
Nečas Center for Mathematical Modeling

Two-sided bounds for eigenvalues
of differential operators with
applications to Friedrichs’,
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Abstract

We present a general numerical method for computing guaranteed two-sided bounds
for principal eigenvalues of symmetric linear elliptic differential operators. The approach
is based on the Galerkin method, on the method of a priori-a posteriori inequalities,
and on a complementarity technique. The two-sided bounds are formulated in a general
Hilbert space setting and as a byproduct we prove an abstract inequality of Friedrichs’–
Poincaré type. The abstract results are then applied to Friedrichs’, Poincaré, and trace
inequalities and fully computable two-sided bounds on the optimal constants in these
inequalities are obtained. Accuracy of the method is illustrated on numerical examples.

Keywords: bounds on spectrum, a posteriori error estimate, optimal constant, Friedrichs’
inequality, Poincaré inequality, trace inequality, Hilbert space
MSC2010: 35P15, 35J15, 65N25, 65N30

1 Introduction

Eigenvalue problems for differential operators have attracted a lot of attention as they have
many applications. These include the dynamic analysis of mechanical systems [3, 15, 25],
linear stability of flows in fluid mechanics [24], and electronic band structure calculations [29].
In this paper, we concentrate on guaranteed two-sided bounds of the principal (smallest)
eigenvalue of symmetric linear elliptic operators. The standard Galerkin method for solution
of eigenproblems is efficient and its convergence and other properties are well analysed [5,
6, 11]. It is also well known for providing upper bounds on eigenvalues. However, in many
applications a reliable lower bound of the smallest eigenvalue is the key piece of information
and, unfortunately, the Galerkin method cannot provide it.

The question of lower bounds on the smallest eigenvalue has already been studied for
several decades. For example see [30], where the second order elliptic eigenvalue problems
with Dirichlet boundary conditions are considered. Another technique that gives the lower
bounds not only for the first eigenvalue is the method of intermediate problems. It is based
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on finding a base problem and subsequently introducing intermediate problems that give
lower bounds for eigenvalues of the original problem and at the same time can be resolved
explicitly, see for example [8, 9, 39]. A survey of this technique can be found in [16].

Nonconforming methods have been used for computing lower bounds on eigenvalues, see
for example [4, 26, 28, 31, 40]. However, these lower bounds are valid asymptotically only
and hence these methods do not guarantee that the computed approximation is really below
the exact value. Recently, sufficient conditions for producing lower bounds for eigenvalues
of symmetric elliptic operators by nonconforming methods have been provided in [19]. The
described technique is based on satisfying the saturation assumption and on the condition
saying that the local approximation property of the underlying finite element space have
to be better than its global continuity property. It is proved that the second condition is
met by most commonly used nonconforming methods such as the Wilson element, linear
nonconforming Crouzeix–Raviart element, the enriched nonconforming rotated Q1 element,
the Morley element, the Adini element, and the Morley–Wang–Xu element. The saturation
assumption is proved for the Morley–Wang–Xu element, the enriched Crouzeix–Raviart ele-
ment, and the Wilson element. Furthermore, new nonconforming methods satisfying these
properties are proposed. However, no numerical experiments are presented.

Further, let us point out a recent result [27], where two-sided a priori bounds for the
discretization error of eigenvectors are given.

The method of a priori-a posteriori inequalities that can be used for computation of lower
bounds on eigenvalues was described and published in [22, 23, 34]. However, in these original
publications C2-continuous test and trial functions has been used in order to compute the
actual lower bound. These functions are difficult to work with and therefore, we couple
the original method of a priori-a posteriori inequalities with the complementarity technique,
where a certain flux function has to be reconstructed, see, e.g., [2, 14, 18, 32, 36, 38]. This
flux reconstruction can be done in many ways. We choose the most straightforward approach
that can be handled by standard Raviart–Thomas finite element method.

Moreover, we generalize the original method of a priori-a posteriori inequalities to the
case of a compact operator between a pair of Hilbert spaces. This generalization is especially
useful for computing two-sided bounds of the optimal constant in the Friedrichs’, Poincaré,
trace, and similar inequalities. It is based on the fact that the optimal constant in these
inequalities is inversely proportional to the square root of the smallest eigenvalue of the
corresponding symmetric linear elliptic partial differential operator.

Further, the generalization we have made enables to set up an abstract framework in the
Hilbert space setting. The abstract results can be then easily applied to symmetric linear
elliptic partial differential operators and consequently to the optimal constant in the inequal-
ities of Friedrichs’–Poincaré type. Furthermore, as a byproduct of the abstract setting, we
obtain a simple proof of the validity of an abstract inequality of Friedrichs’–Poincaré type in
the Hilbert space setting. The particular choices of the pair of Hilbert spaces, corresponding
scalar products, and the compact operator then naturally yield the validity of the Friedrichs’,
Poincaré, trace, Korn’s and other inequalities.

The main motivation for our interest in two-sided bounds of the constants in the Friedrichs’,
Poincaré, trace, and similar inequalities stems from the need of these bounds in a posteriori
error estimation for numerical solutions of partial differential equations. In particular, the
existing guaranteed upper bounds on the energy norm of the error utilize a kind of comple-
mentarity technique, see, e.g., [2, 12, 20, 32, 36, 38]. Estimates of this kind contain constants
from the Friedrichs’, Poincaré, trace, and similar inequalities. Optimal values of these con-
stants are often unknown and therefore suitable approximations have to be used in the error
estimates. These approximations have to provide upper bounds on these constants in order
to guarantee that the total error estimator is an upper bound on the error. Moreover, they
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have to be accurate due to the accuracy and efficiency of the error estimates.
The method presented in this paper provides accurate upper bounds on these constants.

In addition, this method naturally considers the dependence of the optimal constants on the
equation coefficients and on the boundary conditions. This dependence can be strong [37]
and its capturing might be crucial for accuracy and robustness of a posteriori error bounds.

The rest of the paper is organized as follows. Section 2 introduces a general variational
eigenvalue problem in the Hilbert space setting. It uses the spectral theory of compact op-
erators to prove several properties of this eigenvalue problem including the existence of the
principal eigenvalue. In Section 3 we naturally prove the abstract inequality of Friedrichs’–
Poincaré type and show the relation between the optimal constant and the principal eigen-
value. Further, we briefly describe the Galerkin method that yields an upper bound on the
principal eigenvalue and concentrate on the method of a priori-a posteriori inequalities and
on an abstract complementarity result leading to a lower bound on the principal eigenvalue.
Sections 4–6 apply the abstract results to the case of Friedrichs’, Poincaré, and trace inequal-
ity and fully computable two-sided bounds on the optimal constants in these inequalities are
obtained. Presented numerical experiments illustrate accuracy of the method and depen-
dence of the optimal constants on a nonhomogeneous diffusion parameter. Finally, Section 7
draws the conclusions.

2 Variational eigenvalue problem in the Hilbert space
setting

Let V and H be two real Hilbert spaces with scalar products (·, ·)V and (·, ·)H , respectively.
The norms induced by these scalar products are denoted by ‖ · ‖V and ‖ · ‖H . Further, let
γ : V → H be a continuous, linear, and compact operator. The center of our interest is the
following eigenvalue problem. Find λi ∈ R, ui ∈ V , ui 6= 0 such that

(ui, v)V = λi(γui, γv)H ∀v ∈ V. (1)

First, let us show that eigenvalues λi of (1) are positive.

Lemma 1. If ui ∈ V is an eigenvector corresponding to an eigenvalue λi of (1) then γui 6= 0
and λi > 0.

Proof. Since ui 6= 0, we have by (1) that 0 6= ‖ui‖2V = λi‖γui‖2H . Thus, γui 6= 0 and λi has
to be positive.

Below we show that eigenvalues λi and eigenvectors ui of (1) correspond to eigenvalues
and eigenvectors of a compact operator, respectively. Consequently, these eigenvalues form a
countable sequence that can be ordered as λ1 ≤ λ2 ≤ · · · . To show this correspondence, we
define a solution operator S : H → V . If f ∈ H is arbitrary then the mapping v 7→ (f, γv)H is
a continuous linear form on V and, hence, the Riesz representation theorem yields existence
of a unique element Sf ∈ V such that

(Sf, v)V = (f, γv)H ∀v ∈ V. (2)

Consequently, the solution operator S is linear and continuous.
The composition of operators S and γ is a linear, continuous, and compact operator

Sγ : V → V , see [33, Theorem 4.18 (f)]. In addition, this operator is selfadjoint, because
definition (2) yields

(Sγu, v)V = (γu, γv)H = (γv, γu)H = (Sγv, u)V = (u, Sγv)V .
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Therefore, we can use the Hilbert–Schmidt spectral theorem for Sγ, see [17, Theorem 4,
Chapter II, Section 3] and obtain that V can be decomposed into a direct sum of two
subspaces

V =M⊕ ker(Sγ), (3)

where ker(Sγ) = {v ∈ V : Sγv = 0} is the kernel of Sγ andM is generated by all eigenvectors
of the operator Sγ corresponding to nonzero eigenvalues. Let us recall that ui ∈ V , ui 6= 0
is an eigenvector of Sγ corresponding to an eigenvalue µi ∈ R if

Sγui = µiui. (4)

Furthermore, the Hilbert–Schmidt spectral theorem implies that the system u1, u2, . . . of
eigenvectors corresponding to nonzero eigenvalues of (4) is countable and orthogonal in V .
A simple consequence of (2) and (4) is the orthogonality of images γui, i = 1, 2, . . . in H. In
this paper we consider the following normalization of these eigenvectors:

(γui, γuj)H = δij ∀i, j = 1, 2, . . . , (5)

where δij stands for the Kronecker’s delta.
Now, let us observe that eigenproblems (1) and (4) correspond to each other and, there-

fore, the spectral properties of the compact operator Sγ translate to the properties of the
eigenproblem (1).

Lemma 2. Considering the above setting, the following statements hold true.

1. Number λi ∈ R is an eigenvalue corresponding to the eigenvector ui ∈ V of (1) if and
only if µi = 1/λi is a nonzero eigenvalue corresponding to the eigenvector ui of the
operator Sγ, see (4).

2. The number of eigenvalues λi of (1) such that λi ≤M is finite for any M > 0.

3. The value λ1 = inf
u∈V,u 6=0

‖u‖2V /‖γu‖2H is the smallest eigenvalue of (1).

Proof. 1. Definition (2) yields identity (γui, γv)H = (Sγui, v)V for all v ∈ V . Hence, the
equality (1) can be rewritten as (ui, v)V = λi(Sγui, v)V , which is equivalent to (4) with
µi = 1/λi provided λi 6= 0 and µi 6= 0. Since Lemma 1 guarantees λi > 0 for all i = 1, 2, . . . ,
the only condition is µi 6= 0.

2. If we denote the spectrum of Sγ by σ(Sγ) then the compactness of Sγ implies that the
set [ε,∞) ∩ σ(Sγ) is finite for any ε > 0, see [33, Theorem 4.24 (b)]. The statement follows
immediately from the fact that λi = 1/µi for µi 6= 0.

3. Since Sγ is selfadjoint, the Courant–Fischer–Weyl min-max principle implies that

µ1 = sup{(Sγv, v)V : ‖v‖V = 1} = sup
v∈V,v 6=0

(Sγv, v)V
‖v‖2V

= sup
v∈V,v 6=0

‖γv‖2H
‖v‖2V

is finite and it is the largest eigenvalue of the operator Sγ. Consequently,

λ1 = µ−1
1 =

(
sup

v∈V,v 6=0

‖γv‖2H
‖v‖2V

)−1

= inf
v∈V,v 6=0

‖v‖2V
‖γv‖2H

(6)

is the smallest eigenvalue of problem (1).
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3 Abstract inequality of Friedrichs’–Poincaré type

3.1 The proof of the abstract inequality

Properties of eigenproblem (1) can be utilized in a simple way to derive an abstract inequal-
ity of Friedrichs’–Poincaré type. The Hilbert space versions of the particular Friedrichs’,
Poincaré, trace, Korn’s and similar inequalities easily follow from this abstract result. For
examples see Sections 4–6.

Theorem 3 (Abstract inequality). Let γ : V → H be a continuous, linear, and compact
operator between Hilbert spaces V and H. Let λ1 be the smallest eigenvalue of problem (1).
Then

‖γv‖H ≤ Cγ‖v‖V ∀v ∈ V (7)

with Cγ = λ
−1/2
1 . Moreover, this constant is optimal in the sense that it is the smallest

possible constant such that (7) holds for all v ∈ V .

Proof. The validity of the abstract inequality follows immediately from (6):

‖γv‖2H ≤ λ−1
1 ‖v‖2V ∀v ∈ V.

This inequality holds as equality for v = u1 and thus, the constant Cγ = λ
−1/2
1 is optimal.

3.2 Upper bound on the smallest eigenvalue

The upper bound on λ1 can be computed by the standard Galerkin method, which is both
accurate and efficient [5, 6, 11]. The Galerkin method is based on the projection of the
eigenproblem (1) into a finite dimensional subspace V h ⊂ V . We seek eigenvectors uhi ∈ V h,
uhi 6= 0, and eigenvalues λhi such that

(uhi , v
h)V = λhi (γuhi , γv

h)H ∀vh ∈ V h. (8)

Considering a basis ϕj , j = 1, 2, . . . , N in V h, we can formulate problem (8) equivalently as
a generalized eigenvalue problem

Ayi = λhiMyi

for matrices A and M with entries

Ajk = (ϕk, ϕj)V and Mjk = (γϕk, γϕj)H , j, k = 1, 2, . . . , N.

The eigenvectors yi ∈ RN and uhi ∈ V h are linked by the relation uhi =
∑N
j=1 yi,jϕj . The

generalized matrix eigenvalue problem can be solved by efficient methods of numerical linear
algebra [7].

The Galerkin method for eigenvalue problems is very well understood. The convergence
and the speed of convergence of this method is established for example in [5, 6, 11]. It is well
known [11] that the Galerkin method approximates the exact eigenvalues from above, hence

λi ≤ λhi , ∀i = 1, 2, . . . .

In particular, the upper bound on the smallest eigenvalue λ1 and the corresponding lower
bound on the optimal constant Cγ read

λ1 ≤ λh1 and (λh1 )−1/2 ≤ Cγ . (9)
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3.3 Lower bound on the smallest eigenvalue

In this part we concentrate on a computable lower bound on the smallest eigenvalue λ1.
First, we formulate an auxiliary result. It states that the images γui, i = 1, 2, . . . of the
orthogonal system of eigenvectors ui satisfy the Parseval’s identity.

Lemma 4. Let ui, i = 1, 2, . . . , be the above specified orthogonal system of eigenvectors of
the operator Sγ corresponding to nonzero eigenvalues. Let these eigenvectors be normalized
as in (5). Finally, let u∗ ∈ V be arbitrary. Then

‖γu∗‖2H =

∞∑
i=1

|(γu∗, γui)H |2.

Proof. Due to the decomposition (3), there exist unique components uM∗ ∈ M and u0
∗ ∈

ker(Sγ) such that u∗ = uM∗ + u0
∗. Since Sγu0

∗ = 0, we have 0 = (Sγu0
∗, u

0
∗)V = (γu0

∗, γu
0
∗)H

by (2) and hence γu0
∗ = 0. Consequently, γu∗ = γuM∗ .

System γui, i = 1, 2, . . . , forms an orthonormal basis inM. Thus, we can use the standard
Parseval’s identity in M [41, Theorem 2, Chapter III, Section 4] to obtain

‖γu∗‖2H = ‖γuM∗ ‖2H =

∞∑
i=1

|(γuM∗ , γui)H |2 =

∞∑
i=1

|(γu∗, γui)H |2.

The derivation of the lower bound on λ1 is based on the method of a priori-a posteriori
inequalities. This method relies on an abstract theorem proved in [22]. We formulate this
theorem in the setting of this paper and for the readers’ convenience we present its brief
proof. Notice that in contrast to [22], Theorem 5 operates with a pair of Hilbert spaces and
with a compact operator between them.

Theorem 5. Let γ : V → H be a continuous, linear, and compact operator between Hilbert
spaces V and H. Let u∗ ∈ V and λ∗ ∈ R be arbitrary. Let us consider w ∈ V such that

(w, v)V = (u∗, v)V − λ∗(γu∗, γv)H ∀v ∈ V. (10)

If γu∗ 6= 0 then

min
i

∣∣∣∣λi − λ∗λi

∣∣∣∣ ≤ ‖γw‖H‖γu∗‖H
. (11)

Proof. Using Lemma 4 and definitions (1) and (10), we obtain

min
i

∣∣∣∣λi − λ∗λi

∣∣∣∣2 ‖γu∗‖2H ≤ ∞∑
i=1

∣∣∣∣λi − λ∗λi
(γu∗, γui)H

∣∣∣∣2
=

∞∑
i=1

∣∣∣∣ (ui, u∗)Vλi
− (u∗ − w, ui)V

λi

∣∣∣∣2
=

∞∑
i=1

∣∣∣∣ (w, ui)Vλi

∣∣∣∣2 =

∞∑
i=1

|(γw, γui)H |2 = ‖γw‖2H .
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In order to obtain a computable lower bound on λ1, we combine the estimate (11) with
a complementarity technique, see Sections 4–6. The bounds derived by the complementarity
technique depend on the particular choice of spaces V and H, but they have a common
general structure. The following theorem utilizes this general structure and presents an
abstract lower bound on λ1.

Theorem 6 (Abstract complementarity estimate). Let u∗ ∈ V , λ∗ ∈ R be arbitrary and let
w ∈ V satisfy (10). Let λ1 be the smallest eigenvalue of (1) and let the relatively closest
eigenvalue to λ∗ be λ1, i.e. let∣∣∣∣λ1 − λ∗

λ1

∣∣∣∣ ≤ ∣∣∣∣λi − λ∗λi

∣∣∣∣ ∀i = 1, 2, . . . . (12)

Finally, let us consider A ≥ 0 and B ≥ 0 such that

‖w‖V ≤ A+ CγB, (13)

where B < λ∗‖γu∗‖H and Cγ is the optimal constant from (7). Then

X2
2 ≤ λ1 and Cγ ≤ 1/X2, (14)

where

X2 =
1

2

(
−α+

√
α2 + 4(λ∗ − β)

)
, α =

A

‖γu∗‖H
, and β =

B

‖γu∗‖H
. (15)

Proof. Using the fact that Cγ = λ
−1/2
1 , the estimate (11), assumptions of the theorem, and

inequality (7), we obtain the validity of the following relation

λ∗C
2
γ − 1 =

λ∗ − λ1

λ1
≤ min

i

∣∣∣∣λi − λ∗λi

∣∣∣∣ ≤ ‖γw‖H‖γu∗‖H
≤ Cγ

‖w‖V
‖γu∗‖H

≤ Cγα+ C2
γβ.

This is equivalent to the quadratic inequality

0 ≤ C2
γ(β − λ∗) + Cγα+ 1.

Solving it for Cγ under the assumption β < λ∗, we conclude that this inequality is not
satisfied for Cγ > 1/X2. Thus, Cγ has to be at most 1/X2.

The particular complementarity estimates have the form (13), where the numbers A and
B are obtained by an approximate minimization procedure, see Sections 4–6. The better ap-
proximation of the exact minimizer we compute the tighter bound (13) and consequently (14)
we obtain. The exact minimizer yields equality in (13) and B = 0. Therefore, the assumption
B < λ∗‖γu∗‖H can always be satisfied by computing sufficiently accurate minimizer.

The assumption (12) is crucial and it cannot be guaranteed unless lower bounds on λ1

and λ2 are known. However, since the Galerkin method is known to converge [5, 6, 11]
with a known speed, very accurate approximations of λ1 and λ2 can be computed. If these
approximations are well separated then they can be used in (12) to verify its validity with a
good confidence.

In order to increase this confidence, we propose a test. This test is based on the following
observation. Let λlow

1 ≤ λ1 ≤ λ∗ ≤ λlow
2 ≤ λ2 ≤ λup

2 , D1 = (λ∗ − λlow
1 )/λlow

1 and D2 =
(λlow

2 − λ∗)/λ
up
2 . Then inequality D1 ≤ D2 implies the assumption (12). Indeed, if all

these inequalities are satisfied then, clearly, |(λ1 − λ∗)/λ1| ≤ D1 ≤ D2 ≤ |(λ2 − λ∗)/λ2| ≤
|(λi − λ∗)/λi| for all i = 2, 3, . . . and (12) holds true.
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Thus, if we knew guaranteed lower bounds λlow
1 and λlow

2 on the first eigenvalue λ1 and
the second eigenvalue λ2 of (1), respectively, then we could use the Galerkin method to
compute upper bounds λ∗ and λup

2 , check if λ∗ ≤ λlow
2 and the inequality D1 ≤ D2 would

then guarantee the validity of (12). However, the guaranteed lower bounds λlow
1 and λlow

2 are
not available.

Therefore, in practice we propose to set λlow
1 = X2

2 , see (14), λlow
2 = (λ∗ + λup

2 )/2, and
compute D1 and D2 with these values. This yields the following diagnostics indicating the
validity of assumption (12). If D2 ≤ 0 or D1 > D2 then it is highly probable that some of
the assumptions is not satisfied and the results should not be trusted. On the other hand
if D2 > 0 and D1 is several times smaller than D2 then we can have a good confidence
about the validity of (12). This diagnostics performs very well in all numerical experiments
presented below. At the early stages of the computations the approximations are not very
precise and the diagnostics showed that the results are untrustworthy. However, at the final
stages of the computations the value D1 was at least ten times smaller than D2 providing
good confidence about the validity of (12).

4 Application to the Friedrichs’ inequality

In this section we apply the above general theory to the case of Friedrichs’ inequality. We will
consider the variant of Friedrichs’ inequality that is suitable for general symmetric second-
order linear elliptic differential operators. First, we introduce differential operators of this
general type in Subsection 4.1. In Subsection 4.2 we derive two-sided bounds on the opti-
mal constant in the Friedrichs’ inequality that are based on the general theory and on the
complementarity technique. In Subsection 4.3 certain computational issues are discussed and
finally, in Subsection 4.4 we present numerical results.

4.1 A general symmetric second-order linear elliptic operator

Let us consider a domain Ω ⊂ Rd with Lipschitz boundary ∂Ω. Let ∂Ω consist of two
relatively open parts ΓD and ΓN such that ∂Ω = ΓD ∪ ΓN and ΓD ∩ ΓN = ∅. Note that we
admit the case where either ΓD or ΓN is empty. Further, let us consider a matrix function
A ∈ [L∞(Ω)]d×d, coefficients c ∈ L∞(Ω), and α ∈ L∞(ΓN). Matrix A is assumed to be
symmetric and uniformly positive definite, i.e. there exists a constant C > 0 such that

ξTA(x)ξ ≥ C|ξ|2 ∀ξ ∈ Rd and for a.e. x ∈ Ω,

where |·| stands for the Euclidean norm. Coefficients c and α are considered to be nonnegative.
Further, we consider a subspace

H1
ΓD

(Ω) = {v ∈ H1(Ω) : v = 0 on ΓD in the sense of traces}

of the Sobolev space H1(Ω) of L2(Ω) functions with square integrable distributional deriva-
tives. In what follows, we use the notation (·, ·) and (·, ·)L2(ΓN) for the L2(Ω) and L2(ΓN)
scalar products, respectively. Using this notation, we define a bilinear form

a(u, v) = (A∇u,∇v) + (cu, v) + (αu, v)L2(ΓN). (16)

This bilinear form is a scalar product in H1
ΓD

(Ω) under the conditions presented in the
following lemma. Its proof follows for instance from [21, Theorem 5.11.2].

Lemma 7. The bilinear form defined in (16) is a scalar product in H1
ΓD

(Ω) provided that at
least one of the following conditions is satisfied:
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(a) measd−1 ΓD > 0,

(b) there exists a nonempty ball B ⊂ Ω such that c > 0 on B,

(c) there exists a subset Γα ⊂ ΓN such that measd−1 Γα > 0 and α > 0 on Γα.

The equivalence of the norm induced by a(·, ·) and the standard H1 norm yields com-
pleteness and therefore the space H1

ΓD
(Ω) equipped with the scalar product a(·, ·) is a Hilbert

space. This enables to use the theory from Section 2. We set

V = H1
ΓD

(Ω), (u, v)V = a(u, v), H = L2(Ω), (u, v)H = (u, v), (17)

and we define γ : H1
ΓD

(Ω) → L2(Ω) as the identity, which is compact due to the Rellich
theorem [1, Theorem 6.3]. With this setting and with the notation ‖ · ‖a for the norm
induced by a(·, ·), we obtain the validity of the Friedrichs’ inequality.

Theorem 8. Let the bilinear form a(·, ·) given by (16) form a scalar product in H1
ΓD

(Ω).
Then there exists a constant CF > 0 such that

‖v‖L2(Ω) ≤ CF‖v‖a ∀v ∈ H1
ΓD

(Ω). (18)

Moreover, the optimal value of this constant is CF = λ
−1/2
1 , where λ1 is the smallest eigen-

value of the following problem: find ui ∈ H1
ΓD

(Ω), ui 6= 0, and λi ∈ R such that

a(ui, v) = λi(ui, v) ∀v ∈ H1
ΓD

(Ω). (19)

Proof. Lemma 7 guarantees that H1
ΓD

(Ω) is a Hilbert space with scalar product a(·, ·) given
by (16). The statement then follows immediately from Theorem 3.

Let us note that the most common version of Friedrichs’ inequality

‖v‖L2(Ω) ≤ CF‖∇v‖L2(Ω) ∀v ∈ H1
0 (Ω)

follows from (18) with ΓD = ∂Ω, ΓN = ∅, A being identity matrix, c = 0, and α = 0. As
usual, we denote by H1

0 (Ω) the space H1
ΓD

(Ω) with ΓD = ∂Ω.

4.2 Two-sided bounds on Friedrichs’ constant

A lower bound on the Friedrichs’ constant CF can be efficiently computed by the Galerkin
method. We use the setting (17) and proceed as it is described in Section 3.2. The up-
per bound on CF is obtained by the complementarity technique presented in the following
theorem.

Let H(div,Ω) stands for the space of d-dimensional vector fields with square integrable
divergence and let n be the unit outward-facing normal vector to the boundary ∂Ω. Further,
let ‖q‖2A = (Aq, q) be a norm in [L2(Ω)]d induced by the matrix A.

Theorem 9. Let V = H1
ΓD

(Ω), u∗ ∈ V and λ∗ ∈ R. Let the bilinear form a(·, ·) given by
(16) form a scalar product in H1

ΓD
(Ω). Let w ∈ V satisfy

a(w, v) = a(u∗, v)− λ∗(u∗, v) ∀v ∈ V, (20)

where recall that (·, ·) stands for the L2(Ω) scalar product. Then

‖w‖a ≤ ‖∇u∗ −A−1q‖A + CF‖λ∗u∗ − cu∗ + div q‖L2(Ω) ∀q ∈W, (21)

where W = {q ∈ H(div,Ω) : q · n = −αu∗ on ΓN}.
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Proof. Let us fix any q ∈W , test (20) by v = w and use the divergence theorem to express

‖w‖2a = (A∇u∗,∇w) + (cu∗, w) + (αu∗, w)L2(ΓN) − λ∗(u∗, w)− (q,∇w)− (div q, w)

+ (q · n, w)L2(ΓN) =
(
A(∇u∗ −A−1q),∇w

)
− (λ∗u∗ − cu∗ + div q, w).

The Cauchy–Schwarz inequality and Friedrichs’ inequality (18) yield

‖w‖2a ≤ ‖∇u∗ −A−1q‖A‖∇w‖A + CF‖λ∗u∗ − cu∗ + div q‖L2(Ω)‖w‖a.

Inequality ‖∇w‖A ≤ ‖w‖a finishes the proof.

The estimate (21) is of type (13) with

A = ‖∇u∗ −A−1q‖A, B = ‖λ∗u∗ − cu∗ + div q‖L2(Ω), (22)

and Cγ = CF. The numbers A and B can be readily computed as soon as suitable approx-
imations λ∗, u∗, and a suitable vector field q ∈ W are in hand. Estimate (14) then gives a
guaranteed upper bound on the Friedrichs’ constant CF.

The crucial part is the computation of suitable approximations λ∗ and u∗ of the smallest
eigenvalue λ1 of problem (19) and its corresponding eigenvector u1 such that the inequality
(12) is satisfied. Equally crucial is a suitable choice of the vector field q ∈ W in such a way
that estimate (21) provides a tight upper bound on ‖w‖a. A possible approach and practical
details about these issues are provided in the next section.

4.3 Flux reconstruction

In order to compute two-sided bounds on Friedrichs’ constant, we proceed as follows. First,
we use the Galerkin method, see Section 3.2, to compute an approximation λh1 and uh1 of
the eigenpair λ1 and u1 of (19). We set λ∗ = λh1 , u∗ = uh1 , compute a suitable vector field
q ∈ W , and evaluate the numbers A and B by (22). Estimate (14) then provides the upper
bound on the Friedrichs’ constant CF and the Galerkin approximation λh1 yields the lower
bound (9) on CF.

The key point is the computation of the suitable vector field q. For simplicity, we choose a
straightforward approach of approximate minimization of the upper bound (21) with respect
to a suitable subset of W . First, we exploit the affine structure of W . Let us choose an
arbitrary but fixed q ∈ W . The practical construction of this q is a geometrical issue
depending on Ω and coefficient α. It suffices to construct a vector field q1 ∈ H(div,Ω) such
that q1 · n = 1 on ΓN and a function α ∈ H1(Ω) such that α = α on ΓN. Let us note
that usually Raviart–Thomas–Nédélec space is considered for construction of vector fields in
H(div,Ω). Then we can simply set q = −αu∗q1. This q obviously satisfies the boundary
condition q · n = −αu∗ on ΓN and if q1 and α are sufficiently smooth then q ∈ H(div,Ω).

In any case, having a q ∈W , we can express the affine space W as W = q +W0, where

W0 = {q ∈ H(div,Ω) : q · n = 0 on ΓN}

is already a linear space. The idea is to minimize the upper bound (21) over the set q+Wh
0 ,

where Wh
0 ⊂ W0 is a finite dimensional subspace. However, the right-hand side of (21) is a

nonlinear functional in q and, thus, in order to simplify the computation, we use the idea
from [32] and approximate it by a quadratic functional. We rewrite inequality (21) using the
notation (22) and apply an elementary estimate:

‖w‖2a ≤ (A+ CFB)2 ≤ (1 + %−1)A2 + (1 + %)C2
FB

2 ∀% > 0.



TWO-SIDED BOUNDS FOR EIGENVALUES 11

The right-hand side of this inequality is already a quadratic functional for a fixed %, but the
exact value of CF is unknown in general. However, it is sufficient to find an approximate
minimizer only. Therefore we approximate CF by the available value (λh1 )−1/2. This leads us
to the minimization of

(1 + %−1)‖∇uh1 −A−1q‖2A + (1 + %)(λh1 )−1‖λh1uh1 − cuh1 + div q‖2L2(Ω) (23)

over the affine set q+Wh
0 with a fixed value of % > 0. This minimization problem is equivalent

to seeking qh0 ∈Wh
0 satisfying

B(qh0 ,w
h
0 ) = F(wh

0 )− B(q,wh
0 ) ∀wh

0 ∈Wh
0 , (24)

where

B(q,w) = (div q,divw) +
λh1
%

(A−1q,w),

F(w) =
λh1
%

(∇uh1 ,w)− (λh1u
h
1 − cuh1 ,divw).

The computed vector field qh = q + qh0 ∈ W is then used in (22) to evaluate A and B and
consequently the two-sided bounds C low

F ≤ CF ≤ Cup
F , where

C low
F = (λh1 )−1/2 and Cup

F = 1/X2, (25)

X2 is given by (15) with γu∗ = uh1 , see (9) and (14).
Note that problem (24) can be naturally approached by standard Raviart–Thomas finite

elements [13]. Further we note that a particular value of the constant % can influence the
accuracy of the final bound. However, this influence was minor in all cases we numerically
tested and the natural value % = 1 yielded accurate results. If necessary a simultaneous
minimization of (23) with respect to both % > 0 and q ∈ q +Wh

0 can be performed.

4.4 Numerical experiment

In order to illustrate the capabilities of the above described approach for computation of two-
sided bounds on Friedrichs’ constant, we present numerical results showing the dependence of
Friedrichs’ constant on piecewise constant values of A. We consider the general setting from
Section 4.1 and in particular we set Ω = (−1, 1)2, ΓN = {(x1, x2) ∈ R2 : x1 = 1 and − 1 <
x2 < 1}, ΓD = ∂Ω \ ΓN, c = 0, and α = 0. The matrix A is piecewise constant, defined as
A(x1, x2) = I for x1x2 ≤ 0 and A(x1, x2) = ãI for x1x2 > 0, where I ∈ Rd×d stands for the
identity matrix and the value of the constant ã is specified below.

We employ the standard lowest-order (piecewise linear) triangular finite elements to dis-
cretize eigenvalue problem (19). Thus, we consider a triangular mesh Th and seek Galerkin
solution of problem (19) in space

V h = {vh ∈ H1
ΓD

(Ω) : vh|K ∈ P 1(K), ∀K ∈ Th}, (26)

where P 1(K) denotes the space of affine functions on triangle K, see Section 3.2. We point
out that the discontinuity of A(x1, x2) causes a strong singularity of the eigenvectors at the
origin. Therefore, we employ a standard adaptive algorithm, see Algorithm 1, and construct
adaptively refined meshes in order to approximate the singularity well. We use the localized
version of (23) to define the error indicators

η2
K = (1 + %−1)‖∇uh1 −A−1q‖2A,K + (1 + %)(λh1 )−1‖λh1uh1 − cuh1 + div q‖2L2(K) (27)
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Adaptive algorithm

Step 1 Construct an initial mesh Th.

Step 2 Use the space (26) and compute Galerkin approximations λh1 ∈ R and uh1 ∈ V h of
the smallest eigenvalue and the corresponding eigenvector of problem (19), see (8).

Step 3 Use the space of second-order Raviart–Thomas [13] finite elements
Wh

0 = {wh ∈W0 : wh ∈ [P 2(K)]2, ∀K ∈ Th} and solve (24).

Step 4 Evaluate two-sided bounds (25). Set Cavg
F = (Cup

F + C low
F )/2,

EREL = (Cup
F − C low

F )/Cavg
F , and stop the algorithm as soon as EREL ≤ ETOL.

Step 5 Compute error indicators (27) for all K ∈ Th and sort them in descending order:
ηK1 ≥ ηK2 ≥ · · · ≥ ηKNel

, where Nel is the number of elements in Th.

Step 6 (Bulk criterion.) Find the smallest n such that θ2
∑Nel

i=1 η
2
Ki
≤
∑n
i=1 η

2
Ki
, where

θ ∈ (0, 1) is a parameter.

Step 7 Construct a new mesh Th by refining elements K1, K2, . . . , Kn.

Step 8 Go to Step 2.

Algorithm 1: Mesh adaptation algorithm for two-sided bounds on Friedrichs’ constant.

ã C low
F Cup

F EREL NDOF

0.001 9.0086 9.0939 0.0094 4 832
0.01 2.8697 2.8971 0.0095 5 003
0.1 1.0035 1.0124 0.0088 7 866

1 0.5693 0.5743 0.0086 4 802
10 0.3173 0.3201 0.0088 7 866

100 0.2870 0.2897 0.0095 5 003
1000 0.2849 0.2876 0.0094 4 832

Table 1: Friedrichs’ constant. The lower bound C low
F , upper bound Cup

F , relative error EREL,
and the number of degrees of freedom NDOF = dimV h for particular values of ã.

for all K ∈ Th, where ‖w‖2A,K = (Aw,w)L2(K).

The unknown value of Friedrichs’ constant lies between bounds C low
F and Cup

F computed
in Step 4 of Algorithm 1. These bounds are utilized for the relative error stopping criterion.
When the algorithm stops, the relative error is guaranteed to be at most the given tolerance
ETOL.

In this particular numerical experiment we have chosen the initial mesh with eight tri-
angles as shown in Figure 1. The marking parameter in Step 6 and the tolerance for the
relative error in Step 4 were chosen as θ = 0.75 and ETOL = 0.01. Further, we naturally set
% = 1.

The results for a series of values of ã are summarized in Table 1. For each particular value
of ã, we run the adaptive algorithm until the relative error drops below ETOL = 0.01. This
error level was reached in all cases using several thousands of degrees of freedom. Notice the
considerable dependence of the optimal value of Friedrichs’ constant on ã. The values for
ã = 0.001 and ã = 1000 differ more than thirty times. Further notice that the exact value of
Friedrichs’ constant for ã = 1 is CF = 4/(π

√
5) ≈ 0.5694.
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(−1,−1) (1,−1)

(1, 1)(−1, 1)

ΓD ΓN

ΓD

ΓD

Figure 1: The initial mesh for the adaptive algorithm. The Dirichlet and Neumann parts
of the boundary are indicated as well as the piecewise constant matrix A: A = I in white
elements and A = ãI in gray elements.

5 Application to the Poincaré inequality

5.1 Poincaré inequality and the optimal constant

In this section we consider the case when none of conditions (a)–(c) of Lemma 7 is satisfied.
Therefore, we assume the general symmetric second-order elliptic operator as described in
Section 4.1 with c = 0, α = 0, ΓD = ∅, and ΓN = ∂Ω. We apply the general theory of
Section 3 with V = H̃1(Ω) = {v ∈ H1(Ω) : (v, 1) = 0}, (u, v)V = a(u, v) = (A∇u,∇v),
H = L2(Ω), and (u, v)H = (u, v). It is an easy exercise to verify that a(·, ·) forms a scalar

product on H̃1(Ω) and that it induces a norm ‖ · ‖a equivalent to the standard H1-seminorm

and H1-norm. The operator γ : V → H is simply the identity mapping I : H̃1(Ω)→ L2(Ω).

This mapping is clearly compact, because the identity mapping from H̃1(Ω) to H1(Ω) is
linear and continuous and the identity mapping from H1(Ω) to L2(Ω) is compact due to the
Rellich theorem [1, Theorem 6.3]. This setting enables to use the general result of Theorem 3
and obtain the following result.

Theorem 10. There exists a constant CP > 0 such that

‖v‖L2(Ω) ≤ CP‖v‖a ∀v ∈ H̃1(Ω). (28)

Moreover, the optimal value of this constant is CP = λ
−1/2
1 , where λ1 is the smallest positive

eigenvalue of the following problem: find ui ∈ H1(Ω), ui 6= 0, and λi ∈ R such that

a(ui, v) = λi(ui, v) ∀v ∈ H1(Ω). (29)

Proof. The inequality (28) follows immediately from Theorem 3. This theorem also implies

that the optimal constant is CP = λ̃
−1/2
1 , where λ̃1 is the smallest eigenvalue of the following

problem: find ũi ∈ H̃1(Ω), ũi 6= 0, and λ̃i ∈ R such that

a(ũi, v) = λ̃i(ũi, v) ∀v ∈ H̃1(Ω). (30)

Notice that 0 < λ̃1 ≤ λ̃2 ≤ . . . . Similarly, the eigenvalues of (29) satisfy 0 = λ0 < λ1 ≤ λ2 ≤
. . . and the zero eigenvalue corresponds to a constant eigenvector u0 = 1. It can be easily
shown that λ̃i = λi and ũi = ui for all i = 1, 2, . . . . Thus, the smallest eigenvalue λ̃1 of (30)
is equal to the smallest positive eigenvalue λ1 of (29) and the proof is finished.
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Let us note that the Poincaré inequality (28) can be equivalently formulated as

‖v − ṽ‖L2(Ω) ≤ CP‖v‖a ∀v ∈ H1(Ω), ṽ = (v, 1)/|Ω|. (31)

Further, it is clear that the common version of the Poincaré inequality

‖v − ṽ‖L2(Ω) ≤ CP‖∇v‖L2(Ω) ∀v ∈ H1(Ω)

follows from (31) and consequently from (28) with A being the identity matrix.

5.2 Two-sided bounds on the Poincaré constant

The lower bound on the Poincaré constant CP can be computed in the standard way by
the Galerkin method, see Section 3.2. The only difference is that here we compute the
approximation λh1 of the second smallest (the smallest positive) eigenvalue of (29), because
the smallest eigenvalue is λ0 = 0. In order to compute the upper bound, we employ the
complementarity technique as follows.

Theorem 11. Let V = H̃1(Ω), u∗ ∈ V , and λ∗ ∈ R. Let w ∈ V satisfy

a(w, v) = a(u∗, v)− λ∗(u∗, v) ∀v ∈ V. (32)

Then
‖w‖a ≤ ‖∇u∗ −A−1q‖A + CP‖λ∗u∗ + div q‖L2(Ω) ∀q ∈W0, (33)

where W0 = {q ∈ H(div,Ω) : q · n = 0 on ∂Ω}.

Proof. Fixing arbitrary q ∈W0, testing (32) by v = w and using the divergence theorem, we
obtain

‖w‖2a = (A∇u∗,∇w)− λ∗(u∗, w)− (q,∇w)− (div q, w)

=
(
A(∇u∗ −A−1q),∇w

)
− (λ∗u∗ + div q, w).

The Cauchy–Schwarz inequality and Poincaré inequality (28) yield

‖w‖2a ≤ ‖∇u∗ −A−1q‖A‖∇w‖A + CP‖λ∗u∗ + div q‖L2(Ω)‖w‖a.

Since ‖∇w‖A = ‖w‖a, the proof is finished.

We observe that complementarity estimate (33) is of type (13) with

A = ‖∇u∗ −A−1q‖A, B = ‖λ∗u∗ + div q‖L2(Ω), (34)

and Cγ = CP. As soon as a suitable vector field q ∈ W0 is available, the numbers A and B
can be computed and used in (14)–(15) to obtain a guaranteed upper bound on the Poincaré
constant CP.

A straightforward approach for computing a suitable vector field qh ∈W0 was described in
Section 4.3 for the case of Friedrichs’ constant. It can be directly used also for the Poincaré
constant. It is even simpler, because c = 0, α = 0, and ΓN = ∂Ω. The only difference
is that the approximation λh1 of the second smallest (the first positive) eigenvalue of (29)
has to be used. In particular, the approximation qh ∈ W0 is computed using (24). This
vector field is then used in (34) to evaluate A and B and consequently the two-sided bounds
C low

P ≤ CP ≤ Cup
P , where

C low
P = (λh1 )−1/2 and Cup

P = 1/X2, (35)

X2 is given by (15) with γu∗ = uh1 being the approximate eigenvector of (29) corresponding
to λh1 , see also (9) and (14).
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ã C low
P Cup

P EREL NDOF

0.001 14.2390 14.3690 0.0091 3 400
0.01 4.5199 4.5623 0.0093 3 510
0.1 1.4849 1.4989 0.0094 4 382

1 0.6365 0.6424 0.0092 3 009
10 0.4696 0.4740 0.0094 4 382

100 0.4520 0.4562 0.0093 3 510
1000 0.4503 0.4544 0.0091 3 400

Table 2: Poincaré constant. The lower bound C low
P , upper bound Cup

P , relative error EREL,
and the number of degrees of freedom NDOF = dimV h for particular values of ã.

5.3 Numerical experiment

We consider the same setting as in Section 4.4. The only difference is that in the case of
Poincaré constant we assume ΓN = ∂Ω and ΓD = ∅. We use the adaptive algorithm as before
(Algorithm 1) with clear modifications. We use error indicators (27), where λh1 and uh1 are
the Galerkin approximations of the second smallest (the smallest positive) eigenvalue λ1 of
(29) and its corresponding eigenvector u1. The relative error in Step 4 of Algorithm 1 is
computed using two-sided bounds (35).

The obtained two-sided bounds for a series of values of ã are presented in Table 2. The
guaranteed 0.01 relative error tolerance was reached in all cases using several thousands
degrees of freedom. As in the case of Friedrichs’ constant, we observe considerable dependence
of the Poincaré constant CP on ã. Finally, we point out that the exact value of the Poincaré
constant for ã = 1 is CP = 2/π ≈ 0.6366.

6 Application to the trace inequality

6.1 Trace inequality and the optimal constant

In order to apply the general theory from Sections 2–3 to the case of the trace inequality,
we consider the same general symmetric second-order elliptic operator as in Section 4.1. In
addition we assume measd−1 ΓN > 0. The general theory is applied with V = H1

ΓD
(Ω),

(u, v)V = a(u, v), H = L2(ΓN), and (u, v)H = (u, v)L2(ΓN). The operator γ : V → H is the
standard trace operator. Its compactness and other properties are provided in [21, Theorem
6.10.5], see also [10]. The general result from Theorem 3 then translates as follows.

Theorem 12. Let the bilinear form a(·, ·) given by (16) form a scalar product in H1
ΓD

(Ω).
Then there exists a constant CT > 0 such that

‖v‖L2(ΓN) ≤ CT‖v‖a ∀v ∈ H1
ΓD

(Ω). (36)

Moreover, the optimal value of this constant is CT = λ
−1/2
1 , where λ1 is the smallest eigen-

value of problem: find ui ∈ H1
ΓD

(Ω), ui 6= 0, and λi ∈ R such that

a(ui, v) = λi(ui, v)L2(ΓN) ∀v ∈ H1
ΓD

(Ω). (37)

Proof. The statement follows immediately from Lemma 7 and Theorem 3.

Clearly, the common version of the trace inequality

‖v‖L2(∂Ω) ≤ CT‖∇v‖L2(Ω) ∀v ∈ H1(Ω)

follows from (36) with ΓD = ∅, ΓN = ∂Ω, A being the identity matrix, c = 0, and α = 0.
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6.2 Two-sided bounds on the trace constant

As in the case of Friedrichs’ inequality, we compute the lower bound of the optimal value
for the constant CT by the Galerkin method, see Section 3.2. In order to compute an upper
bound on CT we employ the complementarity technique as follows.

Theorem 13. Let V = H1
ΓD

(Ω), u∗ ∈ V and λ∗ ∈ R. Let the bilinear form a(·, ·) given by
(16) form a scalar product in V . Let w ∈ V satisfy

a(w, v) = a(u∗, v)− λ∗(u∗, v)L2(ΓN) ∀v ∈ V. (38)

Then

‖w‖a ≤ ‖∇u∗ −A−1q‖A + CF‖cu∗ − div q‖L2(Ω) + CT‖αu∗ − λ∗u∗ + q · n‖L2(ΓN) (39)

for all q ∈ H(div,Ω).

Proof. Let us fix any q ∈ H(div,Ω), test (38) by v = w and use the divergence theorem to
express

‖w‖2a = (A∇u∗,∇w) + (cu∗, w) + (αu∗, w)L2(ΓN) − λ∗(u∗, w)L2(ΓN)

− (q,∇w)− (div q, w) + (q · n, w)L2(ΓN)

=
(
A(∇u∗ −A−1q),∇w

)
+ (cu∗ − div q, w) + (αu∗ − λ∗u∗ + q · n, w)L2(ΓN).

The Cauchy–Schwarz inequality, Friedrichs’ inequality (18), and trace inequality (36) yield

‖w‖2a ≤ ‖∇u∗ −A−1q‖A‖∇w‖A + CF‖cu∗ − div q‖0‖w‖a
+ CT‖αu∗ − λ∗u∗ + q · n‖L2(ΓN)‖w‖a.

Inequality ‖∇w‖A ≤ ‖w‖a finishes the proof.

As in the case of Friedrichs’ inequality, the bound (39) is of the type (13) with

A = ‖∇u∗ −A−1q‖A + CF‖cu∗ − div q‖L2(Ω), B = ‖αu∗ − λ∗u∗ + q · n‖L2(ΓN) (40)

and Cγ = CT. Let us note that the complementarity estimate (39) is just one out of several
possibilities. This bound comes from [32] and contains the Friedrichs’ constant CF. Instead
of its exact value an upper bound as computed in Section 4 can be used here. However, there
exist other variants of the complementarity technique that can be used to obtain a bound on
‖w‖a without the Friedrichs’ constant CF. See for example [2, 12, 35, 38].

A suitable vector field q ∈ H(div,Ω) is computed by approximate minimization of the
right-hand side of (39). In a similar way as we obtained the functional (23), we obtain the
quadratic functional

(1 + %−1)(1 + σ−1)‖∇uh1 −A−1q‖2A + (1 + %)(1 + σ−1)(Cup
F )2‖cuh1 − div q‖2L2(Ω)

+ (1 + σ)(λh1 )−1‖αuh1 − λh1uh1 + q · n‖2L2(ΓN) ∀% > 0, σ > 0, (41)

where Cup
F is an upper bound of CF computed as described in Sections 4.2–4.3, λh1 is the

approximation of the smallest eigenvalue of (37) obtained by the Galerkin method and uh1 is
the corresponding approximate eigenvector. We look for the minimum of (41) over a finite
dimensional subspace Wh of H(div,Ω). This minimization problem is equivalent to seeking
qh ∈Wh such that

B(qh,w) = F(w) ∀w ∈Wh,
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ã C low
T Cup

T EREL NDOF

0.001 17.8110 17.9760 0.0092 5 523
0.01 5.6490 5.7047 0.0098 5 418
0.1 1.8433 1.8593 0.0086 7 775

1 0.7963 0.8033 0.0088 5 499
10 0.5829 0.5880 0.0086 7 775

100 0.5649 0.5705 0.0098 5 421
1000 0.5632 0.5685 0.0092 5 523

Table 3: Trace constant. The lower bound C low
T , upper bound Cup

T , relative error EREL, and
the number of degrees of freedom NDOF = dimV h for particular values of ã.

where

B(q,w) =
1 + %

σ
λh1 (Cup

F )2(div q,divw) +
1 + %

%σ
λh1 (A−1q,w) + (q · n,w · n)L2(ΓN),

F(w) =
1 + %

%σ
λh1 (∇uh1 ,w) +

1 + %

σ
λh1 (Cup

F )2(cuh1 ,divw) + (λh1u
h
1 − αuh1 ,w · n)L2(ΓN).

Practically, the classical Raviart–Thomas finite element method [13] can be used to solve
this problem. Note that the natural values for % and σ are % = 1 and σ = 2, because then
(1 + %−1)(1 + σ−1) = (1 + %)(1 + σ−1) = (1 + σ) = 3, see (41). Similarly to the case of
Friedrichs’ constant, these natural values often yield accurate results. If not, a simultaneous
minimization of (41) with respect to % > 0, σ > 0, and q ∈Wh can be performed.

The computed vector field qh ∈ Wh is then substituted to (40) to get A and B and
consequently the two-sided bounds C low

T ≤ CT ≤ Cup
T , where

C low
T = (λh1 )−1/2 and Cup

T = 1/X2, (42)

X2 is given by (15) with γu∗ = uh1 , see (9) and (14).

6.3 Numerical experiment

To illustrate the numerical performance of the above described method, we consider the
same example as in Section 4.4. We proceed in the same way as in Section 4.4 with clear
modifications in order to compute two-sided bounds (42) on the trace constant. As before,
the adaptive algorithm is steered by error indicators that are defined by a localized version
of (41):

η2
K = (1 + %−1)(1 + σ−1)‖∇uh1 −A−1q‖2A,K + (1 + %)(1 + σ−1)(Cup

F )2‖cuh1 − div q‖2L2(K)

+ (1 + σ)(λh1 )−1‖αuh1 − λh1uh1 + q · n‖2L2(∂K∩ΓN) ∀K ∈ Th.

The parameters % and σ are naturally chosen as % = 1 and σ = 2. The values of the upper
bound Cup

F are taken from Table 1.
The obtained results are presented in Table 3. The method succeeded in obtaining guar-

anteed two-sided bounds on the trace constant with a relative error at most 0.01 in all
cases using several thousands of degrees of freedom. The particular value of the trace con-
stant CT depends considerably on ã. The values for ã = 0.001 and ã = 1000 differ more
than thirty times. Finally, notice that the exact value of the trace constant for ã = 1 is
CT = (2/(π cothπ))1/2 ≈ 0.7964.
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7 Conclusions

We present a method for computing guaranteed lower and upper bounds of principal eigen-
values of elliptic operators and consequently for computing guaranteed two-sided bounds of
the optimal constants in Friedrichs’, Poincaré, trace, and similar inequalities. The bounds
are guaranteed provided there are no round-off errors and all integrals are evaluated exactly.
Further, the bounds are guaranteed only if the domain Ω is represented exactly by used finite
elements. Furthermore, the upper bounds on eigenvalues computed by the Galerkin method
are guaranteed only if the corresponding matrix-eigenvalue problems are solved exactly. On
the other hand, the lower bounds on eigenvalues obtained by the complementarity technique
are guaranteed even if the matrix-eigenvalue problems and linear algebraic systems are solved
approximately only. In any case, the crucial assumption for having guaranteed lower bounds
on eigenvalues is (12).

These two-sided bounds can be of interest if the corresponding eigenvalue problem cannot
be solved analytically and if analytical estimates are not available or they are too inaccurate.
In particular, this is the case of complicated geometry of the domain Ω, mixed boundary
conditions, presence of non-constant and/or anisotropic diffusion coefficient A, presence of
reaction coefficient c, and presence of coefficient α.

The method is quite general and it can be used for a wide variety of problems. The general
Hilbert space setting presented in Section 2 enables a variety of applications including linear
elasticity. We believe that this approach can be further generalized. Nonlinear eigenvalue
problems and nonsymmetric operators can be of particular interest and generalizations in
these directions can be subject for further research.
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