
EXISTENCE AND QUALITATIVE THEORY FOR NONLINEAR

ELLIPTIC SYSTEMS WITH A NONLINEAR INTERFACE

CONDITION USED IN ELECTROCHEMISTRY

MICHAL BATHORY, MIROSLAV BULÍČEK, AND ONDŘEJ SOUČEK

Abstract. We study a nonlinear elliptic system with prescribed inner inter-
face conditions. These models are frequently used in physical system where

the ion transfer plays the important role for example in modelling of nano-

layer growth or Li-on batteries. The key difficulty of the model consists of the
rapid or very slow growth of nonlinearity in the constitutive equation inside

the domain or on the interface. While on the interface, one can avoid the diffi-

culty by proving a kind of maximum principle of a solution, inside the domain
such regularity for the flux is not available in principle since the constitutive

law is discontinuous with respect to the spatial variable. The key result of

the paper is the existence theory for these problems, where we require that
the leading functional satisfies either the delta-two or the nabla-two condition.

This assumption is applicable in case of fast (exponential) growth as well as
in the case of very slow (logarithmically superlinear) growth.

1. Introduction

This paper focuses on the existence and uniqueness analysis of nonlinear elliptic
systems with general growth conditions that may have discontinuity on an inner
interface which describes the transfer of a certain quantity through this interface.
To describe such problem mathematically, we consider a domain Ω ⊂ Rd, d ≥ 2,
with Lipschitz boundary ∂Ω and with an inner interface Γ. The considered domain
and the interface are shown in Figure

fig1
1 and we always have in mind a similar

situation. We could also consider more interfaces inside of the domain Ω but it
would not bring any additional mathematical difficulties so we restrict ourselves
only to the situation depicted in Fig.

fig1
1. Thus, that the domain Ω is decomposed

into two parts Ω1 and Ω2 by the interface Γ such that Ωi is also Lipschitz for i = 1, 2.
Further, we assume that there is the Dirichlet part of the boundary ΓD ⊂ ∂Ω and
the Neumann part ΓN ⊂ ∂Ω and we denote by n the unit normal vector on Γ,
which is understood always as the unit normal outward vector to Ω1 at Γ (note
that then −n is the unit outward normal vector to Ω2 on Γ). We also use the
symbol n to denote the unit outward normal vector to Ω on ∂Ω.

The problem reads as follows: For given mappings h : Ω × Rd×N → Rd×N ,
b : Γ × RN → RN , given Dirichlet data φ0 : ΓD → RN and Neumann data j0 :
ΓN → Rd×N , to find φ : Ω → RN (here N ∈ N is a number of unknowns) solving
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Figure 1. Prototypical domain Ω.

the following system

pdepde (1.1)

−divh(x,∇φ(x)) = 0 in Ω,

h(x,∇φ(x)) · n(x) = b(x, [φ](x)) on Γ,

h(x,∇φ(x)) · n(x) = j0(x) · n(x) on ΓN,

φ(x) = φ0(x) on ΓD.

Here, the symbol [φ] denotes the jump of φ on Γ. More precisely, for x ∈ Γ we
define

jumpfG

[φ](x) := lim
h→0+

φ(x+ hn(x))− φ(x− hn(x)).

Consequently, we also cannot assume that φ has derivatives in the whole Ω and
therefore the symbol ∇φ appearing in (

pde
1.1) is considered only in Ω1 and Ω2. Fur-

ther, as we shall always assume that φ is a Sobolev function on Ω1 as well as on Ω2,
it makes sense to talk about the trace of φ on ∂Ω1 and ∂Ω2 and thus the definition
of [φ] is meaningful, see Section

Se2
2 for precise definitions and notations.

The model (
pde
1.1) is frequently used when modelling the transfer of ions (or other

particles) through the interface Γ between two different materials with possibly
different relevant properties represented by sets Ω1 and Ω2. The first prototypic
example, we have in mind, is the the process of charging and discharging of lithium-
ion batteries. The model of the form (

pde
1.1) with N = 1 and h being linear with

respect to ∇φ but being discontinuous with respect to x when crossing the interface
Γ was derived and used for modelling of this phenomenon. Note that in this set-
ting, the growth or behaviour of the function b is very fast/wild, which may cause
additional difficulties. We refer to

LaZa11,Lion,Seger
[13, 14, 15] for physical justification of such a

model and to
dorfan,dorf
[4, 6] for the mathematical and numerical analysis of such model

with zero j0. The second prototypic example is the modeling of porous metal oxide
layer growth in the anodization process. The unknown function φ then represents
an electrochemical potential. It has been experimentally observed that under some
special conditions, the titanium oxide forms a nanostructure which resembles pores.
In the thesis

H
[9], it is confirmed numerically that the model (

pde
1.1) (or rather its ap-

propriate unsteady version) is able to capture this phenomenon if the nonlinearities
h and b are chosen accordingly. For this particular application, the mapping h
models the high field conduction law in Ω2, while in Ω1 it corresponds to the stan-
dard Ohm law, and b models the Butler-Volmer relation, see e.g.

field2,H,field
[5, 9, 11] and
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references therein for more details. After some unimportant simplifications and by
setting all electrochemical constants equal to one, these electrochemical laws take
the following form:

constconst (1.2)

h(x,v) =


sinh |v|
|v|

v for x ∈ Ω1, v ∈ Rd×N ,

v for x ∈ Ω2, v ∈ Rd×N ,

b(x, z) =
exp |z| − 1

|z|
z for z ∈ RN .

Thus, it turns out that in some applications, the nonlinearities h and b exhibit a very
fast growth (exponential-like) with respect to the gradient of unknown and even
worse due to the discontinuity with respect to the spatial variable the growth can
oscillate between linear or exponential. Therefore, our aim is to obtain a reasonable
mathematical theory for (

pde
1.1) under minimal assumptions on the smoothness with

respect to the spatial variable x and on the growth with respect to the gradient of
unknown required for h and b.

Without the interface condition on Γ, the system (
pde
1.1) is a nonlinear elliptic

system (provided that h is a monotone mapping), for which the existence theory
can be obtained in a relatively standard way if h has polynomial growth and leads
to the direct application of the standard monotone operator theory. Recently, this
theory was further generalized in

Bul2,Bul1
[1, 2] also into the framework of Orlicz spaces

with h having a general (possibly exponential) growth and being discontinuous
with respect to the spatial variable. The problem (

pde
1.1) with the interface condition

was also recently studied in
dorfan
[4] for the scalar setting, i.e. with N = 1 and only for h

being linear with respect to ∇φ and having discontinuity with respect to the spatial
variable on Γ. The authors in

dorfan
[4] established the existence of a weak solution for

rather general class of functions b describing the jump on the interface by proving
the maximum principle for φ. Note that such a procedure heavily relies on the
scalar structure of the problem, the linearity of h is used in the proof and it also
requires the zero flux j0.

To give the complete picture of the problem (
pde
1.1), we would like to point out

that in case that h and b are strictly monotone (and consequently invertible),
we can set f := h−1 and g := b−1. Further, we denote j := h(∇φ), which in
the electrochemical interpretation represents the current density flux. Then, the
system (

pde
1.1) can be rewritten as

pdempdem (1.3)

−div j(x) = 0 in Ω,

f(x, j(x)) = ∇φ(x) in Ω \ Γ,

g(x, j(x) · n(x)) = [φ](x) on Γ,

j(x) · n(x) = j0(x) · n(x) on ΓN,

φ(x) = φ0(x) on ΓD.

and j : Ω → Rd×N can be seen as an unknown. This is the first step to the so-
called mixed formulation which seems to be advantageous from the computational
viewpoint, see the numerical experiments in

H
[9].

The key result of the paper is that we provide a complete existence theory for
model (

pde
1.1) assuming very little assumption on the structure and growth of non-

linearities h and b and on the data φ0 and j0 and we provide also its equivalence
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to (
pdem
1.3). Furthermore, we present a constructive proof based on the Galerkin ap-

proximation for both formulations (
pde
1.1) and (

pdem
1.3), which may serve as a starting

point for the numerical analysis. Moreover, in case that the nonlinearities are just
derivatives of some convex potentials (which is e.g. the case of (

const
1.2)), we show that

the solution can be sought as a minimizer to certain functional. Finally, we would
like to emphasize that we aim to build a robust mathematical theory for a very
general class of problems allowing fast/slow growths of nonlinearities, minimal as-
sumptions on data and being able to cover also general systems of elliptic PDE’s,
not only the scalar problem.

To end this introductory part, we just formulate a meta-theorem for the proto-
typic model (

const
1.2) and refer to Section

Se2
2 for the precise statement of our result.

th:meta Theorem 1.1 (Meta-theorem). Let the nonlinearities h and b satisfy (
const
1.2). Then

for any reasonable data φ0 and j0 there exist a unique solution φ to (
pde
1.1) and a

unique solution j to (
pdem
1.3). Moreover, these solutions can be found as minimizers

of certain functionals.

2. Notations & Assumptions & Results
Se2

In this part, we formulate precisely the main result of the paper. To do so
rigorously, we first need to introduce certain function spaces that are capable to
capture the very general behaviour of nonlinearities h and b. Therefore, we first
shortly introduce the Musielak–Orlicz spaces, then we formulate the assumptions
on nonlinearities h and b, the geometry of Ω and the data φ0 and j0 and finally
state the main results of the paper. Also we simply write the symbol “·” to denote
the scalar product on Rd or just to say that the product has d-summands, whenever
there is no possible confusion. Similarly, the symbol “�” denotes the scalar product
on RN or the fact that the product has N -summands, and finally the symbol “:” is
reserved for the scalar product on Rd×N , or just for emphasizing that the product
has (d×N)-summands.

M-O
2.1. The Musielak–Orlicz spaces. We recall here basic definitions and facts
about Musielak–Orlicz spaces and the interested reader can find proofs e.g. in

Kras
[12]

or in a book
HaHa
[10].

We say that Υ : Ω × Rm → [0,∞) with m ∈ N, is an N -function if it is
Carathéodory1, even and convex with respect to the second variable z ∈ Rm and
satisfies for almost all x ∈ Ω (note that this is a general definition but in our setting
the number m will correspond either to N or to d×N depending on the context)

growgrow (2.1) lim
|z|→0

Υ(x, z)

|z|
= 0 and lim

|z|→∞

Υ(x, z)

|z|
=∞.

Further, the N -function Υ is said to satisfy the ∆2 condition if there exist constants
c,K ∈ (0,∞) such that for almost all x ∈ Ω and all z ∈ Rm fulfilling |z| > K there
holds

delta2delta2 (2.2) Υ(x, 2z) ≤ cΥ(x, z).

The complementary (convex conjugate) function to Υ is defined for all (x, z) ∈
Ω× Rm by (within this section, the symbol “·” is also used for the scalar product

1The function g(x,z) is called Carathéodory if it is for almost all x ∈ Ω continuous with respect
to z and also for all z ∈ Rm measurable with respect to x.
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on Rm)
Υ∗(x, z) = sup

y∈Rm

(z · y −Υ(x,y))

and it is also an N -function. This definition directly leads to the Young inequality

z1 · z2 ≤ Υ(x, z1) + Υ∗(x, z2) for all z1, z2 ∈ Rm

and thanks to the convexity of Υ and the fact Υ(x, 0) = 0 (it follows from (
grow
2.1)),

we have that for all (x, z) ∈ Ω× Rm and 0 < ε < 1 there holds

Υ(x, εz) ≤ εΥ(x, z).

This allows us to introduce the ε-Young inequality (with ε ∈ (0, 1))

z1 · z2 ≤ εΥ(x, z1) + Υ∗
(
x,
z2

ε

)
.

Having the notion of N -function, we can now define the Musielak–Orlicz spaces.
Recall that Ω ⊂ Rd is an open set and for arbitrary m ∈ N define the set

MΥ(Ω) :=

{
v ∈ L1(Ω;Rm) :

∫
Ω

Υ(x,v(x)) dx <∞
}
.

Since the set M does not form necessarily a vector space, we define the Orlicz space
LΥ(Ω) as the linear hull of MΥ(Ω) and equip it with the Luxembourg norm

‖v‖Υ;Ω := inf

{
λ > 0 :

∫
Ω

Υ

(
x,
v(x)

λ

)
dx ≤ 1

}
for all v ∈ LΥ(Ω).

We will often omit writing the subscript Ω whenever it is clear from the context. It
also directly follows from the Young inequality, that we have the Hölder inequality
in the form∫

Ω

v(x) · u(x) dx ≤ 2‖v‖Υ‖u‖Υ∗ for all v ∈ LΥ(Ω) and all u ∈ LΥ∗
(Ω).

Note that the equality MΥ(Ω) = LΥ(Ω) holds if and only if Υ satisfies the ∆2

condition (
delta2
2.2). Further, by EΥ(Ω) we denote the closure of L∞(Ω;Rm) in the

norm ‖·‖Υ. The purpose of this definition is that the space EΥ(Ω) is separable,
since the set of all polynomials on Ω is dense in EΥ(Ω). In addition, if Υ satisfies
the ∆2 condition, we have the following identities

22 (2.3) EΥ(Ω) = MΥ(Ω) = LΥ(Ω),

while if the ∆2 condition is not satisfied, there holds

2.52.5 (2.4) EΥ(Ω) $MΥ(Ω) $ LΥ(Ω).

Furthermore, since EΥ(Ω) is a linear space, we have for arbitrary v ∈ EΥ(Ω) and
K ∈ R that Kv ∈ EΥ(Ω). Consequently, it follows from (

2
2.3)–(

2.5
2.4) that

goodupsgoodups (2.5)

∫
Ω

Υ(x,Kv(x)) dx <∞ for all v ∈ EΥ(Ω) and all K ∈ R.

Finally, for any N -function Υ, we have the following identification of dual spaces

55 (2.6) LΥ(Ω) = (EΥ∗
(Ω))∗.

Thus, although the space LΥ(Ω) is not reflexive2 in general, the property (
5
2.6) still

ensures at least the weak∗ sequential compactness of bounded sets in LΥ(Ω) by

2It is evident consequence of (
2
2.3), (

2.5
2.4) and (

5
2.6) that LΥ(Ω) is reflexive if and only if both

functions Υ and Υ∗ satisfy the ∆2 condition.
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the Banach-Alaoglu theorem. Finally, the space LΥ(Ω) coincides with the weak∗

closure of L∞(Ω;Rm).
The very similar definitions can be made for the spaces defined on Γ (the (d−1)-

dimensional subset of Ω) and we have the spaces EΥ(Γ), MΥ(Γ) and LΥ(Γ) with
exactly same characterizations as above.

S:ass
2.2. Assumptions on the domain and nonlinearities. We start this part by
precise specification of the domain Ω, whose prototype is depicted in Fig.

fig1
1, where

one can see Ω with its boundary ∂Ω = ΓD ∪ ΓN and interface Γ. Below, we state
precisely the necessary assumptions on Ω, however the reader should always keep
in mind the “topology” of the set from Fig.

fig1
1.

Domain Ω: We assume the following:

(O1) The set Ω ⊂ Rd, d ≥ 2, is open, bounded, connected and Lipschitz.
(O2) The boundary ∂Ω can be written as a union of the closures of two relatively

(in (d − 1) topology) open disjoint sets ΓN and ΓD, where ΓD consists of
two separated components Γ1

D and Γ2
D of non-zero surface measure.

(O3) The interface Γ is a connected component of the set Ω that separates Γ1
D

from Γ2
D such that the set Ω is bisected by Γ into Ω1 and Ω2 and both Ω1

and Ω2 are Lipschitz sets.

We recall that the outward normal vector n on Γ is chosen to point outwards Ω1.
Next, we introduce the assumptions on nonlinearities. We split them into two

parts. The first one deals with the standard minimal assumption on the smoothness,
growth and monotonicity, and the second one is an additional assumption that will
be used for the existence theorem.

Assumptions on h and b: We assume that h : Ω × Rd×N → Rd×N and b :
Γ× RN → RN are Carathéodory mappings and satisfy:

(A1) The mappings h and b are monotone with respect to the second variable
and zero at zero, i.e. for all v1,v2 ∈ Rd×N , all z1, z2 ∈ RN and almost all
x ∈ Ω there holds

(h(x,v1)− h(x,v2)) : (h1 − h2) ≥ 0,

(b(x, z1)− b(x, z2)) � (z1 − z2) ≥ 0,

h(x, 0) = b(x, 0) = 0.

nulanula (2.7)

(A2) There exist N -functions Φ and Ψ, a nonnegative constant C and positive
constants 0 < αh, αb ≤ 1 such that for all v ∈ Rd×N , all z ∈ RN and almost
all x ∈ Ω, there holds

h(x,v) : v ≥ αh(Φ∗(x,h(x,v)) + Φ(x,v))− C,ii (2.8)

b(x, z) � z ≥ αb(Ψ∗(x, b(z)) + Ψ(x, z))− C.iiii (2.9)

In case, we are more interested in the formulation for fluxes, i.e. for (
pdem
1.3), we

have the following assumptions on f and g.

Assumptions on f and g: We assume that f : Ω × Rd×N → Rd×N and g :
Γ× RN → RN are Carathéodory mappings and satisfy:
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(A1)∗ The mappings h and b are monotone with respect to the second variable
and zero at zero, i.e. for all v1,v2 ∈ Rd×N , all z1, z2 ∈ RN and almost all
x ∈ Ω there holds

(f(x,v1)− f(x,v2)) : (v1 − v2) ≥ 0,

(g(x, z1)− g(x, z2)) � (z1 − z2) ≥ 0,

f(x, 0) = g(x, 0) = 0.

nulaA

(A2)
∗

There exist N -functions Φ and Ψ, a nonnegative constant C and positive
constants 0 < αh, αb ≤ 1 such that for all v ∈ Rd×N , all z ∈ RN and almost
all x ∈ Ω, there holds

f(x,v) : v ≥ αf (Φ∗(x,v) + Φ(x,f(x,v)))− C,iAiA (2.10)

g(x, z) � z ≥ αg(Ψ∗(x, z) + Ψ(x, g(x, z)))− C.iiAiiA (2.11)

Note that if h and b are strictly monotone, i.e. (
nula
2.7)1 holds for all v1 6= v2

with the strict inequality sign, then we can denote their inverses (with respect
to the second variable) f := h−1, g := b−1 and the assumptions (A1)–(A2) and
(A1)∗–(A2)∗ are equivalent. Also the assumption h(0) = b(0) = 0 in (A1) is not
necessary, it just makes the proofs more transparent. If h(0) 6= 0, we can always
write h(v) = (h(v)− h(0)) + h(0) and follow step by step all proofs in the paper.

Finally, we specify the assumptions that will guarantee the existence (and also
the uniqueness) of the solution to (

pde
1.1) and (

pdem
1.3), respectively.

Key assumptions for the existence of solution: In what follows we assume
that at least one of the following holds:

(Π) There exists Fh : Ω × Rd×N → R and Fb : Ω × RN → R (potentials) such
that h and b are their Fréchet derivatives, i.e. for all v ∈ Rd×N , z ∈ RN
and almost all x ∈ Ω there hold

∂Fh(x,v)

∂v
= h(x,v),

∂Fb(x, z)

∂z
= b(x, z).

(Π)∗ There exists Ff : Ω × Rd×N → R and Fg : Ω × RN → R (potentials) such
that f and g are their Fréchet derivatives, i.e. for all v ∈ Rd×N , z ∈ RN
and almost all x ∈ Ω there holds

∂Ff (x,v)

∂v
= f(x,v),

∂Fg(x, z)

∂z
= g(x, z).

(∆) At least one of the couples (Φ,Ψ) and (Φ∗,Ψ∗) satisfies3 the ∆2 condition.

From now, whenever we talk about Φ and Ψ, we always mean the N -functions
from (

i
2.8)–(

ii
2.9) or (

iA
2.10)–(

iiA
2.11), respectively. Also to shorten the notation, we will

omit writing the dependence on spatial variable x ∈ Ω but it is always assumed
implicitly, e.g. h(v) always means h(x,v) or h(x,v(x)) depending on the context
and similarly we use the same abbreviations for other functions/mappings.

3We say that a couple (Φ,Ψ) satisfies the ∆2 condition if both functions Φ and Ψ satisfy the
∆2 condition.
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S:weak
2.3. Notion of a weak solution. In this part, we define the precise notion of a
weak solution to (

pde
1.1) and/or to (

pdem
1.3). Since we deal with functions that may have

a jump across Γ, we use a slightly nonstandard definition of a weak gradient on
Ω, which however coincides with the standard definition on Ω1 and Ω2. Therefore
for any q ∈ L1(Ω;RN ), we say that w ∈ L1(Ω;Rd×N ) is a gradient of q if for all
ϕ ∈ C∞0 (Ω \ Γ;Rd×N ) we have4

gradgrad (2.12)

∫
Ω

w : ϕ = −
∫

Ω

q � (divϕ)

and we will denote ∇q := w as usual. This will be the default meaning of the
symbol ∇ in the whole paper. It is easy to see that if ∇q is integrable, then the
restrictions q|Ω1

and q|Ω2
are Sobolev functions on Ω1 and Ω2, respectively. Hence,

since both sets are Lipschitz, we can define for such q’s the jump of q across Γ as

[q] := trΩ2 q
∣∣
Γ
− trΩ1 q

∣∣
Γ
,

where trΩi
, i = 1, 2, is the trace operator acting upon functions defined on Ωi.

Function spaces related to problem (
pde
1.1). First, we focus on the definition

of certain spaces that are related to the problem (
pde
1.1). Thus, we introduce the

following three spaces

P := {q ∈ L1(Ω;RN ) : ∇q ∈ LΦ(Ω), [q] ∈ LΨ(Γ), trΩ1
q
∣∣
ΓD

= 0, trΩ2
q
∣∣
ΓD

= 0},

EP :=
{
q ∈ P : ∇q ∈ EΦ(Ω), [q] ∈ EΨ(Γ)

}
,

BP :=
{
q ∈ P : ∃{qn}∞n=1 ⊂ EP, ∇qn ⇀∗ ∇q in LΦ(Ω), [qn] ⇀∗ [q] in LΨ(Γ)

}
.

We equip these spaces with the norm

BanachBanach (2.13) ‖q‖P := ‖∇q‖Φ;Ω + ‖[q]‖Ψ,Γ,

where the fact that it is a norm follows from the Poincaré inequality and from |ΓD| >
0. The motivation for definition of such spaces are the properties of Musielak–Orlicz
spaces stated in Section

M-O
2.1. Moreover, we used the bold face to denote EΦ(Ω) and

LΦ(Ω) to emphasize that the objects with values in Rd×N are considered, while we
used the normal font letters LΨ(Γ) and EΨ(Γ) to denote the space of mappings
with value in RN . Furthermore, the space P equipped with the norm (

Banach
2.13) is

a Banach space since it can be identified with a closed subspace of the Banach
space LΦ(Ω)× Lψ(Γ) (see section Section

M-O
2.1 for properties of underlying spaces).

However, since it is not separable in general, we construct the space EP , which can
be again identified with a closed subspace of EΦ(Ω) × EΨ(Γ), which is separable.
Therefore the Banach space EP is separable as well. Finally, the fact, that the
solution will be in most cases found as a weak∗ limit of functions from EP , motivates
the definition of BP , which is thus nothing else than the weak∗ closure of EP . It is
also evident that if Φ and Ψ satisfy ∆2 condition then P = EP = BP .

4For sake of clarity, the identity (
grad
2.12) written in terms of components of w, ϕ and q has the

following form
N∑
i=1

d∑
j=1

∫
Ω
wi,jϕi,j = −

N∑
i=1

∫
Ω
qi

 d∑
j=1

∂ϕi,j

∂xj

 .
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Function spaces related to problem (
pdem
1.3). In case we are more interested in

solving (
pdem
1.3), we set

X := {τ ∈ LΦ∗
(Ω), τ · n ∈ LΨ∗

(Γ) :

∫
Γ

(τ · n) � [ϕ] +

∫
Ω

∇ϕ : τ = 0 ∀ϕ ∈ EP},

EX := {τ ∈X : τ ∈ EΦ∗
(Ω), τ · n ∈ EΨ∗

(Γ)},

BX := {τ ∈X : ∃{τn}∞n=1, τ
n ⇀∗ τ in EΦ∗

(Ω), τn · n⇀∗ τ · n in EΨ∗
(Γ)}.

Since we assume just integrability of τ : Ω→ Rd×N , we specify how the constraints
from the definition of X, EX and BX are understood. First, the meaning of
divergence and the zero trace on the Neumann part of the boundary is usually
formulated as follows:

id1id1 (2.14)
τ · n = 0 on ΓN

div τ = 0 in Ω

}
def⇔

∫
Ω

∇ϕ : τ = 0 ∀ϕ ∈ C0,1(Ω;RN ), ϕ|ΓD
= 0.

Note that the right hand side of (
id1
2.14) is fulfilled for τ ∈X since Lipschitz functions

vanishing on ΓD belong to EP . Furthermore, these functions do not have a jump
on Γ and therefore the corresponding integral in the definition ofX vanishes. Hence,
(
id1
2.14) is just the distributional form of the operator div (divergence) as well as the

trace of τ · n. We just allow a broader class of test functions in the definition of
X. Second, we can specify the meaning of τ ·n ∈ LΨ∗

(Γ) in the definition of X as
follows:

id2id2 (2.15) τ · n ∈ LΨ∗
(Γ)

def⇔ ∃w ∈ LΨ∗
(Γ),

∫
Γ

w � ϕ =

∫
Ω1

∇ϕ : τ ∀ϕ ∈ C0,1
0 (Ω;RN ).

Note that (
id1
2.14) also implies that∫

Ω1

∇ϕ : τ = −
∫

Ω2

∇ϕ : τ .

Hence, since we know that τ · n|Γ is well defined distribution because div τ = 0, it
follows from (

id2
2.15) that w can be identified with τ · n|Γ, which is the meaning we

use in the paper. However, also for the trace of τ · n, we shall require a broader
class of test functions than Lipschitz, which correspond to the test function from
EP in the definition of X. Finally, we equip X, EX and BX with the norm

repr

‖τ‖X := ‖τ‖Φ∗;Ω + ‖τ · n‖Ψ∗;Γ.

Similarly as before, we have that X and EX are the Banach spaces and in addition,

since EX can be identified with a closed subspace of EΦ∗
(Ω) × EΨ∗

(Γ), which is
separable, we have that EX is separable as well.

Assumptions on data φ0 and j0. The last set of assumptions is related to the
given boundary and volume data. To simplify the presentation, we assume that
φ0 and j0 are defined on Ω and specify the assumptions5 on φ0 : Ω → RN and
j0 : Ω→ Rd×N .

(D1) We assume that φ0 ∈W 1,1(Ω;RN ) such that

bcbc (2.16) ∇φ0 ∈ EΦ(Ω).

5The reason for such simplification is that we do not want to employ the trace and/or the
inverse trace theorem in Musielak–Orlicz spaces. But clearly, every φD ∈ W 1,∞(ΓD) can be

extended to the whole Ω such that it satisfies the assumption (D1).
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(D2) We assume that j0 : Ω→ Rd×N is measurable and satisfies

bc2bc2 (2.17) j0 ∈ E
Φ∗

(Ω), j0 · n = 0 on Γ, div j0 = 0 in Ω.

It is worth noticing, that we assume here better properties than we expect from
solution. First, since φ is a Sobolev function, it does not have any jump on Γ. Sec-
ond, we assume the the flux j0 over the surface Γ is also vanishing (since divergence
is zero, we can talk about the normal component of the flux on Γ, see (

bc2
2.17)). The

reason for such setting is that we just want to simplify the presentation of main
results and the proofs.

Definition of a weak solution. We shall define four notions of weak solution -
two for each formulation (

pde
1.1) and (

pdem
1.3). We start with the motivation of a notion of

weak solution to (
pde
1.1). We assume that we have a sufficiently good solution to (

pde
1.1)

and we take the scalar product of the first equality (it has N component) in (
pde
1.1)

by arbitrary q ∈ EP . We integrate the result over Ω and after using integration by
parts, we deduce that (recall our notation for ∇q in (

grad
2.12) and also our definition

of n and [q] on Γ)

0 = −
∫

Ω1

div(h(∇φ)− j0) � q −
∫

Ω2

div(h(∇φ)− j0) � q

= −
∫
∂Ω1\Γ

(h(∇φ)− j0)n � q −
∫
∂Ω2\Γ

(h(∇φ)− j0)n � q +

∫
Γ

(h(∇φ)− j0)n � [q]

+

∫
Ω

(h(∇φ)− j0) : ∇q

(
pde
1.1)
=

(
bc2
2.17)

∫
Γ

b([φ]) � [q] +

∫
Ω

h(∇φ) : ∇q −
∫

Ω

j0 : ∇q,

where we also used the facts that q vanishes on ΓD, that div j0 = 0 and that
j0 ·n = 0 on Γ. The above identity can thus be understood as a weak formulation
of (

pde
1.1) and we are led to the following definition.

ws2 Definition 2.1. Let Ω satisfy (O1)–(O3), nonlinearities h and b satisfy (A1)–(A2),
data φ0 and j0 satisfy (D1)–(D2). We say that the function φ is a weak solution
to (

pde
1.1) if

φ− φ0 ∈ P, h(∇φ) ∈ LΦ∗
(Ω), b([φ]) ∈ LΨ∗

(Γ)

and

wspotwspot (2.18)

∫
Ω

h(∇φ) : ∇q +

∫
Γ

b([φ]) � [q] =

∫
Ω

j0 : ∇q for all q ∈ EP.

Using the Hölder inequality, we see that both integrals in (
wspot
2.18) are well defined.

In addition, we see that for sufficiently regular φ, the computation above shows that
the φ solving (

wspot
2.18) solves (

pde
1.1) as well. Further, we introduce another concept of

solution, which a priori does not require any information on h(∇φ) and b([φ]).

Den Definition 2.2. Let Ω satisfy (O1)–(O3), nonlinearities h and b satisfy (A1)–(A2),
data φ0 and j0 satisfy (D1)–(D2). We say that the function φ is a variational weak
solution to (

pde
1.1) if

φ− φ0 ∈ P
and

enerener (2.19)

∫
Ω

(h(∇φ)− j0) : ∇(φ− φ0 − q) +

∫
Γ

b([φ]) � [φ− q] ≤ 0 for all q ∈ EP.



ANALYSIS OF A NONLINEAR ELLIPTIC SYSTEMS WITH JUMP ON THE INTERFACE 11

Although, we did not impose any assumptions on the integrability of h(∇φ) and
b([φ]), this information is included implicitly in (

ener
2.19) as it is shown in Lemma

cons
3.5

below.
The next notion of a weak solution concerns the “dual” formulation (

pdem
1.3) in terms

of the flux j. Formally, it can be again derived from (
pdem
1.3), (

bc
2.16) and integration

by parts as follows∫
Ω

(f(j)−∇φ0) : τ =

∫
Ω1

∇(φ− φ0) : τ +

∫
Ω2

∇(φ− φ0) : τ

=

∫
∂Ω1

(φ− φ0) � (τ · n) +

∫
∂Ω2

(φ− φ0) � (τ · n)

= −
∫

Γ

[φ] � (τ · n) = −
∫

Γ

g(j · n) � (τ · n)

for any τ ∈ EX.
Thus, we are led to the following definition.

ws Definition 2.3. Let Ω satisfy (O1)–(O3), nonlinearities f and g satisfy (A1)∗–
(A2)∗, data φ0 and j0 satisfy (D1)–(D2). We say that the function j is a weak
solution to (

pdem
1.3) if

j − j0 ∈X, f(j) ∈ LΦ(Ω), g(j · n) ∈ LΨ(Γ)

and

ws1ws1 (2.20)

∫
Ω

f(j) : τ +

∫
Γ

g(j · n) � (τ · n) =

∫
Ω

∇φ0 : τ for all τ ∈ EX.

Analogously as for φ, we can define the variational weak solution also for j.

wsf Definition 2.4. Let Ω satisfy (O1)–(O3), nonlinearities f and g satisfy (A1)∗–
(A2)∗, data φ0 and j0 satisfy (D1)–(D2). We say that the function j is a variational
weak solution to (

pdem
1.3) if

j − j0 ∈X
and

wsf1wsf1 (2.21)

∫
Ω

(f(j)−∇φ0) : (j−j0−τ )+

∫
Γ

g(j ·n)�((j−τ )·n) ≤ 0 for all τ ∈ EX.

Note that in Definition
ws2
2.1 the boundary condition φ = φD on ΓD is imposed by

φ − φ0 ∈ P , whereas in Definition
ws
2.3 the same boundary condition is encoded in

(
ws1
2.20) implicitly (it is shown later, see part ii) of Theorem

eq
3.4). The situation is

reversed for the boundary condition j · n = j0 · n on ΓN.

3. Main results

We start this section with the first key result of the paper that focuses on the
existence and uniqueness of a solution to (

pde
1.1).

ex1 Theorem 3.1. Let Ω satisfy (O1)–(O3) and φD fulfil (D1). Suppose that h and b
satisfy (A1), (A2).

(i) Assume that (∆) holds. Then, there exists a weak solution φ to (
pde
1.1). In

addition the weak solution satisfies φ ∈ φ0 +BP and (
wspot
2.18) and (

ener
2.19) are

valid for any function q ∈ BP .
(ii) Assume that (Π) holds. Then, there exists a variational weak solution φ ∈

φ0 + P to (
pde
1.1) and this solution is also a weak solution.
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If, in addition, the mapping h is strictly monotone, then the weak solution is unique
in the class φ0 +BP .

As a direct consequence of the above theorem, we also obtain the result stated
in Meta-theorem

th:meta
1.1, which is now formulated as

coro Corollary 3.2. Let Ω satisfy (O1)–(O3), let N = 1 and let φ0 and j0 fulfil (D1)
and (D2) with Φ(v) := cosh(|v|)−1 and set Ψ(z) := exp(|z|)−|z|−1. Then Φ and
Ψ are N -functions and there exists a unique variational weak solution φ ∈ φ0 +BP
to

div

(
sinh |∇φ|
|∇φ|

∇φ
)

= 0 in Ω \ Γ,

sinh |∇φ|
|∇φ|

∇φ · n− exp(|[φ]|)− 1

|[φ]|
[φ] = 0 on Γ,

∇φ · n = j0 · n on ΓN ,

φ = φ0 on ΓD.

To summarize, we can obtain the existence of a weak solution in two cases.
Either in case that there exists a potential (in this case the solution will be sought
as a minimizer) or in case that (∆) holds. Note that (∆) is quite a weak assumption
as the N -functions Φ such that both Φ and Φ∗ do not satisfy the ∆2 condition are
not that easy to find, especially in the applications (see the example in

Kras
[12, p. 28]).

Moreover, we would like to point out here that in case (∆) holds, we obtained a
better solution than just φ ∈ φ0 + P and we even have φ ∈ φ0 + BP . Note that
it is trivial if Φ and Ψ satisfy the ∆2 condition. However, if it is not the case,
it is a piece of new information. Second, we obtained the uniqueness in the class
φ0 + BP , which may be a smaller class than that introduced for weak solution.
However, since we know that there exists a weak solution in φ0 + BP , this class
may be understood as a proper selector for obtaining a uniqueness of a solution.

The second existence theorem uses the alternative weak formulation (
pdem
1.3) in

terms of the flux j.

ex2 Theorem 3.3. Let Ω satisfy (O1)–(O3) and let j0 fulfil (D2). Suppose that f and
g satisfy (A1)

∗
and (A2)

∗
.

(i) Assume that (∆) holds. Then, there exists a weak solution j (
pdem
1.3). In

addition the weak solution fulfills j ∈ j0 +BX and (
ws1
2.20) and (

wsf1
2.21) are

valid for any function τ ∈ BX.
(ii) Assume that (Π∗) holds. Then, there exists a variational weak solution

j ∈ j0 +X to (
pdem
1.3) and this solution is also a weak solution.

If, in addition, the mapping f is strictly monotone, then the weak solution is unique
in the class j0 +BX.

Also here, we would like to point out that in case (∆) holds, we found a solution
in BX and this is also the class of solutions in which we obtained the uniqueness.

Finally, we state the result about the equivalence of Definitions
ws2
2.1 and

ws
2.3.

eq Theorem 3.4. Let all assumptions of Definitions
ws2
2.1 and

ws
2.3 be satisfied. In ad-

dition, assume that h, f , g and b are strictly monotone, satisfying h−1 = f and
b−1 = g. Then



ANALYSIS OF A NONLINEAR ELLIPTIC SYSTEMS WITH JUMP ON THE INTERFACE 13

i) If φ is a weak solution in sense of Definition
ws2
2.1 then j := h(∇φ) satisfies

j − j0 ∈ X with j · n = b([φ]) on Γ and (
ws1
2.20) holds for all τ ∈ EX ∩

C1(Ω;Rd×N ). In addition if (∆) holds and φ ∈ φ0 + BP then j is a weak
solution in sense of Definition

ws
2.3.

ii) If j is a weak solution in sense of Definition
ws
2.3 then there exists φ ∈ φ0+P

fulfilling ∇φ = f(j) in Ω and [φ] = g(j · n) on Γ and φ is a weak solution
in sense of Definition

ws2
2.1.

This theorem shows the equivalence between the notions of solution if (∆) holds.
Furthermore, if (∆) is not satisfied then we have at least the equivalence of solution
in class of distributional solutions of (

pde
1.1) and (

pdem
1.3) respectively. Furthermore, it

follows from the above theorem, that we can choose the formulation, which is more
proper e.g. for numerical purposes, and we still construct the unique solution to
the original problem. Moreover, we see that the existence of a weak solution j
automatically implies the existence of a weak solution φ even in the case when (∆)
is not satisfied. Therefore also from the point of view of analysis of the problem,
the dual formulation (

pdem
1.3) seems to be preferable to the weak formulation (

pde
1.1).

The last result states when a variational weak solution is also a weak solution
and similarly when a weak solution is also a variational weak solution.

cons Theorem 3.5. Let φ ∈ φ0 + P be a variational weak solution to (
pde
1.1). Then φ is

also a weak solution and satisfies

konecnostkonecnost (3.1)

∫
Ω

(
Φ(∇φ) + Φ∗(h(∇φ))

)
+

∫
Γ

(
Ψ([φ]) + Ψ∗(b([φ]))

)
<∞.

Similarly, let φ ∈ φ0 +BP be a weak solution to (
pde
1.1) and (∆) hold. Then φ is also

a variational weak solution.
Let j ∈ j0 +X be a variational weak solution to (

pdem
1.3). Then j is also a weak

solution and satisfies
konec ∫

Ω

(
Φ(f(j)) + Φ∗(j)

)
+

∫
Γ

(
Ψ(g(j · n)) + Ψ∗(j · n)

)
<∞.

Similarly, let j ∈ j0 +BX be a weak solution to (
pdem
1.3) and (∆) hold. Then j is also

a variational weak solution.

In the rest of the paper, we prove the results stated in this section and finally
give also the proof of Meta-theorem

th:meta
1.1.

4. Proofs of the main results

This key part is organized as follows. First, in Section
SS1
4.1, we show Theorem

cons
3.5.

Then in Section
SS2
4.2 we prove Theorem

eq
3.4. Sections

SS3
4.3 and

SS4
4.4 are devoted to

the proofs of Theorem
ex1
3.1 and

ex2
3.3, respectively. Since both proofs are almost

identical, we prove Theorem
ex1
3.1 rigorously only for the case ii), i.e. if (Π) holds,

and Theorem
ex2
3.3 rigorously only for the case i), i.e. when (∆) holds true. The

corresponding counterparts of the proofs can be done in the very same way and
therefore we present here only sketch of these proofs in Sections

SS5
4.5 and

SS6
4.6. Finally

the proof of Corollary
coro
3.2 and consequently also of Meta-theorem

th:meta
1.1 is presented

in Section
SS7
4.7.
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SS1

4.1. Proof of Theorem
cons
3.5. We start the proof by showing that variational weak

solution is also weak solution. Let φ ∈ φ0+P be a variational weak solution. Thanks
to the Young inequality and the assumption (

i
2.8) (coercivity of h), we can write

(h(∇φ)− j0) · ∇(φ− φ0)

≥ αhΦ∗(h(∇φ)) + αhΦ(∇φ)−D − αhΦ∗(h(∇φ))

2
− αhΦ(∇φ)

2
− Φ( 2

αh
∇φ0)− Φ∗( 2

αh
j0)− Φ(∇φ0)− Φ∗(j0)

≥ αhΦ∗(h(∇φ))

2
+
αhΦ(∇φ)

2
− 2Φ( 2

αh
∇φ0)− 2Φ∗( 2

αh
j0)−D.

Similarly, we also recall (
ii
2.9)

αbΨ([φ]) + αbΨ
∗(b([φ])) ≤ D + b([φ])[φ].

Then, we set q := 0 in (
ener
2.19) and with the help of above estimates we deduce that∫

Ω

Φ∗(h(∇φ)) + Φ(∇φ) +

∫
Γ

Ψ([φ]) + Ψ∗(b([φ]))

≤ C
(

1 +

∫
Ω

Φ( 2
αh
∇φ0) + Φ∗( 2

αh
j0)

)
.

necoonecoo (4.1)

Since j0 ∈ E
Φ∗

(Ω) and ∇φ0 ∈ EΦ(Ω), we can use (
goodups
2.5) and obtain that the right

hand side of (
necoo
4.1) is finite. Hence, we obtain (

konecnost
3.1).

Thus, we just need to show that φ also satisfies (
wspot
2.18). Note that thanks to

(
konecnost
3.1) all integrals in (

wspot
2.18) and (

ener
2.19) are well defined and finite. Let us define for

arbitrary q ∈ P

J(q) :=

∫
Ω

(h(∇φ)− j0) : ∇q +

∫
Γ

b([φ]) � [q].

Then, because we already have (
konecnost
3.1), we can rewrite (

ener
2.19) as

−∞ < J(φ− φ0) ≤ J(q) <∞ for all q ∈ EP,

which means that J is bounded from below. But since J is linear and EP is a linear
space, this is possible if and only if J(q) = 0 for all q ∈ EP , which is nothing else
than (

wspot
2.18).

Next, we show that if (∆) holds and a weak solution satisfies in addition φ ∈
φ0+BP then it is also a variational weak solution. Let us consider first the case when
Ψ and Φ satisfy ∆2 condition. Then EP = P and we can simply set q := φ−φ0− q̃
in (

wspot
2.18) with arbitrary q̃ ∈ EP to obtain (

ener
2.19) (where we replace q by q̃). In the

second case, i.e. if Ψ∗ and Φ∗ satisfy ∆2 condition, we use the fact that φ−φ0 ∈ BP .
Thus, we can find a sequence {φn − φ0}∞n=1 ⊂ EP such that

∇φn −∇φ0 ⇀
∗ ∇φ−∇φ0 weakly∗ in LΦ(Ω),prpr1prpr1 (4.2)

[φn] ⇀∗ [φ] weakly∗ in LΨ(Γ).prpr2prpr2 (4.3)

Then we set q := φn−φ0− q̃ in (
wspot
2.18), which is now an admissible choice to obtain

enernnenernn (4.4)

∫
Ω

(h(∇φ)− j0) : ∇(φn − φ0 − q̃) +

∫
Γ

b([φ]) � [φn − q̃] = 0 for all q̃ ∈ EP.
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Since Ψ∗ and Φ∗ satisfy ∆2 condition, we see that h(∇φ) ∈ Eφ∗
(Ω) and b([φ]) ∈

EΨ(Γ). Consequently, we can use (
prpr1
4.2)–(

prpr2
4.3) and let n → ∞ in (

enernn
4.4) to recover

(
ener
2.19). Note that in both cases, we obtain (

ener
2.19) even with the equality sign.

The second part of the proof, i.e. the part for j, is done analogously and therefore
is omitted here.

SS2

4.2. Proof of Theorem
eq
3.4. We start the proof with the claim i). If φ is a weak

solution then it directly follows from (
wspot
2.18) that j − j0 ∈ X with j · n = b([φ])

on Γ. Thus, it remains to check that (
ws1
2.20) is satisfied. Hence, let τ ∈ EX be

arbitrary. Then, using the definition of j, we have

Va1Va1 (4.5)

∫
Ω

f(j) : τ+

∫
Γ

g(j·n)�(τ ·n)−
∫

Ω

∇φ0 : τ =

∫
Ω

(∇φ−∇φ0) : τ+

∫
Γ

[φ]�(τ ·n).

Thus, if τ is in addition C1, then we can directly integrate by parts and we see that
the right hand side vanishes, which finishes the first part of i). Second, assume that
(∆) holds. In the first case, i.e. if Φ and Ψ satisfy ∆2 condition, then we have that
φ − φ0 ∈ EP and the right hand side of (

Va1
4.5) vanishes by using the definition of

the space EX. In the second case, we use the fact that we can approximate φ by
a proper sequence defined in (

prpr1
4.2)–(

prpr2
4.3) and we can write∫

Ω

(∇φ−∇φ0) : τ +

∫
Γ

[φ] � (τ ·n) = lim
n→∞

∫
Ω

(∇φn−∇φ0) : τ +

∫
Γ

[φn] � (τ ·n) = 0,

where the second equality follows from the fact that for each n ∈ N, there holds
φn−φ0 ∈ EP and from the definition of the space EX. Hence, the integral in (

Va1
4.5)

vanishes, which is nothing else than (
ws1
2.20).

Next, we focus on the part ii). Hence, let j ∈ j0 +X be a weak solution. Then
we can set τ := τ 1 in (

ws1
2.20), where τ 1 ∈ C1(Ω;Rd×N ) ∩EX is arbitrary fulfilling

τ 1 ≡ 0 in Ω2 to obtain

ws1iws1i (4.6)

∫
Ω1

(f(j)−∇φ0) : τ 1 = 0.

Consequently, the de Rahm theorem implies that there exist φi ∈ W 1,1(Ωi;RN ),
such that

f(j) = ∇φ1 ⇔ j = h(∇φ1) in Ω1.

In addition, since ∂Ω1 ∩ ΓD 6= ∅, we have from (
ws1i
4.6) that φ1 must be chosen such

that φ1 = φ0 on ∂Ω1 ∩ ΓD. Consequently, it is unique. Similarly, we can uniquely
construct φ2 fulfilling φ2 = φ0 on ∂Ω2 ∩ ΓD and

f(j) = ∇φ2 ⇔ j = h(∇φ2) in Ω2.

Thus, defining finally

φ := φ1χΩ1
+ φ2χΩ2

and using the definition of a weak solution j and the fact that h = f−1, we deduce
that (recall here that the notion of ∇ does not reflect the jump over Γ)∫

Ω

Φ(∇φ) +

∫
Ω

Φ∗(h(∇φ)) =

∫
Ω

Φ(f(j)) +

∫
Ω

Φ∗(j) <∞.

To identify also a jump [φ] on Γ, we first state the following result, which will be
proven at the end of this section.
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Lvar Lemma 4.1. Let Ω satisfy (O1)–(O3) and f ∈ L1(Γ) be given. Assume that for
all τ ∈ C1(Ω1;Rd) fulfilling div τ = 0 in Ω1 and τ ·n = 0 on ΓN ∩ ∂Ω1 there holds

5858 (4.7)

∫
Γ

fτ · n = 0.

Then f ≡ 0 almost everywhere on Γ.

The above lemma is used in the following way. We set τ ∈ EX ∩ C1(Ω;Rd×N )
in (

ws1
2.20) arbitrarily and using the definition of φ and integration by parts, we find

that

0 =

∫
Ω

(f(j)−∇φ0) : τ +

∫
Γ

g(j · n) � (τ · n)

=

∫
Ω

∇(φ− φ0) : τ +

∫
Γ

g(j · n) � (τ · n)

= −
∫

Γ

[φ− φ0] � (τ · n) +

∫
Γ

g(j · n) � (τ · n)

=

∫
Γ

(g(j · n)− [φ]) � (τ · n).

ws1k

Since τ was arbitrary, can use (
58
4.7) to conclude

[φ] = g(j · n) ⇔ b([φ]) = j · n on Γ.

Consequently, we also have (by using of the notion of weak solution and the fact
that g = b−1)∫

Γ

Ψ([φ]) +

∫
Ω

Ψ∗(b([φ])) =

∫
Γ

Ψ(g(j · n)) +

∫
Γ

Ψ∗(j · n) <∞.

Finally, it directly follows from the definition of X and the identification of φ that
it satisfies (

wspot
2.18) and thanks to the above estimates φ is a weak solution. It just

remains to prove Lemma
Lvar
4.1.

Proof of Lemma
Lvar
4.1. We start the proof by considering arbitrary Γi ⊂ Γ, where Γi

can be described as a graph of Lipschitz function depending on the first (d − 1)
spatial variables, i.e. x1, . . . , xd−1 (here we use the fact that Ω1 is Lipschitz) and
fulfills for some cube QRi ⊂ Rd, Γi ⊂ QRi ⊂ Q2Ri ⊂ Ω, where QRi := x0 +
(−Ri, Ri)d with some x0 ∈ Rd. Furthermore, we can require (this also follows from
the Lipschitz regularity of Ω1 and from proper orthogonal transformation) that for
some ε > 0

require

n · ( 0, . . . , 0︸ ︷︷ ︸
(d−1)-times

, 1) ≥ ε on Γi.

Next, let ψ ∈ C∞0 ({x0 + (−Ri, Ri)d−1}) be arbitrary function depending only on
x1, . . . , xd−1 and g ∈ C∞0 (Q2Ri

) be arbitrary function fulfilling g ≡ 1 in QRi
. Then

we set

τ 1 := ( 0, . . . , 0︸ ︷︷ ︸
(d−1)-times

, ψ(x1, . . . , xd−1)g(x1, . . . , xd)).
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Note that τ 1 ∈ C∞0 (Rd;Rd). Finally, since Ω1 is connected and ΓD has positive
measure we can find a smooth open connected set G ⊂ Rd such that

{x ∈ Ω1; ψ(x)∂xd
g(x) 6= 0} ⊂ G,
G ∩ ∂Ω1 ⊂ ΓD,

G \ Ω1 6= ∅.

Finally, we find an arbitrary h ∈ C∞0 (G \ Ω1) such that

compapcompap (4.8)

∫
G\Ω1

h = −
∫
G∩Ω1

ψ(x)∂xd
g(x).

Next, we use the Bogovskii operator and we can find τ 2 ∈ C∞0 (G;Rd) satisfying

div τ 2 = ψ∂xd
g + h in G.

Note that such function can be found due to the compatibility assumption (
compap
4.8).

Furthermore, we simply extend τ 2 by zero outside G. Having prepared τ 1 and τ 2,
we set τ := τ 1 − τ 2. Then it follows from the construction that in Ω1 (note that
h is not supported in Ω1)

div τ = div τ 1 − div τ 2 = ψ∂xd
g − ψ∂xd

g = 0

and that τ = 0 on ΓN . Consequently, τ can be used in (
58
4.7) and we have

0 =

∫
Γ

f(τ · n) =

∫
Γi

fψnd.

Since ψ is arbitrary then fnd = 0 almost everywhere6 in Γi. Further, since nd > 0
everywhere on Γi then

f = 0 on Γi.

This statement holds true for arbitrary Γi and therefore can be extended to the
whole Γ. The proof is complete. �

SS3
4.3. Proof of Theorem

ex1
3.1. In this part, we assume that (Π) holds, i.e. there

exists Fh and Fb such that for any v ∈ Rd×N and z ∈ RN

∂Fh(v)

∂v
= h(v) and

∂Fb(z)

∂z
= b(z).

Furthermore, since h and b are coercive and monotone mappings (see (
nula
2.7)–(

ii
2.9)),

it directly follows that Fh and Fb are N -functions (non-negative, even, convex
mappings). In addition, we evidently have the following identities for the Gâteaux
derivatives of h and b:

gat1gat1 (4.9) ∂uFh(v) ≡ lim
λ→0+

1

λ
(Fh(v + λu)− Fh(v)) = h(v) : u, v,u ∈ Rd×N ,

and analogously

gat2gat2 (4.10) ∂yFb(z) = b(z)y, z, y ∈ RN .

6Here in fact the function ψ depends only on the first (d− 1) variables, but since the set Γi is

described as a graph of a Lipschitz mapping depending on x1, . . . , xd−1, we can use the standard

substitution and the fundamental theorem about integrable functions.
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In addition, it follows from the definition of the convex conjugate function that we
can replace (

i
2.8)–(

ii
2.9) by more sharp identities

h(v) : v = Fh(v) + F ∗h(h(v)),iheihe (4.11)

b(z) � z = Fb(z) + F ∗b (b(z))iiheiihe (4.12)

and with the help of (
ihe
4.11)–(

iihe
4.12), we can identify Φ and Ψ from (

i
2.8)–(

ii
2.9) with

Fh and Fb, i.e. we set in the rest of the proof Φ := Fh and Ψ := Fb. Finally, we
define the following functional

functfunct (4.13) I(p) :=

∫
Ω

Fh(∇(φ0 + p))− j0 : ∇(φ0 + p) +

∫
Γ

Fb([p]) for all p ∈ P

and look for the minimizer, i.e. we want to find p ∈ P such that for all q ∈ P there
holds

minchminch (4.14) I(p) ≤ I(q) ⇔ I(p) = min
q∈P

I(q).

To prove the existence of p fulfilling (
minch
4.14), we define

m := inf
q∈P

I(q)

and find {pn}∞n=1 as a minimizing sequence of I. It follows from the assumptions
on φ0 and j0 that such a sequence can be found and it fulfils for all n ∈ N

I(pn) ≤ 2I(0) <∞.
Hence, using the assumption on j0, the property (

goodups
2.5) and the Young inequality,

and defining φn := φ0 + pn, we find that

qwerqwer (4.15)

∫
Ω

Fh(∇φn) +

∫
Γ

Fb([φ
n])

≤ 2

(∫
Ω

Fh(∇φn)− j0 : ∇φn +

∫
Γ

Fb([φ
n])

)
+ 2

∫
Ω

F ∗h(2j0)

≤ 4I(0) + 2

∫
Ω

F ∗h(2j0) <∞.

Having such uniform bound, we can use the Banach-Alaoglu theorem, and find
φ ∈ φ0 + P and a subsequence, that we do not relabel, such that

spacessspacess (4.16)
∇φn ⇀∗ ∇φ in LΦ(Ω),

[φn] ⇀
∗

[φ] in LΨ(Γ)

(there is no need to identify the weak limits since the operators of trace, ∇ and [·]
are linear). Obviously, these two convergence results hold in the weak-L1 topology
as well (since Φ and Ψ are superlinear). Thus, thanks to the convexity of Fh and
Fb and by the fact that

Fh(∇(φ0 + p))− j0 : ∇(φ0 + p) ≥ −F ∗h(j0) ∈ L1(Ω),

we can use the weak lower semicontinuity of convex functionals to observe that

m = lim
n→∞

I(pn) ≥ I(p) ≥ m,

hence I(p) = I(φ − φ0) = m is a minimum. Furthermore, it follows from (
qwer
4.15)

that

qwer2qwer2 (4.17)

∫
Ω

Fh(∇φn) +

∫
Γ

Fb([φ
n]) <∞.



ANALYSIS OF A NONLINEAR ELLIPTIC SYSTEMS WITH JUMP ON THE INTERFACE 19

Now we will prove that φ is a variational weak solution. This will be done by
deriving the Euler-Lagrange equation corresponding to I. Let q ∈ EP be arbitrary
and denote φq := φ0 + q. We set

Dh(λ) :=
Fh(∇φ+ λ(∇φq −∇φ))− Fh(∇φ)

λ

Db(λ) :=
Fb([φ] + λ([φq]− [φ]))− Fb([φ])

λ
,

where λ ∈ (0, 1) is arbitrary. Then, we use the minimizing property (
minch
4.14) to get

I(p) ≤ I((1− λ)p+ λφq),

which in terms of Dh and Db can be rewritten by using (
funct
4.13) as

funct23funct23 (4.18) −
∫

Ω

j0 : (∇φ−∇φ0 −∇q) ≤
∫

Ω

Dh(λ) +

∫
Γ

Db(λ).

Next, (
gat1
4.9) and (

gat2
4.10) imply that (recall that [φ0] = 0 on Γ)

Dh(λ)→ h(∇φ) : ∇(q − φ+ φ0),

Db(λ)→ b([φ]) � [q − φ]

almost everywhere in Ω and Γ, respectively, as λ → 0+. Our goal now is to let
λ → 0+ in (

funct23
4.18). Indeed, if we can justify the limit procedure in the term on

the right hand side and if we use the above point-wise result, we directly obtain
(
ener
2.19), i.e. φ is a variational weak solution. Then we can use the already proven

Theorem
cons
3.5 to conclude that φ is also a weak solution. Hence, to finish the proof,

we need to justify the limit procedure. Since, we need to pass to the limit with the
inequality sign, we use the Fatou lemma. Therefore we need to find I1 ∈ L1(Ω) and
I2 ∈ L1(Γ) such that for all λ ∈ (0, 1) we have

goalikgoalik (4.19) Dh(λ) ≤ I1 in Ω and Db(λ) ≤ I2 on Γ

and that for all λ ∈ (0, 1) we have (possibly non-uniformly)

goalik2goalik2 (4.20)

∫
Ω

Dh(λ) > −∞,
∫

Γ

Db(λ) > −∞.

Thanks to nonnegativity of Fh and Fb, and due to (
spacess
4.16) and (

qwer2
4.17), we get∫

Ω

Dh(λ) ≥ − 1

λ

∫
Ω

Fh(∇φ) > −∞,∫
Γ

Db(λ) ≥ − 1

λ

∫
Γ

Fb([φ]) > −∞

for all λ ∈ (0, 1), which is (
goalik2
4.20). To show also (

goalik
4.19), we use the convexity and the

nonnegativity of Fh, which yields

Dh(λ) ≤ (1− λ)Fh(∇φ) + λFh(∇φq)− Fh(∇φ)

λ
≤ Fh(∇q +∇φ0)conev

for all λ ∈ (0, 1).
To see that I1 := Fh(∇q +∇φ0) ∈ L1(Ω), we use the assumption on φ0 and q.

Since both ∇q,∇φ0 ∈ EΦ(Ω), which is a linear space, we have that ∇q + ∇φ0 ∈
EΦ(Ω) as well. Consequently, we can use (

goodups
2.5) to conclude that∫

Ω

I1 =

∫
Ω

Fh(∇q +∇φ0) <∞,
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which leads to the first part of (
goalik
4.19). The second part is however proven similarly.

Hence, we are allowed to use the Fatou lemma and to let λ→ 0+ in (
funct23
4.18) to obtain

(
ener
2.19). This finishes the existence part of the proof.

SS4
4.4. Proof of Theorem

ex2
3.3. We assume in this part that (∆) holds. We proceed

here as follows. First, we define the Galerkin approximation, then we derive uniform
estimates and pass to the limit. Finally, depending on what kind of ∆2 condition
is satisfied, we finish the proof.

4.4.1. Galerkin approximation. We know that EX is a separable space, therefore
we can find

{
wi
}∞
i=1
⊂ EX, whose linear hull is dense in EX. Next, we construct

an approximative sequence jn in the following way. For α = (α1, . . . , αn) ∈ Rn, we
denote wα = j0 +

∑n
i=1 αiw

i. Then we define the i-th component, i ∈ {1, . . . , n},
of the mapping F by

66 (4.21) F i(α) :=

∫
Ω

f(wα) : wi +

∫
Γ

g(wα ·n) � (wi ·n)−
∫

Ω

∇φ0 : wi, α ∈ Rn.

Our goal is to find α∗ ∈ Rn such that F (α∗) = 0. Indeed, having such α∗ is
equivalent to have jn := j0 +

∑n
i=1 α

∗
iw

i such that∫
Ω

f(jn) : wi +

∫
Γ

g(jn · n) � (wi · n) =

∫
Ω

∇φ0 : wi for all i ∈ {1, . . . , n}.galgal (4.22)

Hence, we focus now on finding the zero point of F defined in (
6
4.21). Since we

assume that f and g are Carathéodory mappings and j0 ∈ E
Φ∗

(Ω), we can use
(
goodups
2.5) to deduce that the mapping F is continuous on Rn. Moreover, using the

growth properties of f and g (assumption (A2)∗), the Young inequality, the fact

that j0 · n = 0 on Γ, j0 ∈ E
Φ∗

(Ω) and also that ∇φ0 ∈ EΦ(Ω), we get

77 (4.23)

F (α) ·α :=

n∑
i=1

F i(α)αi =

∫
Ω

f(wα) : (wα − j0)

+

∫
Γ

g(wα · n) � (wα · n)−
∫

Ω

∇φ0 : (wα − j0)

≥ αf
∫

Ω

(Φ∗(wα) + Φ(f(wα)) + αg

∫
Γ

(Ψ∗(wα · n) + Ψ(g(wα · n))

− αf
2

∫
Ω

(Φ∗(wα) + Φ(f(wα))

− 2

∫
Ω

Φ

(
2

αα
∇φ0

)
+ Φ∗

(
2

αα
j0

)
− C

≥ αf
2

∫
Ω

(Φ∗(wα) + Φ(f(wα)) +
αg
2

∫
Γ

(Ψ∗(wα · n) + Ψ(g(wα · n))− C.

Since the mapping α 7→ wα is linear and since Φ∗, Ψ∗ satisfy (
grow
2.1), there exists

R > 0 such that if |α| > R, then F (α) · α > 1. Hence, using a well known
modification of the Brouwer fixed point theorem, there exists a point α∗ ∈ Rn with
F (α∗) = 0, which we wanted to show. Consequently, we also obtained the existence
of jn solving (

gal
4.22).
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4.4.2. Uniform estimates and limit n→∞. It follows from (
gal
4.22) (see the compu-

tation in (
7
4.23)) that the identity∫
Ω

f(jn) : (jn − j0) +

∫
Γ

g(jn · n) � (jn · n) =

∫
Ω

∇φ0 : (jn − j0)ennenn (4.24)

is valid for all n ∈ N. Consequently, it follows by the same procedure as in (
7
4.23)

that we have the following uniform bounds

ue2ue2 (4.25)

∫
Ω

(Φ∗(jn) + Φ(f(jn))) +

∫
Γ

(Ψ∗(jn · n) + Ψ(g(jn · n))) ≤ C.

Thus, using the Banach-Alaoglu theorem, we find weakly-∗ converging subsequences
(that we do not relabel), so that

jn ⇀
∗
j in LΦ∗

(Ω),1414 (4.26)

f(jn) ⇀
∗
f in LΦ(Ω),1212 (4.27)

jn · n⇀∗ j · n in LΨ∗
(Γ),1515 (4.28)

g(jn · n) ⇀
∗
g in LΨ(Γ)1313 (4.29)

as n→∞. Furthermore, since jn− j0 ∈ EX, we have from the above convergence
result that j − j0 ∈ BX. Next, we pass to the limit also in (

gal
4.22). Since wi ∈

EΦ∗
(Ω) and wi · n ∈ EΨ∗

(Γ) for all i ∈ N, we can use (
12
4.27) and (

13
4.29) to let

n→∞ in (
gal
4.22) for fix i ∈ N and obtain∫

Ω

f : wi +

∫
Γ

g � (wi · n) =

∫
Ω

∇φ0 : wi for all i ∈ {1, . . . , n}gal2gal2 (4.30)

and since the linear hull of {wi}i∈N is dense in EX, we obtain∫
Ω

f : τ +

∫
Γ

g � (τ · n) =

∫
Ω

∇φ0 : τ for all τ ∈ EX.gal3gal3 (4.31)

4.4.3. Identification of f and g and the energy (in)equality. To finish the proof, it
remains to show that

fuckfuck (4.32) f = f(j) a.e. in Ω and g = g(j · n) a.e. on Γ

and also that we constructed the variational solution. We start the proof by claiming
that ∫

Ω

f : (j − j0) +

∫
Γ

g � (j · n) =

∫
Ω

∇φ0 : (j − j0).ga23ga23 (4.33)

The importance of (
ga23
4.33) is not only that it will allow us to show (

fuck
4.32) but also that

having (
fuck
4.32), (

ga23
4.33) and (

gal3
4.31), we immediately get (

wsf1
2.21) even with the equality

sign.
Hence, we prove (

ga23
4.33) provided that (∆) holds. First, in case that Φ∗ and Ψ∗

satisfy the ∆2 condition then EX = X and (
gal3
4.31) can be tested by any τ ∈ X,

in particular by j − j0 and (
ga23
4.33) follows. In the opposite case, i.e. if Φ and Ψ

satisfy the ∆2 condition, then we have from (
12
4.27) and (

13
4.29) that f ∈ EΦ(Ω) and

g ∈ EΨ(Γ). Furthermore, it follows from (
gal2
4.30) that for all i ∈ N∫

Ω

f : (ji − j0) +

∫
Γ

g � (ji · n) =

∫
Ω

∇φ0 : (ji − j0).gal67gal67 (4.34)

But now, we can use the convergence results (
14
4.26) and (

15
4.28) (thanks to f ∈ EΦ(Ω)

and g ∈ EΨ(Γ)) and let i → ∞ in (
gal67
4.34) to obtain (

ga23
4.33). Next, using the facts
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that ∇φ0 ∈ EΦ(Ω) and j0 ∈ E
Φ∗

(Ω) and (
14
4.26)–(

13
4.29), we can let n→∞ in (

enn
4.24)

to deduce

limsuplimsup (4.35)

lim
n→∞

(∫
Ω

f(jn) : jn +

∫
Γ

g(jn · n) � (jn · n)

)
= lim
n→∞

(∫
Ω

∇φ0 : (jn − j0) +

∫
Ω

f(jn) : j0

)
=

∫
Ω

∇φ0 : (j − j0) +

∫
Ω

f : j0

(
ga23
4.33)
=

∫
Ω

f : j +

∫
Γ

g � (j · n).

Now we follow
B
[3], see also

Bul1
[2]. Let v ∈ L∞(Ω;Rd×N ) and z ∈ L∞(Γ;RN ) be

arbitrary. Using the monotonicity assumptions (A1)∗, we have

eq12eq12 (4.36)

0 ≤ lim
n→∞

∫
Ω

(f(jn)− f(v)) : (jn − v) +

∫
Γ

(g(jn · n)− g(z)) � (jn · n− z)

=

∫
Ω

(f − f(v)) : (j − v) +

∫
Γ

(g − g(z)) � (j · n− z),

where we used (
14
4.26)–(

13
4.29) and (

limsup
4.35). Finally, we closely follow

Bul1,GMW12,Gw22
[2, 7, 8] (see also

B
[3, Lemma 2.4.2.] for similar procedure for more general monotone mappings). We
define the sets

Ωj := {x ∈ Ω; |j(x)| ≤ j}, Γj := {x ∈ Γ; |j(x) · n(x)| ≤ j}.

Then for arbitrary ε > 0, v ∈ L∞(Ω;Rd×N ), z ∈ L∞(Γ;RN ) and arbitrary j ≤ k <
∞, we set

v := jχΩk
− εvχΩj , z := j · nχΓk

− εzχΓj

in (
eq12
4.36). Doing so, we obtain (using also the fact that f(0) = g(0) = 0)

eq123eq123 (4.37)

0 ≤
∫

Ω

(f − f(jχΩk
− εvχΩj )) : (j(1− χΩk

) + εvχΩj )

+

∫
Γ

(g − g(j · nχΓk
− εzχΓj

)) � ((j · n)(1− χΓk
) + εzχΓj

)

= ε

∫
Ωj

(f − f(j − εv)) : v + ε

∫
Γj

(g − g(j · n− εz)) � z

+

∫
Ω\Ωk

f : j +

∫
Γ\Γk

g � (j · n).

Thanks to (
14
4.26) and (

12
4.27) and since |Ω \Ωk| → 0, |Γ \Γk| → 0 as k →∞, we can

let k →∞ in (
eq123
4.37) to deduce

0 ≤ ε
∫

Ωj

(f − f(j − εv)) : v + ε

∫
Γj

(g − g(j · n− εz)) � z.

Dividing by ε and letting ε→ 0+, using the definition of Ωj and Γj (leading to the
fact that j and also j ·n are bounded on the integration domain) and the fact that
f and g are Carathédory, we finally observe

0 ≤
∫

Ωj

(f − f(j)) : v +

∫
Γj

(g − g(j · n)) � z.

Setting

v := − f − f(j)

1 + |f − f(j)|
and z := − g − g(j · n)

1 + |g − g(j · n)|
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we deduce that (
fuck
4.32) is valid almost everywhere in Ωj (and Γj , respectively) for

every j ∈ N. Since |Ω \Ωj | → 0 and |Γ \ Γj | → 0 as j →∞, it directly follows that
(
fuck
4.32) holds.

4.4.4. Uniqueness. We start the proof by claiming that (
ws1
2.20) holds for all τ ∈ BX.

Indeed, if Ψ∗ and Φ∗ satisfy ∆2 condition then EX = BX and there is nothing
to prove. On the other hand if Ψ and Φ satisfy ∆2 condition, then we use the
fact f(j) ∈ LΦ(Ω) = EΦ(Ω) and g(j · n) ∈ LΨ(Γ) = EΨ(Γ). Hence, for arbitrary
τ ∈ BX, we can find an approximating sequence {τ k}∞k=1 ⊂ EX such that

(τ k, τ k · n) ⇀
∗

(τ , τ · n) in LΦ∗
(Ω)× LΨ∗

(Γ).

We replace τ by τ k in (
ws1
2.20) and let k → ∞. Using the above weak start conver-

gence result, we recover that (
ws1
2.20) holds also for τ .

Finally, assume that we have to solutions j1, j2 ∈ j0 +BX. Subtracting (
ws1
2.20)

for j2 from that one for j1 we have for all τ ∈ BX∫
Ω

(f(j1)− f(j2)) : τ +

∫
Γ

(g(j1 · n)− g(j2 · n)) � (τ · n) = 0.

Setting finally τ := j1 − j2 ∈ BX and using the strict monotonicity of f , we find
that j1 = j2 in Ω, which finishes the uniqueness part.

SS5
4.5. Proof of Theorem

ex1
3.1- case (∆) holds. This proof is analogous to the

preceding proof of Theorem
ex2
3.3 (i). Again, we approximate the problem using

separability of EP and the Galerkin method. Eventually, we construct an approxi-
mation φn satisfying∫

Ω

h(∇φn) : ∇q +

∫
Γ

b([φn]) � [q] =

∫
Ω

j0 : ∇q

for all q from some n-dimensional subspace of EP . Then, using the analogous
a priori estimate to (

ue2
4.25) and very similar limiting procedure, we let n → ∞ and

obtain (
wspot
2.18).

In addition, it is evident, that we obtain a weak solution φ ∈ φ0+BP , which is the
last claim of Theorem

ex1
3.1. Furthermore, assume that q ∈ BP is arbitrary. Therefore

it can be approximated by a weakly star convergent sequence {qn}∞n=1 ⊂ EP . Since

h(∇φ) ∈ EΦ∗
(Ω) and b([φ]) ∈ EΨ∗

(Γ), we can now use (
wspot
2.18), where we replace q

by qn and using the weak star convergence, we can conclude that (
wspot
2.18) holds even

for all q ∈ BP . Finally, assume that we have to solutions φ1, φ2 ∈ φ0 + BP . Then
using (

wspot
2.18) and the above argument, we can deduce that∫

Ω

(h(∇φ1)− h(∇φ2)) : ∇q +

∫
Γ

(b([φ1])− b([φ2])) � [q] = 0.

Hence, setting q := φ1 − φ2 ∈ BP in the above identity, we observe with the help
of the strict monotonicity of h that

∇φ1 = ∇φ2 in Ω.

Hence, since φ1 = φ2 on the sets Γ1
D ⊂ ∂Ω1, Γ2

D ⊂ ∂Ω2 of positive measure, we see
that φ1 = φ2 in Ω1 and also in Ω2 and the solution is unique in the class φ0 +BP .
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SS6
4.6. Proof of Theorem

ex2
3.3 (ii). This proof is analogous to the proof of Theo-

rem
ex1
3.1 (ii). Indeed, it is easy to see that if we define

I(τ ) :=

∫
Ω

(Ff (j0 + τ )−∇φ0 : τ ) +

∫
Γ

Fg(j · n), τ ∈X,

we can proceed as before to get a minimum τ ∈X and the corresponding j := j0+τ
satisfying (

wsf1
2.21). This minimum is a weak solution by Theorem

cons
3.5.

SS7
4.7. Proof of Corollary

coro
3.2. We only need to prove that the nonlinearities de-

fined in (
const
1.2) satisfy all the assumptions of Theorem

ex1
3.1. Namely, we show that

(Π) holds and that (∆) is valid. We define,
exp

Φ(v) = Fh(v) := cosh(|v|)− 1, Ψ(z) = Fb(z) := exp(|z|)− |z| − 1.

It is clear that both functions are N -functions. Moreover, by a direct computation,
we have that

∂Fh(v)

∂v
=

sinh |v|
|v|

v,
∂Fb(z)

∂z
=

exp(|z|)− 1

|z|
z

and thus (Π) holds. Moreover, Fh and Fb are strictly convex. Hence, we use
Theorem

ex1
3.1 to get the existence of a weak solution.

To prove also further properties, we show that Ψ∗ and Φ∗ satisfy ∆2 condition
and consequently (∆) holds as well and having such property, we can even prove
uniqueness of a weak solution. First, one can easily observe that there exists K > 1
such that

2KΦ(v) ≤ Φ(2v) for all v ∈ Rd×N , |v| ≥ 1,

2KΨ(z) ≤ Ψ(2z) for all z ∈ RN , |z| ≥ 1.

Then, by
Kras
[12, Theorem 4.2.], this implies that Φ∗ and Ψ∗ satisfy the ∆2 condition.

The proof is complete.
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