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Abstract. We consider two most studied standard models in the theory of

elasto-plasticity with hardening in arbitrary dimension d ≥ 2, namely, the
kinematic hardening and the isotropic hardening problem. While the existence

and uniqueness of the solution is very well known, the optimal regularity up

to the boundary remains an open problem. Here, we show that in the interior
we have Sobolev regularity for the stress and hardening while for their time

derivatives we have the “half” derivative with the spatial and time variable.

This was well known for the limiting problem but we show that these estimates
are uniform and independent of the order of approximation. The main novelty

consist of estimates near the boundary. We show that for the stress and

the hardening parameter, we control tangential derivative in the Lebesgue
space L2, and for time derivative of the stress and the hardening we control

the “half” time derivative and also spatial tangential derivative. Last, for the
normal derivative, we show that the stress and the hardening have the 3/5

derivative with respect to the normal and for the time derivative of the stress

and the hardening we show they have the 1/5 derivative with respect to the
normal direction, provided we consider the kinematic hardening or near the

Dirichlet boundary. These estimates are independent of dimension. In case, we

consider the isotropic hardening near the Neumann boundary we shall obtain
Wα,2 regularity for the stress and the hardening with some α > 1/2 depending

on the dimension and Wβ,2 with some β > 1/6 for the time derivative of the

stress and the hardening. Finally, in case of kinematic hardening the same
regularity estimate holds true also for the velocity gradient.

1. Introduction

In this paper we deal with the regularity estimates for solutions to some models
of linearized elasto–plasticity with hardening. We have mainly two cases in mind,
the isotropic hardening and the kinematic harding. Our main goal is to provide
the uniform estimates on the Cauchy stress and the hardening parameter and their
time derivatives in fractional Sobolev spaces up to the boundary and consequently
by using an interpolation technique also to improve the available regularity results
for the small strain tensor.
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1.1. Physical background. To describe the problem in more details, we shall
assume that a body occupies a Lipschitz set O ⊂ Rd and we a priori assume
that considered deformations are small. Therefore, the initial, the current and
the preferred (natural) configurations coincide and we can approximate the strain
tensor by the linearized strain tensor εεε(u), which is defined as

(1.1) εεε(u) :=
1

2
(∇u+ (∇u)T ) ,

where u : (0, T )×O → Rd is the displacement and the interval (0, T ) represents the
loading parameter, which we call “time” in what follows. We also assume that the
density is constant and that the inertial effects can be neglected. Then the balance
of linear momentum for the quasi-static deformation takes the form

(1.2) −divσσσ = f in [0, T ]×O,
where σσσ : (0, T )×O → Rd×dsym is the Cauchy stress and f : (0, T )×O → Rd denotes
the density of given external body forces. To complete the problem (1.1)–(1.2) it
remains to prescribe the boundary and initial conditions, which we shall do later,
and also to characterize the relationship between σσσ and εεε(u). Since we deal with
elasto–platic effects, we assume that the linearized strain εεε(u) can be decomposed
into the elastic part eel and the plastic part ep, i.e.,

(1.3) εεε(u) = eel + ep

and that the elastic response of the material is given by the Helmholtz potential
ψ∗ : Rd×dsym → R, which is supposed to be a strictly convex function vanishing at
zero and exploding at infinity and the elastic strain is related to the stress through

(1.4) σσσ =
∂ψ∗(eel)

∂eel
⇔ eel =

∂ψ(σσσ)

∂σσσ
,

where ψ is the conjugate function to ψ∗ defined as

ψ(σσσ) := sup
eel

(σσσ · eel − ψ∗(eel)) .

Furthermore, we require in the paper that there exists a constant fourth order
tensor AAA ∈ Rd×dsym × Rd×dsym such that for all σσσ ∈ Rd×dsym

(1.5) AAA ≡ ∂2ψ(σσσ)

∂σσσ∂σσσ
.

Then, evidently, the relation (1.4) can be rewritten as

(1.6) σσσ = AAA−1eel ⇔ eel = AAAσσσ .

Note that thanks to (1.5), the tensorAAA is symmetric. In addition, since ψ is assumed
to be convex, we certainly know that AAA is invertible and therefore (1.6) makes good
sense.

Concerning the plastic strain, we assume that (usually ep is considered to be
relevant to incompressible motion)

(1.7) tr ep = 0 ,

where tr denotes the trace of ep. Further, we need to specify under which conditions
it may appear and how is related to the “hardening”. In the paper, we shall assume
two cases, the isotropic hardening, which is described by a scalar function

ξ : [0, T ]×O → R,
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which is related to the plastic strain by the following flow rule (here H is a given
positive constant)

(1.8) Hξ̇ = |ėp|.
Here, and also in what follows, we use the “dot” to abbreviate the partial derivative
with respect to the variable t, i.e.,

ż :=
∂z

∂t
for any function z depending on t. Furthermore, we require the von Mises condition

|σσσD| − ξ ≤ κ,
and we assume that there is no plastic strain if the above inequality is strict, i.e.,

|σσσD| − ξ < κ =⇒ ėp = 0.

On the other hand, if |σσσD| − ξ = κ, we require that

σσσD
|σσσD|

=
ėp

|ėp|
.

To summarize, we can write these conditions in a more compact form

ėp = λ̇
σσσD
|σσσD|

with λ̇ ≥ 0 , |σσσD| − ξ ≤ κ and λ̇ (|σσσD| − ξ − κ) = 0 .(1.9)

In a similar way, we shall define the kinematic hardening. Hence, we assume
that the hardening parameter

ξξξ : [0, T ]×O → Rd×dsym

obeys the following flow rule (here HHH is the symmetric positively definite fourth
order tensor)

(1.10) HHHξ̇ξξ = ėp.

The related von Mises condition then reads as

|σσσD − ξξξD| ≤ κ,
and we assume that there is no plastic strain if the above inequality is strict, i.e.,

|σσσD − ξξξD| < κ =⇒ ėp = 0.

On the other hand, if |σσσD − ξξξD| = κ, we require that

σσσD − ξξξD
|σσσD − ξξξD|

=
ėp

|ėp|
.

Again, the above conditions can be equivalently rewritten as

ėp = λ̇
σσσD − ξξξD
|σσσD − ξξξD|

with λ̇ ≥ 0 , |σσσD − ξξξD| ≤ κ and λ̇ (|σσσD − ξξξD| − κ) = 0 .

(1.11)

We do not claim that two models introduced above are the only ones of physical
and engineering interest. Indeed, there is a lot of models describing elastic and
plastic deformation with memory effects, see for example the book [1], and each
of them can be used in a specific situation. The models of kinematic and isotopic
hardening are just two most prototypic examples. On the other hand, it seems that
the models discussed in this paper usually have better regularity properties than
the others, and therefore it was also our motivation to focus on them.
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1.2. Weak formulation of the problem and the main result. To complete
the problem, we have to specify the boundary and initial values. We start with the
hardening variable and we assume that ξξξ(0, x) ≡ 0 in case of kinematic hardening
and that ξ(0, x) = 0 in case of isotropic hardening. Next, we assume that the
boundary of the domain can be decomposed onto two smooth sets ∂OD - the
Dirichlet part, and ∂ON - the Neumann part with the unit normal outward vector
denoted by n. Finally, we prescribe the data u0 : [0, T ] × O → Rd and σσσ0 :
[0, T ]×O → Rd×dsym, and we require that u = u0 on [0, T ]× ∂OD (Dirichlet data for
the displacement - the displacement on the part ∂OD) and that u(0) = u0(0) (the
initial displacement), and that σσσ ·n = σσσ0 ·n on [0, T ]×ON (the Neumann data - the
traction on ∂ON ) and σσσ(0) = σσσ0(0) (the initial value of the Cauchy stress). Note
here, that there is a necessary compatibility condition εεε(u0(0)) = AAAσσσ0(0). To recall
all data, we also have a given body forces f : [0, T ] × O → Rd and the material
parameters1 κ ≥ C1 > 0 for some positive constant C1, positively definite symmetric
fourth order tensor AAA and the constant H > 0 in case of isotropic harding and the
constant fourth order symmetric positively definite tensor HHH in case of kinematic
hardening. Here, positively definite means that there exists a positive constant C1

such that C1 ≤ H and such that for all τ ∈ Rd×dsym there holds

(1.12) C1|τ |2 ≤ AAAτ · τ ≤ C−1
1 |τ |2 and C1|τ |2 ≤ HHHτ · τ ≤ C−1

1 |τ |2.

Finally, we can summarize the above description and formulate the problem of
elasto-plastic hardening in the following classical way:

Kinematic hardening: We look for a quintuple (σσσ,ξξξ,u, eel, ep) : [0, T ] × O →
Rd×dsym × Rd×dsym × Rd × Rd×dsym × Rd×dsym such that

(1.13)

−divσσσ = f , HHHξ̇ξξ = ėp, εεε(u) = eel + ep, eel = AAAσσσ in [0, T ]×O ,

ėp = |ėp|
σσσD − ξξξD

κ
in [0, T ]×O ,

κ ≥ |σσσD − ξξξD| and |ėp|(|σσσD − ξξξD| − κ) = 0 in [0, T ]×O ,
u = u0 on [0, T ]× ∂OD ,

σσσn = σσσ0n on [0, T ]× ∂ON ,
σσσ(0) = σσσ0, ξξξ(0) = 0, u(0) = u0(0) in O .

where T > 0 is the given length of the time2 interval, the given threshold κ > 0 is
a von Mises condition, f : [0, T ]×O → Rd are the given volume forces, the stress
σσσ0 : [0, T ]×O → Rd×dsym represents the initial value σσσ(0) and the traction σσσn and the
prescribed displacement on the boundary [0, T ]×∂OD and the initial displacement
is represented by u0 : [0, T ]×O → Rd. Here the symbol n denotes the outer normal
vector on ∂O.

1For simplicity, we assume that the material parameters are constant. Nevertheless, we could

allow them to be time dependent.
2In fact, we should not call it time interval, since t corresponds to the loading parameter.
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Isotropic hardening: We look for a quintuple (σσσ, ξ,u, eel, ep) : [0, T ] × O →
Rd×dsym × R× Rd × Rd×dsym × Rd×dsym such that
(1.14)

−divσσσ = f , Hξ̇ = |ėp|, εεε(u) = eel + ep, eel = AAAσσσ in [0, T ]×O ,

ėp = |ėp|
σσσD
κ+ ξ

in [0, T ]×O ,

κ ≥ |σσσD| − ξ and |ėp|(|σσσD| − κ− ξ) = 0 in [0, T ]×O ,
u = u0 on [0, T ]× ∂OD ,

σσσn = σσσ0n on [0, T ]× ∂ON ,
σσσ(0) = σσσ0, ξ(0) = 0, u(0) = u0(0) in O .

Furthermore, to simplify the notation, we require that (indeed, it is just simpli-
fication of a notation, in fact, to be able to solve the problem, the existence of σσσ0

fulfilling this equation is necessary)

divσσσ0 = f almost everywhere in (0, T )×O.
Then, we choose a proper subspace of the Sobolev space W 1,2(O;Rd), which will
be used in what follows

V := {v ∈W 1,2(O;Rd); v = 0 on ∂OD}
and we define the set of admissible stresses as

Fk(t) :=
{

(σσσ,ξξξ) ∈ L2(Ω;Rd×dsym)× L2(Ω;Rd×dsym); |σσσD − ξξξD| ≤ κ,

and for all v ∈ V there holds

∫
O

(σσσ − σσσ0) · εεε(v) dx = 0

}
and

Fi(t) :=
{

(σσσ, ξ) ∈ L2(Ω;Rd×dsym)× L2(Ω;R); |σσσD| ≤ κ+ ξ,

and for all v ∈ V there holds

∫
O

(σσσ − σσσ0) · εεε(v) dx = 0

}
.

Notice here, that Fi corresponds to isotropic hardening while the set Fk is related
to kinematic hardening and we can introduce the following definitions.

Definition 1.1 (Kinematic hardening). Let O ⊂ Rd be a Lipschitz domain. As-
sume that σσσ0 ∈ W 1,2(0, T ;L2(Ω;Rd×dsym)) and u0 ∈ W 1,2(0, T ;W 1,2(O;Rd)). We

say that (σσσ,ξξξ) ∈ W 1,2(0, T ;L2(O;Rd×dsym)) ×W 1,2(0, T ;L2(O;Rd×dsym)) is a weak so-
lution to (1.13) if σσσ(0) = σσσ0, ξξξ(0) = 0 and for almost all t ∈ (0, T ) there holds
(σσσ(t), ξξξ(t)) ∈ Fk(t) and, in addition, we require that for almost all t ∈ (0, T ) and

all (σ̃σσ, ξ̃ξξ) ∈ Fk(t) there holds

(1.15)

∫
O
AAAσ̇σσ(t) · (σσσ(t)− σ̃σσ)) +HHHξ̇ξξ · (ξξξ − ξ̃ξξ) dx ≤

∫
O
εεε(u̇0) · (σσσ(t)− σ̃σσ) dx.

In a very similar way, we can also introduce the notion of a weak solution to the
isotropic model (1.14), where we shall replace Fk(t) by Fi(t) in a natural way.

Definition 1.2 (Isotropic hardening). Let O ⊂ Rd be a Lipschitz domain. Assume
that σσσ0 ∈ W 1,2(0, T ;L2(Ω;Rd×dsym)) and u0 ∈ W 1,2(0, T ;W 1,2(O;Rd)). We say that

(σσσ, ξ) ∈W 1,2(0, T ;L2(O;Rd×dsym))×W 1,2(0, T ;L2(O;R) is a weak solution to (1.14)
if σσσ(0) = σσσ0, ξ(0) = 0 and for almost all t ∈ (0, T ) there holds (σσσ(t), ξ(t)) ∈ Fi(t)
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and, in addition, we require that for almost all t ∈ (0, T ) and all (σ̃σσ, ξ̃) ∈ Fi(t) there
holds

(1.16)

∫
O
AAAσ̇σσ(t) · (σσσ(t)− σ̃σσ)) +Hξ̇(ξ − ξ̃) dx ≤

∫
O
εεε(u̇0) · (σσσ(t)− σ̃σσ) dx.

Before stating the main result of the paper, we introduce the safety load condition
for the initial data σσσ0(0), namely

(1.17) ‖σσσ0D(0)‖∞ < κ.

The existence of weak solution to kinematic or isotropic hardening problem in the
sense of Definitions 1.1–1.2 is very standard. However, to be able to talk also about
the displacement and to obtain regularity results, one usually needs to assume cer-
tain compatibility condition on data. In the available literature, the authors usually
consider more restrictive assumption than (1.17), which is however more related to
the classical problems of elasto–plasticity without hardening. Nevertheless, in our
setting, the assumption (1.17) is sufficient, since it leads to the standard safety load
condition. Indeed, for kinematic hardening we can set ξξξ0(t) := σσσ0(t) − σσσ0(0) and
then directly we also have

(1.18) (σσσ0(t), ξξξ0(t)) ∈ Fk(t), sup
t∈(0,T )

‖σσσD0(t)− ξξξ0D(t)‖∞ < κ,

provided (1.17) holds. Similarly, in the isotropic hardening case, we se ξ0(t) :=
|σσσ0D(t)| − |σσσ0D(0)| and we again have

(1.19) (σσσ0(t), ξ0(t)) ∈ Fi(t), sup
t∈(0,T )

‖|σσσ0D(t)| − ξ(t)‖∞ < κ,

provided (1.17) holds.
Finally, we state the main results of the paper. We consider an approximated

problem and show not only the convergence to the original problem but also reg-
ularity estimates that are uniform with respect to the approximation parameter.
The first one is for the kinematic hardening model. For the approximation, we
introduce a new class of admissible stresses as

Fel(t) :=
{

(σσσ,ξξξ) ∈ L2(Ω;Rd×dsym)× L2(Ω;Rd×dsym);

and for all v ∈ V there holds

∫
O

(σσσ − σσσ0) · εεε(v) dx = 0

}
.

and our result for kinematic hardening reads as follows.

Theorem 1.1 (Kinematic hardening). Let all assumptions of Definition 1.1 be
satisfied. Then for all µ > 0 there exists a unique triple (σσσµ, ξξξµ,uµ) such that

uµ − u0 ∈W 1,2(0, T ;W 1,2
0 (O;Rd)), ξξξµ(0) = 0, σσσµ = σσσ0(0) and

(1.20)

AAAσ̇σσµ + µ−1(|σσσµD − ξξξD| − κ)+
σσσµD − ξξξD
|σσσµD − ξξξD|

= εεε(u̇µ),

HHHξ̇ξξ = µ−1(|σσσµD − ξξξD| − κ)+
σσσµD − ξξξD
|σσσµD − ξξξD|

 a.e. in (0, T )×O.

In addition, if the safety initial load condition (1.17) holds and σσσ0 and u0 satisfy

σσσ0 ∈W 2,∞(0, T ;L2(O;Rd×dsym)) ∩W 1,∞(0, T ;W 1,2(O;Rd×dsym)),

u0 ∈W 2,∞(0, T ;W 1,2(O;Rd×dsym)) ∩W 1,∞(0, T ;W 2,2(O;Rd×dsym)),
(1.21)
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then we have the following uniform estimates

sup
t∈(0,T )

(
‖σ̇σσµ(t)‖22 + ‖ξ̇ξξ

µ
(t)‖2 + ‖u̇(t)‖21,2

)
≤ C(u0,σσσ0,O, T )(1.22)

and there exists a sequence that we do not relabel such that

(σσσµ, ξξξµ,uµ) ⇀∗ (σσσ,ξξξ,u)

in the topology induced by the estimate (1.22), where (σσσ,ξξξ,u) is a solution in a
sense of Definition 1.1 and satisfies (1.13) almost everywhere.

Moreover, if O ∈ C1,1 then for any compact Õ ⊂ O, any δ > 0 and arbitrary
nonnegative φ ∈ C∞ fulfilling suppφ ∩ ∂OD ∩ ∂ON = ∅, we have the following
estimate

sup
t∈(0,T )

(
‖σσσµ(t)‖W 1,2(Õ) + ‖ξξξµ(t)‖W 1,2(Õ) + ‖uµ(t)‖W 2,2(Õ)

)
+ sup
t∈(0,T )

(
‖φσσσµ(t)‖N1,2

τ (O) + ‖φξξξµ(t)‖N1,2
τ (O) + ‖φ∇uµ(t)‖N1,2

τ (O)

)
+ sup
t∈(0,T )

(
‖φσσσµ(t)‖

N
3
5
−δ,2

n (O)
+ ‖φξξξµ(t)‖

N
3
5
−δ,2

n (O)
+ ‖φ∇uµ(t)‖

N
3
5
−δ,2

n (O)

)
+ ‖σ̇σσµ‖

N
1
2
,2(0,T ;L2(O))

+ ‖ξ̇ξξ
µ
‖
N

1
2
,2(0,T ;L2(O))

+ ‖∇u̇µ‖
N

1
2
,2(0,T ;L2(O))

+ ‖σ̇σσµ‖
L2(0,T ;N

1
2
,2(Õ))

+ ‖ξ̇ξξ
µ
‖
L2(0,T ;N

1
2
,2(Õ))

+ ‖∇u̇µ‖
L2(0,T ;N

1
2
,2(Õ))

+ ‖φσ̇σσµ‖
L2(0,T ;N

1
2
,2

τ (O))
+ ‖φξ̇ξξ

µ
‖
L2(0,T ;N

1
2
,2

τ (O))
+ ‖φ∇u̇µ‖

L2(0,T ;N
1
2
,2

τ (O))

+ ‖φσ̇σσµ‖
L2(0,T ;N

1
5
−δ,2

n (O))
+ ‖φξ̇ξξ

µ
‖
L2(0,T ;N

1
5
−δ,2

n (O))
+ ‖φ∇u̇µ‖

L2(0,T ;N
1
5
−δ,2

n (O))

≤ C(φ, δ, Õ,u0,σσσ0),

(1.23)

which due to the weak lower semicontinuity holds also for the limit (σσσ,ξξξ,u).

Please notice here that we used the notations Nα,p for the standard Nikoloskii
space, Nα,p

τ for the space, where we control the tangential differences, i.e., the space
of functions whose fractional α-th tangential3 derivatives belongs to the Lebesgue
space Lp and similarly, Nα,p

n for the space, where the α-th normal derivative belongs
to Lp.

For the isotropic hardening, we have the following result.

Theorem 1.2 (Isotropic hardening). Let all assumptions of Definition 1.1 be
satisfied. Then for all µ > 0 there exists a unique triple (σσσµ, ξµ,uµ) such that

uµ − u0 ∈W 1,2(0, T ;W 1,2
0 (O;Rd)), ξµ(0) = 0, σσσµ = σσσ0(0) and

(1.24)
AAAσ̇σσµ + µ−1(|σσσµD| − κ− ξ)+

σσσµD
|σσσµD|

= εεε(u̇µ),

Hξ̇ = µ−1(|σσσµD| − κ− ξ)+

 a.e. in (0, T )×O.

3Tangential here means in the directions that are orthogonal to the normal vector at boundary
∂O.
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In addition, if the safety initial load condition (1.17) holds and σσσ0 and u0 satisfy

σσσ0 ∈W 2,∞(0, T ;L2(O;Rd×dsym)) ∩W 1,∞(0, T ;W 1,2(O;Rd×dsym)),

u0 ∈W 2,∞(0, T ;W 1,2(O;Rd×dsym)) ∩W 1,∞(0, T ;W 2,2(O;Rd×dsym)),
(1.25)

then we have the following uniform estimates

sup
t∈(0,T )

(
‖σ̇σσµ(t)‖22 + ‖ξ̇µ(t)‖2 + ‖u̇(t)‖21,2

)
≤ C(u0,σσσ0,O, T )(1.26)

and there exists a sequence that we do not relabel such that

(σσσµ, ξµ,uµ) ⇀∗ (σσσ, ξ,u)

in the topology induced by the estimate (1.22), where (σσσ, ξ,u) is a solution in a
sense of Definition 1.2 and satisfies (1.14) almost everywhere.

Moreover, defining

α :=
2d− 7 +

√
1 + 4d2 + 20d

8(d− 1)
,

then for O ∈ C1,1, any compact Õ ⊂ O, any δ > 0 and arbitrary nonnegative
φ ∈ C∞ fulfilling suppφ ∩ ∂OD ∩ ∂ON = ∅, we have the following estimate

sup
t∈(0,T )

(
‖σσσµ(t)‖W 1,2(Õ) + ‖ξµ(t)‖W 1,2(Õ)

)
sup

t∈(0,T )

(
‖φσσσµ(t)‖N1,2

τ (O) + ‖φξµ(t)‖N1,2
τ (O)

)
sup

t∈(0,T )

(
‖φσσσµ(t)‖Nα−δ,2n (O) + ‖φξµ(t)‖Nα−δ,2n (O)

)
+ ‖σ̇σσµ‖

N
1
2
,2(0,T ;L2(O))

+ ‖ξ̇µ‖
N

1
2
,2(0,T ;L2(O))

+ ‖σ̇σσµ‖
L2(0,T ;N

1
2
,2(Õ))

+ ‖ξ̇µ‖
L2(0,T ;N

1
2
,2(Õ))

+ ‖φσ̇σσµ‖
L2(0,T ;N

1
2
,2

τ (O))
+ ‖φξ̇µ‖

L2(0,T ;N
1
2
,2

τ (O))

+ ‖φσ̇σσµ‖
L2(0,T ;N

α
3
−δ,2

n (O))
+ ‖φξ̇µ‖

L2(0,T ;N
α
3
−δ,2

n (O))

≤ C(φ, δ, Õ,u0,σσσ0),

(1.27)

which due to the weak lower semicontinuity holds also for the limit (σσσ, ξ,u). In
addition, for any nonnegative ϕ ∈ C∞(R) that fulfils suppϕ ∩ ∂ON , there holds

sup
t∈(0,T )

(
‖ϕσσσµ(t)‖

N
3
5
−δ,2

n (O)
+ ‖ϕξµ(t)‖

N
3
5
−δ,2

n (O)

)
+ ‖ϕσ̇σσµ‖

L2(0,T ;N
1
5
−δ,2

n (O))
+ ‖ϕξ̇µ‖

L2(0,T ;N
1
5
−δ,2

n (O))

≤ C(δ,u0,σσσ0, ϕ),

(1.28)

To end this part of the paper, we emphasize the essential novelties stated in The-
orems 1.1–1.2. The existence of a solution was already established in [10, 11] and
there is nothing new in the paper. Also the interior W 1,2 regularity for the stress
has been proven in [14, 15] for various models. A key improvement concerning the
interior regularity is due to [8] (see also the related paper [9] for problems without



REGULARITY RESULTS IN ELASTO-PLASTICITY THEORY WITH HARDENING 9

hardening), where the authors showed4 that σ̇σσ and ξ̇ξξ belongs to L2(0, T ;N
1
2 ,2

loc (O))

and N
1
2 ,2(0, T ;L2(O)) (see also [2], where a weaker result is obtained for similar

problems). However, their estimates were true only for the limit, i.e., for the solu-
tion, but were not uniform with respect to approximation. Our result overcomes
this weakness and we are able to obtain the uniform µ-independent estimates, see
also [4], where the similar statement was proven for plasticity without hardening,

or also [12] for up to the boundary or [3] for W 1,2
loc results for various models in

elasto-plasticity theory without hardening.
Concerning the results up to the boundary, the tangential regularity for σσσ and

ξξξ was already obtained in [5, 6] and the authors also obtained that the solution

belongs to L∞(0, T ;N
1
2 +δ,2
n (O)). Hence, our result significantly improves this es-

timate since in case of kinematic hardening or in case of Dirichlet data we have

N
3
5−δ,2
n (O) independently of dimension. In addition for isotropic case and Neu-

mann data, we can precisely trace the improvement as stated in (1.27). Finally,

and this is the main improvement, we are able to obtain also the fractional N
1
2 ,2

loc

and N
1
2 ,2
τ regularity for σ̇σσ and ξ̇ξξ and even more we have an information N

1
5−δ,2
n in

normal direction, which is obtained by the cross interpolation. Note that in view of
the counterexamples to W 1,2 regularity up to the boundary proven e.g. in [16, 13],
such estimates seems to be optimal.

In the rest of the paper, we will focus only on the kinematic hardening and
we shall just emphasize where are the differences. Obviously, in the kinematic

hardening case, we can transfer the obtained regularity from σ̇σσ and ξ̇ξξ to εεε(u̇) just
by using the equation. Then the regularity for ∇u̇ just follows from the Korn
inequality applied on O or its sub-domain and we do not provide details here.
On the other hand, in case of isotropic hardening, we are not able to use such a
procedure. The best, we can do is just to transfer better integrability to ∇u̇, see
also [5, 6], but this is also omitted here, since it is just direct consequence of the
Korn inequality and embedding theorem. The second case is when we combine
the isotropic hardening and the Neumann boundary conditions. The reason for
that is that in such case we cannot use any version of anisotropic Korn inequality
to transfer optimal anisotropic integrability from symmetric gradient to the full
gradient. Also, we would like to emphasize that our restriction on the constant AAA
and HHH is not necessary and the proof would remain almost exactly identical if they
are Lipschitz functions of (t, x). Finally, to simplify the presentation, we consider
only the flat boundary, however for C1,1 boundaries, it is just a technical difficulty
to transform the problem with general boundary to the case of flat boundary.
Finally, let us remark that we cannot avoid a possible singularity on ∂OD ∩ ∂ON
from principal reasons, since even for linear elliptic problems one may observe a
singularity.

2. Proof of Theorems 1.1 and 1.2

We focus here mainly on the kinematic hardening case, since the proof for the
isotropic hardening is very similar. Only on certain places, we discuss the possible
differences. Also to simplify notation, we set κ ≡ 1 in what follows. Finally having

4In fact they showed an estimate, from which one can deduce the result following the method
invented in [7].
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a priori estimates stated in Theorem 1.1 or in Theorem 1.2, it is very classical to
pass to the limit µ → 0+ and to obtain the solution to the original problem, i.e.,
to the kinematic hardening and the isotropic hardening problems. Therefore, we
also skip the limiting passage in the proof. Finally, we do not discuss the problem
of existence of a solution for fix µ > 0 since it was already established by many
authors, see e.g. [10, 11], but we rather focus on a priori estimates. Also in order to
shorten the text, we omit writing superscripts to emphasize we deal with a solution
to an approximative problem. Furthermore, we do not trace the dependence of all
constants on O or C1 and in what follows the constant C has a meaning of some
universal generic constant that may vary line to line but is independent of µ. In
case we want to emphasize the dependence of this constant on some parameter it
is clearly denoted.

2.1. First a priori uniform estimates. Thus, we shall assume that for any µ > 0
there exists a solution (1.20). The existence of such a σ can be shown e.g. by
the Rothe approximation and we refer the interested reader to [8] or [17], where
even a more difficult case of problem without hardening is treated, or to original
papers [10, 11]. Hence, we assume that there is u ∈ W 1,2(0, T ;W 1,2(O;Rd)) such
that for all t ∈ (0, t) u − u0 ∈ V and u(0) = u0(0), and that there is (σσσ,ξξξ) ∈ Fel
fulfilling

(2.1)

AAAσ̇σσ + µ−1(|σσσD − ξξξD| − 1)+
σσσD − ξξξD
|σσσD − ξξξD|

= εεε(u̇),

HHHξ̇ξξ = µ−1(|σσσD − ξξξD| − 1)+
σσσD − ξξξD
|σσσD − ξξξD|

 in (0, T )×O.

The next step is to derive the uniform (µ independent estimates) for (u,σσσ,ξξξ). We
proceed here formally, since the estimates are known, see e.g. [18, 17, 8]. Taking
the scalar product of the first equation in (2.1) with σσσ − σσσ0, recall here that σσσ0

satisfies the compatibility condition (1.18), we deduce after integration over O that∫
O
AAA(σ̇σσ − σ̇σσ0) · (σσσ − σσσ0) + µ−1(|σσσD − ξξξD| − 1)+

(σσσD − ξξξD) · (σσσD − σσσ0D)

|σσσD − ξξξD|
dx

=

∫
O
εεε(u̇− u̇0) · (σσσ − σσσ0) dx+

∫
O

(εεε(u̇0)−AAAσ̇σσ0) · (σσσ − σσσ0) dx.

(2.2)

Second identity, we deduce from (2.1) by taking the scalar product with ξ0. Thus,
we have∫

O
HHH(ξ̇ξξ − ξ̇ξξ0) · (ξξξ − ξξξ0) dx

=

∫
O
µ−1(|σσσD − ξξξD| − 1)+

(σσσD − ξξξD) · (ξξξD − ξξξ0D)

|σσσD − ξξξD|
dx− ξ̇ξξ0 · (ξξξ − ξξξ0) dx.

(2.3)

Since (σσσ(t), ξξξ) ∈ Fel and (u − u0) ∈ V, we see that the first term on the right
hand side of (2.1) vanishes. In addition, since (σσσ0, ξξξ0) satisfies the compatibility
condition (1.18), we observe

(|σσσD − ξξξD| − 1)+(σσσD − ξξξD) · (σσσD − σσσ0D − ξξξD + ξξξ0D)

= (|σσσD − ξξξD| − 1)+(|σσσD − ξξξD|2 − (σσσD − ξξξD) · (σσσ0D − ξξξ0D))

≥ (|σσσD − ξξξD| − 1)+|σσσD − ξξξD|(|σσσD − ξξξD| − |σσσ0D − ξξξ0D|) ≥ 0.
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Finally, we can sum (2.2) and (2.3) and by using the above inequality, the symmetry
of AAA and HHH as well as the ellipticity (1.12) and also the boundedness of AAA and HHH,
we arrive to the inequality

d

dt

∫
O
AAA(σσσ − σσσ0) · (σσσ − σσσ0) +HHH(ξξξ − ξξξ0) · (ξξξ − ξξξ0) dx

≤ C
(
‖εεε(u̇0)‖22 + ‖σ̇σσ0‖22 + ‖ξ̇ξξ0‖22

)
+ C

∫
O
AAA(σσσ − σσσ0) · (σσσ − σσσ0) +HHH(ξξξ − ξξξ0) · (ξξξ − ξξξ0) dx.

(2.4)

Consequently, by the Gronwall lemma, we have

sup
t∈(0,T )

(‖σσσ(t)‖22 + ‖ξξξ(t)‖22)

≤ C

(
‖σσσ0(0)‖22 +

∫ T

0

‖εεε(u̇0)‖22 + ‖σ̇σσ0‖22 + ‖ξ̇ξξ0‖22 dt

)
≤ C,

(2.5)

where the last inequality follows from the assumptions on data (namely on σσσ0, u0

and ξξξ0).
The next step is to test the first equation in (2.1) by σ̇σσ − σ̇σσ0 and the second

equation by ξ̇ξξ. Doing so, and summing the resulting identities, we get∫
O
AAAσ̇σσ · σ̇σσ +HHHξ̇ξξ · ξ̇ξξ + µ−1(|σσσD − ξξξD| − 1)+

(σσσD − ξξξD) · (σ̇σσD − ξ̇ξξD)

|σσσD − ξξξD|
dx

=

∫
O
εεε(u̇− u̇0) · (σ̇σσ − σ̇σσ0) + µ−1(|σσσD − ξξξD| − 1)+

(σσσD − ξξξD) · σ̇σσ0D

|σσσD − ξξξD|
dx

+

∫
O

(εεε(u̇0) · (σ̇σσ − σ̇σσ0) +AAAσ̇σσ · σ̇σσ0 dx

=

∫
O
HHHξ̇ξξ · σ̇σσ0D + (εεε(u̇0) · (σ̇σσ − σ̇σσ0) +AAAσ̇σσ · σ̇σσ0 dx,

(2.6)

where the last equality follows from (2.1)2 and the fact that (σσσ,ξξξ) ∈ Fel. Using the
ellipticity (1.12), the Young inequality and the following identity

µ−1(|σσσD − ξξξD| − 1)+
(σσσD − ξξξD) · (σ̇σσD − ξ̇ξξD)

|σσσD − ξξξD|
=

1

2

∂

∂t
µ−1(|σσσD − ξξξD| − 1)2

+,

we see that it follows from (2.6) that

d

dt

∫
O
µ−1(|σσσD − ξξξD| − 1)2

+ dx+ C1(‖σ̇σσ‖22 + ‖ξ̇ξξ‖22) ≤ C(‖εεε(u̇0)‖22 + ‖σ̇σσ0‖22).

Thus, integrating with respect to t ∈ (0, T ) and using the fact that ξξξ(0) = 0 and
that |σσσ(0)| = |σσσ0(0)| ≤ 0, we get the uniform bound

sup
t∈(0,T )

∫
O
µ−1(|σσσD − ξξξD| − 1)2

+ dx+

∫ T

0

‖σ̇σσ‖22 + ‖ξ̇ξξ‖22 dt

≤ C
∫ T

0

‖εεε(u̇0)‖22 + ‖σ̇σσ0‖22 dt ≤ C,
(2.7)

where the last inequality (with C being independent of µ) follows from the assump-
tions on u0 and σσσ0. In addition, it follows from (2.1) that

|εεε(u̇)| ≤ C(|σ̇σσ|+ |ξ̇ξξ|)
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and consequently, (2.7), the Korn inequality and the assumptions on u0 leads to
the uniform bound

(2.8)

∫ T

0

‖u̇‖21,2 dt ≤ C.

The last step is L∞ bound for the time derivative. We apply the time derivative
to (2.1) and take the scalar product of the first equation with σ̇σσ− σ̇σσ0 and the scalar

product of the second equation with ξ̇ξξ. Summing these to identities we obtain∫
O
AAA(σ̈σσ − σ̈σσ0) · (σ̇σσ − σ̇σσ0) +HHHξ̈ξξ · ξ̇ξξ dx

+

∫
O
µ−1

∂(|σσσD − ξξξD| − 1)+
σσσD−ξξξD
|σσσD−ξξξD|

∂t
· (σ̇σσD − ξ̇ξξD − σ̇σσ0D) dx

=

∫
O
εεε(ü− ü0) · (σ̇σσ − σ̇σσ0) dx+

∫
O

(εεε(ü0)−AAAσ̈σσ0) · (σ̇σσ − σ̇σσ0) dx.

(2.9)

The first term on the right hand side vanishes and for the part of the second term
on the left hand side we use the following estimate

(2.10) µ−1
∂(|βββ| − 1)+

βββ
|βββ|

∂t
· β̇ββ =

µ−1χ|βββ|>1

|βββ|

(
|β̇ββ|2(|βββ| − 1) + |∂t|βββ||2

)
≥ 0.

Consequently, using the Hölder inequality and the above inequality, we see that
(2.9) implies (using also the second identity in (2.1))

1

2

d

dt

∫
O
AAA(σ̇σσ − σ̇σσ0) · (σ̇σσ − σ̇σσ0) +HHHξ̇ξξ · ξ̇ξξ − 2HHHξ̇ξξ · σ̇σσ0D dx

≤ C(‖εεε(ü0)‖2 + ‖σ̈σσ0‖2)(1 + ‖ξ̇ξξ‖2 + ‖σ̇σσ − σ̇σσs‖2).

(2.11)

Hence, adding the term
1

2

d

dt

∫
O
HHHσ̇σσ0D · σ̇σσ0D dx

to both sides of (2.11), we deduce

1

2

d

dt

∫
O
AAA(σ̇σσ − σ̇σσ0) · (σ̇σσ − σ̇σσ0) +HHH(ξ̇ξξ − σ̇σσ0D) · (ξ̇ξξ − σ̇σσ0D) dx

≤ C(‖εεε(ü0)‖2 + ‖σ̈σσ0‖2)(1 + ‖σ̇σσ0D‖2 + ‖ξ̇ξξ − σ̇σσ0D‖2 + ‖σ̇σσ − σ̇σσ0D‖2).

(2.12)

Consequently, integration of this inequality and the ellipticity assumption (1.12)
lead to the estimate

sup
t∈(0,T )

(
‖σ̇σσ(t)‖22 + ‖ξ̇ξξ(t)‖22

)

≤ C

1 + ‖σ̇σσ0(0)‖22 +

(∫ T

0

‖ü0‖1,2 + ‖σ̈σσ0‖2 dt

)2
 ≤ C.(2.13)

Furthermore, it follows from (2.1) and the Korn inequality that

(2.14) sup
t∈(0,T )

‖u̇(t)‖21,2 ≤ C.
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2.2. Uniform W 1,2 estimates. In this subsection, we derive the uniform interior
estimates on ∇σσσ and on ∇ξξξ and estimates for tangential derivatives of (σσσ,ξξξ) up to
the boundary.

To simplify the presentation, we consider here only a flat boundary case but it
can be straightforwardly extended to the general boundary. Also since the interior
regularity is in fact easier to prove than the boundary regularity, we provide here
only the estimates near the boundary for tangential derivatives. Hence to simplify
the notation, we assume from now the most difficult case, i.e., we focus on a cube
(−1, 1)d−1 × (0, 1) ⊂ O, where the Dirichlet and the Neumann parts are supposed
to satisfy

(−1, 1)d−2 × (−1, 0)× {0} ⊂ ∂OD (−1, 1)d−2 × (0, 1)× {0} ⊂ ∂ON .

Our goal is to show that except the set (−1, 1)d−2 × {0} × {0} we have uniform
estimates for Djσσσ and Djξξξ in the space L2 for all j = 1, . . . , d−1, where Dj denotes
the partial derivative with respect to xj .

Thus, let φ ∈ D(−1, 1)d be arbitrary nonnegative function satisfying φ ≤ 1.
Furthermore, we require that for some ε0 > 0, the function φ satisfies for all
x1, . . . , xd−1 and all |s| + |t| ≤ ε0 that τ(x1, . . . , xd−2, s, t) = 0. Next, we fix
arbitrary j = 1, . . . , d − 1 and apply the operator Dj to both equations in (2.1).
Then we take the scalar product of the first equation with Dj(σσσ − σσσ0)φ2 and the
scalar product of the second equation with Djξξξφ

2, sum the results and integrate
over O to deduce the identity∫

O
AAADj(σ̇σσ − σ̇σσ0) ·Dj(σσσ − σσσ0)φ2 +HHHDjξ̇ξξ ·Djξξξφ

2 dx

+

∫
O
µ−1Dj

(
(|σσσD − ξξξD| − 1)+σσσD − ξξξD

|σσσD − ξξξD|

)
·Dj(σσσD − ξξξD)φ2 dx

=

∫
O
Djεεε(u̇) ·Dj(σσσ − σσσ0)φ2 −AAADjσ̇σσ0 ·Dj(σσσ − σσσ0)φ2 dx.

(2.15)

Note that the second integral on the left hand side is nonnegative (see the same
procedure as for the estimates for the first time derivatives) and can be neglected.
Next, using the symmetry of AAA and HHH, we can deduce that

1

2

d

dt

∫
O
AAADj(σσσ − σσσ0) ·Dj(σσσ − σσσ0)φ2 +HHHDjξξξ ·Djξξξφ

2 dx

≤
∫
O
εεε(Dju̇−Dju̇0) ·Dj(σσσ − σσσ0)φ2 dx

+

∫
O

(εεε(Dju̇0)−AAADjσ̇σσ0) ·Dj(σσσ − σσσ0)φ2

≤
∫
O
∇(φ2(Dju̇−Dju̇0)) ·Dj(σσσ − σσσ0) dx

− 2

∫
O
∇φ⊗ (Dju̇−Dju̇0)) ·Dj(σσσ − σσσ0)φ dx

+ C(‖u̇0‖2,2 + ‖σ̇σσ‖1,2)‖Dj(σσσ − σσσ0)φ‖2
≤ C(‖u̇0‖2,2 + ‖u̇‖1,2 + ‖σ̇σσ‖1,2)‖Dj(σσσ − σσσ0)φ‖2,

(2.16)

where for the last inequality we used integration by parts and the fact that Dj

is the tangential derivative and so Dj(u̇ − u̇0) vanishes on ∂OD and similarly
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Dj(σσσ − σσσ0)n = 0 on ∂ON and also thanks to the fact that divDj(σσσ − σσσ0) = 0.
Consequently, it directly follows from (2.16) that

sup
t∈(0,T )

(‖Djσσσ(t)φ‖2 + ‖φDjξξξ(t)‖2) ≤ C,(2.17)

where we used the a priori estimate (2.13) and the assumptions on u0 and σσσ0.

2.3. Fractional time regularity for σ̇σσ and ξ̇ξξ. In this section, we prove the first
new result. Although the estimate is known for the solution of the original problem,
see [8], it was not clear whether the estimate can be obtained uniformly with respect

to the parameter µ. In addition, in [8], the N
1
2−δ,2 regularity is proven, while here

we obtain 1/2 derivative estimate.
For arbitrary w, we denote its times shift as ∆τ

tw(t, x) := w(t + τ, x) − w(t, x)
and with the help of this notation, we take the scalar product of the first equation
in (2.1) with −∆τ

t (σ̇σσ − σ̇σσ0), and the scalar product of the second equation in (2.1)

with −∆τ
t ξ̇ξξ, sum the resulting equalities and finally integrate the result over O to

get

−
∫
O
AAAσ̇σσ ·∆τ

t (σ̇σσ − σ̇σσ0) +HHHξ̇ξξ ·∆τ
t ξ̇ξξ dx

−
∫
O
µ−1(|σσσD − ξξξD| − 1)+

σσσD − ξξξD
|σσσD − ξξξD|

·∆τ
t (σ̇σσD − ξ̇ξξD) dx

=

∫
O
εεε(u̇0 − u̇) ·∆τ

t (σ̇σσ − σ̇σσ0)− εεε(u̇0) ·∆τ
t (σ̇σσ − σ̇σσ0)−HHHξ̇ξξ ·∆τ

t σ̇σσ0D dx.

The first term on the right hand side vanishes and after the use of the Hölder
inequality and the bound (1.12), and after reorganisation of all terms, we deduce
that

−
∫
O
AAAσ̇σσ ·∆τ

t σ̇σσ +HHHξ̇ξξ ·∆τ
t ξ̇ξξ dx

−
∫
O
µ−1(|σσσD − ξξξD| − 1)+

σσσD − ξξξD
|σσσD − ξξξD|

·∆τ
t (σ̇σσD − ξ̇ξξD) dx

≤ C(‖σ̇σσ‖2 + ‖ξ̇ξξ‖2)‖∆τ
t σ̇σσ0‖2 +

∫
O
εεε(u̇0) ·∆τ

t (σ̇σσ0 − σ̇σσ) dx.

(2.18)

Next, we focus on the first term on the left hand side. Due to the symmetry of AAA
and HHH, we have

−AAAσ̇σσ ·∆τ
t σ̇σσ =

1

2
AAA∆τ

t σ̇σσ ·∆τ
t σ̇σσ −

1

2
∆s
t (AAAσ̇σσ · σ̇σσ) ,

−HHHξ̇ξξ ·∆τ
t ξ̇ξξ =

1

2
HHH∆τ

t ξ̇ξξ ·∆τ
t ξ̇ξξ −

1

2
∆s
t

(
HHHξ̇ξξ · ξ̇ξξ

)
.

Therefore, substituting these identities into (2.18) and using the ellipticity of AAA and
HHH (see (1.12)), we further observe with the help of the a piori estimate (2.13) that

∫
O
C1(|∆τ

t σ̇σσ|2 + |∆τ
t ξ̇ξξ|2)− 2µ−1(|σσσD − ξξξD| − 1)+

σσσD − ξξξD
|σσσD − ξξξD|

·∆τ
t (σ̇σσD − ξ̇ξξD) dx

≤
∫
O

2εεε(u̇0) ·∆τ
t (σ̇σσ0 − σ̇σσ) + ∆τ

t

(
AAAσ̇σσ · σ̇σσ +HHHξ̇ξξ · ξ̇ξξ

)
dx+ C‖∆τ

t σ̇σσ0‖2.

(2.19)
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Next, we integrate the resulting inequality with respect to τ over the interval (0, h)
and with respect to t over the interval (0, T − h) to get

C1

∫ T−h

0

∫ h

0

‖∆τ
t σ̇σσ‖22 + ‖∆τ

t ξ̇ξξ‖22 dτ dt

≤
∫ T−h

0

∫
O

2µ−1(|σσσD − ξξξD| − 1)+
σσσD − ξξξD
|σσσD − ξξξD|

×

×

(∫ h

0

∆τ
t (σ̇σσD − ξ̇ξξD) dτ

)
dxdt

+

∫ T−h

0

∫ h

0

∫
O

2εεε(u̇0) ·∆τ
t (σ̇σσ0 − σ̇σσ) + ∆τ

t

(
AAAσ̇σσ · σ̇σσ +HHHξ̇ξξ · ξ̇ξξ

)
dxdτ dt

+ C

∫ T−h

0

∫ h

0

‖∆τ
t σ̇σσ0‖2 dτ dt.

(2.20)

Our goal is to provide uniform estimates for all terms on the right hand side. We
start with the easiest one. Hence, using the assumption on σσσ0, we have

∫ T−h

0

∫ h

0

‖∆τ
t σ̇σσ0‖2 dτ dt =

∫ h

0

τ

(∫ T−h

0

‖∆τ
t σ̇σσ0‖2
τ

dt

)
dτ

≤
∫ h

0

τ

∫ T

0

‖σ̈σσ0‖2 dtdτ ≤ Ch2.

(2.21)

Next, we focus on the term with εεε(u̇0). We simply shift the differences to u0 and
then use the assumptions on u0 and alreday obtained estimates. In more details,
we reorganise the first term as follows

∫ T−h

0

∫ h

0

∫
O

2εεε(u̇0) ·∆τ
t (σ̇σσ0 − σ̇σσ) dxdτ dt

=

∫ h

0

∫ T−h

0

∫
O

2εεε(u̇0) · (σ̇σσ0(t+ τ)− σ̇σσ(t+ τ)) dxdtdτ

−
∫ h

0

∫ T−h

0

∫
O

2εεε(u̇0) · (σ̇σσ0(t)− σ̇σσ(t)) dxdtdτ

=

∫ h

0

∫ T−h+τ

τ

∫
O

2εεε(u̇0(t− τ)) · (σ̇σσ0(t)− σ̇σσ(t)) dxdtdτ

−
∫ h

0

∫ T−h

0

∫
O

2εεε(u̇0(t)) · (σ̇σσ0(t)− σ̇σσ(t)) dxdtdτ

=

∫ h

0

∫ T−h

τ

∫
O

2εεε(u̇0(t− τ)− u̇0(t)) · (σ̇σσ0(t)− σ̇σσ(t)) dxdtdτ

+

∫ h

0

∫ T−h+τ

T−h

∫
O

2εεε(u̇0(t− τ)) · (σ̇σσ0(t)− σ̇σσ(t)) dxdtdτ

−
∫ h

0

∫ τ

0

∫
O

2εεε(u̇0(t)) · (σ̇σσ0(t)− σ̇σσ(t)) dx dtdτ
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and then with the help of the Hölder inequality we obtain∫ T−h

0

∫ h

0

∫
O

2εεε(u̇0) ·∆τ
t (σ̇σσ0 − σ̇σσ) dx dτ dt

≤ C
∫ h

0

τ‖σ̇σσ0 − σ̇σσ‖L∞(0,T ;L2)‖εεε(ü0)‖L1(0,T ;L2) dτ

+ C

∫ h

0

τ‖σ̇σσ0 − σ̇σσ‖L∞(0,T ;L2)‖εεε(u̇0)‖L∞(0,T ;L2) dτ

≤ Ch2,

(2.22)

where we used the assumptions on u0 and σσσ0 and the a priori estimate (2.13). The
term involving the matrices AAA and HHH on the right hand side of (2.20) is estimated
as follows∫ T−h

0

∫ h

0

∫
O

∆τ
t

(
AAAσ̇σσ · σ̇σσ +HHHξ̇ξξ · ξ̇ξξ

)
dxdτ dt

=

∫ h

0

∫ T−h

0

∫
O

(
AAAσ̇σσ · σ̇σσ +HHHξ̇ξξ · ξ̇ξξ

)
(t+ τ)−

(
AAAσ̇σσ · σ̇σσ +HHHξ̇ξξ · ξ̇ξξ

)
(t) dxdtdτ

=

∫ h

0

∫ T−h+τ

T−h

∫
O

(
AAAσ̇σσ · σ̇σσ +HHHξ̇ξξ · ξ̇ξξ

)
dx dtdτ

−
∫ h

0

∫ τ

0

∫
O

(
AAAσ̇σσ · σ̇σσ +HHHξ̇ξξ · ξ̇ξξ

)
dxdtdτ

≤ Ch2(‖σ̇σσ‖L∞(0,T ;L2) + ‖ξ̇ξξ‖L∞(0,T ;L2)) ≤ Ch2,

(2.23)

where the estimate (2.13) is used again. Thus, it remains to evaluate the first term
on the right hand side of (2.20). To simplify formula, we set βββ := σσσD − ξξξD and
using the convexity of (|βββ| − 1)2

+, we continue as follows

∫ T−h

0

∫
O

2µ−1(|σσσD − ξξξD| − 1)+
σσσD − ξξξD
|σσσD − ξξξD|

·

(∫ h

0

∆τ
t (σ̇σσD − ξ̇ξξD) dτ

)
dxdt

=

∫ T−h

0

∫
O

2µ−1(|βββ| − 1)+
βββ

|βββ|
·

(∫ h

0

∆τ
t β̇ββ dτ

)
dxdt

=

∫ T−h

0

∫
O

2µ−1(|βββ| − 1)+
βββ

|βββ|
·
(
βββ(t+ h)− βββ(t)− hβ̇ββ(t)

)
dxdt

=

∫ T−h

0

∫
O

2µ−1(|βββ| − 1)+
βββ

|βββ|
·
(
βββ(t+ h)− βββ(t)− hβ̇ββ(t)

)
dxdt

≤
∫ T−h

0

∫
O
µ−1(|βββ(t+ h)| − 1)2

+ − (|βββ(t)| − 1)2
+ − hµ−1 d

dt
(|βββ(t)| − 1)2

+ dt

≤
∫ h

0

∫
O
µ−1(|βββ(T − h+ t)| − 1)2

+ − (|βββ(T − h)| − 1)2
+ dxdt

−
∫ h

0

∫
O
µ−1(|βββ(t)| − 1)2

+ − (|βββ(0)| − 1)2
+ dxdt.

(2.24)

Note that we also used the fact that |βββ(0)| ≤ 1, which follows from the fact that
ξξξ(0) = 0 and (1.18). To estimate the right hand side, we notice that (2.6) leads to



REGULARITY RESULTS IN ELASTO-PLASTICITY THEORY WITH HARDENING 17

the identity

1

2

d

dt

∫
O
µ−1(|βββ| − 1)2

+ dx

=

∫
O
HHHξ̇ξξ · σ̇σσ0D + (εεε(u̇0) · (σ̇σσ − σ̇σσ0) +AAAσ̇σσ · σ̇σσ0 −AAAσ̇σσ · σ̇σσ −HHHξ̇ξξ · ξ̇ξξ dx,

(2.25)

which after integration over arbitrary interval (τ, τ +α) ⊂ (0, T ) and with the help
of the a priori estimate (2.13) and the assumption on data σσσ0 and u0, leads to∣∣∣∣∫

O
µ−1(|βββ(α+ τ)| − 1)2

+ − µ−1(|βββ(τ)| − 1)2
+ dx

∣∣∣∣
≤ C

∫ α+τ

τ

‖εεε(u̇0)‖22 + ‖σ̇σσ‖22 + ‖σ̇σσ0‖22 + ‖ξ̇ξξ‖22 dt ≤ Cα.
(2.26)

Thus, using this estimate in (2.24), we see that∫ T−h

0

∫
O

2µ−1(|βββ| − 1)+
βββ

|βββ|
·

(∫ h

0

∆τ
t β̇ββ dτ

)
dxdt

≤ C
∫ h

0

tdt ≤ Ch2.

(2.27)

Finally, we substitute the estimates (2.21), (2.22), (2.23) and (2.27) into (2.20) and
finish this part with the uniform estimate

1

h2

∫ T−h

0

∫ h

0

‖∆τ
t σ̇σσ‖22 + ‖∆τ

t ξ̇ξξ‖22 dτ dt ≤ C.(2.28)

Finally, up to small differences we mimic the procedure from [7], to deduce the
proper estimate from (2.28). Indeed, we can compute

h−1

∫ T−2h

0

‖∆h
t βββ‖22 dt

= h−1

∫ T−2h

0

∥∥∥∥∥ 1

h

∫ h

0

βββ(t+ h)− βββ(t+ h− τ) + βββ(t+ h− τ)− βββ(t) dτ

∥∥∥∥∥
2

2

dt

≤ 2h−2

∫ T−2h

0

∫ h

0

‖βββ(t+ h)− βββ(t+ h− τ)‖22 + ‖βββ(t+ h− τ)− βββ(t)‖22 dτ dt

≤ 4h−2

∫ T−h

0

∫ h

0

‖∆τ
tβββ‖

2
2 dτ dt.

Consequently, it then follows from (2.28) that

h−1

∫ T−2h

0

‖σ̇σσ(t+ h)− σ̇σσ(t)‖22 + ‖ξ̇ξξ(t+ h)− ξ̇ξξ(t)‖22 dt ≤ C.(2.29)

Note that there are only minor changes in the proof for isotropic hardening and
therefore we do not provide it here.

2.4. Fractional spatial regularity for σ̇σσ and ξ̇ξξ. The second main result is the
spatial fractional regularity upto the boundary in tangential direction and also the
interior fractional spatial regularity. It is again based of [8], but we do provide here
the estimates independent of µ and extend them up to the boundary when dealing
with tangential direction. We keep the notation from the previous section and focus
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only on the flat boundary. Next, we introduce the space-time shift as follows. For

arbitrary w, we denote ∆τ,h
t,j w(t, x) := w(t + τ, x + hej) − w(t, x), where ej is the

unite vector in the j-th direction and j = 1, . . . , d− 1. We take the scalar product

of the first equation in (2.1) with −∆τ,h
t,j (σ̇σσ− σ̇σσ0)φ2, of the second equation in (2.1)

with −∆τ,h
t,j ξ̇ξξφ

2, sum the resulting equalities and finally integrate the result over O
to get

−
∫
O
AAAσ̇σσ ·∆τ,h

t,j (σ̇σσ − σ̇σσ0)φ2 +HHHξ̇ξξ ·∆τ,h
t,j ξ̇ξξφ

2 dx

−
∫
O
µ−1(|σσσD − ξξξD| − 1)+

σσσD − ξξξD
|σσσD − ξξξD|

·∆τ,h
t,j (σ̇σσD − ξ̇ξξD)φ2 dx

=

∫
O
εεε(u̇0 − u̇) ·∆τ,h

t,j (σ̇σσ − σ̇σσ0)φ2 − εεε(u̇0) ·∆τ,h
t,j (σ̇σσ − σ̇σσ0)φ2 −HHHξ̇ξξ ·∆τ,h

t,j σ̇σσ0Dφ
2 dx.

Next, we focus on the first term on the left hand side. Similarly as before, we have

−AAAσ̇σσ ·∆τ,h
t,j σ̇σσ =

1

2
AAA∆τ,h

t,j σ̇σσ ·∆
τ,h
t,j σ̇σσ −

1

2
∆τ,h
t,j (AAAσ̇σσ · σ̇σσ) ,

−HHHξ̇ξξ ·∆τ,h
t,j ξ̇ξξ =

1

2
HHH∆τ,h

t,j ξ̇ξξ ·∆
τ,h
t,j ξ̇ξξ −

1

2
∆τ,h
t,j

(
HHHξ̇ξξ · ξ̇ξξ

)
.

Therefore, using this identities and also the ellipticity condition (1.12), we get after
integration with respect to t ∈ (0, T − h) and τ ∈ (0, h)

C1

∫ T−h

0

∫ h

0

‖∆τ,h
t,j σ̇σσφ‖

2
2 + ‖∆τ,h

t,j ξ̇ξξφ‖
2
2 dτ dt

≤ 2

∫ T−h

0

∫
O
µ−1(|σσσD − ξξξD| − 1)+

σσσD − ξξξD
|σσσD − ξξξD|

×

×

(∫ h

0

∆τ,h
t,j (σ̇σσD − ξ̇ξξD) dτ

)
φ2 dxdt

+

∫ T−h

0

∫ h

0

∫
O

∆τ,h
t,j (AAAσ̇σσ · σ̇σσ)φ2 + ∆τ,h

t,j (HHHξ̇ξξ · ξ̇ξξ)φ2 dx dτ dt

+ 2

∫ T−h

0

∫ h

0

∫
O
εεε(u̇0 − u̇) ·∆τ,h

t,j (σ̇σσ − σ̇σσ0)φ2 − εεε(u̇0) ·∆τ,h
t,j σ̇σσφ

2 dxdτ dt

+ 2

∫ T−h

0

∫ h

0

∫
O

(εεε(u̇0)−HHHξ̇ξξ −AAAσ̇σσ) ·∆τ,h
t,j σ̇σσ0φ

2 dxdτ dt.

(2.30)

Our goal is to provide uniform estimates for all terms on the right hand side.

The fourth term in (2.30). We start with the last term. Using the Hölder inequal-
ity and the characterization of Sobolev spaces as well as the uniform bound (2.13)
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and the assumption on u0, we have∫ T−h

0

∫ h

0

∫
O

(εεε(u̇0)−HHHξ̇ξξ −AAAσ̇σσ) ·∆τ,h
t,j σ̇σσ0φ

2 dxdτ dt

≤ C
∫ T−h

0

∫ h

0

(‖εεε(u̇0)‖2 + ‖ξ̇ξξ‖2 + ‖σ̇σσ‖)‖∆τ,h
t,j σ̇σσ0φ

2‖2 dτ dt

≤ C
∫ T−h

0

∫ h

0

‖(∆τ,h
t,j σ̇σσ0 −∆h

j σ̇σσ0)φ2‖2 + ‖∆h
j σ̇σσ0φ

2‖2 dτ dt

≤ Ch
∫ h

0

∫ T−h

0

‖σ̈σσ0‖2 + ‖∇σ̇σσ0‖2 dτ dt ≤ Ch2.

(2.31)

The third term in (2.30). In the third term in (2.30), we first split the time-space
shift to the space shift and the time shift. Next, for the time shift, we again use
the equation (2.1), while for the space shift we use the integration by parts (note
that the boundary term vanishes since we have shifts only in tangential direction
and we also know that div(σσσ−σσσ0) = 0) and then we also move the shift from σσσ to
other terms. In addition, we keep all shifts on σσσ0 since it has sufficient regularity.
More precisely, we have∫ T−h

0

∫ h

0

∫
O
εεε(u̇0 − u̇) ·∆τ,h

t,j (σ̇σσ − σ̇σσ0)φ2 − εεε(u̇0) ·∆τ,h
t,j σ̇σσφ

2 dxdτ dt

=

∫ T−h

0

∫ h

0

∫
O
εεε(u̇0 − u̇) ·∆τ

t (σ̇σσ − σ̇σσ0)φ2 − εεε(u̇0) ·∆τ,h
t,j σ̇σσφ

2 dx dτ dt

+

∫ T−h

0

∫ h

0

∫
O
εεε(u̇0 − u̇) · (∆τ,h

t,j (σ̇σσ − σ̇σσ0)−∆τ
t (σ̇σσ − σ̇σσ0))φ2 dxdτ dt

=

∫ T−h

0

∫ h

0

∫
O
εεε(u̇0) · (∆τ

t σ̇σσ −∆τ,h
t,j σ̇σσ)φ2 dxdτ dt∫ T−h

0

∫ h

0

∫
O

(εεε(u̇)− εεε(u̇0)) ·∆τ
t σ̇σσ0φ

2 − εεε(u̇) ·∆τ
t σ̇σσφ

2 dxdτ dt

+

∫ T−h

0

∫ h

0

∫
O
∇(φ2(u̇0 − u̇)) · (∆τ,h

t,j (σ̇σσ − σ̇σσ0)−∆τ
t (σ̇σσ − σ̇σσ0)) dxdτ dt

−
∫ T−h

0

∫ h

0

∫
O

((u̇0 − u̇)⊗∇φ2) · (∆τ,h
t,j (σ̇σσ − σ̇σσ0)−∆τ

t (σ̇σσ − σ̇σσ0)) dxdτ dt

= −
∫ T−h

0

∫ h

0

∫
O

∆−hj (εεε(u̇0)φ2) · σ̇σσ(t+ τ) dxdτ dt

+

∫ T−h

0

∫ h

0

∫
O

(εεε(u̇)− εεε(u̇0)) ·∆τ
t σ̇σσ0φ

2 dxdτ dt

−
∫ T−h

0

∫ h

0

∫
O
AAAσ̇σσ ·∆τ

t σ̇σσφ
2 +HHHξ̇ξξ ·∆τ

t ξ̇ξξφ
2 dx+HHHξ̇ξξ ·∆τ

t (σ̇σσD − ξ̇ξξD)φ2 dτ dt

−
∫ T−h

0

∫ h

0

∫
O

∆h
j ((u̇0 − u̇)⊗∇φ2) · ((σ̇σσ(t+ τ)− σ̇σσ0(t+ τ))) dx dτ dt.
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Next, we apply the Hölder inequality, use the symmetry of AAA and HHH, the assump-
tion on u0 and σσσ0, the uniform bounds (2.13)–(2.14) and the time regularity esti-
mate (2.28) to conclude∫ T−h

0

∫ h

0

∫
O
εεε(u̇0 − u̇) ·∆τ,h

t,j (σ̇σσ − σ̇σσ0)φ2 − εεε(u̇0) ·∆τ,h
t,j σ̇σσφ

2 dxdτ dt

≤
∫ T−h

0

∫ h

0

h‖εεε(u̇0)φ2‖1,2‖σ̇σσ(t+ τ)‖2 + τ‖εεε(u̇)− εεε(u̇0)‖2‖σ̈σσ0‖2 dτ dt

+
1

2

∫ T−h

0

∫ h

0

∫
O
AAA∆τ

t σ̇σσ ·∆τ
t σ̇σσφ

2 +HHH∆τ
t ξ̇ξξ ·∆τ

t ξ̇ξξφ
2 dxdτ dt

−
∫ T−h

0

∫ h

0

∫
O
HHHξ̇ξξ ·∆τ

t (σ̇σσD − ξ̇ξξD)φ2 dxdτ dt

− 1

2

∫ T−h

0

∫ h

0

∫
O

∆τ
t (AAAσ̇σσ · σ̇σσ)φ2 + ∆τ

t (HHHξ̇ξξ · ξ̇ξξ)φ2 dx dτ dt

+

∫ T−h

0

∫ h

0

h‖(u̇0 − u̇)⊗∇φ2‖1,2‖σ̇σσ(t+ τ)− σ̇σσ0(t+ τ)‖2 dτ dt

≤ Ch2 − 1

2

∫ T−h

0

∫ h

0

∫
O

∆τ
t (AAAσ̇σσ · σ̇σσ)φ2 + ∆τ

t (HHHξ̇ξξ · ξ̇ξξ)φ2 dxdτ dt

+

∫ T−h

0

∫ h

0

∫
O
HHHξ̇ξξ ·∆τ

t (σ̇σσD − ξ̇ξξD)φ2 dx dτ dt.

(2.32)

There are still remaining two terms on the right hand side. But for the first one we
can use exactly the same computation as in (2.23) and observe

(2.33)

∣∣∣∣∣
∫ T−h

0

∫ h

0

∫
O

∆τ
t (AAAσ̇σσ · σ̇σσ)φ2 + ∆τ

t (HHHξ̇ξξ · ξ̇ξξ)φ2

∣∣∣∣∣ ≤ Ch2.

To estimate the remaining term in (2.32), we again use the abbreviation βββ :=
σσσD − ξξξD and following the computation in (2.24) we deduce

2

∫ T−h

0

∫ h

0

∫
O
HHHξ̇ξξ ·∆τ

t (σ̇σσD − ξ̇ξξD)φ2 dxdτ dt

=

∫ T−h

0

∫
O

2µ−1(|βββ| − 1)+
βββ

|βββ|
·

(∫ h

0

∆τ
t β̇ββ dτ

)
φ2 dxdt

≤
∫ h

0

∫
O
µ−1(|βββ(T − h+ t)| − 1)2

+φ
2 − (|βββ(T − h)| − 1)2

+φ
2 dxdt

−
∫ h

0

∫
O
µ−1(|βββ(t)| − 1)2

+φ
2 − (|βββ(0)| − 1)2

+φ
2 dxdt.

(2.34)

Similarly as before (compare with (2.25)), we also have the identity

1

2

d

dt

∫
O
µ−1(|βββ| − 1)+φ

2 dx

=

∫
O

(εεε(u̇) · σ̇σσφ2 −AAAσ̇σσ · σ̇σσφ2 −HHHξ̇ξξ · ξ̇ξξφ2 dx,

(2.35)
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which after integration over arbitrary interval (τ, τ +α) ⊂ (0, T ) and with the help
of the a priori estimate (2.13) and (2.14), leads to∣∣∣∣∫

O
µ−1(|βββ(α+ τ)| − 1)2

+ − µ−1(|βββ(τ)| − 1)2
+ dx

∣∣∣∣ ≤ Cα.(2.36)

Thus, using this estimate in (2.34), we see that∫ T−h

0

∫ h

0

∫
O
HHHξ̇ξξ ·∆τ

t (σ̇σσD − ξ̇ξξD)φ2 dx dτ dt ≤ Ch2.(2.37)

The second term in (2.30). Again here, we split the time and space shift and
then use (2.33) and the spatial regularity of φ as follows∫ T−h

0

∫ h

0

∫
O

∆τ,h
t,j (AAAσ̇σσ · σ̇σσ)φ2 + ∆τ,h

t,j (HHHξ̇ξξ · ξ̇ξξ)φ2 dx dτ dt

=

∫ T−h

0

∫ h

0

∫
O

(∆τ,h
t,j (AAAσ̇σσ · σ̇σσ +HHHξ̇ξξ · ξ̇ξξ)−∆τ

t (AAAσ̇σσ · σ̇σσ +HHHξ̇ξξ · ξ̇ξξ))φ2 dx dτ dt

+

∫ T−h

0

∫ h

0

∫
O

∆τ
t (AAAσ̇σσ · σ̇σσ +HHHξ̇ξξ · ξ̇ξξ)φ2 dxdτ dt

= −
∫ T−h

0

∫ h

0

∫
O

(AAAσ̇σσ · σ̇σσ +HHHξ̇ξξ · ξ̇ξξ)(t+ τ)(∆−hj φ2) dxdτ dt

+

∫ T−h

0

∫ h

0

∫
O

∆τ
t (AAAσ̇σσ · σ̇σσ +HHHξ̇ξξ · ξ̇ξξ)φ2 dxdτ dt

≤ Ch2 + Ch

∫ T

0

∫ h

0

‖σ̇σσ‖22 + ‖ξ̇ξξ‖22 dτ dt ≤ Ch2.

(2.38)

The first term in (2.30). We again use the abbreviation βββ := σσσD − ξξξD. The we
estimate the first term in (2.30) very similarly as in (2.24) as follows. First, we
rewrite it in the following way

2

∫ T−h

0

∫
O
µ−1(|βββ| − 1)+

βββ

|βββ|
·

(∫ h

0

∆τ,h
t,j β̇ββ dτ

)
φ2 dxdt

= 2

∫ T−h

0

∫
O
µ−1(|βββ| − 1)+

βββ

|βββ|
·
(

∆h,h
t,j βββ −∆h

jβββ − hβ̇ββ
)
φ2 dx dt

= 2

∫ T−h

0

∫
O
µ−1(|βββ| − 1)+

βββ

|βββ|
·∆h,h

t,j βββφ
2 dxdt

− 2

∫ T−h

0

∫
O

(
µ−1(|βββ| − 1)+

βββ

|βββ|

)
(t, x+ hej) ·∆h

jβββφ
2 dx dt

− h
∫ T−h

0

d

dt

∫
O
µ−1(|βββ| − 1)2

+φ
2 dxdt

+ 2

∫ T−h

0

∫
O

∆h
j

(
µ−1(|βββ| − 1)+

βββ

|βββ|

)
·∆h

jβββφ
2 dx dt
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and then using the convexity and the fact |βββ(0)| ≤ 1, we can estimate it as

2

∫ T−h

0

∫
O
µ−1(|βββ| − 1)+

βββ

|βββ|
·

(∫ h

0

∆τ,h
t,j β̇ββ dτ

)
φ2 dxdt

≤
∫ T−h

0

∫
O

(∆h,h
t,j (µ−1(|βββ| − 1)2

+)−∆h
j (µ−1(|βββ| − 1)2

+))φ2 dxdt

− h
∫
O

(µ−1(|βββ(T − h)| − 1)2
+ − µ−1(|βββ(0)| − 1)2

+)φ2 dx

+ 2

∫ T−h

0

∫
O

∆h
j

(
µ−1(|βββ| − 1)+

βββ

|βββ|

)
·∆h

jβββφ
2 dxdt

=

∫ T−h

0

∫
O

∆h
t (µ−1(|βββ| − 1)2

+))φ2(x− hej) dx dt

− h
∫
O

(µ−1(|βββ(T − h)| − 1)2
+ − µ−1(|βββ(0)| − 1)2

+)φ2(x− hej) dx

+ h

∫
O

(µ−1(|βββ(T − h)| − 1)2
+ − µ−1(|βββ(0)| − 1)2

+)∆−hj φ2 dx

+ 2

∫ T−h

0

∫
O

∆h
j

(
µ−1(|βββ| − 1)+

βββ

|βββ|

)
·∆h

jβββφ
2 dxdt.

(2.39)

Next, we estimate the remaining terms separately. First, using the very similar
procedure as in (2.24) and consequent inequalities, we observe∫ T−h

0

∫
O

∆h
t (µ−1(|βββ| − 1)2

+))φ2(x− hej) dxdt

− h
∫
O

(µ−1(|βββ(T − h)| − 1)2
+ − µ−1(|βββ(0)| − 1)2

+)φ2(x− hej) dx ≤ Ch2,

where the constant C depends on data and on φ. Next, by uniform bound (2.26),
we also have the estimate

h

∫
O

(µ−1(|βββ(T − h)| − 1)2
+ − µ−1(|βββ(0)| − 1)2

+)∆−hj φ2 dx

≤ Ch2‖∇φ2‖∞
∫
O
µ−1(|βββ(T − h)| − 1)2

+ dx ≤ Ch2.

Finally, for the remaining term, we apply the ∆h
j to (2.1) and test by ∆h

jσσσ and

by ∆h
j ξξξ. Then we can repeat the same procedure as in estimating the tangential

derivatives for σσσ and ξξξ and deduce again

2

∫ T−h

0

∫
O

∆h
j

(
µ−1(|βββ| − 1)+

βββ

|βββ|

)
·∆h

jβββφ
2 dx dt ≤ Ch2.

Summarizing the estimates. Hence, if we use the above estimates in (2.30), we
get

1

h2

∫ T−h

0

∫ h

0

‖φ∆τ,h
t,j σ̇σσ‖

2
2 + ‖φ∆τ,h

t,j ξ̇ξξ‖
2
2 dτ dt ≤ C(2.40)
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for arbitrary j = 1, . . . , d − 1 and localization function φ. Then, by a simple
inequality, we deduce

1

h

∫ T−h

0

‖φ∆h
j σ̇σσ‖22 + ‖φ∆h

j ξ̇ξξ‖22 dt

=
1

h2

∫ T−h

0

∫ h

0

‖φ∆h
j σ̇σσ‖22 + ‖φ∆h

j ξ̇ξξ‖22 dτ dt

≤ C

h2

∫ T−h

0

∫ h

0

‖φ(∆τ,h
t,j σ̇σσ −∆h

j σ̇σσ‖22 + ‖φ∆τ,h
t,j σ̇σσ‖

2
2 + ‖φ(∆τ,h

t,j ξ̇ξξ −∆h
j ξ̇ξξ‖22

+ ‖φ∆τ,h
t,j ξ̇ξξ‖

2
2 dτ dt

≤ C

h2

∫ T−h

0

∫ h

0

‖∆τ
t σ̇σσ‖22 + ‖φ∆τ,h

t,j σ̇σσ‖
2
2 + ‖φ(∆τ

t ξ̇ξξ‖22 + ‖φ∆τ,h
t,j ξ̇ξξ‖

2
2 dτ dt ≤ C,

(2.41)

where the last inequality follows from time regularity estimates and (2.40).

3. Normal derivatives estimates

In this final part, we derive the estimate for the normal derivative. Note that
the estimate is again uniform with respect to µ. We also keep the notation near
the boundary and use the function φ which is compactly supported in a cube
(−1 + h0, 1− h0)d and equal to one in a cube (−1 + 2h0, 1− 2h0)d. We start this
part by using already proven time fractional regularity to transfer also the spatial
regularity.

3.1. Estimate for for σ̇σσ and ξ̇ξξ via time interpolation. Here, we show how the
fractional estimates in the d-direction for σσσ and ξξξ and the fractional estimates in

the time direction for σ̇σσ and ξ̇ξξ can improve the spatial regularity of σ̇σσ and ξ̇ξξ. The
key estimate is formulated in the following.

Lemma 3.1. Let φ be as above. Then for any δ ∈ (0, 1
3 ), the solution satisfies∫ T

0

∫
O
|∆h

dσ̇σσ|2φ2 + |∆h
dξ̇ξξ|2φ2 dxdt

≤ C(δ)

(∫ T

0

∫
O
|∆h

dσσσ|2φ2 + |∆h
dξξξ|2φ2 dxdt

) 1
3−δ

,

(3.1)

where the constant C(δ) depends only on data and explodes as δ → 0+.

Proof. The proof is based on the interpolation of Bochner-Sobolev spaces. We
recall the classical Bochner-Sobolev interpolation between Wα,2 and L2 and also
the Nikolskii-Sobolev embedding N

3
2 ,2 ↪→ Wα,2 valid for all α < 3

2 to get (we use

any α ∈ (1, 3
2 ))∫ T

0

‖ḟ‖22 dt ≤ C‖f‖2−
2
α

L2(0,T ;L2(O))‖f‖
2
α

Wα,2(0,T ;L2(O))

≤ C‖f‖2−
2
α

L2(0,T ;L2(O))‖f‖
2
α

N
3
2
,2(0,T ;L2(O))

≤ C
∫ T

0

‖f‖22 dt+ C(α)

(
sup

h∈(0,T )

∫ T−h

0

‖∆h
t ḟ‖22
h

dt

) 1
α
(∫ T

0

‖f‖22 dt

)1− 1
α

,

(3.2)
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where the constant C(α) explodes as α → 3
2 . Consequently, using the above esti-

mate on f := ∆h
dσσσφ and ∆h

dξξξφ and using the a priori bound (2.29), we see that∫ T

0

∫
O
|∆h

dσ̇σσ|2φ2 + |∆h
dξ̇ξξ|2φ2 dxdt

≤ C
∫ T

0

∫
O
|∆h

dσσσ|2φ2 + |∆h
dξξξ|2φ2 dx dt

+ C(α)

(∫ T

0

∫
O
|∆h

dσσσ|2φ2 + |∆h
dξξξ|2φ2 dxdt

)1− 1
α

.

(3.3)

Since α ∈ (1, 3
2 ) can be arbitrary and we have the control (2.13), the estimate (3.1)

follows. �

3.2. First estimate for σσσ and ξξξ. Here, we start with an estimate, that directly
leads to 1

2 regularity of the stress and hardening, but it will also serve later for the
bootstrap argument.

Lemma 3.2. Let φ be chosen such that φ(x′, s) is independent of s for all s ∈ [0, h0]
with h0 > 0. Then for all h ∈ (0, h0) the following estimate holds

sup
t∈(0,T )

‖φ∆h
dσσσ(t)‖22 + ‖φ∆h

dξξξ(t)‖22

≤ Ch 3
2 + Ch

∫ T

0

(∫
O∩{xd∈(0,h)}

|Ddu̇φ|2 dx

) 1
2

dt.

(3.4)

In addition, if the suppφ ∩ ON = ∅ then we have

sup
t∈(0,T )

‖φ∆h
dσσσ(t)‖22 + ‖φ∆h

dξξξ(t)‖22

≤ Ch 3
2 + Ch

∫ T

0

(∫
O∩{xd∈(0,h)}

|εεε(u̇)φ|2 dx

) 1
2

dt.

(3.5)

Proof. We apply the operator ∆h
d to both equations in (2.1) and and test by ∆h

dσσσφ
2

and ∆h
dξξξφ

2 respectively. Note that since x+hed ∈ O such operation is well defined.
Thus, doing so, we observe

1

2

d

dt

∫
O
AAA(∆h

dσσσ −∆h
dσσσ0) · (∆h

dσσσ −∆h
dσσσ0)φ2 dx

+
1

2

d

dt
HHH(∆h

dξξξ −∆h
dξξξ0) · (∆h

dξξξ −∆h
dξξξ0)φ2 dx

+

∫
O

∆j
d

(
µ−1(|σσσD − ξξξD| − 1)+

σσσD − ξξξD
|σσσD − ξξξD|

)
·∆h

d(σσσD − ξξξD)φ2 dx

=

∫
O

∆h
dεεε(u̇− u̇0) ·∆h

d(σσσ − σσσ0)φ2 dx

+

∫
O

∆h
dεεε(u̇0) ·∆h

d(σσσ − σσσ0)φ2 −∆h
d(AAAσ̇σσ0 +HHHξ̇ξξ0) · (∆h

dσσσ −∆h
dσσσ0)φ2 dx.

(3.6)

The terms on the left hand side are those from which we read information. The
second term on the right hand side can be easily estimated and prepared for the
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Grownall lemma as follows

∫
O

∆h
dεεε(u̇0) ·∆h

d(σσσ − σσσ0)φ2 −∆h
d(AAAσ̇σσ0 +HHHξ̇ξξ0) · (∆h

dσσσ −∆h
dσσσ0)φ2 dx

≤ ‖(∆h
dσσσ −∆h

dσσσ0)φ‖2(‖∆h
dεεε(u̇0)‖2 + ‖∆h

d(AAAσ̇σσ0 +HHHξ̇ξξ0)‖2)

≤ Ch(‖∇σ̇σσ0‖2 + ‖∇ξ̇ξξ0‖2)‖(∆h
dσσσ −∆h

dσσσ0)φ‖2,

(3.7)

where the last inequality follows from Sobolev characterization and the assumptions
on data. Thus, we can now focus on the most critical term in (3.6), which is the first
integral on the right hand side. To simplify the notation we use the abbreviation
x′ := (x1, . . . , xd−1). Then using integration by parts, we observe

∫
O

∆h
dεεε(u̇− u̇0) ·∆h

d(σσσ − σσσ0)φ2 dx =

∫
O
∇∆h

d(u̇− u̇0) ·∆h
d(σσσ − σσσ0)φ2 dx

= −2

∫
O

(∆h
d(u̇− u̇0)⊗∇φ) ·∆h

d(σσσ − σσσ0)φdx

+

d∑
i=1

∫
{xd=0}

∆h
d(u̇i − u̇0i)∆

h
d(σσσid − σσσ0id)φ

2 dx′

≤ C‖∆h
d(u̇− u̇0‖2‖∆h

d(σσσ − σσσ0)φ‖2

+

d∑
i=1

∫
{xd=0}

∆h
d(u̇i − u̇0i)∆

h
d(σσσid − σσσ0id)φ

2 dx′

(3.8)

The first term on the right hand side can be estimated by the use of characterization
of Sobolev functions and the a priori bound (2.14) as

‖∆h
d(u̇− u̇0‖2‖∆h

d(σσσ − σσσ0)φ‖2 ≤ Ch(‖∇u̇‖2 + ‖∇u̇0‖2)‖∆h
d(σσσ − σσσ0)φ‖2

≤ Ch‖∆h
d(σσσ − σσσ0)φ‖2.

(3.9)

For the second term on the right hand side, we first replace the differences by the
corresponding integral, then use the fact that div(σσσ−σσσ0) = 0 (we also assume that
h� 1 so that φ(x′, 0) = φ(x′, xd) for arbitrary xd ∈ (0, h))

∫
{xd=0}

∆h
d(u̇i − u̇0i)∆

h
d(σσσid − σσσ0id)φ

2 dx′

=

∫
Rd−1

(∫ h

0

Dd(u̇i − u̇0i) dxd

)(∫ h

0

Dd(σσσid − σσσ0id) dxd

)
φ2(x′, 0) dx′

≤
∫
Rd−1

(∫ h

0

|Ddu̇φ|+ |∇(u̇0φ)|dxd

)∣∣∣∣∣∣
d−1∑
j=1

∫ h

0

Dj(σσσij − σσσ0ij) dxd

∣∣∣∣∣∣φ(x′, 0) dx′.
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Then, we apply the Hölder inequality to conclude∫
{xd=0}

∆h
d(u̇i − u̇0i)∆

h
d(σσσid − σσσ0id)φ

2 dx′

≤ Ch
d−1∑
j=1

∫
Rd−1

(∫ h

0

(|Ddu̇φ|2 + |∇(u̇0φ)|2) dxd

) 1
2

×

×

(∫ h

0

(|Djσσσ|2 + |∇σσσ0|2)φ2 dxd

) 1
2

dx′

≤ Ch(

d−1∑
j=1

‖Djσσσφ‖2 + ‖∇σσσ0‖2)

(∫
O∩{xd∈(0,h)}

(|Ddu̇φ|2 + |∇(u̇0φ)|2) dx

) 1
2

≤ Ch 3
2 + Ch

(∫
O∩{xd∈(0,h)}

|Ddu̇φ|2 dx

) 1
2

(3.10)

Hence, using (3.7)–(3.10) in (3.6) and applying the Gronwall lemma, and using the
fact that σσσ(0) = σσσ0 and ξξξ(0) = ξξξ0, and already proven a priori estimates, we deduce
(3.4). In case that the support of φ is located just closed to the Dirichlet boundary,
we may use the Korn inequality (or the trace theorem) and to replace |Ddu̇φ| by
|εεε(u̇)φ| in the above estimate and to conclude (3.5).

�

3.3. Estimate for ∇u̇ on a strip in terms of σ̇σσ and ξ̇ξξ. In previous section,
we deduce a uniform estimate for normal fractional derivatives in terms of ∇u̇, the
right hand side of (3.4)and (3.5), respectively. In this part, we show how this term

can be estimated in terms of σ̇σσ and ξ̇ξξ. In fact, we prove two different estimates.
The first one deals with the case that we have isotropic hardening and we are
closed to the Neumann part of the boundary. The second case covers the kinematic
hardening independently of Dirichlet or boundary data or the isotropic hardening
in case of Dirichlet data.

Lemma 3.3. For arbitrary h ∈ (0, h0) and p > 2, the solution satisfies

(3.11)

∫ T

0

(∫
O∩{xd∈(0,h)}

|Ddu̇φ|2 dx

) 1
2

dt ≤ Ch
p−2
2p (1 +

∫ T

0

‖σ̇σσφ‖p + ‖ξ̇ξξφ‖p dt).

In addition, if we consider the kinematic hardening, we have

∫ T

0

(∫
O∩{xd∈(0,h)}

|Ddu̇φ|2 dx

) 1
2

dt

≤ C(δ)h
p−2
2p

(
1 + sup

s∈(0,4h0)

∫ T

0

∫
O

|φ∆s
dσσσ|2 + |φ∆s

dξξξ|2

|s|
3

1−3δ (δ+ p−2
p )

dxdt

) 1−3δ
6

.

(3.12)
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Furthermore, for kinematic and isotropic hardening we also have∫ T

0

(∫
O∩{xd∈(0,h)}

|εεε(u̇)φ|2 dx

) 1
2

dt

≤ C(δ)h
p−2
2p

(
1 + sup

s∈(0,4h0)

∫ T

0

∫
O

|φ∆s
dσσσ|2 + |φ∆s

dξξξ|2

|s|
3

1−3δ (δ+ p−2
p )

dxdt

) 1−3δ
6

.

(3.13)

Proof. To prove the first case, we just use the Hölder and the Korn inequality as
follows

∫
O∩{xd∈(0,h)}

|Ddu̇φ|2 dx ≤ Ch
p−2
p ‖Dd(u̇φ)‖2Lp(O) ≤ Ch

p−2
p ‖εεε(u̇φ)‖2Lp(O)

≤ Ch
p−2
p (‖εεε(u̇)φ‖2Lp(O) + 1) ≤ Ch

p−2
p (1 + ‖σ̇σσφ‖2p + ‖ξ̇ξξφ‖2p),

(3.14)

where for the last inequality we used the equation (1.20). Then we see that (3.11)
directly follows.

Next, we focus on (3.12). First, we recall the fractional Sobolev embedding

W
p−2
2p ,2(0, 1) ↪→ Lp(0, 1) valid for all p ∈ [2,∞). Then with the help of the Hölder

inequality, we obtain for almost all x′ and t that∫ h

0

|Ddu̇φ(t, x′, xd)|2 dxd ≤ h
p−2
p

(∫ 2h0

0

|Ddu̇φ(t, x′, xd)|p dxd

) 2
p

≤ Ch
p−2
p

(∫ 2h0

0

|Ddu̇φ(t, x′, xd)|2 dxd )

+

∫ 2h0

0

∫ 2h0

0

|Ddu̇φ(t, x′, xd)−Ddu̇φ(t, x′, yd)|2

|xd − yd|1+ p−2
p

dxd dyd

)
Hence, using the Fubini theorem and the Korn inequality, we can continue with the
estimate of the full integral as follows∫ T

0

∫
O∩{xd∈(0,h)}

|Ddu̇φ|2 dxdt ≤ Ch
p−2
p

(∫ T

0

∫
(−1,1)d

∫ 2h0

0

|Ddu̇φ(t, x′, xd)|2 dxdt

+

∫ T

0

∫
(−1,1)d

∫ 2h0

0

∫ 2h0

0

|Ddu̇φ(t, x′, xd)−Ddu̇φ(t, x′, yd)|2

|xd − yd|1+ p−2
p

dxd dyd dx′ dt

)

≤ Ch
p−2
p

(
1 +

∫ 4h0

0

∫ T

0

∫
O

|Dd∆
s
d(u̇φ)|2

|s|1+ p−2
p

dxdtds

)

≤ Ch
p−2
p

(
1 +

∫ 4h0

0

∫ T

0

∫
O

|∆s
dεεε(u̇φ)|2

|s|1+ p−2
p

dxdtds

)

≤ Ch
p−2
p

(
1 +

∫ 4h0

0

∫ T

0

∫
O

|φ∆s
dεεε(u̇)|2

|s|1+ p−2
p

dxdtds

)

≤ Ch
p−2
p

(
1 +

∫ 4h0

0

∫ T

0

∫
O

|φ∆s
dσ̇σσ|2 + |φ∆s

dξ̇ξξ|2

|s|1+ p−2
p

dxdtds

)
,
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where we used the equation to evaluate εεε(u̇) in terms of σ̇σσ and ξ̇ξξ. Note that at
this step we use the fact that we deal with the kinematic hardening. Now, we use
Lemma 3.1 to replace time derivative on the right hand side. Hence, doing so, we
observe that for all δ > 0, we have∫ T

0

∫
O∩{xd∈(0,h)}

|Ddu̇φ|2 dxdt

≤ C(δ)h
p−2
p

1 +

∫ 4h0

0

1

s1−δ

(∫ T

0

∫
O

|φ∆s
dσσσ|2 + |φ∆s

dξξξ|2

|s|
3

1−3δ (δ+ p−2
p )

dxdt

) 1
3−δ

ds


≤ C(δ)h

p−2
p

(
1 + sup

s∈(0,4h0)

∫ T

0

∫
O

|φ∆s
dσσσ|2 + |φ∆s

dξξξ|2

|s|
3

1−3δ (δ+ p−2
p )

dx dt

) 1
3−δ

.

Thus, using the Hölder inequality and the above estimate, we have∫ T

0

(∫
O∩{xd∈(0,h)}

|Ddu̇φ|2 dx

) 1
2

dt ≤ C

(∫ T

0

∫
O∩{xd∈(0,h)}

|Ddu̇φ|2 dxdt

) 1
2

≤ C(δ)h
p−2
2p

(
1 + sup

s∈(0,4h0)

∫ T

0

∫
O

|φ∆s
dσσσ|2 + |φ∆s

dξξξ|2

|s|
3

1−3δ (δ+ p−2
p )

dxdt

) 1
6−

δ
2

,

which is (3.12). To obtain (3.13), we proceed similarly, with the only change that

from the beginning we have the point-wise estimate |εεε(u̇)| ≤ C(|σ̇σσ| + |ξ̇ξξ|), which
follows from (1.20) and (1.24), respectively.

�

3.4. Estimate for for σ̇σσ and ξ̇ξξ via anisotropic embedding.

Lemma 3.4. Let p ∈ (2, 2(d−1)
d−2 ) and β > 0 be given as

(3.15) β :=
p− 2

4(d− 1)− 2p(d− 2)

Then for any solution and any δ > 0 there holds
(3.16)∫ T

0

‖σ̇σσφ‖p + ‖ξ̇ξξφ‖p dt ≤ C

δ

(
1 + sup

h∈(0,1)

∫ T

0

∫
O

|∆h
dσ̇σσφ|2 + |∆h

dξ̇ξξφ|2

h2(β+δ)
dxdt

) 1
2

.

Proof. We use the following version of anisotropic embedding. We assume that
f ∈ L2(0, 1;L2((−1, 1)d)) and denote B := (−1, 1)d−1. We define λ ∈ (0, 1) by the
relation

λ :=
1

2β(d− 1) + 1

and using the Sobolev embedding, we have (recall the definition of β in (3.15))

Wλβ,2(0, 1) ↪→ Lp(0, 1),

W
1−λ
2 ,2(B) ↪→ Lp(B).

(3.17)

Then, we can use the cross-interpolation in Sobolev-Bochner spaces and the above
embedding to observe

‖f‖2p ≤ C‖f‖2
Wλβ,2(0,1;W

1−λ
2

,2(B))
≤ C(‖f‖2

L2(0,1;W
α
2
,2(B))

+ ‖f‖2
W

αλβ
α−1+λ

,2
(0,1;L2(B))

)
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for arbitrary 1−λ < α < 1. Next, we use the above inequality for σ̇σσφ and integrate
also over time t ∈ (0, T ). Thus, using also the definition of fractional Sobolev norm,
we have (using also the properties of φ and the a priori estimate (2.13))∫ T

0

‖σ̇σσφ‖2p ≤ C
∫ T

0

‖σ̇σσφ‖2
L2(0,1;W

α
2
,2(B))

+ ‖σ̇σσφ‖2
W

αλβ
α−1+λ

,2
(0,1;L2(B))

dt

≤ C + C

∫ T

0

∫ 1

0

∫
B

∫
B

|σ̇σσφ(t, x′, xd)− σ̇σσφ(t, y′, xd)|2

|x′ − y′|d−1+α
dx′ dy′ dxd dt

+ C

∫ T

0

∫ 1

0

∫ 1

0

∫
B

|σ̇σσφ(t, x′, xd)− σ̇σσφ(t, x′, yd)|2

|xd − yd|1+ 2αλβ
α−1+λ

dx′ dxd dyd dt

≤ C + C

∫ T

0

∫
O

∫
2B

|σ̇σσφ(t, x′ + z′, xd)− σ̇σσφ(t, x′, xd)|2

|z′|d−1+α
dz′ dx dt

+ C

∫ T

0

∫
O

∫ 1

0

|σ̇σσφ(t, x′, xd)− σ̇σσφ(t, x′, xd + h)|2

h1+ 2αλβ
α−1+λ

dhdxdt

≤ C + C sup
i=1,...,d−1

sup
h∈(0,1)

∫ T

0

∫
O

|∆h
i σ̇σσφ|2

h
dx dt

∫
2B

1

|z′|d−2+α
dz′

+ C sup
h∈(0,1)

∫ T

0

∫
O

|∆h
dσ̇σσφ|2

h2(β+δ)
dx dt

∫ 1

0

1

s1−2(β+δ)+ 2αλβ
α−1+λ

ds

≤ C

1− α
+

C

2(β + δ)− 2αλβ
α−1+λ

sup
h∈(0,1)

∫ T

0

∫
O

|∆h
dσ̇σσφ|2

h2(β+δ)
dxdt.

Consequently, for any δ > 0, we can find α ∈ (0, 1) such that

2(β + δ) >
2αλβ

α− 1 + λ

and (3.16) for σ̇σσ follows by Hölder inequality. The same scheme is used for the

estimate for ξ̇ξξ.
�

3.5. Final estimate for normal derivatives - the case of Dirichlet boundary
or the case of kinematic hardening. In this part we finish the proof of the main
theorem. In particular, we focus on the normal derivative estimates stated in (1.23)
and (1.27). We start with (3.4) to conclude the starting estimate

(3.18) sup
t∈(0,T )

sup
h∈(0,1)

‖φ∆h
dσσσ(t)‖22 + ‖φ∆h

dξξξ(t)‖22
h

≤ C.

Then, we use (3.4) (in case of kinematic hardening) or in (3.5) (in case of Dirichlet
boundary condition), and the term on the right hand side is replaced by the cor-
responding estimates in (3.12) and (3.13), respectively. Thus we conclude in both
cases that

sup
t∈(0,T )

‖φ∆h
dσσσ(t)‖22 + ‖φ∆h

dξξξ(t)‖22

≤ Ch 3
2 + C(δ)h1+ p−2

2p

(
1 + sup

s∈(0,4h0)

∫ T

0

∫
O

|φ∆s
dσσσ|2 + |φ∆s

dξξξ|2

|s|
3

1−3δ (δ+ p−2
p )

dx dt

) 1−3δ
6

.



30 M. BULÍČEK, J. FREHSE, AND M. SPECOVIUS-NEUGEBAUER

Hence, it follows that

sup
t∈(0,T )

sup
h∈(0,4h0)

∫
O

|φ∆h
dσσσ(t)|2 + |φ∆h

dξξξ(t)|2

h1+ p−2
2p

dx

≤ C(δ)

(
1 + sup

s∈(0,4h0)

∫ T

0

∫
O

|φ∆s
dσσσ|2 + |φ∆s

dξξξ|2

|s|
3

1−3δ (δ+ p−2
p )

dxdt

) 1−3δ
6

,

(3.19)

provided that the right hand side is finite. Hence, we can start the iteration with
(3.18). In the first step, thanks to (3.18), we can set in (3.19) arbitrary p < 3 and
find sufficiently small δ > 0 such that

3

1− 3δ

(
δ +

p− 2

p

)
< 1

and we immediately get an improvement of (3.18). Consequently, iterating such
procedure is possible as long as

1 +
p− 2

2p
>

3(p− 2)

p
⇔ 1

5
>
p− 2

2p
.

Thus, it follows that we are able to obtain

sup
t∈(0,T )

sup
h∈(0,4h0)

∫
O

|φ∆h
dσσσ(t)|2 + |φ∆h

dξξξ(t)|2

h
6
5−δ

dx ≤ C(δ)(3.20)

and by (3.1) we also have

sup
h∈(0,4h0)

∫ T

0

∫
O

|φ∆h
dσ̇σσ|2 + |φ∆h

dξ̇ξξ|2

h
2
5−δ

dx dt ≤ C(δ),(3.21)

which finishes the proof for kinematic hardening or the case of Dirichlet boundary
conditions.

3.6. Final estimate for normal derivatives - the case of Neumann bound-
ary and the isotropic hardening. In this case we use the anisotropic embedding.
We again start with (3.4) to conclude the starting estimate

(3.22) sup
t∈(0,T )

sup
h∈(0,1)

‖φ∆h
dσσσ(t)‖22 + ‖φ∆h

dξξξ(t)‖22
h

≤ C.

Then we start with iteration. Using (3.4) and (3.11), we observe that

sup
t∈(0,T )

sup
h∈(0,1)

‖φ∆h
dσσσ(t)‖22 + ‖φ∆h

dξξξ(t)‖22
h1+ p−2

2p

≤ C(1 +

∫ T

0

‖σ̇σσφ‖p + ‖ξ̇ξξφ‖p dt).(3.23)

Next, recalling the definition of β, see (3.15),

β :=
p− 2

4(d− 1)− 2p(d− 2)
,

and combining (3.16) and (3.1) and the Young inequality, we also have

(3.24)

∫ T

0

‖σ̇σσφ‖p + ‖ξ̇ξξφ‖p dt ≤ C

δ

(
1 + sup

h∈(0,1)

∫ T

0

∫
O

|∆h
dσσσφ|2 + |∆h

dξξξφ|2

h6(β+2δ)
dx dt

)
,
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where δ > 0 is arbitrary. Thus, combining (3.23) and (3.24), we have

sup
t∈(0,T )

sup
h∈(0,1)

‖φ∆h
dσσσ(t)‖22 + ‖φ∆h

dξξξ(t)‖22
h1+ p−2

2p

≤ C

δ

(
1 + sup

h∈(0,1)

∫ T

0

∫
O

|∆h
dσσσφ|2 + |∆h

dξξξφ|2

h6(β+2δ)
dx dt

)
.

(3.25)

Thus, we can again start with iteration, which is possible as long as

1 +
p− 2

2p
> 6β ⇔ β <

2d− 7 +
√

1 + 4d2 + 20d

24(d− 1)
.

Consequently, we have the final estimate (here δ ∈ (0, 1) is arbitrary)

sup
t∈(0,T )

sup
h∈(0,1)

‖φ∆h
dσσσ(t)‖22 + ‖φ∆h

dξξξ(t)‖22

h
2d−7+

√
1+4d2+20d

4(d−1)
−δ

≤ C

δ
.

and thanks to time interpolation (3.1), it leads to

sup
h∈(0,1)

∫ T

0

‖φ∆h
dσ̇σσ‖22 + ‖φ∆h

dξ̇ξξ‖22

h
2d−7+

√
1+4d2+20d

12(d−1)
−δ

dt ≤ C

δ
,

where the constant C(δ) explodes as δ → 0+. Hence, the proof is complete.
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