|∇θm|2 dx

−
(
Tδ(cm)Tδ(e

m)∇ζm,∇ 1

θm
⊗m(cm, θm)

)
.

Similarly, setting u := −ζm in (5.53) (note that it is a possible setting due to the defintion of ζm,
where the projection Pm2 palys the crucial role) we get

(5.62)
−(cm,t , P

m
2 (ζ∗,ε,δ(cm)))− ε(∇cm,∇Pm2 (ζ∗,ε,δ(cm)) + (cm ⊗ vm, ζm)

+(qmc ,∇Pm2 ζ∗,ε,δ(cm)) = −(rm, ζm).

First, using the orthogonality of the basis and also (5.3) we obtain

− (cm,t , P
m
2 ζ∗,ε,δ(cm))− ε(∇cm,∇Pm2 ζ∗,ε,δ(cm))

= −(cm,t , ζ
∗,ε,δ(cm))− ε(∇cm,∇ζ∗,ε,δ(cm))

=
d

dt

∫
Ω

s∗,ε,δ(cm) dx+ ε
(
∂2
c2s
∗,ε,δ
c (cm)∇cm,∇cm

)
.

(5.63)

Similarly, using the Hölder inequality, the continuity of the projections Pm2 and (5.2)–(5.3), we
deduce

|(cm ⊗ vm,∇ζm)| ≤ ‖vm‖∞‖‖cm‖2‖∇ζm‖2
≤ C‖vm‖∞‖cm‖2‖∇ζ∗,ε,δ(cm)‖2

≤ C(ε, δ)‖vm‖∞(1 + ‖s∗,ε,δc (cm)‖
1
2
1 )(1 + ‖∇cm‖2).

(5.64)

Finally, for the term with qc we use (5.48), (2.24) and (2.30) which lead to the following inequality

(qmc ,∇ζm) = − (Tδ(cm)Tδ(e
m)M(θm, cm)∇ζm,∇ζm)

−
(
Tδ(cm)Tδ(e

m)∇ζm),m(cm, θm)⊗∇ 1

θm

)
≤ −

(
Tδ(cm)Tδ(e

m)∇ζm,m(cm, θm)⊗∇ 1

θm

)
.

(5.65)

Thus, substituting (5.63)–(5.65) to (5.62) and for the term on the right hand side using (2.28), we
get

(5.66)

d

dt

∫
Ω

s∗,ε,δc (cm) dx+ C(ε, δ)‖vm‖∞(1 + ‖s∗,ε,δc (cm)‖
1
2
1 )(1 + ‖∇cm‖2)

≥
(
Tδ(cm)Tδ(e

m)∇ζm,m(cm, θm)⊗∇ 1

θm

)
+ C(δ, ε)‖∇cm‖22.

To finish the estimates based on the entropy balance we sum (5.61) and (5.66), neglect the terms
having the correct signs and with the help of the Young inequality applied onto the convective
term we observe

(5.67)

C(ε, δ)(1 + ‖em‖1 + ‖vm‖2∞)

(
C(ε, δ)−

∫
Ω

s∗,ε,δc (cm) + s∗e(e
m) dx

)
≥ − d

dt

∫
Ω

s∗,ε,δc (cm) + s∗e(e
m) dx+ C(δ, ε)‖∇cm‖22.

Hence, using (5.2) and a priori estimates (5.58)–(5.60) (and also the embedding W 1,2r ↪→ L∞),
we deduce that

(5.68) sup
t∈(0,T )

‖cm‖22 +

∫ T

0

‖∇cm‖22 dt ≤ C(ε, δ, n).
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Thus, having such an estimate, we can set u := em in (5.54) and by a standard manipulation and
using the defintion of qme and the setimate above, we get

(5.69) sup
t∈(0,T )

‖em‖22 +

∫ T

0

‖∇em‖22 dt ≤ C(ε, δ, n).

Consequently, it is now standard to deduce that also

(5.70)

∫ T

0

‖cm,t ‖2−1,2 + ‖vm,t ‖22 + ‖em,t ‖2−1,2 dt ≤ C(ε, δ, n).

Thus, having (5.58)–(5.59) and (5.68)–(5.70), we can extract a non relabeled subsequence and by
using the Aubin-Lions lemma we get

vm ⇀ v weakly in W 1,2(0, T ;V n),(5.71)

vm → v strongly in C(0, T ;V n),(5.72)

cm ⇀∗ c weakly in L2(0, T ;W 1,2(Ω;RL)) ∩W 1,2(0, T ;W−1,2(Ω;RL)),(5.73)

cm → c strongly in L2(0, T ;L2(Ω;RL)),(5.74)

em ⇀ e weakly in W 1,2(0, T ;W−1,2(Ω)) ∩ L2(0, T ;W 1,2(Ω)),(5.75)

em → e strongly in L2(0, T ;L2(Ω)),(5.76)

qme ⇀ qe weakly in L2(0, T ;L2(Ω;Rd)),(5.77)

qmc ⇀ qc weakly in L2(0, T ;L2(Ω;Rd×L)),(5.78)

Sm ⇀ S weakly in Lq
′
(0, T ;Lq

′
(Ω;Rd×d)),(5.79)

rl ⇀ r weakly in L2(0, T ;L2(Ω;RL)).(5.80)

Thus, using (5.76) and (5.7), (5.3), (5.73)–(5.74) and the continuity of the projections Pm2 we have

θm ⇀ θ weakly in L2(0, T ;W 1,2(Ω)),(5.81)

θm → θ strongly in L2(0, T ;L2(Ω)),(5.82)

ζm ⇀ ζ weakly in L2(0, T ;W 1,2(Ω;RL)),(5.83)

where

θ = θ∗(e),(5.84)

ζ = ζ∗,ε,δ(c).(5.85)

Having all above convergence results and using the linear dependence of qme and qmc on ∇θm and
∇ζm, using the fact that V n is finite dimensional, we can easily let m → ∞ in (5.52)–(5.54) to
conclude

(5.86) (v,t,w)− (v ⊗ v,∇w) + (S,∇w) = 0 for all w ∈ V ndiv,

(5.87)
〈c,t,u〉+ ε(∇c,∇u)− (c⊗ v,∇u)− (qc,∇u) = (r,u)

for all u ∈W 1,2(Ω;RL) and a.a. t ∈ (0, T ),

(5.88)
〈e,t, u〉+ ε(∇e,∇u)− (ev,∇u)− (qe,∇u) = (S · ∇v, u)

for all u ∈W 1,2(Ω) and a.a. t ∈ (0, T ),

where

qc = q∗,δc (θ, c,∇ζ,∇θ),(5.89)

qe = q∗,δe (θ, c,∇ζ(c)),∇θ),(5.90)

S = S∗(θ, c,D(v)),(5.91)

r = r∗,δ(θ, c, ζ).(5.92)
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Moreover, it is standard to prove at this level the attainment of initial conditions and we have

(5.93) vn(0) := Pn1 (v0), c(0) := cε,δ0 , e(0) := eε,δ.

5.4. Limit δ → 0+. This is the key passage of the paper. We let δ → 0+ and consequently we
remove the presence of the cut-off functions Tδ and Tδ. However, to do so we need to prove that the
concentration are strictly positive uniformly. This is also the reason why we modify the definition
of the entropy s∗c . Hence, we denote the solution constructed in the previous subsection by the
superscript δ and omit writing all other indexes. Moreover, the constant C is again independent
of the order of approximation.

First, we recall the minimum principle for the internal energy, that is preserved due to the
strong convergence (5.76), i.e.,

(5.94) eδ ≥ δ almost everywhere in Q.

Next, we prove the same result also for the concetration cδ. Thus, setting

u := min(0, c1 − δ), u := (u, 0, . . . , 0)

in (5.87) we deduce (we use the presence of the cut-off functions Tδ and the fact that div vδ = 0)

c1 ≥ δ
almost everywhere in Q and repeating the same procedure we can easily deduce that

(5.95) cδi ≥ δ almost everywhere in Q for all i = 1, . . . , L.

Moreover, setting
u := u`

in (5.87) we can deduce with the help of (2.28) and (2.31) the following identity

〈(cδ · `),t, u〉+ ε(∇(cδ · `),∇u)− ((cδ · `)vδ,∇u) = 0 for all u ∈W 1,2(Ω) and a.a. t ∈ (0, T ).

Consequently, using the fact that
cδ0 · ` ≡ 1 in Ω,

and that div vδ = 0 we see that

cδ · ` = 1 almost everywhere in Q,

which together with (5.95) lead to

(5.96) cδ ∈ G almost everywhere in Q.

Thus, it directly follows (5.96) that

(5.97) sup
t∈(0,T )

‖cδ(t)‖∞ ≤ L.

Moreover, it also follows from (5.95), (5.96) and the definition of ζ∗,ε,δ and ζ∗,ε that (assuming
also that δ ≤ 2)

(5.98) ζδ = ζ∗,ε,δ(cδ) = ζ∗,ε(cδ) a.e. in Q.

Next, for the first a priori estimate, we repeat the same procedure as in the preceding subsec-
tions. Thus, for the velocity field we have exactly in the same manner as before

sup
t∈(0,T )

‖vδ(t)‖22 +

∫ T

0

‖vδ‖r1,r + ‖Sδ‖r
′

r′ dt ≤ C,(5.99) ∫ T

0

‖vδ,t‖22 + ‖vδ‖2r1,2r + ‖Sδ‖2r
′

2r′ dt ≤ C(n).(5.100)

Consequently, setting u ≡ 1 in (5.88) we get by using (5.99) and by (5.94) that

(5.101) sup
t∈(0,T )

‖eδ(t)‖1 ≤ C.

The crucial role however play the following estimates based on the entropy inequality. Note
please, that now we heavily use the minimum principles (5.94) and (5.95) in order to guarantee



26 M. BULÍČEK AND J. HAVRDA

that the test functions (in this case 1/θδ and ζδ) belongs to the correct spaces. Hence, first we see
that due to (5.94) we can set

u :=
1

θδ

in (5.88) to obtain (note that since div vδ = 0 the convective term vanishes)

(5.102)

d

dt

∫
Ω

s∗e(e
δ) dx = −ε

∫
Ω

∂2
e2s
∗
e(e

δ)|∇eδ|2 dx+

∫
Ω

Sδ ·D(vδ)

θδ
dx

+

∫
Ω

Tδ(cδ)Tδ(eδ)
κ(cδ, θδ)

(θδ)2
|∇θδ|2 dx−

(
Tδ(cδ)Tδ(eδ)∇ζδ,∇

1

θδ
⊗m(cδ, θδ)

)
.

Similarly, setting u := −ζδ in (5.87), which is a possible setting, we get (note that the convective
term vanishes again)

(5.103)

d

dt

∫
Ω

s∗,εc (cδ) dx = ε(∇cδ,∇ζδ)− (rδ, ζδ)

+

(
Tδ(cδ)Tδ(eδ)

(
M(cδ, θδ)∇ζδ +∇ 1

θδ
⊗m(cδ, θδ)

)
,∇ζδ

)
.

Thus, summing (5.102) and (5.103) we obtain the following identity

(5.104)

d

dt

∫
Ω

s∗e(e
δ) + s∗,εc (cδ) dx = −ε

∫
Ω

∂2
e2s
∗
e(e

δ)|∇eδ|2 dx+ ε(∇cδ,∇ζδ)

+

∫
Ω

Sδ ·D(vδ)

θδ
dx+

∫
Ω

Tδ(cδ)Tδ(eδ)
κ(cδ, θδ)

(θδ)2
|∇θδ|2 dx

+
(
(Tδ(cδ)Tδ(eδ)M(cδ, θδ)∇ζδ,∇ζδ

)
− (rδ, ζδ)

First, we notice that all terms on the right hand side are nonnegative. Indeed, using (2.40), we
get that

(5.105) −ε
∫

Ω

∂2
e2s
∗
e(e

δ)|∇eδ|2 dx ≥ εC1

∥∥∇ ln eδ
∥∥2

2
.

Next, it follows from (2.42) and (5.1) that

(5.106) ε(∇cδ,∇ζδ) ≥ εC−1‖∇cδ‖22.
Moreover, the assumptions (A3)–(A4) directly imply nonnegativity of the third and fourth terms
on the right hand side of (5.104). In addition, assuming (2.30), we see that

(5.107)
(
Tδ(cδ)Tδ(eδ)M(cδ, θδ)∇ζδ,∇ζδ

)
≥M1‖

√
Tδ(cδ)Tδ(eδ)P`∇ζδ‖22.

Finally, from (2.28) and (5.92) we get that

(5.108) −(rδ, ζδ) ≥ r1‖ q
√
Tδ(cδ)Tδ(eδ)P`ζδ‖qq.

Hence, substituting (5.105)–(5.108) into (5.104) and integrating with respect to t ∈ (0, T ), using
the assumptions (2.38), the definition (5.1) and the a priori estimates (5.94), (5.97) and (5.101)
we get

(5.109)

sup
t∈(0,T )

(
‖ ln eδ(t)‖1 + ε max

i=1,...,L
‖ ln cδi (t)‖1

)
+ ε

∫ T

0

‖∇cδ‖2 + ‖∇ ln(eδ)‖22 dt

+

∫ T

0

‖ q
√
Tδ(cδ)Tδ(eδ)P`ζδ‖qq + ‖

√
Tδ(cδ)Tδ(eδ)P`∇ζδ‖22 dt

≤ C(1 + ε max
i=1,...,L

‖ ln(c0)i‖1) ≤ C.

Thus, setting u := eδ in (5.88), using (2.39), (5.100) and (5.109) we obtain

(5.110) ε

∫ T

0

‖∇eδ‖22 dt ≤ C(n, ε).
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Next, we use the assumptions (A2), (A3) and the inequality (5.4) to deduce from (5.109) that
(note that we use here the properties (2.32) and (2.35))

(5.111)

∫ T

0

‖qδc‖22 + ‖qδe‖22 + ‖rδ‖q
′

q′ + ‖ q
√
Tδ(cδ)Tδ(eδ)ζ‖qq dt ≤ C(ε, n).

Consequently, using this estimate and the relations (5.48)–(5.88) and also the fact that the basis
is smooth we obtain in the standard way that

(5.112) ‖cδ,t‖(L2(0,T ;W 1,2(Ω;RL))∩Lq(0,T ;Lq(Ω;RL)))∗ +

∫ T

0

‖vδ,t‖22 + ‖eδ,t‖2−1,2 dt ≤ C(δ, n).

Thus, having (5.97), (5.99)–(5.101) and (5.109)–(5.112), we can extract a subsequence that we do
not relabel and by using the Aubin-Lions lemma we get

vδ ⇀ v weakly in W 1,2(0, T ;V n),(5.113)

vδ → v strongly in C(0, T ;V n),(5.114)

cδ ⇀ c weakly in L2(0, T ;W 1,2(Ω;RL)),(5.115)

cδ,t ⇀ c,t weakly in (L2(0, T ;W 1,2(Ω;RL)) ∩ Lq(0, T ;Lq(Ω;RL)))∗,(5.116)

cδ → c strongly in Lp(0, T ;Lp(Ω;RL)) for all p ∈ [1,∞),(5.117)

eδ ⇀ e weakly in W 1,2(0, T ;W−1,2(Ω)) ∩ L2(0, T ;W 1,2(Ω)),(5.118)

eδ → e strongly in L2(0, T ;L2(Ω)),(5.119)

qδe ⇀ qe weakly in L2(0, T ;L2(Ω;Rd)),(5.120)

qδc ⇀ qc weakly in L2(0, T ;L2(Ω;Rd×L)),(5.121)

Sδ ⇀ S weakly in Lr
′
(0, T ;Lr

′
(Ω;Rd×d)),(5.122)

rδ ⇀ r weakly in Lq
′
(0, T ;Lq

′
(Ω;RL)).(5.123)

The above convergence results allow us to let δ → 0+ in (5.86)–(5.88) to observe

(5.124) (v,t,w)− (v ⊗ v,∇w) + (S,∇w) = 0 for all w ∈ V ndiv,

(5.125)
〈c,t,u〉+ ε(∇c,∇u)− (c⊗ v,∇u)− (qc,∇u) = (r,u)

for all u ∈W 1,2(Ω;RL) and a.a. t ∈ (0, T ),

(5.126)
〈e,t, u〉+ ε(∇e,∇u)− (ev,∇u)− (qe,∇u) = (S, u∇v)

for all u ∈W 1,2(Ω) and a.a. t ∈ (0, T ).

Moreover, it is standard to prove at this level the attainment of initial conditions and we have

(5.127) v(0) = Pn1 (v0), c(0) = cε0 :=
c0

1 + εL
+

ε`

1 + εL
, e(0) = eε0 := min(ε−1, e0) + ε.

Hence, to end this subsection, we need to show that

qc = q∗c (θ, c,∇ζ,∇θ),(5.128)

qe = q∗e(θ, c,∇ζ,∇θ),(5.129)

S = S∗(θ, c,D(v)),(5.130)

r = r(θ, c, ζ),(5.131)

where

θ = θ∗(e),(5.132)

ζ = ζ∗,ε(c).(5.133)
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First, due to the continuity of θ∗ it directly follows from (5.118) and (5.119) that

θδ ⇀ θ weakly in L2(0, T ;W 1,2(Ω)),(5.134)

θδ → θ strongly in L2(0, T ;L2(Ω)),(5.135)

with θ given by (5.132). Consequently, due to the continuity of S∗ we can use the strong and
point-wise convergence results (5.117) and (5.135) to get (5.130). In order to identify the remaining
limits, we first denote

Qδδ0 := {(x, t) ∈ Q; min(eδ(t, x), cδ1(t, x), . . . , cδL(t, x)) ≤ 2δ0},
Qδ0 := {(x, t) ∈ Q; min(e(t, x), c1(t, x), . . . , cL(t, x)) ≤ 2δ0}.

First, we see that for any fixed δ0 > 0 and for all δ ≤ δ0 it follows from (5.109) and (5.111) that

(5.136)

sup
t∈(0,T )

(
‖ ln eδ(t)‖1 + ε max

i=1,...,L
‖ ln cδi (t)‖1

)
+

∫ T

0

‖ q
√
Tδ0(cδ)Tδ0(eδ)ζδ‖qq + ‖

√
Tδ0(cδ)Tδ0(eδ)P`∇ζδ‖22 dt ≤ C(ε, n).

Then using the Fatou lemma, weak-lower semicontinuity of norms, the definition of ζδ and the
convergence results (5.115), (5.117), (5.118), (5.119) and (5.109) we get that

(5.137)

sup
t∈(0,T )

(
‖ ln e(t)‖1 + ε max

i=1,...,L
‖ ln ci(t)‖1

)
+

∫ T

0

‖
√
Tδ0(c)Tδ0(e)ζ‖qq + ‖

√
Tδ0(c)Tδ0(e)P`∇ζ‖22 dt ≤ C(ε, n)

with ζ given by (5.133). Next, it follows from (5.136) and (5.137) that

(5.138)

|Qδδ0 | :=
∫
Qδδ0

1 dx dt ≤
∫
Q

| ln eδ(t, x)|+
∑L
i=1 | ln cδi (t, x)|

| ln(2δ0)|
dx dt ≤ C(ε, n)

| ln 2δ0|
,

|Qδ0 | :=
∫
Qδ0

1 dx dt ≤
∫
Q

| ln e(t, x)|+
∑L
i=1 | ln ci(t, x)|

| ln(2δ0)|
dx dt ≤ C(ε, n)

| ln 2δ0|
and consequently

(5.139) |Q0| = 0.

Since

(5.140) Tδ0 ↗ 1, Tδ0 ↗ 1, in Q \Q0 for δ0 → 0+,

we can use (5.139) and the monotone convergence theorem to deduce from (5.137) that

(5.141) sup
t∈(0,T )

(
‖ ln e(t)‖1 + ε max

i=1,...,L
‖ ln ci(t)‖1

)
+

∫ T

0

‖ζ‖qq + ‖P`∇ζ‖22 dt ≤ C(ε, n).

Finally, we show (5.128), (5.129) and (5.131). Thus, let u ∈ L∞(Q;Rd) be arbitrary, then

lim
δ→0+

∫ T

0

(qδe,u) dt = lim
δ→0+

∫ T

0

(
(Tδ(cδ)Tδ(eδ)− Tδ0(cδ)Tδ0(eδ))q∗e(θ

δ, cδ,∇ζδ,∇θδ),u
)
dt

+ lim
δ→0+

∫ T

0

(
Tδ0(cδ)Tδ0(eδ)q∗e(θ

δ, cδ,∇ζδ,∇θδ),u
)
dt =: Iδ01 + Iδ02 .

(5.142)

Next, due to the linearity of q∗e with respect to gradients and due to the presence of fixed (with
respect to δ) cut-off functions, we can use the weak convergence results (5.115) and (5.134), the
continuity of ζ∗,ε and the strong convergence results (5.117) and (5.135) to easily identify the
second limit as (using also (2.35))

(5.143) Iδ02 =

∫ T

0

(Tδ0(c)Tδ0(e))q∗e(θ, c,∇P`ζ,∇θ),u) dt.



INCOMPRESSIBLE MIXTURES WITH THERMAL DIFFUSION CROSS EFFECTS 29

Consequently, using the Lebesgue dominated convergence theorem, (5.134), (5.141), (5.139) and
(5.140), we find that

(5.144) lim
δ0→0+

Iδ02 =

∫ T

0

(q∗e(θ, c,∇P`ζ,∇θ),u) dt.

In addition, using (5.120) and the Hölder inequality, we get that

|Iδ01 | ≤ C(u, ε, n) lim sup
δ→0+

|Bδδ0 |
1
2 ,

where the set Bδδ0 is defined as

Bδδ0 := {(x, t) ∈ Q; Tδ(cδ)Tδ(eδ) 6= Tδ0(cδ)Tδ0(eδ)}.

Since, Bδδ0 ⊂ (Qδδ0 ∪ {(x, t) ∈ Q; eδ > 1
δ0
}), it directly follows from (5.119) and (5.138) that

lim sup
δ0→0+

|Iδ01 | = 0,

and consequently it follows from (5.142) and the uniqueness of the weak limit that (5.129) holds.
The same procedure then also leads to the identification of qc and r, i.e., to (5.128) and (5.131).

In addition, by the Fatou lemma and the weak lower semicontinuity, we can also deduce from
(5.104) that for almost all time t ∈ (0, T )

(5.145)

∫
Ω

s∗e(e(t))− s∗e(eε0) + s∗,εc (c(t))− s∗,εc (cε0) dx

≥
∫ t

0

∫
Ω

S ·D(v)

θ
+
κ(c, θ)

θ2
|∇θ|2 dx dτ +

∫ t

0

(M(c, θ)∇ζ,∇ζ)− (r, ζ) dτ.

5.5. Limit n→∞ and ε→ 0+. In this final subsection we prove the main theorem of the paper.
Since, this limit passage follows step by step the proof of Theorem 3.1 we point out here only the
essential differences. Thus, we set ε := 1

n and then let n → ∞ and denote by superscript n the
solution constructed in the preceding subsection. Note here that we already have

(5.146) sup
t∈(0,T )

‖en(t)‖1 ≤ C

and consequently it directly follows from (5.145) (see Section 4) that

(5.147) sup
t∈(0,T )

‖ ln en(t)‖1 +

∫ T

0

‖P`ζn‖21,2 + ‖ζn‖qq dt ≤ C.

But this is the starting point for all further estimates and also limit passage and one can repeat
step by step the procedure in Section 4 to finish the proof of the main theorem. The only change
is only the identification of the weak limit of ζn, which heavily relies on the assumption (2.43) and
we discuss it below. First, one can show (exactly as in Section 4) that for a subsequence

cn → c strongly in L2(0, T ;L2(Ω;RL)),(5.148)

P`ζn ⇀ P`ζ weakly in L2(0, T ;W 1,2(Ω;RL)),(5.149)

ζn → ζ weakly in Lq(0, T ;Lq(Ω;RL)).(5.150)

Hence, it remains to show that

(5.151) ζ = ζ∗(c)

and that

ζn → ζ stronlgly in L1(0, T ;L1(Ω;RL)).(5.152)

First, notice that it follows from (A7) and (5.148) that for arbitrary fixed δ > 0 (using also the
fact that cn ∈ G)

Tδ(cn)ζn → Tδ(c)ζ strongly in L1(0, T ;L1(Ω;RL)).(5.153)
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Thus, we see that all we need to show is that for any K there exist δ > 0 such that for all n

(5.154) |Qnδ | ≤
1

K
,

where

Qnδ := {(x, t) ∈ Q; min
i=1,...,L

cni ≤ δ}.

Indeed, having (5.154), the relation (5.152) then directly follows from (5.150) and (5.153). To
show (5.154) we first use (5.5) and (5.150) to obtain∫

Q

|ζ∗(cn)|q dx dt ≤ C.

Consequently, (5.154) directly follows from the assumption (2.43) and the proof of Theorem 3.2 is
complete.
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[25] T. Roub́ıček: Incompressible ionized fluid mixtures: a non-Newtonian approach. IASME Transactions, 2:1190–

1197, 2005.
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