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Abstract

In a bounded non-simply connected planar domain Ω, with a boundary split in an interior part
and an exterior part, we obtain bounds for the embedding constants of some subspaces of H1(Ω) into
Lp(Ω) for any p > 1, p 6= 2. The subspaces contain functions which vanish on the interior boundary
and are constant (possibly zero) on the exterior boundary. We also evaluate the precision of the
obtained bounds in the limit situation where the interior part tends to disappear and we show that
it does not depend on p. Moreover, we emphasize the failure of symmetrization techniques in these
functional spaces. In simple situations, a new phenomenon appears, namely the existence of a break
even surface separating masses for which symmetrization increases/decreases the Dirichlet norm. The
question whether a similar phenomenon occurs in more general situations is left open.
AMS Subject Classification: 35A23, 46E35, 31A15, 46E30.
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1 Introduction

In the plane R2 we consider an open, bounded, connected, and simply connected domain K, with
Lipschitz boundary ∂K. Then we remove K, seen as an obstacle, from a larger square Q such that
∂K ∩ ∂Q = ∅, and we define the domain

Q = (−L,L)2 , Ω = Q \K,

where L > diam(K), as shown in Figure 1.1.

Figure 1.1: The planar domain Ω with a smooth obstacle K.

We focus our attention on the first order Hilbertian Sobolev space of functions vanishing on ∂K,
which is a proper part of ∂Ω having positive 1D-measure:

H1
∗ (Ω) = {v ∈ H1(Ω) | v = 0 on ∂K} .

This space is rigorously defined as the closure of the space C∞c (Q\K) with respect to the Dirichlet norm:
this is legitimate since |∂K| > 0 and the Poincaré inequality holds in H1

∗ (Ω).
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Motivated by the target of finding explicit thresholds for bifurcation from uniqueness in stationary
Navier-Stokes equations modeling a flow around an obstacle, in a recent paper [7] we bounded some
Sobolev embedding constants for H1

∗ (Ω) ⊂ L4(Ω). We obtained a universal bound on the flow velocity
for the appearance of a lift force on the obstacle K exerted by a fluid entering Q with constant velocity.
In the present paper we drop this physical motivation and we focus our attention on the functional
analytic aspect and on the possibility of obtaining similar inequalities in Lp(Ω) for any p > 1, p 6= 2. To
the best of our knowledge, bounds in spaces of functions vanishing on a proper part of the boundary were
obtained in the past only for the critical Sobolev embedding [1, 9] (thereby in space dimension n ≥ 3),
where one can exploit scaling methods since the optimal constant does not depend on the domain.

Given any subset D ⊂ R2 and p > 1, throughout the paper we denote by ‖ · ‖p,D the norm of the
space Lp(D). The relative capacity of K with respect to Q is defined by

CapQ(K) = min
v∈H1

0 (Q)

{∫
Q
|∇v|2 dx

∣∣∣ v = 1 in K

}
(1.1)

and the relative capacity potential ψ ∈ H1
0 (Q), which achieves the minimum in (1.1), satisfies

∆ψ = 0 in Ω, ψ = 0 on ∂Q, ψ = 1 in K, CapQ(K) = ‖∇ψ‖22,Ω.

Then we consider a proper subspace of H1
∗ (Ω), namely

H1
c (Ω) = {v ∈ H1

∗ (Ω) | v is constant on ∂Q} , (1.2)

that can be rigorously characterized by using the relative capacity potential ψ. Indeed,

H1
c (Ω) = H1

0 (Ω)⊕ R(ψ − 1) , H1
0 (Ω) ⊥ R(ψ − 1) ,

so that H1
0 (Ω) has codimension 1 within H1

c (Ω) and the “missing dimension” is spanned by the function
ψ − 1, see [7] for the details. Since Ω is a planar domain, the embedding H1

∗ (Ω) ⊂ Lp(Ω) holds for any
1 < p <∞, and we define the Sobolev constants

Sp = min
w∈H1

∗(Ω)\{0}

‖∇w‖22,Ω
‖w‖2p,Ω

, S0
p = min

w∈H1
0 (Ω)\{0}

‖∇w‖22,Ω
‖w‖2p,Ω

, S1
p = min

w∈H1
c (Ω)\{0}

‖∇w‖22,Ω
‖w‖2p,Ω

. (1.3)

Due to the inclusions H1
0 (Ω) ⊂ H1

c (Ω) ⊂ H1
∗ (Ω), we have Sp ≤ S1

p ≤ S0
p , for every p > 1.

In Section 2 we obtain bounds for the constants S0
p and S1

p , extending the results in [7] where only the
case p = 4 was considered. To this end, we repeatedly use some sharp Gagliardo-Nirenberg inequalities
due to del Pino-Dolbeault [5] and the behavior of pyramidal functions introduced in [7]. It turns out that
the cases p > 2 and p < 2 require slightly different approaches. We obtain both lower and upper bounds
for the constants S0

p and S1
p defined in (1.3) and we show that they are quite precise. In particular, we

analyze the case where the obstacle tends to vanish (|K| → 0) and we show that the ratio between these
bounds converges to a universal constant π/4 ≈ 0.79, independently of the value of p > 1 (p 6= 2), see
Theorem 2.3. Our bounds do not depend on the position of the obstacle and it is therefore natural to
expect that they might be improved, see Problem 2.1.

In Section 3 we address the question whether symmetrization techniques might be employed to obtain
additional bounds. It turns out that, at least in its simplest forms, symmetrization is of no help in annuli,
see Theorem 3.1. In its proof we exhibit examples where any of the possible inequalities may hold: in
case of different (constant) conditions on the two connected components of the boundary

there is no a priori monotonicity of the Dirichlet norm under decreasing rearrangement
neither from an annulus into itself, nor from an annulus into a disk with the same measure.

Moreover, we determine explicitly a “break even surface” which separates the cases where the mass of
the gradient increases or decreases after symmetrization. We believe that this phenomenon deserves
further investigation, see Problem 3.1.
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2 Bounds for the Sobolev embedding constants

In Subsection 2.1 we provide lower bounds for the Sobolev embedding constants (1.3), for a general
Lipschitz obstacle K. Then, in Subsection 2.2 we derive upper bounds for these constants and quantify
the accuracy of our estimates when K is a square.

2.1 Lower bounds

As mentioned in the introduction, the cases p ≶ 2 are different and we consider first the case p < 2. Let

µ0 = the first zero of the Bessel function of first kind of order zero ≈ 2.40483 . (2.1)

Then we have

Theorem 2.1. For any 1 < p < 2 and u ∈ H1
0 (Ω) one has

‖u‖2p,Ω ≤
|Ω|

2
p

π
min

{
1

µ2
0

,
1

2π

|Q|
|Ω|

,
(p

2

) 4−p
2−p

}
‖∇u‖22,Ω . (2.2)

For any 1 < p < 2 and u ∈ H1
c (Ω) one has

‖u‖2p,Ω ≤ |Ω|
2
p

π

(p
2

) 4−p
2−p

1 +
1

2

√(
2

p

) 4−p
2−p

log

(
|Q|
|K|

)
2(p−1)

p

(2.3)

×

1 +
1

2

√(
2

p

) 4−p
2−p

log

(
|Q|
|K|

)
+

p

2− p
|K|
|Ω|

(
1

4

(
2

p

) 4−p
2−p

log

(
|Q|
|K|

))p−1


2
p

‖∇u‖22,Ω .

Proof. We begin by proving the following Poincaré inequality in Ω:

‖u‖2,Ω ≤ min

{
1

µ0

√
|Ω|
π
,

1

π

√
|Q|
2

}
‖∇u‖2,Ω ∀u ∈ H1

0 (Ω). (2.4)

Through the Faber-Krahn inequality [6, 8] we first bound the L2(Ω)-norm of functions in terms of their
Dirichlet norm by using the Poincaré inequality in Ω∗, namely a disk having the same measure as Ω.
Since |Ω| = |Q| − |K|, the radius of Ω∗ is given by

R =

√
|Ω|
π

=

√
|Q| − |K|

π
.

Since the Poincaré constant (least eigenvalue of −∆) in the unit disk is given by µ2
0, see (2.1), the

Poincaré constant in Ω∗ is given by µ2
0/R

2, which means that

min
w∈H1

0 (Ω)

‖∇w‖2,Ω
‖w‖2,Ω

≥ min
w∈H1

0 (Ω∗)

‖∇w‖2,Ω∗

‖w‖2,Ω∗
=
µ0

R
.

Therefore,

‖u‖2,Ω ≤
R

µ0
‖∇u‖2,Ω =

1

µ0

√
|Ω|
π
‖∇u‖2,Ω ∀u ∈ H1

0 (Ω),

which provides the first bound in (2.4). On the other hand, the least eigenvalue for the problem−∆v = λv
in H1

0 (Q) is given by λ = π2/2L2. Therefore, the Poincaré inequality in Q reads

‖u‖2, Q ≤
√

2L

π
‖∇u‖2, Q =

1

π

√
|Q|
2
‖∇u‖2, Q ∀u ∈ H1

0 (Q),
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yielding the second bound in (2.4) since any function of H1
0 (Ω) can be extended by 0 in K, thereby

becoming a function in H1
0 (Q).

The first two bounds in (2.2) are obtained after applying both Hölder’s inequality and (2.4)

‖u‖pp,Ω ≤ |Ω|
2−p
2 ‖u‖p2,Ω ≤ min

{
|Ω|

(µ0
√
π)
p , |Ω|

2−p
2

(
1

π

√
|Q|
2

)p}
‖∇u‖p2,Ω ∀u ∈ H1

0 (Ω).

To prove the third bound in (2.2), we recall the following (optimal) Gagliardo-Nirenberg inequality in
R2 given by del Pino-Dolbeault [5, Theorem 2]:

‖u‖p,Ω ≤ π
p−2
2p

(p
2

) 4−p
2p ‖∇u‖

2−p
p

2,Ω ‖u‖
2(p−1)

p

2(p−1),Ω ∀u ∈ H1
0 (Ω) ∀p ∈ (1, 2). (2.5)

Since functions in H1
0 (Ω) may be extended by zero outside Ω, they can be seen as functions defined over

the whole plane. An application of the Hölder inequality shows that

‖u‖2(p−1),Ω ≤ |Ω|
2−p

2p(p−1) ‖u‖p,Ω ∀u ∈ H1
0 (Ω)

which, combined with (2.5), yields the third bound in (2.2).
In order to prove (2.3) we restrict our attention to functions u ∈ H1

c (Ω) \H1
0 (Ω): this restriction will

be justified a posteriori because, if we manage proving (2.3) for these functions, then it will also hold
for functions in H1

0 (Ω) since the constant in (2.2) is smaller, see also Figure 2.2 below. For functions
u ∈ H1

c (Ω) \H1
0 (Ω), it suffices to analyze the case where u ≥ 0 in Ω (by replacing u with |u|), u = 1 on

∂Q (by homogeneity), and we define a.e. in Q the function

v(x, y) =

{
1− u(x, y) if (x, y) ∈ Ω
1 if (x, y) ∈ K,

so that v ∈ H1
0 (Q) and, after a zero extension outside Q, v satisfies (2.5). Let us put

Ap = Ap(u)
.
= π

p−2
2

(p
2

) 4−p
2 ‖∇v‖2−p2, Q = π

p−2
2

(p
2

) 4−p
2 ‖∇u‖2−p2,Ω ,

so that (2.5) reads∫
Q
|v|p ≤ Ap

∫
Q
|v|2(p−1) =⇒

∫
Ω

[
|1− u|p +

|K|
|Ω|
−Ap

(
|1− u|2(p−1) +

|K|
|Ω|

)]
≤ 0. (2.6)

The next step consists in finding α ∈ (0, 1) and β > 0 (possibly depending on p, but having ratio
independent of u) for which

|1− s|p −Ap|1− s|2(p−1) + (1−Ap)
|K|
|Ω|
≥ αsp − βA

p
2−p
p ∀s ≥ 0. (2.7)

Given any p ∈ (0, 1) and γ ∈ R, the function s 7→ |1− s|p−Ap|1− s|2(p−1) + γ is symmetric with respect
to s = 1, so it suffices to find α ∈ (0, 1) and β > 0 ensuring (2.7) for every s ≥ 1. Thus, for all such α
and β we define the function

ϕp(s) = (s− 1)p −Ap(s− 1)2(p−1) − αsp + (1−Ap)
|K|
|Ω|

+ βA
p

2−p
p ∀s ≥ 1,

and we seek α ∈ (0, 1) and β > 0 in such a way that ϕp has a non-negative minimum value at some
s > 1. Equivalently, we seek γ > 0 such that ϕp attains its minimum at s0 = 1 + γAp, that is,

ϕ′(s0) = γp−1Ap−1
p

[
p− 2(p− 1)γp−2Ap−1

p

]
− pα(1 + γAp)

p−1 = 0,
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thus fixing α in dependence of u through the expression

α =
1

p

(
γAp

1 + γAp

)p−1 [
p− 2(p− 1)γp−2Ap−1

p

]
∈ (0, 1) ⇐⇒ γ >

(
2p− 2

p

) 1
2−p

A
p−1
2−p
p .

By imposing ϕ(s0) ≥ 0, we obtain the following lower bound for β:

β ≥ A
p

p−2
p

[
α (1 + γAp)

p + γ2p−2A2p−1
p

(
1− γ2−pA1−p

p

)]
+
Ap − 1

A
p

2−p
p

|K|
|Ω|

.

This condition is certainly satisfied if we choose

β = A
p

p−2
p

[
α (1 + γAp)

p + γ2p−2A2p−1
p

(
1− γ2−pA1−p

p

)]
+A

2p−2
p−2
p
|K|
|Ω|
≥ 0 ,

where one should take γ ≤ A
p−1
2−p
p in order to ensure that β ≥ 0. With the above choices of α and β we

obtain the ratio

β

α
=

pA
p

p−2
p

(
γAp

1 + γAp

)1−p

p− 2(p− 1)γp−2Ap−1
p

(2.8)

×
{

1 + γAp
p

(γAp)
p−1

(
p− 2(p− 1)γp−2Ap−1

p

)
+ γ2p−2A2p−1

p

(
1− γ2−pA1−p

p

)
+Ap

|K|
|Ω|

}
,

which depends on u and on γ > 0 such that(
2p− 2

p

) 1
2−p

A
p−1
2−p
p < γ ≤ A

p−1
2−p
p .

Hence, we still have the freedom of choosing γ. By taking γ = A
p−1
2−p
p (which, numerically, appears to be

close to the global minimum of the right-hand side of (2.8)), we obtain

β

α
=

(
1 +

1

Ap(u)
1

2−p

)p−1(
1 +

1

Ap(u)
1

2−p

+
p

2− p
1

Ap(u)
2p−2
2−p

|K|
|Ω|

)
, (2.9)

where we emphasized the dependence of A on u. In order to obtain an upper bound for the ratio β/α
independent of u, we use [7, Remark 2.1] which states that

‖∇u‖22,Ω ≥
4π

log(|Q|)− log(|K|)
∀u ∈ H1

c (Ω) s.t. u = 1 on ∂Q, u ≥ 0 in Ω,

thus yielding

Ap(u) ≥ 22−p
(p

2

) 4−p
2

(
log

(
|Q|
|K|

)) p−2
2

∀u ∈ H1
c (Ω) s.t. u = 1 on ∂Q, u ≥ 0 in Ω.

Hence, from (2.9) we obtain the following uniform bound (independent of u)

β

α
≤

1 +
1

2

√(
2

p

) 4−p
2−p

log

(
|Q|
|K|

)p−1

×

1 +
1

2

√(
2

p

) 4−p
2−p

log

(
|Q|
|K|

)
+

p

2− p
|K|
|Ω|

(
1

4

(
2

p

) 4−p
2−p

log

(
|Q|
|K|

))p−1
 .
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In turn, from (2.6), by replacing s with |u| in (2.7) and integrating over Ω, we obtain

‖u‖pp,Ω ≤
β

α
Ap(u)

p
2−p |Ω|

≤ π−
p
2

(p
2

) p(4−p)
2(2−p) |Ω|

1 +
1

2

√(
2

p

) 4−p
2−p

log

(
|Q|
|K|

)p−1

×

1 +
1

2

√(
2

p

) 4−p
2−p

log

(
|Q|
|K|

)
+

p

2− p
|K|
|Ω|

(
1

4

(
2

p

) 4−p
2−p

log

(
|Q|
|K|

))p−1
 ‖∇u‖p2,Ω ,

for every u ∈ H1
c (Ω) such that u = 1 on ∂Q and u ≥ 0 in Ω. The bound in (2.3) follows by taking the

p-roots in the last inequality. 2

Remark 2.1. We point out that (2.4) provides an upper bound for the Poincaré constant in H1
0 (Ω) (for

p = 2). On the other hand, a bound for the Poincaré constant in H1
c (Ω) for p = 2 cannot be obtained by

taking the limit in (2.3) when p → 2, because the right-hand side of (2.3) blows up. This is the reason
why the analysis of the case p = 2 has been excluded in the present article.

We now turn to the case p > 2.

Theorem 2.2. For any p > 2 and u ∈ H1
0 (Ω) one has

‖u‖2p,Ω ≤
|Ω|

2
p

π

(
p+ 2

4

) p−6
p

min

{
1

µ2
0

,
1

2π

|Q|
|Ω|

} 2
p

‖∇u‖22,Ω . (2.10)

For any p > 2 and u ∈ H1
c (Ω) one has

‖u‖2p,Ω ≤ |Ω|
2
p

π

(
p+ 2

4

) p−6
p−2

1 +
1

2

√(
p+ 2

4

) 6−p
p−2

log

(
|Q|
|K|

)
2(p−1)

p

(2.11)

×

1 +
1

2

√(
p+ 2

4

) 6−p
p−2

log

(
|Q|
|K|

)
+

2p

p− 2

|K|
|Ω|

(
1

4

(
p+ 2

4

) 6−p
p−2

log

(
|Q|
|K|

)) p+2
4


2
p

‖∇u‖22,Ω .

Proof. For p > 2, del Pino-Dolbeault [5, Theorem 1] obtained the optimal constant for the following
Gagliardo-Nirenberg inequality in R2:

‖u‖p,Ω ≤ π
2−p
4p

(
p+ 2

4

) p−6
4p

‖∇u‖
p−2
2p

2,Ω ‖u‖
p+2
2p
p
2

+1,Ω
∀u ∈ H1

0 (Ω). (2.12)

As in Theorem 2.1, we notice that functions in H1
0 (Ω) may be extended by zero outside Q, so they can

be seen as functions defined over the whole plane. For general exponents, the optimal constant in the
Gagliardo-Nirenberg inequality is not known, this is why we introduce the L

p
2

+1-norm. By combining
(2.12) with the following form of the Hölder inequality

‖u‖
p
2

+1
p
2

+1,Ω
≤ ‖u‖2,Ω ‖u‖p/2p,Ω ∀u ∈ Lp(Ω) ,

we infer that

‖u‖2p,Ω ≤ π
2−p
p

(
p+ 2

4

) p−6
p

‖∇u‖
2(p−2)

p

2,Ω ‖u‖4/p2,Ω ∀u ∈ H1
0 (Ω) . (2.13)

Then (2.10) is obtained after inserting (2.4) into (2.13).
The proof of (2.11) follows exactly the procedure employed in the proof of inequality (2.3) given in

Theorem 2.1, and therefore is omitted here. 2
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Remark 2.2. Notice that the minimum in (2.2) and (2.10) is the consequence of the Poincaré inequality
(2.4) that we only use in the space H1

0 (Ω). In particular, from (2.10) we deduce that

‖u‖2p,Ω ≤
|Ω|2/p

πµ
4/p
0

(
p+ 2

4

) p−6
p

‖∇u‖22,Ω for all u ∈ H1
0 (Ω) and p > 2. (2.14)

On the other hand, by applying firstly (2.12) and then Hölder’s inequality, we also have

‖u‖2p,Ω ≤
|Ω|2/p

π

(
p+ 2

4

) p−6
p−2

‖∇u‖22,Ω for all u ∈ H1
0 (Ω) and p > 2. (2.15)

The ratio between the constants appearing in the right-hand sides of (2.14) and (2.15) is plotted in Figure
2.1 as a function of p > 2, showing that the smallest constant corresponds to (2.14).

4 6 8 10
p

0.50

0.55

0.60

Figure 2.1: Ratio between the embedding constants given in (2.14) and (2.15).

Theorems 2.1 and 2.2 yield (unpleasant) lower bounds for the Sobolev constants in (1.3): it suffices
to take the inverse of the constants appearing in (2.2), (2.3), (2.10) and (2.11). The lower bounds for
S1
p may be treated as functions of |Q|/|K| ∈ [1,∞): regardless of the value of p > 1, they vanish like

[log (|Q|/|K|)]−1 as |Q|/|K| → ∞, see the plots in Figure 2.2 where we also compare them with the
(larger) lower bound for S0

p . One should also compare this uniform asymptotic behavior with the result
of Theorem 2.3.

2 4 6 8
|Q| / |K|

2

4

6

8

2 4 6 8
|Q| / |K|

2

4

6

8

Figure 2.2: Behavior of the lower bounds for Sp0 (red) and Sp1 (blue) as functions of |Q|/|K|, when
p = 3/2 (left) and p = 6 (right).

In the case when K is a square, the explicit lower bounds for S1
p are as follows:
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Corollary 2.1. For 0 < a < L, suppose that K = (−a, a)2. Then, for every 1 < p < 2 we have

S1
p ≥L−4/p π

42/p

[
1−

(
L

a

)−2
]− 2

p (2

p

) 4−p
2−p

1 +

√
1

2

(
2

p

) 4−p
2−p

log

(
L

a

)
2(1−p)

p

×

1 +

√
1

2

(
2

p

) 4−p
2−p

log

(
L

a

)
+

p

2− p
1(

L
a

)2 − 1

(
1

2

(
2

p

) 4−p
2−p

log

(
L

a

))p−1
−

2
p

,

and for every p > 2 we have

S1
p ≥L−4/p π

42/p

[
1−

(
L

a

)−2
]− 2

p (p+ 2

4

) 6−p
p−2

1 +

√
1

2

(
p+ 2

4

) 6−p
p−2

log

(
L

a

)
2(1−p)

p

×

1 +

√
1

2

(
p+ 2

4

) 6−p
p−2

log

(
L

a

)
+

2p

p− 2

1(
L
a

)2 − 1

(
1

2

(
p+ 2

4

) 6−p
p−2

log

(
L

a

)) p+2
4


− 2

p

.

Problem 2.1. The bounds obtained in Theorems 2.1 and 2.2 for the Sobolev constants merely depend
on the measure of the obstacle K but they do not depend on its position nor on its shape. It is natural
to conjecture that obstacles close to ∂Q might generate larger Sobolev constants. Moreover, it is well-
known that Steiner symmetrization [10] preserves the Lp norms of functions and reduces their Dirichlet
norm, see [2, 3, 4, 11] and references therein. In our 2D setting, the Steiner symmetrization produces
rearrangements that gain symmetry about a line. We are here interested in a finite number of iterations
by symmetrizing about the four lines x = 0, y = 0 and y = ±x, namely the axes of symmetry of Q.
Then, it appears interesting to find the shape and the position of the optimal obstacle minimizing the
Sobolev constants among obstacles K of given measure.

2.2 Upper bounds

It is natural to wonder whether the lower bounds for S0
p and S1

p so far obtained are accurate. This can
be tested through suitable upper bounds. For S0

p we take the function w(x, y) = cos(πx2L) cos(πy2L), defined

for (x, y) ∈ Q, so that w ∈ H1
0 (Q) and

‖w‖2p,Q =

 2L√
π

Γ

(
1 + p

2

)
Γ
(

1 +
p

2

)


4/p

, ‖∇w‖22,Q =
π2

2
=⇒ S0

p ≤
π2

2

√π2L

Γ
(

1 +
p

2

)
Γ

(
1 + p

2

)


4/p

. (2.16)

Notice that the upper bound (2.16) holds for any obstacle K.
In order to derive an upper bound for S1

p , we recall the definition of pyramidal function, introduced
in [7, Theorem 2.2]. For 0 < d ≤ a < L, suppose that K = (−a, a) × (−d, d) and divide the domain
Ω into four trapezia T1, T2, T3, T4 as in the left picture in Figure 2.3. By pyramidal function we mean
any function having the level lines as in the right picture of Figure 2.3, namely level lines parallel to ∂Q
(and to the rectangle K) in each of the trapezia. In particular, pyramidal functions are constant on ∂K
and constitute the following convex subset of H1

0 (Q):

P(Q) = {u ∈ H1
0 (Q) | u = 1 in K, u = u(y) in T1 ∪ T3, u = u(x) in T2 ∪ T4} . (2.17)

Now, any V φ ∈ P(Q) is fully characterized by a (continuous) function

φ ∈ H1([0, 1];R) such that φ(0) = 1 , φ(1) = 0 ,

8



Figure 2.3: The domain Ω (left) and the level lines of pyramidal functions (right).

giving the values of V φ on the oblique edges of the trapezia. For instance, consider the right trapezia
T5, T6 ⊂ Q being, respectively, half of the trapezia T1 and T2, defined by

T5 =

{
(x, y) ∈ Q

∣∣∣ d < y < L, 0 < x < a+
L− a
L− d

(y − d)

}
,

T6 =

{
(x, y) ∈ Q

∣∣∣ a < x < L, 0 < y < d+
L− d
L− a

(x− a)

}
.

Since V φ is a function of y in T1 and a function of x in T2, φ and V φ are linked through the formulas

V φ(x, y) = φ

(
y − d
L− d

)
∀(x, y) ∈ T5, V φ(x, y) = φ

(
x− a
L− a

)
∀(x, y) ∈ T6. (2.18)

Whence,

∂V φ

∂y
(x, y) =

1

L− d
φ′
(
y − d
L− d

)
∀(x, y) ∈ T5,

∂V φ

∂x
(x, y) =

1

L− a
φ′
(
x− a
L− a

)
∀(x, y) ∈ T6. (2.19)

To avoid tedious computations, we restrict again our attention to the case d = a (squared obstacle).
The next result gives an upper bound for the constants S1

p and measures the precision of the bounds in
the limit situation where K is a vanishing square. Interestingly, the ratio between our lower and upper
bounds for S1

p converges to a limit that is independent of p.

Theorem 2.3. For 0 < a < L, suppose that K = (−a, a)2. Then, for every p > 1 (p 6= 2) we have

S1
p ≤

8
1− 2

p

L4/p

(
L

a

)4/p

log

(
L

a

)(∫ L/a

1
t logp(t) dt

)−2/p

. (2.20)

Moreover, the ratio between the lower bounds in Corollary 2.1 and the upper bound (2.20) tends to
π/4 ≈ 0.79 as L/a→∞, independently of the value of p > 1 (p 6= 2).

Proof. Let P(Q) be as in (2.17) and let V φ ∈ P(Q) be defined by (2.18) with

φ(s) = log

(
a+ (L− a)s

L

)/
log
( a
L

)
∀s ∈ [0, 1].

For symmetry reasons, the contribution of |∇V φ| over T1 ∪ T3 is four times the contribution over T5,
whereas the contribution of |∇V φ| over T2 ∪ T4 is four times the contribution over T6. By taking into
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account all these facts, in particular (2.19), we infer that

‖∇V φ‖22,Ω = 4

∫ L

a

∫ y

0

∣∣∣∣∂V φ

∂y

∣∣∣∣2 dx dy + 4

∫ L

a

∫ x

0

∣∣∣∣∂V φ

∂x

∣∣∣∣2 dy dx
= 4

∫ L

a
y

∣∣∣∣∂V φ

∂y

∣∣∣∣2 dy + 4

∫ L

a
x

∣∣∣∣∂V φ

∂x

∣∣∣∣2 dx =
8

L− a

∫ 1

0
[a+ (L− a)s]φ′(s)2 ds

= 8

[
log

(
L

a

)]−1

. (2.21)

In a similar fashion, for every p > 1 we have

‖1− V φ‖pp,Ω = 4

∫ L

a

∫ y

0

∣∣∣1− V φ(y)
∣∣∣p dx dy + 4

∫ L

a

∫ x

0

∣∣∣1− V φ(x)
∣∣∣p dy dx

= 4

∫ L

a
y
∣∣∣1− V φ(y)

∣∣∣p dy + 4

∫ L

a
x
∣∣∣1− V φ(x)

∣∣∣p dx
= 8(L− a)

∫ 1

0
[a+ (L− a)s] |1− φ(s)|p ds.

Through the change of variable t = a+ (L− a)s, for s ∈ [0, 1], we then obtain

‖1− V φ‖pp,Ω = 8a2

[
log

(
L

a

)]−p ∫ L/a

1
t logp(t) dt. (2.22)

We finally notice that if v ∈ P(Q), then 1− v ∈ H1
c (Ω) with v = 1 on ∂Q. Therefore,

S1
p ≤ min

v∈P(Q)

‖∇v‖22,Ω
‖1− v‖2p,Ω

≤
‖∇V φ‖22,Ω
‖1− V φ‖2p,Ω

∀p > 1,

which yields (2.20) in view of (2.21) and (2.22).
Next, for any 1 < p < 2, denote by R(z) the ratio between the lower bound for S1

p given in Corollary
2.1 and the just proved upper bound (2.20), as a function of z = L/a:

R(z) =

π 2
2
p
−3
(

2

p

) 4−p
2−p

 1

z2 − 1

z∫
1

t logp(t) dt

 2
p
1 +

√
1

2

(
2

p

) 4−p
2−p

log(z)


2(1−p)

p

log(z)

1 +

√
1

2

(
2

p

) 4−p
2−p

log(z) +
p

2− p
1

z2 − 1

(
1

2

(
2

p

) 4−p
2−p

log(z)

)p−1
 2

p

∀z > 1,

so that

R(z) ∼ π 2
2
p
−2

 1

z2 logp(z)

z∫
1

t logp(t) dt

 2
p

as z →∞.

An application of L’Hôpital’s rule yields

lim
z→∞

1

z2 logp(z)

z∫
1

t logp(t) dt =
1

2
,

which concludes the proof, since the limit in the case p > 2 can be treated exactly in the same way. 2
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Remark 2.3. If p > 1 is an integer we may explicitly compute∫ L/a

1
t logp(t) dt = p!

[(
L

a

)2 p∑
k=0

(−1)k

2k+1

1

(p− k)!

(
log

(
L

a

))p−k
− (−1)p

2p+1

]
.

By dropping the multiplicative term L−4/p, the lower and upper bounds for S1
p in Corollary 2.1 and

in Theorem 2.3 can be treated as functions of L/a ∈ (1,∞). The plots in Figure 2.4 describe the overall
behavior for p = 3. Qualitatively, the same plots are found for any value of p > 1 (p 6= 2).

2 4 6 8 10

L

a
0

2

4

6

8

2 4 6 8 10

L

a

10

15

20

Figure 2.4: On the left: behavior of the lower and upper bounds for S1
3 as a function of L/a. On the

right: ratio between the upper and lower bounds for S1
3 as a function of L/a.

3 Failure of elementary symmetrization methods

Theorems 2.1 and 2.2 may be extended to any space dimension n ≥ 3 and any 1 < p < 2n
n−2 but the

question whether they might be improved arises naturally. In particular, one wonders whether some
symmetrization techniques [11] could be used. In this section we show that, at least in its simplest
forms, symmetrization is of no help: we argue in any space dimension n ≥ 2 because this creates no
additional difficulties.

For any R > 0 we denote by BR ⊂ Rn the n-dimensional ball of radius R centered at the origin. In
the next statement we show that if we compare the Dirichlet norm of a (radial) function in this annulus
with that of its decreasing rearrangement, nothing can be said a priori: both inequalities may occur.

Theorem 3.1. There exist radial functions f1, f2, f3, f4 ∈ H1
c (B2 \B1) such that

‖∇f1‖2, B2\B1
< ‖∇g1‖2, B2\B1

, ‖∇f2‖2, B2\B1
> ‖∇g2‖2, B2\B1

(3.1)

and, for R = n
√

2n − 1,

‖∇f3‖2, B2\B1
< ‖∇g3‖2, BR

, ‖∇f4‖2, B2\B1
> ‖∇g4‖2, BR

, (3.2)

where gi denotes the decreasing rearrangement of fi, for i ∈ {1, 2, 3, 4}.

Proof. First we prove (3.1). In the annulus B2 \B1, take any positive strictly increasing radial function
f = f(r) over the interval [1, 2] such that f(1) = 0 and f(2) = 1. Its decreasing rearrangement within
the annulus is given by

g(r) = f
(

n
√

2n + 1− rn
)

∀r ∈ (1, 2).

Hence, as expected, we have∫ 2

1
rn−1g(r)p dr =

∫ 2

1
rn−1f

(
n
√

2n + 1− rn
)p
dr =

∫ 2

1
tn−1f(t)p dt ∀p > 1,

11



where we used the change of variables

t = n
√

2n + 1− rn ⇐⇒ r = n
√

2n + 1− tn. (3.3)

On the other hand, we have

g′(r) = −rn−1
(

2n + 1− rn
) 1

n
−1
f ′
(

n
√

2n + 1− rn
)

∀r ∈ (1, 2),

so that, using again (3.3),

∫ 2

1
rn−1f ′(r)2 dr =

∫ 2

1
tn−1f ′

(
n
√

2n + 1− tn
)2
dt =

∫ 2

1

(
2n + 1− tn

)2− 2
n

tn−1
g′(t)2 dt.

The “break even” in the integral occurs whenever(
2n + 1− tn

)2− 2
n

tn−1
= tn−1 ⇐⇒ t = r∗

.
=

(
2n−1 +

1

2

) 1
n

.

Let us consider first the function (see Figure 3.1 when n = 2)

f1(r) =

{
r−1
r∗−1 if 1 < r ≤ r∗

1 if r∗ ≤ r < 2
=⇒ f ′1(r) =

{
1

r∗−1 if 1 < r < r∗

0 if r∗ < r < 2
,

so that

g1(r) =

{
1 if 1 < r ≤ r∗
n√2n+1−rn−1

r∗−1 if r∗ ≤ r < 2
=⇒ g′1(r) =

 0 if 1 < r < r∗

−rn−1

r∗−1
1

(2n+1−rn)1−1/n if r∗ < r < 2 .

1.2 1.4 1.6 1.8 2.0
r

0.2

0.4

0.6

0.8

1.0

f1(r)

1.2 1.4 1.6 1.8 2.0
r

0.2

0.4

0.6

0.8

1.0

g1(r)

Figure 3.1: Plot of f1 and of its symmetric decreasing rearrangement g1, with n = 2 and r∗ =
√

5/2.

Then we have ∫ 2

1
rn−1f ′1(r)2 dr <

∫ 2

1
tn−1g′1(t)2 dt ,

which proves the first of (3.1).
Next, consider the function (see Figure 3.2 when n = 2)

f2(r) =

{
0 if 1 < r ≤ r∗

r−r∗
2−r∗ if r∗ ≤ r < 2

=⇒ f ′2(r) =

{
0 if 1 < r < r∗

1
2−r∗ if r∗ < r < 2

,
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so that

g2(r) =

{ n√2n+1−rn−r∗
2−r∗ if 1 < r ≤ r∗

0 if r∗ ≤ r < 2
=⇒ g′2(r) =

{ −rn−1

2−r∗
1

(2n+1−rn)1−1/n if 1 < r < r∗

0 if r∗ < r < 2 .

1.2 1.4 1.6 1.8 2.0
r

0.2

0.4

0.6

0.8

1.0

f2(r)

1.2 1.4 1.6 1.8 2.0
r

0.2

0.4

0.6

0.8

1.0

g2(r)

Figure 3.2: Plot of f2 and of its symmetric decreasing rearrangement g2, with n = 2 and r∗ =
√

5/2.

Then we have ∫ 2

1
rn−1f ′2(r)2 dr >

∫ 2

1
tn−1g′2(t)2 dt ,

which proves the second inequality in (3.1).
Let us now prove (3.2). Notice that |B2 \B1| = ωn(2n − 1), where ωn is the measure of the unit ball

B1. Hence, the disk D of radius R = n
√

2n − 1 has the same measure as B2 \B1 so that BR = (B2 \B1)∗.
Consider a positive strictly increasing radial function f = f(r) over the interval (1, 2), then its decreasing
rearrangement within the disc BR is given by

g(r) = f
(

n
√

2n − rn
)

∀r ∈
(
0, n
√

2n − 1
)
.

We have again ∫ n√2n−1

0
rn−1g(r)p dr =

∫ 2

1
tn−1f(t)p dt ∀p > 1.

where we used the change of variables

t = n
√

2n − rn ⇐⇒ r = n
√

2n − tn. (3.4)

On the other hand, we have

g′(r) = −rn−1
(

2n − rn
) 1

n
−1
f ′
(

n
√

2n − rn
)

∀r ∈
(
0, n
√

2n − 1
)
.

so that, using again (3.4),

∫ 2

1
rn−1f ′(r)2 dr =

∫ n√2n−1

0

(
2n − tn

)2− 2
n

tn−1
g′(t)2 dt.

The “break even” in the integral occurs whenever(
2n − tn

)2− 2
n

tn−1
= tn−1 ⇐⇒ t = r∗

.
= 21− 1

n .
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Let us consider first the function (see Figure 3.3 when n = 2)

f3(r) =

{
r−1
r∗−1 if 1 < r ≤ r∗

1 if r∗ ≤ r < 2
=⇒ f ′3(r) =

{
1

r∗−1 if 1 < r < r∗

0 if r∗ < r < 2
,

so that

g3(r) =

{
1 if 0 < r < r∗

n√2n−rn−1
r∗−1 if r∗ < r < n

√
2n − 1

and

g′3(r) =

 0 if 0 < r < r∗

−rn−1

r∗−1
1

(2n−rn)1−1/n if r∗ < r < n
√

2n − 1 .

1.2 1.4 1.6 1.8 2.0
r

0.2

0.4

0.6

0.8

1.0

f3(r)

0.0 0.5 1.0 1.5
r

0.5

1.0

1.5

g3(r)

Figure 3.3: Plot of f3 and of its symmetric decreasing rearrangement g3, with n = 2 and r∗ =
√

2.

Then ∫ 2

1
rn−1f ′3(r)2 dr <

∫ n√2n−1

0
tn−1g′3(t)2 dt ,

thereby proving the first inequality in (3.2).

1.2 1.4 1.6 1.8 2.0
r

0.2

0.4

0.6

0.8

1.0

f4(r)

0.5 1.0 1.5
r

0.2

0.4

0.6

0.8

1.0

g4(r)

Figure 3.4: Plot of f4 and of its symmetric decreasing rearrangement g4, with n = 2 and r∗ =
√

2.

Finally, consider the function (see Figure 3.4 when n = 2)

f4(r) =

{
0 if 1 < r ≤ r∗

r−r∗
2−r∗ if r∗ ≤ r < 2

=⇒ f ′4(r) =

{
0 if 1 < r < r∗

1
2−r∗ if r∗ < r < 2

,

so that

g4(r) =

{ n√2n−rn−r∗
2−r∗ if 0 < r ≤ r∗

0 if r∗ ≤ r < n
√

2n − 1
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and

g′4(r) =

{ −rn−1

2−r∗
1

(2n−rn)1−1/n if 0 < r < r∗

0 if r∗ < r < n
√

2n − 1 .

Then we have ∫ 2

1
rn−1f ′4(r)2 dr >

∫ n√2n−1

0
tn−1g′4(t)2 dt ,

proving also the second inequality in (3.2). 2

One then naturally wonders if a result similar to Theorem 3.1 holds in any non-simply connected
domain, that is

Problem 3.1. Let Ω ⊂ Rn be the difference between two simply connected bounded convex domains Q
and K such that K ⊂ Q and ∂K ∩ ∂Q = ∅. Define H1

c (Ω) as in (1.2), and for any f ∈ H1
c (Ω), let f∗

be the symmetric decreasing rearrangement of f on Ω∗, the n-dimensional ball having the same measure
as Ω. Does there exists a break even (n − 1)-dimensional surface such that if f ∈ H1

c (Ω) concentrates
its mass inside (resp. outside) this surfaces, then the Dirichlet norm of f in Ω is strictly smaller (resp.
larger) than the Dirichlet norm of f∗ in Ω∗? The same question may be formulated by considering the
symmetric decreasing rearrangement of f on the annulus whose inner ball has the same measure of K
and whose outer ball has the same measure as Q.
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