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Abstract. We prove that there exists a weak solution to a system governing
an unsteady flow of a viscoelastic fluid in three dimensions, for arbitrarily

large time interval and data. The fluid is described by the incompressible

Navier-Stokes equations for the velocity v, coupled with a diffusive variant
of a combination of the Oldroyd-B and the Giesekus models for a tensor B.

By a proper choice of the constitutive relations for the Helmholtz free energy

(which, however, is non-standard in the current literature despite the fact that
this choice is well motivated from the point of view o physics) and for the

energy dissipation, we are able to prove that B enjoys the same regularity as v

in the classical three-dimensional Navier-Stokes equations. This enables us to
handle any kind of objective derivative of B, thus obtaining existence results

for the class of diffusive Johnson-Segalman models as well. Moreover, using a
suitable approximation scheme, we are able to show that B remains positive

definite if the initial datum was a positive definite matrix (in a pointwise

sense). We also show how the model we are considering can be derived from
basic balance equations and thermodynamical principles in a natural way.

1. Introduction

We aim to establish a global-in-time and large-data existence theory, within
the context of weak solutions, to a class of homogeneous incompressible rate-type
viscoelastic fluid flowing in a closed three-dimensional container. The studied class
of models can be seen as the Navier-Stokes system coupled with a viscoelastic rate-
type fluid model that shares the properties of both Oldroyd-B and Giesekus models
and is completed with a diffusion term. Such models are frequently encountered
in the theory of non-Newtonian fluid mechanics, see [12, 11] and further references
cited in [11].

In order to precisely formulate the problems investigated in this study, we start
introducing notation. For a bounded domain Ω ⊂ R3 with the Lipschitz boundary
∂Ω and a time interval of the length T > 0, we set Q := (0, T )×Ω for a time-space
cylinder and Σ := (0, T ) × ∂Ω for the evolving boundary. The symbol n denotes
the outward unit normal vector on ∂Ω, and for any vector z, the vector zτ denotes
the projection of a vector to a tangent plane on ∂Ω, i.e., zτ := z− (z · n)n. Then,
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for a given density of the external body forces f : Q→ R3, a given initial velocity
v0 : Ω → R3 and a given initial extra stress tensor B0 : Ω → R3×3

>0 (here R3×3
>0

denotes the set of positively definite symmetric (3 × 3)-matrices), we look for a
vector field v : Q→ R3, a scalar field p : Q→ R and a positive definite matrix field
B : Q→ R3×3

>0 solving the following system in Q:

div v = 0,(1.1)

∂tv + (v · ∇)v − ν∆v = −∇p+ 2µadiv((1− γ)(B− I) + γ(B2 − B)) + f ,(1.2)

∂tB + (v · ∇)B + δ1(B− I) + δ2(B2 − B)− λ∆B

= a+1
2 (∇vB + (∇vB)T ) + a−1

2 (B∇v + (B∇v)T ),
(1.3)

and being completed by the following boundary conditions on Σ:

v · n = 0,

−σvτ = ((2νDv + 2a(1− γ)(B− I) + 2aγ(B2 − B))n)τ ,

(n · ∇)B = O, (here O stands for zero 3× 3-matrix)

(1.4)

and by the initial conditions in Ω:

v(0) = v0,(1.5)

B(0) = B0.(1.6)

The parameters γ ∈ (0, 1), ν, λ, σ > 0, δ1, δ2 ≥ 0 and a ∈ R are given numbers.
The main result of this study can be stated as follows.

Theorem. Let v0 and B0 be such that the initial total energy is bounded. Then for
sufficiently regular f , there exists global-in-time weak solution to (1.1)–(1.6).

Although the above theorem is stated vaguely, we would like to emphasize that
we are going to establish the long-time existence of weak solution for large data
and for three-dimensional flows. A more precise and rigorous version of the
above result including the correct function spaces and the properly defined weak
formulation is stated in Theorem 2.

We complete the introductory part by providing physical background relevant
to the studied problem and by recalling the earlier results relevant to the problem
(1.1)–(1.6) analyzed here.

1.1. Mathematical and thermodynamical background. The system (1.1)–
(1.4) can be rewritten into a more concise form once one recognizes some physical
quantities. First of all, let

Dv = 1
2 (∇v + (∇v)T ) and Wv = 1

2 (∇v − (∇v)T )

denote the symmetric and antisymmetric parts of the velocity gradient ∇v, respec-
tively. Then, looking at the equation (1.2), we see that (1.2) is obtained from a
general form of the balance of linear momentum, namely

(1.7) %
•
v = divT + %f ,

once we set the density % = 1 and require that the Cauchy stress tensor T has the
form

(1.8) T = −pI + 2νDv + 2aµ((1− γ)(B− I) + γ(B2 − B)).
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In (1.7),
•
v stands for the material time derivative of v, i.e.,

•
v = ∂tv + (v · ∇)v.

Setting similarly the material time derivative of a tensor B by
•
B, i.e.,

•
B = ∂tB + (v · ∇)B,

we can recognize the presence of a general objective derivative in (1.3). Namely,
defining

���

B =
•
B− a(DvB + BDv)− (WvB− BWv),

we can rewrite the system (1.1)–(1.3) into a more familiar form as

div v = 0(1.9)
•
v = divT + f(1.10)

���

B + δ1(B− I) + δ2(B2 − B) = λ∆B,(1.11)

which is supposed to hold true in Q and which is completed by the initial conditions
(1.5), (1.6) fulfilled in Ω and by the boundary conditions (1.4) on Σ that take the
form:

v · n = 0,(1.12)

(Tn)τ = −σvτ ,(1.13)

(n · ∇)B = O.(1.14)

We provide several comments regarding the equations above, both in the bulk
and on the boundary. The Navier slip boundary condition (1.13) is considered here
just for simplicity; note that for smooth domains, namely if Ω ∈ C1,1, we can in-
troduce the pressure p as an integrable function, e.g. by using an additional layer
of approximation as in [4], see also [9, 8] or [2] how to treat the pressure in evolu-
tionary models with the Navier boundary conditions. Nevertheless, since we shall
always deal with formulation without the pressure, see the statement of Theorem 2,
we can also treat the Dirichlet boundary condition as well, or a very general kind
of implicitly given boundary condition see e.g., [22, 5, 6] or [2]. The Neumann
boundary condition for B is here considered just for simplicity and without any
specific physical meaning.

Next aspect, which makes the above system more complicated than the Navier-
Stokes equation is the form of the Cauchy stress tensor T as in (1.8). The term
−pI+2νDv corresponds to the standard Newtonian fluid with a constant kinematic
viscosity ν. The next part of the Cauchy stress which depends linearly on B appears
in all the viscoelastic rate-type fluid models - see, e.g., [18, (7.20b), (8.20e)], [14,
(6.43e)] or [11, (43a)]. On the other hand, the addition of the term 2aµγ(B2−B) is,
to our best knowledge, considered here for the first time. The fact that we require
that γ is positive (and strictly less than 1) plays a key role in the analysis of the
problem, as will be shown below.

The quantity B takes into account the elastic responses of the fluid and the
equation (1.11) describes its evolution in the current configuration (Eulerian de-
scription), just as the velocity v. It is frequent to call the tensor µ(B− I) the extra
stress or conformation tensor and to denote it by τ . More importantly, since the
material derivative of B is not objective, it must be “corrected” and this is the rea-

son, why in (1.11) the derivative
���

B appears. The parameter a in the definition of
���

B
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determines the type of the objective derivative. The case a = 1 leads to the upper
convected Oldroyd derivative, that has favorable physical properties and that leads
to the clear interpretation of B within the thermodynamical framework developed
in [24], see also [25, 20, 21, 19]. Next, the case a = 0 leads to the corrotational
Jaumann-Zaremba derivative and this is the only case for which the analysis is much
simpler than in other cases. Furthermore, if a ∈ [−1, 1], one obtains the whole class
of Gordon-Schowalter derivatives. However, it turns out that the physical proper-
ties of these derivatives are irrelevant for the analysis presented below (except the
case a = 0), therefore we may take any a ∈ R. For a = 1 and λ = 0 we distinguis
two cases: if δ1 > 0 and δ2 = 0 we obtain the classical Oldroyd-B model while if
δ1 = 0 and δ2 > 0 we get the Giesekus model. Next, by considering a ∈ [−1, 1],
we obtain the class of Johnson-Segalman models. If we further let λ > 0, we are
introducing a diffusive variants of the previous models. It has been observed that
including the diffusion term in (1.11) is physically reasonable, see, e.g., [12] or [11]
and references therein. However, up to now, it has been unknown what precise form
should the diffusion term take and also whether it actually helps in the analysis of
the model. Our main result provides a partial answer to this question, namely: for
γ ∈ (0, 1) and with the diffusion term being of the form ∆B (or more generally, the
linear second order operator), the global existence of a weak solution is available.

The reader familiar with the equations describing flows of the standard Oldroyd-
B viscoleastic rate-type fluid can identify two deviations in the set of equations
(1.9)–(1.11) studied hereafter. We provide a few comments on these differences.

The first deviation concerns the incorporation of the stress diffusion, i.e. the term
−∆B, into the equations. Following the pioneering work of [12] it is clear that the
quantity related to |∇B|2 has to be added into the list of underlying dissipating
mechanisms. On the other hand, the precise form in which the stress diffusion
should appear depends on the choice of a thermodynamical approach and specific
assumptions. In fact, using the thermodynamical concepts as in [18] or [11], one
can derive models, where the stress diffusion term takes the form −B∆B − ∆BB,
−B 1

2 ∆BB 1
2 etc, however, we would prefer to have −∆B simply because it coincides

with the form proposed by [12], and, from the perspective of PDE analysis, one
prefers to deal with stress diffusion that leads to a linear operator. Viscoelastic
models with a stress diffusion, but without the term B2 in the stress tensor are
derived, e.g., in [18] and [11] even in the temperature dependent case. Here, we
will briefly explain the approach in a simplified isothermal setting (sufficient for
the purpose of this study), referring to the mentioned works for the derivation in a
complete thermal setting and for more details.

The second deviation from usual viscoelastic models consists in the presence
of the term (B2 − B) in the Cauchy stress tensor, see (1.8). This term arises if
we slightly modify energy storage mechanism and apply thermodynamic approach
as developed in [18]. In what follows, we shall give the clear interpretation and
thermodynamic derivation of our model.

First, we postulate the constitutive equation for the Helmholtz free energy in
the form

(1.15) ψ(B) := µ((1− γ)(trB− 3− ln detB) + 1
2γ|B− I|2),

where µ > 0 and γ ∈ [0, 1] is a kind of parameter interpolating between two forms of
the energy. The choice γ = 0 would lead to a standard Oldroyd-B diffusive model.
To our best knowledge, the case γ > 0 was not considered before in literature. The
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term 1
2γ|B−I|

2, which is newly included in ψ is obviously convex with the minimum
at B = I and depends just on trB and on tr(BB), i.e., on invariants of B, therefore
it does not violate any of the basic principles of continuum physics. Moreover, such
an addition does not affect the first three terms in the asymptotic expansion of ψ
near I, on the logarithmic scale. To see this, let H denote the Hencky logarithmic
tensor satisfying eH = B (which exists due to the positive definiteness of B). Using
Jacobi’s identity, we compute that

trB− 3− ln detB = tr(eH − I−H) = tr( 1
2H

2 +O(H3)).

On the other hand, we easily get

1
2 |B− I|2 = 1

2 tr(e2H − 2eH + I) = tr( 1
2H

2 +O(H3)),

hence we also have

(1− γ)(trB− 3− ln detB) + 1
2γ|B− I|2 = tr( 1

2H
2 +O(H3))

and we see that for B being close to identity, the form of ψ is almost independent of
the choice of parameter γ and the second part of ψ in (1.15) can be just understood
as a correction for large values of B.

Next, we show how the constitutive equation for T (see (1.8)) appears naturally
if we start with the choice of the Helmholtz free energy (1.15) and require that the
form of the equation for B is given by (1.11). For the derivation, we followed the
approach developed in [18] that stems from the balance equations and requires the
knowledge how the material stores the energy, but we simplify it by considering that
the density is constant (in fact we set for simplicity % = 1 and hence div v = 0) and
the flows are isothermal, i.e. the temperature θ is constant as well. Under these
assumptions the balance equations of continuum physics (for linear and angular
momenta, energy and for formulation of the second law of thermodynamics) take
the form

•
v = divT, T = TT ,
•
e = T · Dv − div je,
•
η = ξ − div jη with ξ ≥ 0,

where e is the (specific) internal energy, η is the entropy, ξ is the rate of entropy
production, T is the Cauchy stress tensor and the quantities je, jη represent the
internal and the entropy fluxes, respectively. Since the quantities ψ, e, θ and η are
related thorugh the thermodynamical identity

e = ψ + θη,

we can easily deduce from above identities that

(1.16) θξ = θ
•
η + div (θjη) = T · Dv − div(je − θjη)−

•
ψ.

To evaluate the last term, we rewrite (1.11) as

(1.17) −
•
B = −λ∆B− a(DvB + BDv)− (WvB− BWv) + δ1(B− I) + δ2(B2 − B).

Next, it follows from (1.15) that

∂ψ(B)

∂B
= J,
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where J is defined as

J := µ(1− γ)(I− B−1) + µγ(B− I).
Consequently, taking the scalar product of (1.17) with J we observe that (since
BJ = JB, the term with Wv vanishes)

−
•
ψ = −λ∆B · J− a(DvB + BDv) · J− (WvB− BWv) · J

+ δ1(B− I) · J + δ2(B2 − B) · J
= −λ div(∇ψ(B))− a(DvB + BDv) · J

+ δ1(B− I) · J + δ2(B2 − B) · J + λ∇B · ∇J.

(1.18)

To evaluate the terms on the last line, we use the symmetry and the positive
definiteness of the matrix B to obtain

(B− I) · J = µ(1− γ)|B 1
2 − B−

1
2 |2 + µγ|B− I|2,

(B2 − B) · J = µ(1− γ)|B− I|2 + µγ|B 3
2 − B

1
2 |2,

∇B · ∇J = µγ|∇B|2 − µ(1− γ)∇B · ∇B−1

= µγ|∇B|2 + µ(1− γ)∇B · B−1∇BB−1

= µγ|∇B|2 + µ(1− γ)|B− 1
2∇BB− 1

2 |2.

(1.19)

Similarly, we obtain

(1.20) a(BDv + DvB) · J =
[
2µa((1− γ)(B− I) + γ(B2 − B))

]
· Dv.

Thus, using (1.18)–(1.20) in (1.16), we conclude that

θξ = −div(λ∇ψ(B) + je − θjη)

+
[
T− 2aµ((1− γ)(B− I) + γ(B2 − B))

]
· Dv

+ µλ(γ|∇B|2 + (1− γ)|B− 1
2∇BB− 1

2 |2)

+ µ
(

(1− γ)δ1|B
1
2 − B−

1
2 |2 + γδ2|B

3
2 − B

1
2 |2
)

+ µ
(
((1− γ)δ2 + γδ1)|B− I|2

)
.

(1.21)

Hence, assuming that the fluxes fulfill

(1.22) λ∇ψ(B) + je − θjη = 0,

and setting (compare with (1.8))

T = −pI + 2νDv + 2aµ((1− γ)(B− I) + γ(B2 − B)),

the identity (1.21) reduces to (noticing that −pI · Dv = −p div v = 0)

θξ = µλ(γ|∇B|2 + (1− γ)|B− 1
2∇BB− 1

2 |2) + 2ν|Dv|2

+ µ
(

(1− γ)δ1|B
1
2 − B−

1
2 |2 + γδ2|B

3
2 − B

1
2 |2
)

+ µ
(
((1− γ)δ2 + γδ1)|B− I|2

)
,

(1.23)

which gives the nonnegative rate of the entropy production. Moreover, we have
seen how the form of the Cauchy stress tensor T in (1.8) is dictated by the second
line in (1.21). Furthermore, we can also see in (1.23) how the choice of the free
energy (1.15) affects the entropy production due to the presence of the diffusive
term ∆B in (1.3).
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1.2. Concept of the weak solution and energy (in)equality. In order to
introduce the proper concept of a weak solution, we first derive the basic energy
estimates based on the observation from the previous section. First, taking the
scalar product of (1.10) and v we deduce the kinetic energy identity

1

2
∂t|v|2 +

1

2
div(|v|2v)− div(Tv) + T · Dv = f · v

and replacing the term T ·Dv from the equation (1.16), and using then also (1.22)
and (1.23), we finally obtain

∂t(ψ + 1
2 |v|

2) + div((ψ + 1
2 |v|

2)v)− div(Tv + λ∇ψ(B)) + 2ν|Dv|2

+ µλ(γ|∇B|2 + (1− γ)|B− 1
2∇BB− 1

2 |2)

+ µ
(

(1− γ)δ1|B
1
2 − B−

1
2 |2 + γδ2|B

3
2 − B

1
2 |2 + ((1− γ)δ2 + γδ1)|B− I|2

)
= f · v.

Integrating the above identity over Ω, using the integration by parts and the bound-
ary conditions (1.12)–(1.14), we obtain

d

dt

∫
Ω

1
2 |v|

2 + ψ(B) + σ

∫
∂Ω

|v|2 + 2ν

∫
Ω

|Dv|2

+ µλ

∫
Ω

γ|∇B|2 + (1− γ)|B− 1
2∇BB− 1

2 |2

+ µ

∫
Ω

(1− γ)δ1|B
1
2 − B−

1
2 |2 + γδ2|B

3
2 − B

1
2 |2

+ µ

∫
Ω

((1− γ)δ2 + γδ1)|B− I|2 =

∫
Ω

f · v.

(1.24)

The identity (1.24) evokes the proper choice of the function spaces for the solution
(v,B) and the form of the (weak) formulation of the solution to (1.1)–(1.6).

Definition 1. Let T > 0 and Ω ⊂ R3 be a Lipschitz domain. Suppose that
γ ∈ (0, 1), ν, σ, λ > 0, δ1, δ2 ≥ 0, a ∈ R, and f ∈ L2(0, T ;W−1,2

n,div), v0 ∈ L2
n,div(Ω).

Furthermore, let B0 ∈ L2(Ω) be such that

−
∫

Ω

ln detB0 <∞.

We say that a couple (v,B) : Q → R3 × R3×3
>0 is a weak solution to (1.1)–(1.6) if

B = BT and the following holds:

v ∈ L2(0, T ;W 1,2
n,div) ∩ L∞(0, T ;L2(Ω)), ∂tv ∈ L

4
3 (0, T ;W−1,2

n,div),

B ∈ L2(0, T ;W 1,2(Ω)) ∩ L∞(0, T ;L2(Ω)), ∂tB ∈ L
4
3 (0, T ;W−1,2(Ω));

For all ϕ ∈ L4(0, T ;W 1,2
n,div) we have∫ T

0

〈∂tv,ϕ〉+

∫
Q

(v · ∇)v ·ϕ+ σ

∫ T

0

∫
∂Ω

T v · T ϕ

= −
∫
Q

(2νDv + 2aµ((1− γ)(B− I) + γ(B2 − B))) · ∇ϕ+

∫ T

0

〈f ,ϕ〉;
(1.25)
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For all A ∈ L4(0, T ;W 1,2(Ω)), A = AT , we have∫ T

0

〈∂tB,A〉+

∫
Q

((v · ∇)B + 2BWv − 2aBDv) · A

+

∫
Q

(δ1(B− I) + δ2(B2 − B)) · A + λ∇B · ∇A = 0;

(1.26)

The initial conditions are satisfied in the following sense

(1.27) lim
t→0+

(‖v(t)− v0‖2 + ‖B(t)− B(0)‖2) = 0.

Moreover, we say that the solution satisfies the energy inequality if for every t ∈
(0, T ): ∫

Ω

(
|v(t)|2

2
+ ψ(B(t))

)
+

∫ t

0

2ν‖Dv‖22 + σ‖T v‖22,∂Ω

+ µλ

∫ t

0

(1− γ)
∥∥∥B− 1

2∇BB− 1
2

∥∥∥2

2
+ γ‖∇B‖22

+ µ

∫ t

0

(1− γ)δ1

∥∥∥B 1
2 − B−

1
2

∥∥∥2

2
+ γδ2

∥∥∥B 3
2 − B

1
2

∥∥∥2

2

+ µ

∫ t

0

(γδ1 + (1− γ)δ2)‖B− I‖22

≤
∫

Ω

(
|v0|2

2
+ ψ(B0)

)
+

∫ t

0

〈f ,v〉.

(1.28)

In the above definition we used the notation that is also used through the whole
paper. By Lp(Ω) and Wn,p(Ω), 1 ≤ p ≤ ∞, n ∈ N, we denote the usual Lebesgue
and Sobolev space, with their usual norms denoted as ‖·‖p and ‖·‖n,p, respectively.

The trace operator that maps W 1,p(Ω) into Lq(∂Ω), for certain q, q ≥ 1, will be

denoted by T . Further, we set W−1,p′(Ω) = (W 1,p(Ω))∗, where p′ = p/(p− 1). We
shall use the same notation for the function spaces of scalar-, vector-, or tensor-
valued functions, but we will distinguish the functions themselves using different
fonts such as a for scalers, a for vectors and A for tensors. Also, we do not specify the
meaning of the duality pairing 〈·, ·〉, assuming it is clear from the context. Moreover,
for certain subspaces of vector valued functions, we shall use the following notation:

C∞n = {w : Ω→ R3 : w infinitely differentiable, w · n = 0 on ∂Ω},
C∞n,div = {w ∈ C∞n : divw = 0 in Ω},

L2
n,div = C∞n,div

‖·‖2 , W 1,2
n,div = C∞n,div

‖·‖1,2 , W 3,2
n,div = C∞n,div

‖·‖3,2 ,

W−1,2
n,div = (W 1,2

n,div)∗, W−3,2
n,div = (W 3,2

n,div)∗.

Occasionally, we shall denote the standard scalar products in L2(Ω) and L2(∂Ω)
as (·, ·) and (·, ·)∂Ω, respectively. The Bochner spaces of mappings from (0, T ) to
a Banach space X will be denoted as Lp(0, T ;X) with the norm ‖·‖Lp(0,T ;X) =

(
∫ T

0
‖·‖pX)

1
p . If X = Lq(Ω), or X = W k,q(Ω), we will write just ‖·‖LpLq , or

‖·‖LpWk,q , respectively. The symbol R3×3
sym denotes the set of symmetric 3 × 3 real

matrices. Furthermore, by R3×3
>0 we denote the subset of R3×3

sym which consists of
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positive definite matrices, i.e., those which satisfy

Az · z > 0 for all z ∈ R3 \ {0}.

1.3. The main result. The key result of the paper is the following

Theorem 2. Let all assumptions of Definition 1 be satisfied. Then there exists a
weak solution satisfying the energy inequality.

Let us briefly explain the main difficulties connected with the analysis of the
system (1.9)–(1.13) and our ideas how to solve them. In the standard models
where γ = 0, to get an a priori estimate for B, the right test function to take in
(1.11) is I − B−1. Then, using (1.9) and (1.10) tested by v, one can eliminate
the problematic terms like B · Dv coming from the objective derivative. However,
the non-negative quantity to be controlled which comes from the diffusion term
turns out to be just |B− 1

2∇BB− 1
2 |2 and this provides little to no information. In

particular, the terms ∇vB appearing in (1.11) are going to be just integrable and
it is unclear if one can show a strong convergence of B. Instead, one would like to
test also by B to get control over |∇B|2. But this is not possible, since the term
∇vB · B which is created cannot be estimated without some serious simplifications
(such as boundedness of ∇v, two or one dimensional setting or small data). Quite
remarkably, this problem is solved just by adding γ(B − I)2 into the constitutive
form for ψ. More precisely, considering γ ∈ (0, 1) we observe that the right test
function in (1.11) is in fact (1 − γ)(I − B−1) + γ(B − I). Indeed, the terms from
the objective derivative cancel again due to the presence of γ(B2 − B) in T. But
now, we also get γ|∇B|2 under control, which is much better information than in
the case γ = 0 and it will imply compactness of all the terms appearing in (1.10)
and (1.11). We have seen above that such a modification of ψ, and consequently of
T, is not ad-hoc and that it lies on solid physical grounds.

The second and also the last major difficulty which we will encounter is how
one can justify testing of (1.11) by B−1 on the approximate (discrete level), where
B−1 might not even exist. This we overcome by designing a delicate approximation
scheme, which takes into account the smallest eigenvalue of B, and also by noting
that testing (1.11) only by B yields sufficient a priori estimates for the initial limit
passage (in the Galerkin approximation of B).

Up to now, there have been no results on global existence of weak solutions to
Oldroyd-B models in three dimensions, including either the standard, or diffusive
variants. The closest result so far is probably [23, Theorem 4.1], however there it
is assumed that δ2 > 0 and λ = 0 (Giesekus model), whereas we treat also the
case δ2 = 0, but with λ > 0 (diffusive Oldroyd-B or Giesekus model). Moreover,
in [23], only the weak sequential stability of some hypothetical approximations is
proved. We, on the other hand, provide the complete existence proof, including the
construction of approximate solutions (which, in viscoelasticity, is generally a non-
trivial task). In the article [16], Lions and Masmoudi prove the global existence in
three dimensions, but only for a = 0 (corrotational case), which is known to be much
easier. The local in time existence of regular solutions for the non-diffusive variants
of the models above (λ = 0) is done in the pioneering work [13, Theorem 2.4.].
There, also the global existence for small data is shown. In two dimensions, the
problem is solved in [10] in the case λ > 0, δ1 > 0, δ2 = 0 (diffusive Oldroyd-B
model). There are also global large data existence results in three dimensions for
a slightly different class of diffusive rate-type viscoelastic models, but under the
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simplifying assumption that B = bI - see [7] and [3]. This assumption, however,
turns (1.11) into a much simpler scalar equation. Moreover, note that if B = bI,
then the equations (1.10) and (1.11) decouple (which is not the case in [7] and
[3] since there the considered constitutive relation for T is more complicated than
here). Finally, in [1] (see also [15]), the global existence of a weak solution is
shown for certain regularized Oldroyd-B model (including a cut-off or nonlinear
p−Laplace operator in the diffusive term in B). Thus, one might argue that since
the case γ > 0 could be also seen as a regularization of the original model, we
are just proving an existence of a solution to another regularization. However,
this argument is not, in our opinion, correct for several reasons. First of all, the
“regularization” γ > 0 does not touch the equation (1.11) at all. Second, it is not
obvious why the nonlinear term γ(B − I)2 should have any regularization effect.
And, perhaps most importantly, we already showed in Section 1.1 that the model
with γ > 0 is physically well sounded and worth of studying on its own.

Since the topic is quite new and unexplored, we decided, for brevity and clarity
of presentation to consider only the isothermal case. However, we believe that
the framework and ideas presented here are robust enough to provide an existence
analysis also for the full thermodynamical model if the evolution of the internal
energy is described correctly. This is the subject of our forthcoming study.

Remark 3. Finally, we end this section by several concluding remarks on possible
extensions, but we do not provide their proofs in this paper.

(i) The theorem holds also in arbitrary dimension d > 3 (in d ≤ 2, it is
known), however with worse function spaces for the time derivatives and
better for the test functions. Indeed, the only dimension-specific argument
in the proof below is in the derivation of interpolation inequalities, which
are then used to estimate ∂tv and ∂tB. Moreover, all the non-linear terms in
(1.25), (1.26) are integrable for arbitrary d if the test functions are smooth.
In addition, if d = 2, then we can prove the existence of a weak solution
satisfying even the energy equality, i.e., (1.28) holds with the equality sign.

(ii) When Ω has C1,1 boundary, then, in addition, there exists a pressure p ∈
L

5
3 (Q), which appears in (1.2). Then, the test functions in (1.25) need not

be divergence free if we include the term
∫

Ω
p divϕ in (1.25). This follows

in a standard way, using the Helmholtz decomposition of v (see, e.g., [2]
for details).

(iii) It is possible to replace (1.12), (1.13) by the no-slip boundary condition

v = 0 on ∂Ω. Then, we only need to change all the spaces W 1,2
n to W 1,2

0

and so on. However, then it seems that the pressure p can be only obtained
as a distribution (see [2]).

2. Proof of Theorem 2

The general scheme of the proof of Theorem 2 is the following: In order to
invert the matrix B and to avoid problems with low integrability in the convected
derivative, we introduce the special cut-off function

ρε(A) :=
max{0,Λ(A)− ε}
Λ(A)(1 + ε|A|3)

for A ∈ R3×3
sym,

where Λ(A) denotes a minimal eigenvalue of A (whose spectrum is real due to the
symmetry of A) and thus is a continuous function of A. Note that for any positively
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definite matrix A there holds ρε(A)→ 1 as ε→ 0+. In order to shorten all formulae,
we also denote

S(A) = (1− γ)(A− I) + γ(A2 − A) for A ∈ R3×3,

R(A) = δ1(A− I) + δ2(A2 − A) for A ∈ R3×3.

We construct a solution by an approximative scheme with approximative param-
eters k, l and ε, where k, l ∈ N correspond to the Galerkin approximation for v and
B, respectively, and ε corresponds to the presence of the cut-off function ρε(B) in
certain terms. Then we pass to the limit in the approximative parameters in the
following order. First, we let l→∞, which corresponds to the limit in the equation
for B. This allows us to prove certain minimum principle for B and also to obtain
information about B−1. Next, we let ε → 0+ in order to remove the truncation
function and finally we let k →∞, which corresponds to the limiting procedure in
the equation for the velocity v.

Also to simplify the presentation, we assume here that λ = µ = ν = σ ≡ 1 and
refer to Section 1.1 for detail computation for general parameters.

2.1. Galerkin approximation. Following e.g., [17, Appendix A.4], we know that

there exists a basis {wi}∞i=1 of W 3,2
n,div, which is orthonormal in L2(Ω) and orthog-

onal in W 3,2
n,div. Moreover, the projection Pk : L2(Ω)→ span{wi}ki=1, defined as1

Pkϕ =

k∑
i=1

(ϕ,wi)wi, ϕ ∈ L2(Ω),

is continuous in L2(Ω) and also in W 3,2
n,div independently of k, i.e.,

‖Pkϕ‖2 ≤ C‖ϕ‖2 ‖Pkϕ‖W 3,2
n,div

≤ C‖ϕ‖W 3,2
n,div

for all ϕ ∈ W 3,2
n,div, where the constant C is independent of k. Furthermore,

thanks to the standard embedding, we also have that W 3,2
n,div ↪→ W 2,6(Ω) ↪→

W 1,∞(Ω). Similarly, we construct the basis {Wj}∞j=1 of W 1,2(Ω), which is again

L2-orthonormal, W 1,2-orthogonal and the projection

QlA =
l∑

j=1

(A,Wj)Wj , A ∈ L2(Ω),

is continuous in L2(Ω) and in W 1,2(Ω) independently of l.
Then for fixed k, l ∈ N and ε > 0, we look for the functions vk,lε ,Bk,lε being of

the form

vk,lε (t, x) =

k∑
i=1

ck,l,εi (t)wi(x) and Bk,lε (t, x) =

l∑
j=1

dk,l,εj (t)Wj(x),

where ck,l,εi , dk,l,εj , i = 1, . . . , k, j = 1, . . . , l, are unknown functions of time, and we

require that vk,lε ,Bk,lε (and consequently the functions ck,l,εi (t) and dk,l,εj (t)) satisfy

1We recall here the definition (a, b) :=
∫
Ω ab.
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the following system of (k+ l) ordinary differential equations in time interval (0, T ):

d

dt
(vk,lε ,wi) + ((vk,lε · ∇)vk,lε ,wi) + 2(Dvk,lε ,∇wi) + (T vk,lε , T wi)∂Ω

= −2a(ρε(Bk,lε )S(Bk,lε ),∇wi) + 〈f ,wi〉 for i = 1, . . . , k,
(2.1)

d

dt
(Bk,lε ,Wj) + ((vk,lε · ∇)Bk,lε ,Wj) + (ρε(Bk,lε )R(Bk,lε ),Wj)

= −(∇Bk,lε ,∇Wj) + 2(ρε(Bk,lε )Bk,lε (aDvk,lε −Wvk,lε ),Wj) for i = 1, . . . , l.
(2.2)

Due to the L2-orthonormality of the bases {wi}∞i=1 and {Wj}∞j=1, the system (2.1)–
(2.2) can be rewritten as a nonlinear system of ordinary differential equations for

ck,l,εi and dk,l,εj , where i = 1, . . . , k and j = 1, . . . , l, and we equip this system with
the initial conditions as follows

(2.3) ck,l,εi (0) = (v0,wi) and dk,l,εj (0) = (Bε0,Wj).

Here, Bε0 is defined as

Bε0(x) =

{
B0(x) if Λ(B0(x)) > ε,

I elsewhere.

Since B0(x) ∈ R3×3
>0 for almost all x ∈ Ω, we have that Λ(B0(x)) > 0 for almost all

x ∈ Ω. Consequently, using the fact B0 ∈ L2(Ω), we obtain

‖Bε0 − B0‖22 =

∫
Λ(B0)≤ε

|I− B0|2 → 0

as ε → 0+. Note also that the initial conditions (2.3) can equivalently be written
as vl(0) = Pkv0 and Bl(0) = QlBε0.

For the system (2.1)–(2.3), the Carathéodory’s theorem can be applied and there-

fore there exists T ∗ > 0 and absolutely continuous functions ck,l,εi , dk,l,εj satisfying

(2.1)–(2.2) almost everywhere in (0, T ∗) with the initial conditions (2.3). If T ∗ is
the maximal time, for which the solution exists and T ∗ < T , then at least one of

the functions ck,l,εi , dk,l,εj must blow up as t → T ∗−. But using the estimate from

the next section (see (2.8) valid for all t ∈ (0, T ∗)), this will never happen. Thus,
we can set T ∗ = T .

2.2. Limit l → ∞. Since the first limit passage in the paper is l → ∞, we just
use the simplified notation and denote the approximative solution, constructed in
the previous section, by (vl,Bl) := (vk,lε ,Bk,lε ). Furthermore, we also simplify the
cut-off term and write

rlε := ρε(Bk,lε ).

We start this part by proving estimates independent of l. Since Bl(t) and vl(t)
belong for almost all t to the linear hull of {Wj}lj=1 and {wi}ki=1, respectively, we
can use vl instead of wi in (2.1) and Bl instead of Wj in (2.2) to deduce,

1

2

d

dt
‖Bl‖22 + ‖∇Bl‖22 = 2a(rlεBlDvl,Bl)− (rlεR(Bl),Bl),(2.4)

1

2

d

dt
‖vl‖22 + 2‖Dvl‖22 + ‖T vl‖22,∂Ω = −2a(rεS(Bl),Dvl) + 〈f ,vl〉,(2.5)
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where we used the integration by parts formula and the facts that div vl = 0 and
T v · n = 0. Next, it follows from the definition of rlε and the functions R and S
that

(2.6) rlε(|S(Bl)|+ |R(Bl)||Bl|+ |Bl|2) ≤ C 1 + |Bl|3

1 + ε|Bl|3
≤ C(ε).

Hence, summing (2.4) and (2.5) and using the estimate (2.6) to bound the term
on the right hand side, we obtain with the help of Hölder’s, Young’s and Korn’s
inequalities that

d

dt

(
‖vl‖22 + ‖Bl‖22

)
+ ‖Dvl‖22 + ‖T vl‖22,∂Ω + ‖∇Bl‖22

≤ C(ε) + C‖f‖2W−1,2
n,div

.

Integration with resect to time then leads to the following bound

(2.7)

sup
t∈(0,T )

(
‖vl‖22 + ‖Bl‖22

)
+

∫ T

0

(‖Dvl‖22 + ‖T vl‖22,∂Ω + ‖∇Bl‖22)

≤ C(ε) + ‖Pkv0‖22 + ‖QlBε0‖
2
2 + C

∫ T

0

‖f‖2W−1,2
n,div

≤ C(ε),

where the last inequality follows from the continuity of the projections Pk and Ql
and from the assumption on initial data, namely that

‖v0‖22 + ‖B0‖22 + ‖ln detB0‖1 + C

∫ T

0

‖f‖2W−1,2
n,div

<∞.

In (2.6) and (2.7) the notation C(ε) emphasizes that the constant C depends on ε
and we keep this notation also in what follows.

Next, we focus also on the estimate for time derivatives. First, it follows from
L2-orthonormality of the bases and the estimate (2.7) that

(2.8)

k∑
i=1

ci(t)
2 +

l∑
j=1

dj(t)
2 ≤ C(ε).

Then, since vl is a linear combination of {wi}ki=1 ⊂W 1,∞(Ω), we can estimate

(2.9) ‖vl‖L∞W 1,∞ ≤ ess sup
t∈(0,T )

k∑
i=1

|ci(t)|‖wi‖1,∞ ≤ C(ε, k).

Moreover, we can read from (2.1) that

(2.10) ‖∂tv‖L∞W 1,∞ ≤ C(ε, k).

Finally, it follows from (2.2) and (2.7) that

(2.11) ‖∂tBk‖L2W−1,2 ≤ C(ε, k).
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Using (2.7), (2.9) (2.11), (2.10) and Banach-Alaoglu’s theorem, we can find sub-
sequences (which we do not relabel) and corresponding weak limits, such that

vl ⇀ vε weakly in L2(0, T ;W 1,2
n,div),(2.12)

vl
∗
⇀ vε weakly∗ in L∞(0, T ;W 1,∞(Ω)),

∂tvl
∗
⇀ ∂tvε weakly∗ in L∞(0, T ;W 1,∞(Ω)),(2.13)

T vl ⇀ T vε weakly in L2(0, T ;L2(∂Ω)),

Bl ⇀ Bε weakly in L2(0, T ;W 1,2(Ω)),(2.14)

∂tBl ⇀ ∂tBε weakly in L2(0, T ;W−1,2(Ω)),(2.15)

as l →∞. Moreover, it follows from (2.12), (2.13), (2.14), (2.15) and from Aubin-
Lions’ lemma that for some further subsequences, we have

vl → vε strongly in L2(Q),

Bl → Bε strongly in L2(Q),

rlε → rε := ρε(Bε) a.e. in Q.(2.16)

Using the convergence results (2.12)–(2.16), it is rather standard to let l → ∞ in
(2.1)–(2.2) and deduce that

(∂tvε,wi) + (vε · ∇)vε,wi) + 2(Dvε,∇wi)
= −(T vε, T wi)∂Ω − 2a(rεS(Bε), φ∇wi) + 〈f ,wi〉

(2.17)

for all i = 1, . . . , k and all t ∈ (0, T ) and

〈∂tBε,A〉+ ((vε · ∇)Bε,A) + (∇Bε,∇A)

= 2(rεBε(aDvε −Wvε),A)− (rεR(Bε),A)
(2.18)

for all A ∈ W 1,2(Ω). Moreover, it follows from (2.14) and (2.15) that Bε ∈
C(0, T ;L2) and it is classical to show that Bε(0) = Bε0 and vε(0) = Pkv0.

2.3. Limit ε → 0. In this part we consider the solution (vε,Bε) constructed in
preceding section for ε ∈ (0, 1) and we let ε → 0+. To do so, we first derive
estimates that are uniform with respect to ε. However, in this step we must test
the equation for Bε by J, which contains also B−1

ε . Hence, we need to justify that
B−1
ε is a proper test function.

2.3.1. Estimates for the inverse matrix - still ε dependent. First, we prove that
Λ(Bε) ≥ ε. Hence, let z ∈ R3 be arbitrary and set

(2.19) A = (Bεz · z − ε|z|2)− (z ⊗ z)

in (2.18), where (z ⊗ z)ij := zizj , and the integrate the result with respect to
time t ∈ (0, τ) with some fixed τ ∈ (0, T ). Note that A clearly satisfies A ∈
L2(0, T ;W 1,2(Ω)) and therefore it can be used in (2.18). Next, we evaluate all
terms in (2.18). For the time derivative, we have∫ τ

0

〈∂tBε,A〉 =

∫ τ

0

〈
∂t(Bεz · z − ε|z|2), (Bεz · z − ε|z|2)−

〉
=

1

2

∥∥(Bε(τ)z · z − ε|z|2)−
∥∥2

2
− 1

2

∥∥(Bε0z · z − ε|z|2)−
∥∥2

2

=
1

2

∥∥(Bε(τ)z · z − ε|z|2)−
∥∥2

2
,

(2.20)
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where for the last equality used the definition of Bε0. Furthermore, using (2.19)
again, we obtain∫

Q

∇Bε · ∇A =

∫ τ

0

∫
Ω

∇(Bε − εI) · ∇((Bεz · z − ε|z|2)− (z ⊗ z))

=

∫ τ

0

∥∥∇(Bεz · z − ε|z|2)−
∥∥2

2
≥ 0

(2.21)

and ∫
Q

(vε · ∇)Bε · A =

∫ τ

0

∫
Ω

vε · ∇(Bεz · z − ε|z|2)(Bεz · z − ε|z|2)−

=
1

2

∫ τ

0

∫
Ω

vε · ∇((Bεz · z − ε|z|2)2
−

= −1

2

∫ τ

0

∫
Ω

((Bεz · z − ε|z|2)2
− div vε = 0,

(2.22)

where we used integration by parts and the fact that div vε = 0. Furthermore,
since

Bεz · z ≥ Λ(Bε)|z|2 a.e. in Q,

we get

0 ≥ (Λ(Bε)− ε)+

Λ(Bε)(1 + |Bε|)
(Bεz ·z− ε|z|2)− ≥

(Λ(Bε)− ε)+

Λ(Bε)(1 + |Bε|)
(Λ(Bε)− ε)− |z|2 = 0.

Consequently, using the definition of rε in (2.16), the definition (2.19) of A and the
above equality, we have that

(2.23) rεA = 0 a.e. in Q.

Consequently, with the choice (2.19) of A in (2.18), we see that the right hand side
is identically zero. Therefore, using (2.20), (2.21), (2.22) and (2.23) yields∥∥(Bεz · z − ε|z|2)−

∥∥2

2
(τ)

≤
∥∥(Bεz · z − ε|z|2)−

∥∥2

2
(τ) + 2

∫ τ

0

∥∥∇(Bεz · z − ε|z|2)−
∥∥2

2
= 0,

which implies

(2.24) Bεz · z ≥ ε|z|2 a.e. in Q.

Since z ∈ R3 can be arbitrary, we have the following estimate form the minimal
eigenvalue

Λ(Bε) ≥ inf
06=z∈R3

Bεz · z
|z|2

≥ ε.

Consequently, the inverse matrix B−1
ε is well defined and satisfies

(2.25) |B−1
ε | ≤

C

ε
.

Furthermore, for ∇B−1
ε we can compute

∇B−1
ε = B−1

ε Bε∇B−1
ε = B−1

ε ∇(BεB−1
ε )− B−1

ε (∇Bε)B−1
ε = −B−1

ε (∇Bε)B−1
ε

Hence, combining (2.7) and (2.25), we obtain

(2.26)

∫
Q

|∇B−1
ε |2 ≤

∫
Q

|B−1
ε |4|∇Bε|2 ≤ C(ε)
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and we see that Bε as well as B−1
ε can be used as test functions in (2.18).

2.3.2. Estimates independent of (ε, k). Next, we focus on the final estimate. Not
only it is uniform with respect to ε but it also does not depend on k. To do so, we
set

(2.27) A := Jε = ((1− γ)(I− B−1
ε ) + γ(Bε − I))

in (2.18). Thanks to (2.14) and (2.26), we know that A ∈ L2(0, T ;W 1,2(Ω)) and
thus it is an admissible setting. Hence, we obtained

〈∂tBε, Jε〉+ ((vε · ∇)Bε, Jε) + (∇Bε, Jε)
= 2(rεBε(aDvε −Wvε), Jε)− (rεR(Bε), Jε).

Next, we evaluate all terms. Here, we follow very closely the procedure in Sec-
tion 1.1, see the derivation of (1.18) and consequent identities. Since

Jε =
∂ψ(Bε)
∂Bε

,

where ψ is defined in (1.15), it is clear that

〈∂tBε, Jε〉 =
d

dt

∫
Ω

ψ(Bε),

((vε · ∇)Bε, Jε) =

∫
Ω

vε · ∇ψ(Bε) = 0.

In addition, recalling (1.19), we get

(rεR(Bε), Jε) =

∫
Ω

rε

(
δ1(1− γ)|B

1
2
ε − B−

1
2

ε |2 + (δ1γ + δ2((1− γ))|Bε − I|2

+δ2γ|B
3
2
ε − B

1
2
ε |2
)
,

(∇Bε,∇Jε) = γ‖∇Bε‖22 + (1− γ)‖B−
1
2

ε ∇BεB
− 1

2
ε ‖22

and due to the fact that BεJε = JεBε we have

(rε(WvεBε − BεWvε), Jε) = 0,

a(rε(DvεBε + BεDvε), Jε) = 2a(rεDvε,BεJε) = 2a(rεDvε, (Bε + γ(Bε − I)2)

= (rεS(Bε),Dvε),

where we used the fact that the trace of Dvε is identically zero. Hence, using A
defined in (2.27) in (2.18) and taking into account the above identities, we deduce
that

d

dt

∫
Ω

ψ(Bε) + (1− γ)
∥∥∥B− 1

2
ε ∇BεB

− 1
2

ε

∥∥∥2

2
+ γ‖∇Bε‖22

+ (γδ1 + (1− γ)δ2)‖
√
rε(Bε − I)‖22 + (1− γ)δ1

∥∥∥√rε(B 1
2
ε − B−

1
2

ε )
∥∥∥2

2

+ γδ2

∥∥∥√rε(B 3
2
ε − B

1
2
ε )
∥∥∥2

2
= 2(rεS(Bε),Dvε).

(2.28)

Similarly as in previous section, replacing wi in (2.17) by vε, we get

1

2

d

dt
‖vε‖22 + 2‖Dvε‖22 + ‖Tεvε‖22,∂Ω = −2a(rεS(Bε),Dvε) + 〈f ,vε〉,(2.29)
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Thus summing (2.28) and (2.29) and integrating the result with respect to time
t ∈ (0, τ), we deduce the final identity

1

2
‖vε(τ)‖22 +

∫
Ω

ψ(Bε(τ))

+

∫ τ

0

(
2‖Dvε‖22 + ‖T vε‖22,∂Ω + (1− γ)

∥∥∥B− 1
2

ε ∇BεB
− 1

2
ε

∥∥∥2

2
+ γ‖∇Bε‖22

+ (γδ1 + (1− γ)δ2)‖
√
rε(Bε − I)‖22

+ (1− γ)δ1

∥∥∥√rε(B 1
2
ε − B−

1
2

ε )
∥∥∥2

2
+ γδ2

∥∥∥√rε(B 3
2
ε − B

1
2
ε )
∥∥∥2

2

)
=

1

2
‖Pkv0‖22 +

∫
Ω

ψ(Bε0) +

∫ τ

0

〈f ,v〉 ≤ 1

2
‖v0‖22 +

∫
Ω

ψ(B0) +

∫ τ

0

〈f ,vε〉,

(2.30)

where, for the last inequality we used the continuity of Pk and the fact that ψ(I) = 0
and the definition of Bε0.

From (2.30), we get, using Korn’s and Sobolev’s inequalities, that

(2.31) ‖vε‖L∞L2 + ‖vε‖L2L6 + ‖vε‖L2W 1,2 + ‖Bε‖L2W 1,2 + ‖Bε‖L2L6 ≤ C,

where the constant C depends only on Ω, v0 and B0. Furthermore, the interpolation
inequalities yield

(2.32) ‖vε‖
L

10
3 L

10
3

+ ‖vε‖L4L3 + ‖Bε‖
L

10
3 L

10
3

+ ‖Bε‖L4L3 + ‖Bε‖
L

8
3 L4
≤ C.

Finally, we focus on the estimate for time derivatives. Let ϕ ∈ L4(0, T ;W 3,2
n,div)

be such that ‖ϕ‖L4W 3,2 ≤ 1. Then, since vε is a linear combination of {wi}ki=1, we
obtain, using (2.17), Hölder’s inequality, (2.30), (2.32) and W 3,2-continuity of Pk,
that ∫ T

0

〈∂tvε,ϕ〉 ≤ C,

hence

(2.33) ‖∂tvε‖
L

4
3W−3,2

n,div

≤ C.

Similarly, by considering A ∈ L4(0, T ;W 1,2(Ω)) in (2.18), we get

(2.34) ‖∂tBε‖
L

4
3W−1,2

≤ C.

2.3.3. Limit passage ε → 0+. From (2.30) (where we use Young’s and Korn’s in-
equality to estimate 〈f ,vε〉), (2.33), (2.34), Banach-Alaoglu’s theorem and the
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Aubin-Lions lemma, we obtain that there is a couple (vk,Bk) such that the follow-
ing convergence results2 hold true

vε ⇀ vk weakly in L2(0, T ;W 1,2
n,div),

∂tvε ⇀ ∂tvk weakly in L
4
3 (0, T ;W−3,2

n,div),

T vε ⇀ T vk weakly in L2(0, T ;L2(∂Ω)),

Bε ⇀ Bk weakly in L2(0, T ;W 1,2(Ω)),

∂tBε ⇀ ∂tBk weakly in L
4
3 (0, T ;W−1,2(Ω)),

vε → vk strongly in L3(Q) and a.e. in Q,(2.35)

Bε → Bk strongly in L3(Q) and a.e. in Q.(2.36)

Thus, we can use (2.36) to pass to the limit in (2.24) and obtain

Bkz · z ≥ 0 a.e. in Q for all z ∈ R3,

hence Λ(Bk) ≥ 0 and detBk ≥ 0 a.e. in Q. Therefore, using (2.36) and the conti-
nuity of ψ, there exists (still possibly infinite) limit

ψ(Bε)→ ψ(Bk) a.e. in Q.

However, by Fatou’s lemma and ψ ≥ 0, this limit satisfies∫
Ω

ψ(Bk)(t) ≤ lim inf
ε→0+

∫
Ω

ψ(Bε)(t) ≤ C,

for almost every t ∈ (0, T ), hence

(2.37) ‖ψ(Bk)‖L∞L1 ≤ C.
Consequently, if there existed a set E ⊂ Q of a positive measure, where Λ(Bk) = 0,
then also − ln detBk =∞ on that set, which contradicts (2.37). Thus, we have

(2.38) Λ(Bk) > 0 a.e. in Q.

Then it directly follows from the continuity of Λ, that rε → 1 a.e. in Q. Then, since
rε ≤ 1, we further get, by Vitali’s theorem, that

rε → 1 strongly in Lp for all p ∈ [1,∞).

Using the convergence results above, it is easy to let ε→ 0+ in (2.17) and (2.18)
and obtain that

〈∂tvk,wi〉+ ((vk · ∇)vk,wi) + 2(Dvk,∇wi)
= −(T vk, T wi)∂Ω − 2a(S(Bk),∇wi) + 〈f ,wi〉

for almost all t ∈ (0, T ) and all i = 1, . . . , k, and that

〈∂tBk,A〉+ ((vk · ∇)Bk,A) + (∇Bk,∇A)

= 2(Bk(aDvk −Wvk),A)− (R(Bk),A)

for all A ∈ W 1,2(Ω) and almost all t ∈ (0, T ). Furthermore, we can pass to the
limit in estimates (2.30), (2.32), (2.33) and (2.34). Indeed, in most of the terms we

2The convergence results (2.35), (2.36) are true in any space Lp(Q), 1 ≤ p < 10
3

, as can be

seen from (2.32) and Vitali’s theorem. The space L3(Ω) is chosen for simplicity; in our proof, we
need p > 2.
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use the weak lower semi-continuity of norms and in the terms, which depends only

on Bε, e.g.
∫
Q
rε|B

3
2
ε −B

1
2
ε |2, we apply (2.38) to obtain the pointwise limit and then

use Fatou’s lemma. Thus, inequalities (2.30), (2.32), (2.33) and (2.34) continue to
hold in the same form, but for (vk,Bk) instead of (vε,Bε) and with 1 instead of rε.
In particular, we have

1

2
‖vk(τ)‖22 +

∫
Ω

ψ(Bk(τ))

+

∫ τ

0

(
2‖Dvk‖22 + ‖T vk‖22,∂Ω + (1− γ)

∥∥∥B− 1
2

k ∇BkB
− 1

2

k

∥∥∥2

2
+ γ‖∇Bk‖22

+ (γδ1 + (1− γ)δ2)‖Bk − I‖22

+ (1− γ)δ1

∥∥∥B 1
2

k − B−
1
2

k

∥∥∥2

2
+ γδ2

∥∥∥B 3
2

k − B
1
2

k

∥∥∥2

2

)
≤ 1

2
‖v0‖22 +

∫
Ω

ψ(B0) +

∫ τ

0

〈f ,vk〉

for almost all τ ∈ (0, T ). The attainment of initial conditions is in this step standard
and we postpone the proof to the last section.

2.4. Limit k → ∞. Since we have the same a priori estimates as in the previous
step, we can proceed with limit completely analogously as with the limit ε → 0+.
The only difference is that rε is not present. Thus, using the density of {wi}∞i=1 in

W 3,2
n,div, we obtain

〈∂tv,ϕ〉+ ((vk · ∇)v,ϕ) + 2(Dv,∇ϕ)

= −(T v, T ϕ)∂Ω − 2a(S(B),∇ϕ) + 〈f ,ϕ〉
(2.39)

for almost all t ∈ (0, T ) and all ϕ ∈W 3,2
n,div, and that

〈∂tB,A〉+ ((v · ∇)B,A) + (∇B,∇A) = 2(B(aDv −Wv),A)− (R(B),A)

for all A ∈W 1,2(Ω) and almost all t ∈ (0, T ).
Moreover, from the weak lower semi-continuity of norms, we obtain the energy

inequality (1.28) for almost all t ∈ (0, T ). Furthermore, using analogous argument
as previously, we obtain that B is positive definite a.e. in Q. Now observe that,
by Hölder’s inequality and (2.32), all the terms in (2.39) except the first one, are

integrable for every ϕ ∈ L4(0, T ;W 1,2
n,div) ↪→ L4(0, T ;L6(Ω)). Indeed, for example

for the non-linear terms, we get∫
Q

|(v · ∇)v ·ϕ| ≤ ‖v‖L4L3‖∇v‖L2L2‖ϕ‖L2L6

and ∫
Q

|S(B) · ∇ϕ| ≤ C‖B‖2
L

8
3 L4
‖∇ϕ‖L4L2 .

Hence, the functional ∂tv can be uniquely extended to ∂tv ∈ L
4
3 (0, T ;W−1,2

n,div) and

we can use the density argument to conclude (1.25). Analogously, we obtain (1.26).
Hence, it remains to show that (1.28) holds for all t ∈ (0, T ) and that the initial
data fulfill (1.27).
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2.4.1. Energy inequality for all t ∈ (0, T ). First, we notice, that thanks to (2.31),
(2.33) and (2.34), we have that3

(2.40)
v ∈ Cweak(0, T ;L2(Ω)),

B ∈ Cweak(0, T ;L2(Ω)).

Let us begin by noticing that the function ψ is convex when restricted on the convex
set R3×3

>0 (the set of positive definite matrices of the size 3× 3). Indeed, evaluating

the second Fréchet derivative of ψ, we get for arbitrary A ∈ R3×3
>0

∂2ψ(A)

A2
= (1− γ)A−1 ⊗ A−1 + γI⊗ I, A ∈ R3×3

>0 ,

which is obviously a positive definite operator for any γ ∈ [0, 1] and consequently,
ψ must be convex on R3×3

>0 .
Next, we integrate (1.28) with respect to τ ∈ (t1, t1 + δ) and divide the result by

δ. After neglecting some parts of the integration in the terms on the left hand side
(which preserves the sign), we get

1

2δ

∫ t1+δ

t1

‖v(τ)‖22 +
1

δ

∫ t1+δ

t1

∫
Ω

ψ(B(τ))

+

∫ t1

0

(
2‖Dv‖22 + ‖T v‖22,∂Ω + (1− γ)

∥∥∥B− 1
2∇BB− 1

2

∥∥∥2

2
+ γ‖∇B‖22

+ (γδ1 + (1− γ)δ2)‖B− I‖22

+ (1− γ)δ1

∥∥∥B 1
2 − B−

1
2

∥∥∥2

2
+ γδ2

∥∥∥B 3
2 − B

1
2

∥∥∥2

2

)
≤ 1

2
‖v0‖22 +

∫
Ω

ψ(B0) +
1

δ

∫ t1+δ

t1

∫ τ

0

〈f ,v〉.

Finally, we let δ → 0+. The limit on the right hand side is standard and conse-
quently, if we show that

1

2
‖v(t1)‖22 +

∫
Ω

ψ(B(t1)) ≤ lim inf
δ→0+

1

δ

∫ t1+δ

t1

(
‖v(τ)‖22

2
+

∫
Ω

ψ(B(τ))

)
,(2.41)

then (1.28) will hold for all t ∈ (0, T ). To show it, we notice that thanks to (2.40)

(2.42)
v(t) ⇀ v(t1) weakly in L2(Ω) as t→ t1,

B(t) ⇀ B(t1) weakly in L2(Ω) as t→ t1,

Consequently, due to the weak lower semicontinuity and the convexity of ψ we also
have for all t ∈ (0, T ) ∫

Ω

|v(t)|2 + ψ(B(t)) ≤ C.

3Here the space Cweak(0, T ;X) ⊂ L∞(0, T ;X) denotes a space of weakly continuous function,

i.e., for every f ∈ Cweak(0, T ;X) and every g ∈ X∗ there holds

lim
t→t0
〈f(t), g〉 = 〈f(t0), g〉.
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Hence denoting by ΩM ⊂ Ω the set where |v(t1)|+ |B(t)|+ |B−1(t)| ≤M , it follows
from the previous estimate that |Ω \ ΩM | → 0 as M → ∞. Hence, since ψ is
nonnegative and convex, we have for all t ∈ (t1, t1 + δ)∫

Ω

|v(t)|2

2
+ ψ(B(t)) ≥

∫
ΩM

|v(t)|2

2
+ ψ(B(t))

≥
∫

ΩM

|v(t1)|2

2
+ ψ(B(t1)) +

∫
ΩM

v(t1) · (v(t)− v(t1)) +
∂ψ(B(t1))

∂B
· (B(t)− B(t1)).

Since, v(t1) and ∂Bψ(B(t1)) are bounded on ΩM , we can integrate the above esti-
mate over (t1, t1 + δ) and it follows from (2.42) that

lim inf
δ→0+

1

δ

∫ t1+δ

t1

∫
Ω

|v(t)|2

2
+ ψ(B(t)) ≥

∫
ΩM

|v(t1)|2

2
+ ψ(B(t1)).

Hence, letting M →∞, we deduce (2.41) and the proof of (1.28) is complete.

2.4.2. Attainment of initial conditions. Here, we give only a sketch of the proof.
First, it is standard to show from the construction and from the weak continuity
(2.42), that for arbitrary ϕ,A ∈ L2(Ω)

(2.43)

lim
t→0+

(v(t),ϕ) = (v0,ϕ),

lim
t→0+

(B(t),A) = (B0,A).

Next, using the convexity of ψ and (2.43) (and consequently weak lower semicon-
tinuity) and letting t→ 0+ in (1.28), we deduce

‖v0‖22 + 2

∫
Ω

ψ(B0) ≤ lim inf
t→0+

(
‖v(t)‖22 + 2

∫
Ω

ψ(B(t))

)
≤ lim sup

t→0+

(
‖v(t)‖22 + 2

∫
Ω

ψ(B(t))

)
≤ ‖v0‖22 + 2

∫
Ω

ψ(B0)

(2.44)

Next, we split the information from (2.44). Assume for a moment that

‖v0‖22 < lim inf
t→0+

‖v(t)‖22.

But then it follows from (2.44) that∫
Ω

ψ(B0) > lim inf
t→0+

∫
Ω

ψ(B(t)).

However, the second inequality contradicts (2.43) and convexity of ψ. Consequently,
we obtain

‖v0‖22 = lim
t→0+

‖v(t)‖22,∫
Ω

ψ(B0) = lim
t→0+

∫
Ω

ψ(B(t)).
(2.45)

Thus, it an easy consequence of (2.43)1 and (2.45)1 that

lim
t→0+

‖v(t)− v0‖22 = 0.

To claim the same result also for B, we simply split ψ as follows

ψ(A) =
γ

2
|A− I|2 + γ(trA− 3− ln detA) =: γψ1(A) + (1− γ)ψ2(A).
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Similarly as above, it is easy to observe that ψ1 as well as ψ2 are convex on the set
of positive definite matrices. Therefore, (2.45)2 and (2.43)2 imply∫

Ω

|B0 − I|2 = 2

∫
Ω

ψ1(B0) = 2 lim
t→0+

∫
Ω

ψ1(B(t)) = lim
t→0+

∫
Ω

|B(t)− I|2,∫
Ω

ψ2(B0) = lim
t→0+

∫
Ω

ψ2(B(t)).

(2.46)

Finally, (2.43) and (2.46)1 lead to

lim
t→0+

‖B(t)− B0‖22 = lim
t→0+

‖(B(t)− I) + (I− B0)‖22

= lim
t→0+

(
‖B(t)− I‖22 + ‖B0 − I‖22 − 2

∫
Ω

(B(t)− I) · (B0 − I)
)

= 0,

which finishes the proof of (1.27) and consequently also the proof of Theorem 2.
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