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Abstract. We investigate mathematical properties of the system of nonlinear partial differential
equations that describe, under certain simplifying assumptions, evolutionary processes in water-
saturated granular materials. The unconsolidated solid matrix behaves as an ideal plastic material
before the activation takes place and then it starts to flow as a Newtonian or a generalized New-
tonian fluid. The plastic yield stress is non-constant and depends on the difference between the
given lithostatic pressure and the pressure of the fluid in a pore space. We study unsteady three-
dimensional flows in an impermeable container, subject to stick-slip boundary conditions. Under
realistic assumptions on the data, we establish long-time and large-data existence theory.
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1. Introduction

The purpose of this study is to investigate mathematical properties of a system of nonlinear partial
differential equations (PDEs) developed in [2] to describe processes, such as static liquefaction or
enhanced oil recovery, in water-saturated (geological) materials. Such materials can be viewed as two
component mixtures consisting of a granular solid matrix and a fluid filling the interstitial pore space.
More specifically, we investigate the following system of PDEs:

div v = 0, (1.1a)

%m
s (∂tv + div (v⊗v)) = div S−∇p+ %m

s b , (1.1b)

∂tpf + v · ∇pf = K∆pf − div(K%m
f b) + ∂tps + v · ∇ps , (1.1c)

vf = v − 1

α
φ̂(p− pf) (∇pf − %m

f b) , (1.1d)

where S and Dv satisfy

Dv = O⇒ |S| ≤ τ(pf),

Dv 6= O⇒ S = τ(pf)
Dv
|Dv|

+ 2ν∗ (|Dv| − δ∗)+ Dv
|Dv|

,
with τ(pf) := q∗(ps − pf)

+. (1.1e)

The system (1.1) coincides with equations (2.24)–(2.26) stated in [2] (see also [7]) provided that we set
δ∗ = 0 in (1.1e) and we identify the symbols v and pf with vs and pt

f used in [2]. In [2], equations (1.1)
are summarized at the end of Section 2 as the outcome of derivation starting from the general principles
of the theory of interacting continua, also using several well-motivated simplifying assumptions. In
(1.1), v represents the velocity of the granular solid matrix, vf is the velocity of the interstitial fluid,
p stands for the total pressure of the whole mixture and pf is the pressure of the fluid in a pore space.
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The vector and scalar fields v,vf , p and pf represent the unknowns, the other quantities are given

material functions/parameters. More precisely, φ = φ̂(p − pf) is the porosity given as a function of
the “effective” pressure p − pf , %

m
s and %m

f are the constant material densities of the solid and the
fluid, b represents given external forces, α is the drag coefficient, ν∗ the viscosity of the fluid, K is a
constant coefficient related to permeability, δ∗ is the non-zero activation parameter and ps is the given
lithostatic pressure. Note that vf appears only in (1.1d) and can be always obtained a posteriori once
v, pf and p are obtained from (1.1a)–(1.1c). Consequently, in what follows, we consider system (1.1)
without equation (1.1d). It is worth observing that the constitutive relation (1.1e) can be rewritten
in a more compact way as an implicit constitutive relation (see Figure 1):

S = Z + 2ν∗ (|Dv| − δ∗)+ Dv
|Dv|

with Z fulfilling (|Z|−τ(pf))
++||Dv|Z−τ(pf)Dv|=0. (1.2)

We will exploit formulation (1.2) in our analysis. A systematic study of implicit constitutive equations
go back to the original works [9] and [10].

We study the system of PDEs (1.1a)–(1.1c) and (1.2) in time-space cylinder (0, T ) × Ω, where
T > 0 and Ω ⊂ R3 is a bounded open connected set with Lipschitz boundary ∂Ω. We complete the
system by considering the following boundary and initial conditions:

v · n = 0 and ∇pf · n = 0 on (0, T )× ∂Ω, (1.3a)

s = z + γ∗ (|vτ | − β∗)+ vτ
|vτ |

with z fulfilling (|z|−s∗)++||vτ |z − s∗vτ |=0 on (0, T )× ∂Ω, (1.3b)

v(0, ·) = v0 and pf(0, ·) = p0 in Ω. (1.3c)

Here, we used the following notation: n : ∂Ω → R3 stands for the unit outer normal vector,

Figure 1. Representation of the
material response described by

(1.2)

while for any vector z defined on ∂Ω, zτ := z − (z · n)n denotes the
tangential component of z, in particular, s := −(Sn)τ , and γ∗, β∗, s∗
are non-negative constants. Condition (1.3b) describes the shifted stick-
slip (or threshold slip) and it is analogous to that for the stress tensor in
the bulk (see (1.2)). It includes as special cases, the stick-slip by taking
β∗ = 0 while s∗, γ∗ > 0, Navier’s slip s = γ∗vτ by taking s∗, β∗ = 0
while γ∗ > 0, and perfect slip s = 0 by setting s∗ = γ∗ = 0. Note
that the no-slip condition is obtained by letting either s∗ → +∞ or by
setting β∗ = 0 and letting γ∗ → +∞.

The main purpose of this study is to establish long-time and large-
data theory to the initial- and boundary-value problem described by
(1.1a)–(1.1c), (1.2), (1.3), see Theorem 2.1 below. The novelties consist not only in incorporating a
more general model with δ∗ ≥ 0, but more importantly in providing a different proof for more general
class of data (particularly for b that is merely L2-integrable). More precisely, we can avoid using
L∞-estimates for pf needed in [2]. Consequently, the main tool for taking the limit in the constitutive
equations cannot be applied in the form given in [2, Proposition 5.3], but has to be modified in
an essential way due to a lower integrability of pf , but also a more complicated material response.

Figure 2. Representation of the

material response described by

(1.4), whenever q > 2

The novel key tool regarding the attainment of the constitutive
equations by the limiting objects is proved separately in Proposition 3.1.
The key assumption of this proposition, namely (3.5) and (3.9), call for
taking vn − v as a test function in the weak formulation of balance of
linear momentum. However, vn − v is not admissible test function in
the setting considered here. This difficulty can be overcome by using
the L∞-truncation method which requires to introduce an integrable
pressure, as the truncations (vn−v)∞ are not divergenceless. Following
the approach originally developed in [6] (see also [5]), we overcome such
difficulty by considering slipping boundary conditions (1.3a)–(1.3b). As
pointed out in [3], the analysis for unsteady flows changes remarkably
when the no–slip condition is considered.
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We use the L∞-truncation method in proving Theorem 2.1 below. While the truncations (vn −
v)∞ are difficult to make solenoidal, the authors of [4] succeeded to make the Lipschitz approximations
(vn − v)1,∞ divergenceless and they thus developed a solenoidal version of the Lipschitz truncation
method. This tool allows one to avoid the presence of the pressure in the setting, therefore one may
include more general responses as well as boundary conditions. As a matter of fact, we present new
results available for systems describing materials that behave after activation |Dv| > δ∗, as a power-law
fluid, i.e. the constitutive equation (1.2) is replaced by (see Figure 2)

S = Z + 2ν∗|Dv|q−2(|Dv| − δ∗)+ Dv
|Dv|

with Z fulfilling (|Z| − τ(pf))
++||Dv|Z− τ(pf)Dv|=0. (1.4)

The available results are presented in Theorem 2.2. We are not providing the proof of these results as
they can be deduced from the approach used when proving Theorem 2.1 and from the methods used
recently, for example, in [3]. Note that the latter results are restricted to models (1.4) with q > 6

5
(in three dimensions). Recently, another concept of dissipative solution was introduced in [1] and, its
long-time and large-data existence is proved independently of what is the value of q (in particular also
for q ∈ [1, 6/5]). In fact in the theory developed in [1] the stress tensor can be merely subdifferential
of a convex potential depending on Dv, whose growth is at least linear. There are other approaches
to analyze the mathematical properties of Bingham fluids (see e.g. [8] and [11]), but they are usually
based on regularity techniques requiring smoother data.

2. Preliminaries and main results

For the sake of simplicity in the right-hand side of (1.1c), which has the form g := ∂tps − div b, we
omit the effect of ∂tps as it plays the role of a given external force and it can be easily incorporated
into the analysis. We also set without loss of any generality %m

s = %m
f = K = 2ν∗ = γ∗ = q∗ = 1, while

we assume δ∗, s∗, β∗ ≥ 0. Finally, to shorten the notation we set Q := (0, T )×Ω and Σ := (0, T )×∂Ω,
where we fix Ω to be a bounded open set in R3 with either Lipschitz or C1,1 boundary ∂Ω; such sets
are denoted either Ω ∈ C0,1 or Ω ∈ C1,1.

Before stating the main results, let us summarize the notation. The symbol Dϕ stands for the
symmetric part of the gradient of a vector-valued function ϕ, i.e.

Dϕ :=
∇ϕ + (∇ϕ)T

2
.

The symbols (Lq(Ω), ‖ · ‖q) and (W 1,q(Ω), ‖ · ‖1,q) with q ∈ [1,∞], stand respectively for the Lebesgue
spaces, the Sobolev spaces with their own norms. If X is a Banach space of scalar functions, then
X3 and X3×3 denote the space of vector-valued functions having three components and the space of
tensor-valued functions respectively, with each component belonging to X. For a Banach space X,
Lq(0, T ;X) denotes a corresponding Bochner space. We make use of the following function spaces

Lqn,div := {v ∈ C∞(Ω)3; div v = 0 in Ω; v · n = 0 on ∂Ω}
‖·‖Lq(Ω)3 for q ∈ [1,∞),

W 1,q
n := {v ∈W 1,q(Ω)3;v · n = 0 on ∂Ω},

W 1,q
n,div := {v ∈W 1,q(Ω)3; div v = 0 in Ω; v · n = 0 on ∂Ω},

while (W 1,q
n )

∗
, (W 1,q

n,div)
∗

are the dual spaces to W 1,q
n and W 1,q

n,div respectively. In particular, assuming

Ω ∈ C1,1 the following Helmholtz decomposition holds

W 1,2
n = W 1,2

n,div ⊕ {∇ϕ;ϕ ∈W 2,2(Ω),∇ϕ · n = 0 on ∂Ω}.

Note that such decomposition is not valid for W 1,2
0 (Ω)3.

We are ready to enunciate the first result, which is the existence of weak solutions to system
(1.1a)–(1.1c), (1.2), (1.3), proved in Section 5.
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Theorem 2.1. For any Ω ∈ C1,1, T > 0 and for any v0, p0, b, ps fulfilling

v0 ∈ L2
n,div, p0 ∈ L2(Ω), b ∈ L2(Q), ps ∈ L5(Q),

there exists a quintuplet (v, pf , p,S, s):

v∈L∞(0, T ;L2
n,div)∩L2(0, T ;W 1,2

n,div), ∂tv∈(L2(0, T ;W 1,2
n )∩L5(Q)3)

∗
,

pf ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;W 1,2(Ω)), ∂tpf ∈ (L4(0, T ;W 1,2(Ω)))∗,

p = p1 + p2 where p1 ∈ L2(Q) and p2 ∈ L
5
4 (0, T ;W 1, 54 (Ω)),

S ∈ L2(Q)3×3, s ∈ L 8
3 (Σ)3,

satisfying the following weak formulations:

∫ T

0

〈∂tv,w〉+

∫
Q

S :Dw −
∫
Q

(v ⊗ v) :Dw +

∫
Σ

s ·wτ =

∫
Q

b ·w +

∫
Q

p1 divw −
∫
Q

∇p2 ·w

for all w ∈ L2(0, T ;W 1,2
n )∩L5(Q)3,

(2.1)

∫ T

0

〈∂tpf , z〉 −
∫
Q

pfv · ∇z +

∫
Q

∇pf ·∇z =

∫
Q

b · ∇z −
∫
Q

psv · ∇z for all z∈L4(0, T ;W 1,2(Ω)), (2.2)

and the following constitutive equations:

S = Z+(|Dv| − δ∗)+ Dv
|Dv|

with Z fulfilling (|Z| − τ(pf))
++ ||Dv|Z− τ(pf)Dv|=0

with τ(pf)=(ps − pf)
+ a.e. in Q,

(2.3)

s = z + (|vτ | − β∗)+ vτ
|vτ |

with z fulfilling (|z| − s∗)+ + ||vτ |z − s∗vτ | = 0 a.e. on Σ, (2.4)

and attaining the initial conditions in the following sense:

lim
t→0+

‖v(t)− v0‖2 = 0, lim
t→0+

‖pf(t)− p0‖2 = 0. (2.5)

The second result concerns system (1.1a)–(1.1c), (1.3), and (1.4).

Theorem 2.2. Let Ω ∈ C0,1, T > 0, and q > 6
5 . Set m := max{2, q′} and r := max

{
q, 5q

5q−6

}
. For

any v0, p0, b, ps fulfilling

v0 ∈ L2
n,div, p0 ∈ L2(Ω), b ∈ Lm(Q), ps ∈ L

10q
5q−6 (Q),

there exists a quadruplet (v, pf ,S, s):

v ∈ L∞(0, T ;L2
n,div) ∩ Lq(0, T ;W 1,q

n,div), ∂tv ∈ Lr
′
(0, T ; (W 1,r

n,div)∗),

pf ∈L∞(0, T ;L2(Ω))∩L2(0, T ;W 1,2(Ω)), ∂tpf ∈(L2(0, T ;W 1,2(Ω))∩L
10q

5q−6 (Q))∗,

S ∈ Lq
′
(Q)3×3, s ∈ L2(Σ)3,

satisfying the initial conditions (2.5), the following weak formulations:

∫ T

0

〈∂tv,ϕ〉+

∫
Q

S : Dϕ−
∫
Q

(v ⊗ v) :Dϕ +

∫
Σ

s ·wτ =

∫
Q

b ·ϕ for all ϕ ∈ Lr(0, T ;W 1,r
n,div), (2.6)
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∫ T

0

〈∂tpf , ϕ〉+
∫
Q

∇pf ·∇ϕ−
∫
Q

pfv·∇ϕ =

∫
Q

(b−psv)·∇ϕ for all ϕ∈L2(0, T ;W 1,2(Ω))∩L
10q

5q−6 (Q), (2.7)

and the following constitutive equations:

S = Z + (|Dv| − δ∗)+ |Dv|q−2 Dv
|Dv|

with Z fulfilling (|Z| − τ(pf))
+ + ||Dv|Z− τ(pf)Dv| = 0

with τ(pf) = (ps − pf)
+ a.e. in Q,

(2.8)

s = z + (|vτ | − β∗)+ vτ
|vτ |

with z fulfilling (|z| − s∗)+ + ||vτ |z − s∗vτ | = 0 a.e. on Σ. (2.9)

This result is stated without the proof here. The proof can be however achieved in the spirit of
Theorem 2.1 by employing a solenoidal version of the Lipschitz-truncation method developed in [4],
and by using the approximation scheme presented in [3, Theorem 3.3].

3. Attainment of the constitutive equations

In this section, we establish a new scheme how to take the limit in the constitutive equations needed
when proving Theorem 2.1.

Proposition 3.1. Let U ⊂ Q be an arbitrary measurable bounded set and let {Zn}+∞n=1, {Dn}+∞n=1 and
{pnf }

+∞
n=1 be sequences such that

Zn = τ(pnf )
Dn

|Dn|+ 1
n

with τ(pnf ) = (ps − pnf )+ a.e. in U, (3.1)

Zn ⇀ Z weakly in L2(U)3×3, (3.2)

Dn ⇀ D weakly in L2(U)3×3, (3.3)

pnf → pf strongly in L2(U) and a.e. in U, (3.4)

lim sup
n→∞

∫
U

Zn : Dn ≤
∫
U

Z : D. (3.5)

Then

(|Z|−τ(pf))
++||D|Z−τ(pf)D|=0. (3.6)

In addition, assume that {Vn}+∞n=1 is a sequence such that

Vn =

(
1− δ∗
|Dn|

)+

Dn a.e. in U, (3.7)

fulfilling

Vn ⇀ V weakly in L2(U)3×3, (3.8)

lim sup
n→∞

∫
U

Vn : Dn ≤
∫
U

V : D. (3.9)

Then

V =

(
1− δ∗
|D|

)+

D a.e. in U. (3.10)

Proof. First, note that by virtue of (3.4) and the Lipschitz-continuity of τ , it follows that

τ(pnf )→ τ(pf) strongly in L2(U). (3.11)
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Now, as for any A ∈ L2(U), A 6= O, it holds(
τ(pf)

Dn

|Dn|+ 1
n

− τ(pf)
A

|A|+ 1
n

)
: (Dn − A) ≥ 0, (3.12)

integrating this inequality over U , subtracting and adding Zn and using (3.1), we get

∫
U

(
τ(pf)

Dn

|Dn|+ 1
n

− τ(pnf )
Dn

|Dn|+ 1
n

)
: (Dn − A) +

∫
U

(
Zn − τ(pf)

A
|A|+ 1

n

)
: (Dn − A) ≥ 0. (3.13)

Taking limsup as n → ∞ and employing the facts that the first integral converges to zero due
to (3.11), the term Dn

|Dn|+ 1
n

is uniformly bounded in L∞(U) and the sequence Dn − A is bounded in

L2(U), we obtain

lim sup
n→∞

∫
U

(
Zn − τ(pf)

A
|A|+ 1

n

)
: (Dn − A) ≥ 0. (3.14)

Referring then to the convergences (3.2) and (3.3) and using also (3.5), we conclude that∫
U

(
Z− τ(pf)

A
|A|

)
: (D− A) ≥ 0. (3.15)

Now, for any δ > 0, ε ∈ (0, δ) and for arbitrary matrices C and B1 bounded in L2(U)3×3 and
satisfying |C| ≤ 1 and B1 6= O, consider

A := B1 χ{|D|=0} + (D− εC)χ{|D|>δ} + Dχ{0<|D|≤δ}.

Note that such A’s are non-zero in U . Inserting them into (3.15) we obtain

−
∫
{|D|=0}

(
Z− τ(pf)

B1

|B1|

)
: B1 + ε

∫
{|D|>δ}

C :

(
Z− τ(pf)

D− εC
|D− εC|

)
≥ 0. (3.16)

Letting first ε→ 0 in (3.16), we observe that∫
{|D|=0}

Z : B1 ≤
∫
{|D|=0}

τ(pf )|B1| (3.17)

for any B1 6= O. Consider, for any a > 0 and ω ⊂ U , the matrix B1 of the form

B1 = a Iχ{(U\ω)∪{Z=0}} +
Z
|Z|

χ{ω\{Z=0}}.

It then follows from (3.16) that∫
{|D|=0}∩ω ∩{Z6=0}

|Z| ≤
∫
{|D|=0}∩ω∩{Z6=0}

τ(pf) + aC

∫
(U\ω)∪{Z=0}

(τ(pf) + |Z|)

with C positive constant, which implies letting a→ 0∫
{|D|=0}∩ω ∩{Z 6=0}

|Z| ≤
∫
{|D|=0}∩ω∩{Z 6=0}

τ(pf).

Since ω is arbitrary, we conclude that

|Z| ≤ τ(pf) on the set {|D| = 0}. (3.18)

Next, letting |B1| → 0 in (3.16), employing (3.17), we get∫
{|D|>δ}

C :

(
Z− τ(pf)

D− εC
|D− εC|

)
≥ 0,

which, after letting ε→ 0, leads to∫
{|D|>δ}

C :

(
Z− τ(pf)

D
|D|

)
≥ 0.
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Finally, letting δ → 0, we get, for arbitrary C,∫
{|D|>0}

C :

(
Z− τ(pf)

D
|D|

)
≥ 0.

This implies

Z = τ(pf)
D
|D|

when |D| 6= 0. (3.19)

The latter and (3.18) are equivalent to (3.6).

It remains to prove (3.10), which however follows from standard Minty’s argument. Indeed, by
the monotonicity, we have

lim sup
n→∞

∫
U

(
Vn − A

(
1− δ∗
|A|

)+
)

: (Dn − A) ≥ 0

for any A ∈ L2(U)3×3. By virtue of (3.9) and of convergences (3.8) and (3.3) we get∫
U

(
V− A

(
1− δ∗
|A|

)+
)

: (D− A) ≥ 0.

Choosing A := D± εC, with arbitrary C ∈ L2(U)3×3 and ε > 0, and after the limit as ε→ 0 we
obtain ∫

U

C :

(
V− D

(
1− δ∗
|D|

)+
)

= 0

for any C, which implies (3.10).
�

Note that here we provided a proof of (3.6), which is simplified and shorter than the one given
in [2, Proposition 5.3].

4. Approximations

In this section, we prepare all the needed tools in order to prove Theorem 2.1. For any n ∈ N, we
introduce the following approximating system

div v = 0 in Q,

∂tv + div(v ⊗ v)Gn(|v|2)− div S +∇p = b in Q,

∂tpf + v · ∇pf −∆pf = − div b + v · ∇ps in Q,

(4.1)

where Gn : R → R is a smooth function such that Gn(u) = 1 if |u| ≤ n, Gn(u) = 0 if |u| ≥ 2n
and |G′n| ≤ 2

n . Next, we consider the following regularization of the constitutive equations (both in
the bulk and on the boundary)

S = Sn(pf ,Dv) = Zn(pf ,Dv) +

(
1− δ∗
|Dv|

)+

Dv where Zn(pf ,Dv) := τ(pf)
Dv

|Dv|+ 1
n

with τ(pf) = (ps − pf)
+ in Q,

(4.2)

s = sn(vτ ) = ζn(vτ ) +

(
1− β∗
|vτ |

)+

vτ where ζn(vτ ) = s∗
vτ

|vτ |+ 1
n

on Σ, (4.3)

and we complete the problem with boundary and initial conditions
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v · n = 0,∇pf · n = 0 on Σ, (4.4)

v(0) = v0, pf(0) = p0 in Ω. (4.5)

Note that both mappings D 7→ Zn(pf ,D) and D 7→
(

1− δ∗
|D|

)+

D are monotone, i.e.

(Z− Ẑ) : (D− D̂) ≥ 0 for any Z = Zn(pf ,D), Ẑ = Zn(pf , D̂), (4.6)

see formula (5.2) in [2], and

(V− V̂) : (D− D̂) ≥ 0 for any V =

(
1− δ∗
|D|

)+

D, V̂ =

(
1− δ∗

|D̂|

)+

D̂, (4.7)

see Lemma B.1 in [3]. Therefore, due to the presence of the truncation in the convective term and the
introduced approximations in the constitutive equations, the existence of weak solutions to system
(4.1)–(4.5) can be proved through standard techniques of monotone operators, following also the
spirit of the proof in [2, Proposition 5.1]. We enunciate the relevant result below and for the reader’s
convenience the proof can be found in Appendix.

Proposition 4.1. Let n ∈ N be fixed. For any

v0 ∈ L2
n,div, p0 ∈ L2(Ω), b ∈ L2(Q) and ps ∈ L5(Q),

there exists a weak solution to the problem (4.1)–(4.5). More precisely, for each n ∈ N there is a
quadruplet (v, pf ,S, s) := (vn, pnf ,Sn, sn) such that

v ∈ L∞(0, T ;L2
n,div) ∩ L2(0, T ;W 1,2

n,div), ∂tv ∈ (L2(0, T ;W 1,2
n ))

∗
, (4.8)

pf ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;W 1,2(Ω)), ∂tpf ∈ (L4(0, T ;W 1,2(Ω)))∗, (4.9)

S ∈ L2(Q)3×3, s ∈ L 8
3 (Σ)3, (4.10)

satisfying

∫ T

0

〈∂tv,w〉+

∫
Q

(S :Dw +Gn(|v|2)div(v ⊗ v)·w) +

∫
Σ

s·wτ =

∫
Q

b ·w for all w∈L2(0, T ;W 1,2
n,div),

(4.11)

∫ T

0

〈∂tpf , z〉 −
∫
Q

pfv ·∇z +

∫
Q

∇pf ·∇z =

∫
Q

(b · ∇z − psv ·∇z) for all z∈L4(0, T ;W 1,2(Ω)), (4.12)

where

S = Sn(pf ,Dv) a.e. in Q, (4.13)

s = sn(vτ ) a.e. in Σ, (4.14)

and

lim
t→0+

‖v(t)− v0‖2 = 0, lim
t→0+

‖pf(t)− p0‖2 = 0. (4.15)

5. Proof of Theorem 2.1

The proof is split in the following steps.
Step 1. Approximations. From Proposition 4.1 and following the reconstruction of the pressure in [2,
Theorem 4.1, Step 2 of the proof], we get for each n ∈ N the existence of (vn, pnf , p

n,Sn, sn), with
pn ∈ L2(Q), satisfying
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∫ T

0

〈∂tvn,w〉+

∫
Q

(Sn : Dw + div(vn ⊗ vn)Gn(|vn|2) ·w) +

∫
Σ

sn ·wτ =

∫
Q

pn divw

+

∫
Q

b ·w for all w ∈ L2(0, T ;W 1,2
n ),

(5.1)

∫ T

0

〈∂tpnf , z〉 −
∫
Q

(pnf v
n)·∇z +

∫
Q

∇pnf ·∇z =

∫
Q

(b−psvn)·∇z for all z ∈ L4(0, T ;W 1,2(Ω)),
(5.2)

with Sn, sn fulfilling (4.13), (4.14) respectively, and satisfying also (4.15).

Step 2. Uniform estimates with respect to n and limit as n → +∞. Setting w := vn in (5.1)
and z := pnf in (5.2), following the analogous step as in the proof of [2, Theorem 4.1], we obtain

sup
n

(
‖vn‖L∞(0,T ;L2(Ω)3) + ‖Dvn‖2,Q

)
< +∞, (5.3)

sup
n

(
‖pnf ‖L∞(0,T ;L2(Ω)) + ‖∇pnf ‖2,Q

)
< +∞, (5.4)

sup
n

(
‖vn‖ 10

3 ,Q
+ ‖pnf ‖ 10

3 ,Q
+ ‖vn‖ 8

3 ,Σ

)
< +∞, (5.5)

sup
n

(
‖Zn‖ 10

3 ,Q
+ ‖Vn‖2,Q + ‖sn‖ 8

3 ,Σ

)
< +∞, (5.6)

where we set Vn :=
(

1− δ∗
|Dvn|

)+

Dvn. Consequently, as supn ‖Gn(|vn|2)‖L∞(Q) ≤ 1 by employ-

ing (5.3), (5.5) and Korn’s inequality, it follows that

sup
n
‖Gn(|vn|2) div(vn ⊗ vn)‖

L
5
4 (Q)

< +∞. (5.7)

Now, let us introduce

pn2 := (−∆N )−1
(
Gn(|vn|2) div(vn ⊗ vn)

)
, pn1 := pn − pn2 ,

then

sup
n

(
‖pn2‖L 5

4 (0,T ;W 1, 5
4 (Ω))

+ ‖pn1‖L2(Q)

)
< +∞, (5.8)

and this implies that

sup
n
‖∂tvn‖(L2(0,T ;W 1,2

n )∩L5(Q)3)
∗ < +∞. (5.9)

Analogously

sup
n
‖∂tpnf ‖(L4(0,T ;W 1,2(Ω)))∗ < +∞. (5.10)

Then, there exist subsequences of {vn}, {pnf }, {Zn}, {Vn}, {sn}, {pn1}, {pn2}, which we do not
relabel, that converge weakly and *-weakly in the corresponding function spaces. By virtue of the
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established limits, by the Aubin-Lions compactness lemma and the compact embedding of the Sobolev
spaces into the space of traces, we also have

pnf → pf strongly in Lq(Q) for all q ∈
[
1,

10

3

)
, (5.11)

vn → v strongly in Lq(Q)3 for all q ∈
[
1,

10

3

)
, (5.12)

vnτ → vτ strongly in Lq(Σ)3 for all q ∈
[
1,

8

3

)
. (5.13)

Since

‖Gn(|vn|2)‖L∞(Q) ≤1 and Gn(|vn|2)→1 strongly in Lq(Q) for all q∈ [1,+∞),

it follows from (5.12) that

Gn(|vn|2) div(vn ⊗ vn) ⇀ div(v ⊗ v) weakly in L
5
4 (Q)3. (5.14)

Finally, with the obtained convergences it is standard to prove that∫ T

0

〈∂tv,w〉+

∫
Q

(Z + V) : Dw +

∫
Q

s ·wτ −
∫
Q

(v ⊗ v) : Dw =

∫
Q

p1 divw

−
∫
Q

∇p2 ·w +

∫
Q

b ·w for all w∈L2(0, T ;W 1,2
n ) ∩ L5(Q)3

(5.15)

and∫ T

0

〈∂tpf , z〉 −
∫
Q

(pfv · ∇z +

∫
Q

∇pf : ∇z =

∫
Q

(b− psv) :∇z for all z∈L4(0, T ;W 1,2(Ω)). (5.16)

Step 3. Attainment of the constitutive equations on the boundary. Using that

sn ⇀ s weakly in L
8
3 (Σ)

and (5.13), it easily follows

lim sup
n→+∞

∫
Σ

sn · vnτ =

∫
Σ

s · vτ .

Thus, a suitable adjustment of Proposition 3.1 implies that (2.4) is fulfilled.

Step 4. Attainment of the constitutive equations in the bulk. In order to employ Proposition 3.1
we need to prove the limsup property (3.5), but as the solution itself can not be used as test function
in (5.15), we follow the strategy as in [2] and perform the L∞-truncation method. To this aim, we
introduce

wn := Tλn(vn − v) := (vn − v) min

{
1,

λn

|vn − v|

}
where λn ∈ [A,B] with 0 < A < B < ∞ will be suitably chosen numbers independent of n, but
depending on parameter N tending to +∞, see details below. For the reader’s convenience, we recall
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all the properties of wn below,

wn → 0 strongly in Ls(Q) for every s ∈ [1,+∞), (5.17)

wn → 0 strongly in L2(Σ), (5.18)

wn ⇀ 0 weakly in L2(0, T ;W 1,2
n ), (5.19)

|div wn| ≤


0 if |vn − v| ≤ λn

2λn (|∇vn|+ |∇v|)
|vn − v|

if |vn − v| > λn,
(5.20)

∇wn=



∇vn −∇v if |vn − v| ≤ λn
λn

|vn − v|
(∇vn −∇v)−λn(vn − v)⊗ (∇vn −∇v)(vn − v)

|vn − v|3

if |vn − v| > λn.

(5.21)

Inserting wn as test function in (5.1), using the properties of wn we get (cfr. [2])

lim sup
n→∞

∫
Q

(Zn + Vn) : Dwn ≤ lim sup
n→∞

∫
Q

|pn1 ||divwn|. (5.22)

Now, let us define

Z =


O if Dv = O,

τ(pf)
Dv
|Dv|

if Dv 6= O.
(5.23)

and

V =

(
1− δ∗
|Dv|

)+

Dv. (5.24)

Employing (5.19) and (5.20), formula (5.22) can be rewritten as

lim sup
n→∞

∫
Q

(Zn−Z) :Dwn +

∫
Q

(Vn−V) :Dwn ≤ lim sup
n→∞

∫
{|vn−v|>λn}

|pn1 | (|∇vn|+|∇v|)
λn

|vn − v|
. (5.25)

Moving the part of the integral on the left-hand side on the set {|vn−v| > λn} to the right, it follows
that

lim sup
n→∞

∫
{|vn−v|≤λn}

(
(Zn − Z) : (Dvn − Dv) + (Vn − V) : (Dvn − Dv)

)
≤ C lim sup

n→∞

∫
{|vn−v|>λn}

In
λn

|vn − v|

(5.26)

where

In := |pn1 |2 + |Zn|2 + |Z|2 + |Vn|2 + |V|2 + |∇vn|2 + |∇v|2.
Note that it holds (see formula (6.60) in [2])(

(Zn − Z) : (Dvn − Dv)
)− → 0 strongly in L1(Q), (5.27)

and analogously the monotonicity implies(
(Vn − V) : (Dvn − Dv)

)− → 0 strongly in L1(Q). (5.28)

Let N ∈ N and fix A = N , B = NN+1. For i ∈ {1, ..., N} let us define

Qni := {N i ≤ |vn − v| ≤ N i+1}.
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Since
N∑
i=1

∫
Qn

i

In ≤ C∗,

for every n there exists in ∈ {1, ..., N} such that∫
Qn

in

In ≤ C∗

N
.

Set λn := N in , then it holds∫
{|vn−v|>λn}

In
λn

|vn − v|
=

∫
Qn

in

In
N in

|vn − v|
+

∫
{|vn−v|>Nin+1}

In
N in

|vn − v|
≤ C∗

N

where we keep the symbol C∗ for a different constant. The latter relation, (5.26), (5.27) and (5.28)
give

lim sup
n→+∞

(∫
{|vn−v|≤λn}

|(Zn − Z) : (Dvn − Dv)|

+

∫
{|vn−v|≤λn}

|(Vn − V) : (Dvn − Dv)|

)
≤ C∗

N
.

(5.29)

Using that ∫
Q

√
|(Zn − Z) : (Dvn − Dv)| =

∫
{|vn−v|≤N}

√
|(Zn − Z) : (Dvn − Dv)|

+

∫
{|vn−v|>N}

√
|(Zn − Z) : (Dvn − Dv)|

(5.30)

and ∫
Q

√
|(Vn − V) : (Dvn − Dv)| =

∫
{|vn−v|≤N}

√
|(Vn − V) : (Dvn − Dv)|

+

∫
{|vn−v|>N}

√
|(Vn − V) : (Dvn − Dv)|,

(5.31)

by Hölder’s and Chebyshev’s inequalities we obtain

lim sup
n→+∞

∫
Q

√
|(Zn − Z) : (Dvn − Dv)| ≤ 2C√

N
, (5.32)

and

lim sup
n→+∞

∫
Q

√
|(Vn − V) : (Dvn − Dv)| ≤ 2C√

N
, (5.33)

which means, by letting N →∞, that

(Zn − Z) : (Dvn − Dv)→ 0 a.e. in Q,

(Vn − V) : (Dvn − Dv)→ 0 a.e. in Q.

Egoroff’s theorem then gives that for all ε > 0 there exists U ⊂ Q, |Q \ U | ≤ ε such that∫
U

(Zn − Z) : (Dvn − Dv)→ 0, (5.34)∫
U

(Vn − V) : (Dvn − Dv)→ 0. (5.35)

We conclude, thanks to the weak convergences of Zn,Vn,Dvn respectively to Z,V,Dv that

lim
n→∞

∫
U

Zn : Dvn = lim
n→∞

∫
U

Zn : Dv =

∫
U

Z : Dv
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and

lim
n→∞

∫
U

Vn : Dvn = lim
n→∞

∫
U

Vn : Dv =

∫
U

V : Dv.

Finally, all assumptions of Convergence Lemma 4.1 are fulfilled, thus (1.2) holds a.e. in U . Since
|Q \ U | ≤ ε we can let ε→ 0 and obtain that (1.2) holds a.e. in Q. Theorem 2.1 is proved.

6. Appendix

Our goal is to prove Proposition 4.1. Let us recall that in this section we fix n ∈ N, we consider Gn
smooth function with the properties stated at the beginning of Section 4 and the regularization of
the material responses given in (4.2) and (4.3). In what follows, to simplify the notation we drop the
indices n.

Proof of Proposition 4.1

The proof is split in the following steps.

Step 1. Approximations. For any m ∈ N, we look for

vm(t, x) :=

m∑
r=1

cmr (t)wr(x), pmf (t, x) :=

m∑
r=1

dmr (t)zr(x) (6.1)

satisfying (
dvm

dt
,wr

)
+(Sm,Dwr) + (div(vm⊗vm)G(|vm|2),wr)

+(sm,wr)∂Ω = (b,wr) r = 1, . . . ,m
(6.2)

where

Sm := S(pmf ,Dvm)=τ(pmf )
Dvm

|Dvm|+ 1
n

+ Dvm
(
1− δ∗
|Dvm|

)+

with τ(pmf )=(ps − pmf )+,

(6.3)

sm := s(vmτ )= s∗
vmτ

|vmτ |+ 1
n

+ vmτ

(
1− β∗
|vmτ |

)+

, (6.4)

and

(∂tp
m
f , z

r)−(pmf vm,∇zr)+(∇pmf ,∇zr) = (b,∇zr)− (psv
m,∇zr)

r = 1, . . . ,m,
(6.5)

where {wi}i∈N is an orthogonal basis in W 1,2
n,div consisting of eigenfunctions of the Stokes operator

with boundary conditions wi·n=0 and [(Dwi)n]τ =0 on ∂Ω, while {zj}j∈N is an orthogonal basis in
W 1,2(Ω) consisting of eigenfunctions of the Laplace operator subject to the Neumann homogeneous
boundary conditions. The system is supplemented with the corresponding initial conditions vm0 and
pm0 , obtained by projection v0 ∈ L2

n,div onto the span of [w1, . . . ,wm] and respectively p0 ∈ L2(Ω) onto

the span of [z1, . . . , zm]. Then the local in time existence of vm and pmf follows from the Caratheodory
theory for systems of ordinary differential equations, whereas the global in time existence is a conse-
quence of the uniform estimates established below.
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Step 2. Uniform estimates. Multiplying (6.2) by cmr (t) and (6.5) by dmr (t) and taking the sum
over r = 1, . . . ,m, we obtain

1

2

d

dt
‖vm(t)‖22 +

∫
{|Dvm|>δ∗}

|Dvm|2 +

∫
Ω

τ(pmf )
|Dvm|2

|Dvm|+ 1
n

+

∫
∂Ω

sm ·vmτ = (b,vm) +

∫
{|Dvm|>δ∗}

δ∗|Dvm|,
(6.6)

1

2

d

dt
‖pmf (t)‖22 + ‖∇pmf (t)‖22 = (b,∇pmf )− (psv

m,∇pmf ), (6.7)

Adding
∫
{|Dvm|≤δ∗} |Dv

m|2 to both sides of (6.6)

1

2

d

dt
‖vm(t)‖22 +

∫
Ω

|Dvm|2 +

∫
Ω

τ(pmf )
|Dvm|2

|Dvm|+ 1
n

+

∫
∂Ω

sn(vmτ )·vmτ ≤ (b,vm) +

∫
Ω

δ∗|Dvm|+ δ2
∗|Ω|

and then by Young’s inequality, we get

1

2

d

dt
‖vm(t)‖22 +

1

2

∫
Ω

|Dvm|2 +

∫
Ω

τ(pmf )
|Dvm|2

|Dvm|+ 1
n

+

∫
∂Ω

sn(vmτ )·vmτ ≤ (b,vm) +
3

2
δ2
∗|Ω|. (6.8)

Integrating in time, by Korn’s and Young’s inequalities, using also the fact that the last two terms on
the left-hand side of (6.8) are non-negative, one concludes that

sup
t∈[0,T ]

‖vm(t)‖22 +

∫
Q

|Dvm|2 ≤ C(b,v0, δ∗, |Q|). (6.9)

By the interpolation inequality

‖z‖ 10
3
≤ ‖z‖

2
5
2 ‖z‖

3
5
6 ≤ C‖z‖

2
5
2 ‖z‖

3
5
1,2 (6.10)

and the trace inequalities (see [6, Lemma 1.11]), we obtain

sup
m

(
‖vm‖ 10

3 ,Q
+ ‖vmτ ‖ 8

3 ,Σ

)
< +∞. (6.11)

As a consequence integrating in time (6.7) we deduce that

sup
t∈[0,T ]

‖pmf (t)‖22 +

∫
Q

|∇pmf |2 ≤ C‖b‖22,Q + C‖ps‖25,Q‖vm‖210
3 ,Q

+ ‖p0‖22 (6.12)

and thus
sup

t∈(0,T )

‖pmf (t)‖2 + ‖∇pmf ‖L2(Q)≤ C(b, ps, p0). (6.13)

Again (6.10) gives
sup
m
‖pf‖ 10

3 ,Q
< +∞. (6.14)

Recalling the explicit formulas for Sm and sm it then follows

sup
m

(
‖Sm‖2,Q + ‖sm‖ 8

3 ,Σ

)
< +∞. (6.15)

Employing the inequality

‖z‖4 ≤ ‖z‖
1
4
2 ‖z‖

3
4
6 ≤ C‖z‖

1
4
2 ‖z‖

3
4
1,2

we deduce corresponding uniform estimates for vm and pmf respectively in L4(Q)3 and L4(Q), then
by virtue of them it results

sup
m
‖∂tpmf ‖(L4(0,T ;W 1,2(Ω)))∗ < +∞. (6.16)

Analogously and by virtue of the truncation in the convective term, we also get

sup
m
‖∂tvm‖(L2(0,T ;W 1,2

n,div))
∗ < +∞. (6.17)
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Step 3. Limit. By virtue of uniform estimates established above there exist subsequences of
{vm}, {pmf }, {Sm} and {sm}, converging respectively weakly (or *-weakly) to v, pf ,S and s in the cor-
responding function spaces. Furthermore, Aubin-Lions compactness Lemma and its variant including
the trace theorem imply the following strong convergences:

vm → v a.e. in Q and strongly in Lq(Q)3 for any q ∈
[
1,

10

3

)
, (6.18)

pmf → pf a.e. in Q and strongly in Lq(Q)3 for any q ∈
[
1,

10

3

)
, (6.19)

vmτ → vτ a.e. in Σ and strongly in Lq(Σ)3 for any q ∈
[
1,

8

3

)
. (6.20)

As a consequence v, pf ,S and s fulfill the weak formulations stated in Proposition 4.1.

Step 4. Attainment of the constitutive equations. The convergence

sm ⇀ s weakly in L
8
3 (Σ)

together with (6.20) ensures that

lim
m→+∞

∫
Σ

sm · vmτ =

∫
Σ

s · vτ . (6.21)

Then, thanks to the monotonicity it is standard to prove that

s = s(vτ ).

Next, it follows from the monotonicity that

0 ≤
∫
Q

(Sm − S(pmf ,A)) : (Dvm − A) for all A ∈ L2(Q). (6.22)

Now, note that by (6.19),

S(pmf ,A) := (ps − pmf )+ A
|A|+ 1

n

+ A
(

1− δ∗
|A|

)+

→ (ps − pf)
+ A
|A|+ 1

n

+ A
(

1− δ∗
|A|

)+

=: S(pf ,A) strongly in L2(Q)

(6.23)

while, as v can play the role of a test function in the established weak formulation, it is standard to
obtain

lim sup
m→+∞

∫
Q

Sm:Dvm ≤
∫
Q

S :Dv. (6.24)

Finally, thanks to the convergences

Dvm ⇀ Dv weakly in L2(Q),

Sm ⇀ S weakly in L2(Q),

and (6.23), the limit as m→ +∞ in (6.22) gives

0 ≤
∫
Q

(S− S(pf ,A)) : (Dv − A) for all A ∈ L2(Q). (6.25)

At this point, it is standard to choose A = Dv ± εB for arbitrary B ∈ L2(Q) and ε > 0 and arrive at

0 =

∫
Q

B : (S− S(pf ,Dv)) for all B ∈ L2(Q),

which implies S = S(pf ,Dv) a.e. in Q. The proof of Proposition 4.1 is complete. �
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