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Abstract Rational Krylov subspaces have become a fundamental ingredi-
ent in numerical linear algebra methods associated with reduction strategies.
Nonetheless, many structural properties of the reduced matrices in these sub-
spaces are not fully understood. We advance in this analysis by deriving bounds
on the entries of rational Krylov reduced matrices and of their functions, that
ensure an a-priori decay of their entries as we move away from the main diag-
onal. As opposed to other decay pattern results in the literature, these proper-
ties hold in spite of the lack of any banded structure in the considered matrices.
Numerical experiments illustrate the quality of our results.

Keywords Rational krylov spaces · Decay pattern · Matrix functions ·
Lyapunov matrix equations · Faber approximation

1 Introduction

Order reduction of discretized dynamical systems is currently one of the crucial
steps in scientific computing and engineering modeling. In geometric terms,
the reduction procedure consists in computing a linear vector subspace of small
dimension where the original system is projected, in a way that the reduced
system solution preserves the major properties of the original one, while its
numerical treatment requires significantly lower memory and computational
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efforts. In this context, rational Krylov subspaces (RKSs) play a crucial role.
Originally introduced by Axel Ruhe in [35] for eigenvalue problems, it has
become a standard ingredient for reduction of linear and nonlinear dynami-
cal systems [1,3,4,32], for the approximation by reduction of matrix function
evaluations ([19]) and in the numerical solution by projection of linear matrix
equations [38]. The success of RKSs is mainly due to their ability of cap-
turing accurate information associated with the dynamical system coefficient
matrix, so that a space dimension dramatically lower than that of their polyno-
mial counterparts, the standard or polynomial Krylov subspaces is required to
satisfactorily reduce the original problem. This important property has been
experimentally observed and theoretically analyzed over the past few decades,
making rational Krylov subspace based strategies the methods of choice.

From the matrix analysis perspective, standard Krylov subspaces enjoy
favourable structural properties through the generated reduced matrices, that
lead to various computational and analytical advantages. In particular, the
reduced matrix is upper Hessenberg, and if the original coefficient matrix
is symmetric, so is the reduced one, thus becoming tridiagonal. Thanks to
this structure, functions of this (banded) reduced matrix typically show an
exponential decay behavior of their components’ magnitude, away from the
main diagonal. Insightful theoretical results provide solid ground for this phe-
nomenon; we refer for instance to [5,6] and their references for a thorough bib-
liographic account. Decay features in the reduced matrices can be exploited in
residual computations, truncation procedures, and to analyze other important
properties of the considered methods.

Reduced matrices stemming from RKSs loose the explicit banded structure,
hence a decay behavior of the entries of functions of the reduced matrix cannot
be granted by the known theory. However, numerical experiments illustrate
that this decay is still present. Hence, there must be some hidden structure in
the constructed reduced matrices that allow the entry decay to be preserved.
We aim to uncover this structure, by deriving bounds on the entries of the
RKS reduced matrices and of their functions, that ensure an a-priori decay of
their entries as we move away from the main diagonal. The decay pattern of
the solution to linear matrix equations will also be considered.

This is a synopsis of the paper. After recalling the necessary notation and
main definitions, section 2 introduces new structural properties of RKS re-
duced matrices. A-priori decay bounds for RKS reduced matrices are presented
in section 3, while bounds for functions of the reduced matrices are given in
section 4. Analogous results are derived for the solution matrix of reduced
Lyapunov matrix equations in section 5. Section 6 reports numerical tests il-
lustrating the quality of the newly introduced bounds. All main results are
proved in section 7 by Faber-Dzhrbashyan approximation. Section 8 concludes
the paper.

Notation. For a matrix A, we denote with A∗ (AT ) its conjugate (real)
transpose, and with ‖A‖ the matrix norm induced by the Euclidean vector
norm. For a vector d, diag(d) is the diagonal matrix having the components
of d along its diagonal.
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2 Rational Krylov subspaces and related matrices

We start by introducing standard and rational Krylov subspaces, emphasizing
their structural differences.

Given a matrix A ∈ RN×N with spectrum λ(A) and a vector v 6= 0, themth
step of the Arnoldi algorithm produces the N ×m matrix Um = [u1, . . . ,um]
whose orthonormal columns are a basis of the (polynomial) Krylov subspace

Pm(A,v) := span
{
v, Av, . . . , Am−1 v

}
.

Starting with u1 = v/‖v‖, the Arnoldi method uses the Gram-Schmidt or-
thogonalization process to define the recurrence

tj+1,juj+1 = Auj −
j∑
i=1

ti,jui, j = 1, . . . ,m,

and it can be represented in matrix form as

AUm = UmTm + tm+1,mum+1e
T
m, (2.1)

with Tm the m ×m upper Hessenberg matrix with nonzero entries ti,j , and
em the mth element of the canonical basis. By orthogonality, (2.1) yields

Tm = U∗mAUm. (2.2)

The matrix Tm plays two roles in the algorithm: it represents both the or-
thogonalization process and the projection and restriction of A in the Krylov
subspace Pm(A,v).

In rational Krylov methods, these two roles are decoupled and represented
by different matrices. Setting σm−1 = [σ1, . . . , σm−1] with σj /∈ λ(A), a ratio-
nal Krylov subspace is defined as

Km(A,v,σm−1):=span

v, (A−σ1I)−1 v, . . . ,

m−1∏
j=1

(A−σjI)−1 v

 . (2.3)

Note that

Km(A,v,σm−1) = πm−1(A)−1Pm(A,v), πm−1(x) =
m−1∏
j=1

(x− σjI).

Analogously to the Arnoldi algorithm, the mth iteration of the rational Krylov
subspace method (RKSM) ([34,35]) gives the matrix Vm = [v1, . . . ,vm] whose
orthonormal columns are a basis of Km(A,v,σm−1). Moreover the RKSM
is a Gram-Schmidt orthogonalization process for this space, and it can be
expressed by the following recurrence relation

hj+1,jvj+1 = (A− σjI)−1vj −
j∑
i=1

hi,jvi, j = 1, . . . ,m, (2.4)
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with v1 = v/‖v‖ and

hi,j = v∗i (A− σjI)−1vj , hj+1,j = ‖vj+1‖, i, j = 1, . . . ,m. (2.5)

The recurrence (2.4) can be represented in matrix form as

AVmHm = VmKm − hm+1,m(A− σmI)vm+1e
T
m, (2.6)

with Hm := (hi,j)i,j=1,...,m upper Hessenberg, and Km = I + Hm diag(σm);
see, e.g., [19,20,35]. Hence, in the rational case, the information about the
orthogonalization and its recurrence are carried by the matrix Hm. At the
same time, we can define the reduced-order matrix

Jm := V ∗mAVm = KmH
−1
m − hm+1,mV

∗
m(A− σmI)vm+1e

T
mH

−1
m , (2.7)

which is the projection and restriction of A onto Km(A,v,σm−1). The matrix
Jm is also known as compression of A or as matrix Rayleigh quotient ; e.g., [19].
The matrix Jm is not generally a Hessenberg matrix, except for some special
choices of the shifts; see, e.g., [9,23,24,36].

From (2.7) a relation between the entries of Hm and those of a function of
Jm can be determined. Let wm = hm+1,mV

∗
m(A− σmI)vm+1. Then JmHm −

Km = −wme
T
m, and substituting Km,

JmHm −Hmdiag(σm) = I −wme
T
m. (2.8)

For the jth column (Hm):,j with j < m, it holds that (Jm−σjI)(Hm):,j = ej ,
so that

hi,j = eTi (Jm − σjI)−1ej , i = 1, . . . ,m, j = 1, . . . ,m− 1. (2.9)

This provides a relation between the pattern of Jm and Hm; note in particular
that the elements with i > j + 1 will be zero. In terms of the Arnoldi-type
recurrence, the relation (Hm):,j = (Jm − σjI)−1ej substituted in (2.4) yields

(A− σjI)−1vj = Vm(Jm − σjI)−1ej , j < m,

explicitating the role of Jm in the projection operation. For m = N , wm = 0
so that JN = KN H

−1
N , and the result also holds for j = m. The consequences

of this fact are described in the next proposition, which will also be used in
later proofs.

Proposition 2.1 Let Jm be as defined in (2.7) and consider the rational func-
tion

s
(t)
j (x) :=

qj(x)

(x− σt) · · · (x− σt+j−1)
,

with t ≥ 1 and qj(x) a polynomial of degree at most j. If the indexes k, ` are
such that k ≥ t+ 2 and ` ≤ t, then(

s
(t)
j (Jm)

)
k,`

= 0, j = 1, . . . , k − t− 1.
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Fig. 2.1 Sparsity pattern of s
(t)
j (Jm) in Proposition 2.1 for J20 and Hermitian matrix A.

In the Arnoldi algorithm, the connection between the orthogonalization
process and the sparsity pattern of the matrix Tm is self-evident. Proposi-
tion 2.1 shows that Jm has a hidden sparsity structure, determined by the
orthogonality property of Vm; see the proof in section 7.1. Figure 2.1 il-
lustrates the revealed structure in the Hermitian case. The left plot shows

|s(4)3 (J20)|k,` = 0 for k ≥ j+ t+ 1 = 8, and ` ≤ 4, while the right plot displays

|s(6)3 (J20)|k,` = 0 for k ≥ j + t+ 1 = 10, and ` ≤ 6.
A particular case of Proposition 2.1 is that for t ∈ {1, . . . ,m− 1}, it holds

that

(Jm − σtI)−1 =

[
J11 | J12
O | J22

]
,

with J11 ∈ C(t+1)×t,J12 ∈ C(t+1)×(m−t),J22 ∈ C(m−t−1)×(m−t). That is, all
elements with indexes (k, `) with k ≥ t + 2 and ` ≤ t are zero. In the case of
Jm Hermitian a corresponding zero block will appear in the right-top corner.

Another striking structural property is that the inverse of Jm−Ŝm is upper
Hessenberg, where Ŝm is a diagonal matrix related to the σt’s.

Proposition 2.2 Let Ŝm = diag(?, σ1, . . . , σm−1) where ? stands for any

complex scalar. If Jm − Ŝm is invertible, then (Jm − Ŝm)−1 is upper Hes-

senberg, from which it follows that (Jm − Ŝm)−1Jm is also upper Hessenberg.

Proof Let Sm = diag(σm). From (2.8) we can write

Jm − Ŝm = (I +HmSm −wme
T
m)H−1m − Ŝm

that is Jm − Ŝm = (I + HmSm − wme
T
m − ŜmHm)H−1m , from which we can

write

(Jm − Ŝm)−1 = Hm(I +HmSm −wme
T
m − ŜmHm)−1. (2.10)
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To proceed, we notice that for any jth column with j < m, it holds that

(I +HmSm −wme
T
m − ŜmHm)ej = ej +H:,jσj − 0−



?h1,j
σ1h2,j

...
σjhj+1,j

0
...


,

that is,

(I +HmSm −wme
T
m − ŜmHm)ej =



(σj − ?)h1,j
(σj − σ1)h2,j

...
1 + (σj − σj−1)hj,j

0
...


,

so that all the elements below the jth component are zero. As a consequence,
the matrix (I+HmSm−wme

T
m− ŜmHm) and its inverse are upper triangular.

Left multiplication by the upper Hessenberg matrix Hm as in (2.10) yields

again an upper Hessenberg matrix. We thus have in (2.10) that (Jm − Ŝm)−1

is upper Hessenberg.
To prove the second property, we write

(Jm − Ŝm)−1Jm = (Jm − Ŝm)−1(Jm − Ŝm + Ŝm) = I + (Jm − Ŝm)−1Ŝm.

Since (Jm − Ŝm)−1 is upper Hessenberg and Ŝm is diagonal, (Jm − Ŝm)−1Jm
is also upper Hessenberg.

When A is Hermitian, (Jm − Ŝm)−1 and (Jm − Ŝm)−1Jm are Hermitian,
and must thus be tridiagonal. In this case, the structural property of Propo-
sition 2.2 is also associated with the construction of a sequence of orthogonal
rational functions generating a related rational Krylov space; see further dis-
cussion in section 7.

In the next section we will show that, despite having lost the Hessenberg
structure, the reduced-order matrix Jm shows an exponential decay in the
magnitude of the lower part of Jm as we move away from the first lower diag-
onal. As we will show in section 7, this decay is connected with the structural
properties of Jm described in Proposition 2.1.

While the upper Hessenberg structure of (Jm − Ŝm)−1 ensures a decay

property of Jm− Ŝm [8,31] with a decay rate depending on the spectral prop-

erties of (Jm − Ŝm)−1, the matrix J−1m is no longer upper Hessenberg, hence
the decay in the lower part of Jm away from the main diagonal needs to be
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analyzed explicitly. To give a first insight into these decay properties, consider
the expression derived from (2.8)

J−1m = Hm(I +HmSm −wme
T
m)−1.

From the proof of Proposition 2.2, (I+HmSm−wme
T
m) is an upper Hessenberg

matrix. As a consequence, (I+HmSm−wme
T
m)−1 has a decay in its lower part.

Since Hm is also upper Hessenberg, we can expect the elements in the lower
part of J−1m to decay away from the main diagonal. Rigorous decay bounds for
general functions of Jm are obtained in the next sections.

3 Decay bounds for the RKSM reduced-order matrix

We present an a-priori bound for the absolute value of the elements composing
the reduced-order matrix Jm. The proof is postponed to section 7. The bound
uses as spectral information the field of values (or numerical range) of the
matrix A, i.e., the (convex) set ([22])

W (A) = {v∗Av |v ∈ Cn, ||v|| = 1}.

If A is Hermitian, then W (A) is the smallest interval containing the spectrum
of A.

Fig. 3.1 Conformal mappings associated with W (A).

We also recall that for every convex continuum E there exists a conformal
map φ (with inverse ψ) from the exterior of E onto the exterior of the closed
unit disk D := {z ∈ C : |z| ≤ 1} satisfying the following conditions

φ(∞) =∞, lim
z→∞

φ(w)

w
= d > 0. (3.1)

Moreover, we choose E ⊂ C such that W (A) ⊂ E, and we let Eτ = E ∪ {w ∈
C \ E : |φ(w)| ≤ τ} with τ > 1. Figure 3.1 illustrates the role of all these
quantities.

We are ready to state the main result of this section.
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Theorem 3.1 Let A be a matrix with W (A) ⊂ E, with E, φ and ψ as defined
above. Let Jm = V ∗mAVm, with Vm = [v1, . . . ,vm] having orthonormal columns
and such that range(Vm) = Km(A,v,σm−1), with σm−1 = [σ1, . . . , σm−1],
σj /∈ E. For k, ` = 1, . . . ,m with k − ` > 1 it holds

|(Jm)k,`| ≤ 3
τ

τ − 1
max
|z|≤τ

|ψ(z)|
k−2∏
t=`

τ + |φ(σt)|
|φ(σt)|τ + 1

, (3.2)

for every τ > 1.

We can specialize the previous result as follows.

Corollary 3.2 With assumptions of Theorem 3.1, for every τ > 1 the bound

|(Jm)k,`| ≤ 3(aτ + |c|) τ

τ − 1

k−2∏
t=`

τ + |φ(σt)|
|φ(σt)|τ + 1

, (3.3)

holds for the following cases:

1. W (A) is contained in an ellipse with center c, major axis a, and minor
axis r, and the conformal map is defined as

φ(w) =
w − c+

√
(w − c)2 − ρ2
ρR

,

with ρ =
√
a2 − r2, R = (a+ r)/ρ.

2. A is Hermitian with λ(A) ⊂ (c− a, c+ a) (with a > 0) and the conformal
map defined as

φ(w) =
w − c+

√
(w − c)2 − a2
a

. (3.4)

The previous bounds can be improved by carefully choosing the value for
the parameter τ > 1. The optimal (or near optimal) value of τ depends on the
set E, on the parameters σj , and on k, `. We will describe our strategy for τ
together with numerical examples in section 6.

In the Hermitian case, the matrix Gm = (Jm − Ŝm)−1 is tridiagonal by

Proposition 2.2. Since Jm can be expressed as Jm = G−1m + Ŝm, one can use
bounds for the inverses of tridiagonal matrices in [8] to derive decay bounds for
Jm. However, we did not follow such a strategy for several reasons. First, the
bounds in [8] require spectral information of Gm, which can only be obtained
in some quite rough form, without running RKSM. Secondly, the bound slopes
from [8] strongly depend on the condition number of Gm. Finally, note that
while the spectral information on Gm is not readily related to that of A, the
bounds in Theorem 3.1 are based on A’s field of values, and the shifts σj can
carry additional information on the properties of A.
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4 Decay bounds for functions of the reduced-order matrix Jm

A matrix function can be defined in several ways (see [21, Section 1]); here we
will use the definition based on the Cauchy integral formula.

Definition 4.1 Let A be a complex matrix and f be an analytic function in
some open set Ω ⊂ C such that λ(A) ⊂ Ω. Then

f(A) =

∫
Γ

f(z) (zI −A)
−1

dz,

with Γ ⊂ Ω a system of Jordan curves encircling each eigenvalue of A exactly
once, with mathematical positive orientation.

In the classical Arnoldi iteration, the matrix function f(Tm), with Tm upper
Hessenberg determined in (2.2), displays a decay behavior in its lower part,
whose slope depends also on f ; see, e.g., [5,33] and their references. In this
case, the decay phenomenon is derived by the banded structure of Tm. We next
show that in the rational case we still have a decay phenomenon for f(Jm)
despite Jm not being banded. This is possible thanks to the orthogonality of
the columns of Vm, see section 7 for a rigorous argumentation.

Theorem 4.2 Consider the setting of Theorem 3.1, assume k − ` > 1, and
let f be an analytic function in Eτ , for τ > 1. Then

|f(Jm)k,`| ≤ 3
τ

τ − 1
max
|z|=τ

|f(ψ(z))|
k−2∏
t=`

τ + |φ(σt)|
|φ(σt)|τ + 1

=: B(k, `). (4.1)

Setting the coefficients

αj =
1

2πi

∫
|z|=τ

f(ψ(z))

z

k−2∏
t=`

z − φ(σt)

φ(σt)z − 1

φ(σt)

|φ(σt)|

(
−1

z

)j−k+`+2

dz. (4.2)

and a positive integer s, we have the following more refined bound

|f(Jm)k,`| ≤ 3

s−1∑
j=0

|αj+k−`−1|+
B(k, `)

τs
. (4.3)

Theorem 4.2 describes families of bounds depending on Eτ . These families
can be specialized by choosing the shape of E, i.e., the map φ and its inverse ψ.
The bounds can be further improved by choosing an optimal (or near optimal)
value of τ , which depends on E, f , σ, k, `. The second bound (4.3) comes at
the cost of computing the coefficients αj by approximating s integrals. As we
will see in the numerical examples, a value for the index s of the order of m
appears to be enough to get an effective bound.

Using (2.9) and the fact that Jm is Hermitian whenever A is Hermitian,
Theorem 4.2 immediately gives the following result for the upper entries of
the Hessenberg matrix Hm whose elements are defined in (2.5).
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Theorem 4.3 Consider the setting of Theorem 3.1 with A Hermitian. Let
dist(Eτ , σ`) be the distance between the set Eτ and the coefficient σ`. For
k, ` = 1, . . . ,m such that `−k > 1, and for every τ > 1 so that dist(Eτ , σ`) > 0,
it holds

|hk,`| ≤ 3
τ

τ − 1

1

dist(Eτ , σ`)

`−2∏
t=k

τ + |φ(σt)|
|φ(σt)|τ + 1

.

When A is Hermitian, the matrix Tm in (2.2) stemming from the Arnoldi
method is Hermitian, i.e., it is tridiagonal. In the rational case, Hm from (2.4)
is in general not Hermitian. Nonetheless, for A Hermitian Theorem 4.3 shows
that the upper elements in Hm, though nonzero in general, are characterized
by a decay behavior.

5 Decay bound for the reduced-order solution of a Lyapunov
equation

Krylov subspaces, and in particular their rational version, have been used
successfully in the past few years for solving linear matrix problems such as the
Lyapunov and Sylvester equations [38]. These equations have a prominent role
in control, eigenvalue computations and in reduction strategies for discretized
partial differential equations.

Let us assume that A is stable, i.e., all its eigenvalues lay on the complex
half-plane with negative real part C−, and consider the Lyapunov equation

AX +XA∗ + vv∗ = 0 . (5.1)

For simplicity of exposition and without loss of generality we assume ‖v‖ = 1.
Under certain assumptions on A, it can be shown that the solution X can
be well approximated by a low rank matrix. This property motivated the
approximation X ≈ Xm = VmYmV

T
m , where the columns of Vm span a small

dimensional approximation space. In our setting, this space is just the rational
Krylov subspace. The reduced matrix Ym is determined by imposing a so-called
Galerkin orthogonality condition on the residual matrix Rm = AXm+XmA

∗+
vv∗, namely

V TmRmVm = 0.

Substituting the residual matrix into this equation and taking into account
that V TmVm = I, we obtain the reduced-order Lyapunov equation

JmYm + YmJ
∗
m + e1e

T
1 = 0 , (5.2)

with e1 the first vector of the canonical basis. The solution to this equation
yields the sought after reduced approximate solution Ym; note that Ym is Her-
mitian. For more information on the general methodology and its properties
we refer, e.g, to [38] and references therein. It is important to also recall that
the bottom entries of Ym are involved in ‖Rm‖, thus their magnitude closely
follows the convergence history of the method. In other words, The matrix Ym
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is also characterized by a decay behavior as we move away from the top left
corner entries. This property was analyzed for the standard Krylov subspace
in [37], where estimates for the entry absolute values were also given.

The following theorem discusses such behavior for the rational Krylov sub-
space when the field of values of A is contained in a disk; its proof can be found
in section 7. First attempts for proving decay bounds for rational Krylov sub-
spaces can be found in [28].

Theorem 5.1 Let A be a stable matrix with W (A) ⊂ E, where E ⊂ C− is
a disk of center c ∈ C− and radius a, and φ(w) = (w − c)/a is the related
conformal map. Let Ym be the solution to the Lyapunov equation (5.2) with
Vm spanning the subspace Km(A,v,σm−1), with real positive parameters σj.
Given 1 < τ < −c/a, then

|(Ym)k,`| ≤ min {C(k, `), C(`, k)} , (5.3)

where

C(k, `) :=
9

|aτ + 2c| − a
τ

τ − 1

k−2∏
j=1

τ + |φ(σj)|
|φ(σj)|τ + 1

`−2∏
j=1

Bj(τ) (5.4)

and for j = 1, . . . , `− 2,

Bj(τ) := max

{∣∣∣∣ aτ + φ(σj)a+ 2c

φ(σj)(aτ + 2c) + a

∣∣∣∣ , ∣∣∣∣ −aτ + φ(σj)a+ 2c

φ(σj)(−aτ + 2c) + a

∣∣∣∣} .
Similarly to Theorems 3.1 and 4.2, it is possible to extend the results in Theo-
rem 5.1 for a set E with a different shape. However, this would lead to a more
complicated expression for the factors Bj(τ).

To give a more intuitive expression for the bound, we assume that φ(σj) ≥
−3c/a, for j = 1, . . . ,max{k, `}, so that Bj(τ) always takes the second value.
Letting τ → − c

a , we get the bound

−c/a+ |φ(σj)|
|φ(σj)|(−c/a) + 1

< − 4ac

3c2 + a2
, for φ(σj) = −3

c

a
,

obtained by noticing that for larger values of φ(σj) the left-hand function is
decreasing. Moreover,

Bj

(
− c
a

)
=

∣∣∣∣c+ φ(σj)a

φ(σj)c+ a

∣∣∣∣ < −ac , for φ(σj)→ +∞,

where Bj is instead increasing with φ(σj). Hence we get the simplified bound

C(k, `) ≤ 9c

(a+ c)2

(
− 4ac

3c2 + a2

)k−1(
− a

c

)`−1
.

Note that since a < |c|

0 < −a
c
< − 4ac

3c2 + a2
< 1.
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Therefore the decay slopes along the rows and the columns are different.
The results of Theorem 5.1 can be generalized to Sylvester linear equa-

tions, A1X +XA2 + vv∗ = 0, where A1, A2 do not necessarily have the same
dimensions, under corresponding assumptions on the field of values of the two
coefficient matrices A1, A2.

6 Numerical examples

In this section we present a number of numerical examples to illustrate our
findings. To this end we describe how we chose the parameters of the bounds
introduced in the previous sections. For the bounds in Corollary 3.2, taking
the natural logarithm of the right-hand side of (3.3) and omitting log(3) yields
the function L : (1,+∞)→ (0,+∞),

L(τ) := log(aτ + |c|) + log

(
τ

τ − 1

)
+

k−2∑
t=`

log

(
τ + |φ(σt)|
|φ(σt)|τ + 1

)
,

with limits limτ→+∞ L(τ) = +∞, limτ→1+ L(τ) = +∞ and with global mini-
mum at some τ∗. Moreover, for τ large enough L(τ) behaves like log(aτ + |c|).
Therefore any τ not too larger than τ∗ is a good choice for the bound (3.3).
Fixing ρk,` = max{|φ(σ`)|, . . . , |φ(σk−2)|}, in our experiments we used the
value of τ > 1 that minimizes

log(aτ + |c|) + log

(
τ

τ − 1

)
+ (k − 1− `) log

(
τ + ρk,`
ρk,` τ + 1

)
;

the Matlab function fminbnd was used for this purpose.
We applied a similar strategy for the bounds (4.1), (4.3) in Theorem 4.2.

In both cases, we considered a set E with W (A) ⊂ E whose boundary is the
ellipse Γ = {ψ(z) | |z| = 1}, with ψ(z) = 1

2ρ(Rz + (Rz)−1) + c. The quasi-
optimal τ was determined as

τ∗ = argminτ>1 log

(
τ

τ − 1

∣∣∣∣f (ρ2
(
Rτ +

1

Rτ

)
+ |c|

)∣∣∣∣ k−2∏
t=`

τ + |φ(σt)|
|φ(σt)|τ + 1

)
.

In addition, for the bound (4.3), we set the value of s as the first index such
that

s−1∑
j=0

|αj+k−`−1| ≥
B(k, `)

τs
,

while the coefficients in (4.2) were approximated by the Matlab function
integral with default parameters.

In our implementation, the bound (4.3) is computationally much more ex-
pensive than the bound (4.1) due to the approximation of the coefficients αj
in (4.2). We included this bound to illustrate that it is possible to obtain a
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Fig. 6.1 Example 6.1. Left: magnitude of the elements of J50. Right: magnitude of the
elements of exp(J50). Logarithmic scale is used.
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Fig. 6.2 Example 6.1. Left: values of |(J50):,2| (red “+”), Hermitian case bound in Corol-
lary 3.2 (blue circles). Right: values of |(exp(J50)):,2| (red “+”), bound in (4.1) (blue circles),
bound in (4.3) (black “×”). Logarithmic scale is used.

qualitative sharp bound with the given spectral information. Clearly, if com-
putational costs are a concern, a looser approximation to the αjs can still
provide a valuable bound. Finally, when using the bound in Theorem 5.1, we
set τ = −c/a.

In all experiments, the elements of the vector v were taken from a normally
distributed random sequence (Matlab function randn).

Example 6.1 We consider the matrix A stemming from the scaled discretiza-
tion of the 2D Laplacian, in the open unit square,

A = L⊗ I + I ⊗ L,



14 Stefano Pozza, Valeria Simoncini

0 10 20 30 40 50 60
10

-6

10
-4

10
-2

10
0

10
2

10
4

10
6

0 10 20 30 40 50 60
10

-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

Fig. 6.3 Example 6.2. Left: values of |(J60):,2| (red “+”), Hermitian case bound in Corol-
lary 3.2 (blue circles). Right: values of |((J60−100i I)−1):,2| (red “+”), bound in (4.1) (blue
circles), bound in (4.3) (black “×”). Logarithmic scale is used.

where ⊗ is the Kronecker product and L is a 40×40 tridiagonal matrix whose
main diagonal elements are equal to −2, and first upper and lower diagonals
have elements equal to 1. The matrix A is symmetric with size 1600 × 1600,
and its spectrum is contained in E = [−7.9883,−0.0117]. Following the shift
selection in [12] we computed 50 iterations of RKSM on A,v obtaining the
reduced-order matrix J50.

Figure 6.1 displays the elements magnitude in J50 (left) and that in exp(J50)
(right); logarithmic scale is used. Both plots show a decay phenomenon in the
lower triangular part of the matrix. An illustration of our bounds is reported in
Figure 6.2. In the left plot, the symbol “+” (in red) corresponds to the entries
of |(J50):.2|, while the blue circles represent the bound in Corollary 3.2 for the
Hermitian case. The right plot shows the entries of |(exp(J50)):.2| (red symbol
“+”), the blue circles reproduce the bound in (4.1) and the black symbol “×”
reports the bound in (4.3). The latter bound provides a significantly sharper
estimate of the actual decay than that based on (4.1). The maximum reached
value for s in bound (4.3) is 27.

Example 6.2 We consider the matrix flowmeter0 from the Oberwolfach
Model Reduction Benchmark Collection [26]. The matrix is symmetric, it has
size 9669×9669, and its spectrum is contained in E = [−2.0885 103,−1.3140 10−4].
After 60 iterations of RKSM on A,v the reduced-order matrix J60 is obtained.
In the analysis of dynamical systems an important role is played by the re-
solvent. In a reduced model context, and the same input and output control
locations, this corresponds to analyzing (J60−wi I)−1 with w ∈ R. The plots in
Figure 6.3 display information on the reduced resolvent matrix for w = 100.
More precisely, the left plot reports |(J60):,2| (red “+”) and the Hermitian
bound in Corollary 3.2 (blue circles). The right plot concerns |(J60−wi I)−1|:,2
(red “+”), the bound in (4.1) (blue circles) and the bound in (4.3) (black ×).
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Fig. 6.4 Example 6.3. See description of Figure 6.2. In the left plot the bound for the
non-Hermitian case in Corollary 3.2 is employed.

Once again the bound in (4.3) correctly captures the actual decay. The maxi-
mum reached value for s in bound (4.3) is 53. The strategy for optimizing the
parameter τ in both bounds (4.1) and (4.3) was analogous to the one used for
the exponential function in Example 6.1.

Example 6.3 Let A stem from the centered finite difference discretization of
the operator L(u) = −∆u+35ux+35uy, on the unit square, with homogeneous
Dirichlet boundary conditions. The matrix is non-symmetric and has size 784×
784. The left plot in Figure 6.5 reports relevant spectral information associated
with A. We computed 50 iterations of RKSM on A,v obtaining the reduced-
order matrix J50.

In both plots in Figure 6.4 the color and symbol coding is the same as
before, except that the blue circles now correspond to the bound for the non-
Hermitian case in Corollary 3.2. On the right-hand side plot, for f = exp the
bound in (4.1) (blue circles) does not perform well, whereas the bound in (4.3)
(black ×) is in good agreement with the true slope. For the bound in (4.3)
(black × in the right plot), the maximum reached value for s is 20. In all these
bounds the set E is chosen as the ellipse in Figure 6.5 delimited by the red
thick line.

Example 6.4 With the same data as in Example 6.3, we illustrate the decay
behavior for the entries of the solution Y50 to the reduced Lyapunov equation
(5.2). The right plot of Figure 6.5 displays the values |(Y50)k,`|. The plot shows
that the magnitude of the elements in Y50 exponentially decays as we move
away from the (1, 1) element. In the left plot of Figure 6.6, the values of
|(Y50):,3| (red “+”) are reported, together with the bound (5.3) (blue circles),
where the set E is delimited by the blue thin circumference in Figure 6.5.
The right plot of Figure 6.6 reports the diagonal elements of Y50 and the
corresponding bound, with similar behavior.
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Fig. 6.5 Example 6.4. Left: field of values of A (yellow area), eigenvalues of A (blue stars),
ellipse (red thick line) and circle (blue thin line) used in the bounds. Right (logarithmic
scale): |Y50|, the solution of the reduced-order Lyapunov equation (5.2).
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Fig. 6.6 Example 6.4. True values (red “+”) and related bound in (5.3) (blue circles). Left:
column |(Y50):,3|. Right: diag(|Y50|). Logarithmic scale is used.

7 Proofs

In this section we will prove Proposition 2.1 from which we will derive The-
orem 4.2, Corollary 3.2, and Theorem 5.1 by using a rational approximation
approach similar to the one in [10,25]. Note that Theorem 3.1 is derived as
a special case of Theorem 4.2. In our analysis we use the Faber-Dzhrbashyan
(FD) rational functions introduced in [13]; see also [39, Ch. XIII, section 3]
and the references therein. For FD rational approximation, it will be more
natural to consider the rational Krylov subspaces defined as
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K̃m(A, ṽ, σ̃m−1) :=span

(A−σ0I)−1 ṽ, (A−σ0I)−1(A−σ1I)−1 ṽ, . . . ,

m−1∏
j=0

(A−σjI)−1 ṽ

 ,

with σ̃m−1 = [σ0, . . . , σm−1]. Note that

K̃m(A, ṽ, σ̃m−1) = (A− σ0)−1Km(A, ṽ,σm−1).

Both rational Krylov subspaces Km and K̃m are commonly used in the liter-
ature; see, e.g., [35,19] for the former, and [11,10] for the latter. See [18] for
a discussion on both approaches. It is interesting to observe that the Arnoldi-
type recurrence associated with K̃m(A, ṽ, σ̃m−1) generates a set of orthogonal
rational functions [7].

Let {ṽ1, . . . , ṽm} be the orthonormal basis for K̃m(A, ṽ, σ̃m−1) obtained
by an Arnoldi type process. Each basis vector can be expressed by the matrix
rational function

ṽj = rj−1(A) ṽ, j = 1, . . . ,m, (7.1)

where

rj−1(x) =
pj−1(x)

(x− σ0) · · · (x− σj−1)
, j = 1, . . . ,m, (7.2)

with pj−1(x) a polynomial of degree at most j − 1. Moreover, for Ṽm =

[ṽ1, . . . , ṽm], the orthonormal projection and restriction ofA onto K̃m(A, ṽ, σ̃m−1)
is defined as

J̃m = Ṽ ∗mAṼm. (7.3)

Remark 7.1 Let the columns of Vm form the Arnoldi-based orthonormal
basis of the rational Krylov subspace Km(A,v,σm−1) defined in (2.3), with
σm−1 = [σ1, . . . , σm−1], and let Jm = V ∗mAVm. If v = (A − σ0I)−1ṽ, then

Km(A,v,σm−1) = K̃m(A, ṽ, σ̃m−1). Therefore Ṽm = Vm and J̃m = Jm.

We also remark that structural properties have already been identified for
J̃m. Indeed, for A real symmetric, and under certain conditions on the shifts,
theN×N matrixM = J̃N (I−DN J̃N )−1 is symmetric tridiagonal with positive
subdiagonals, where DN is the diagonal matrix containing the shift reciprocals
[7]. In fact, this property also holds for m < N , that is J̃m(I − DmJ̃m)−1 is

tridiagonal. This follows from Proposition 2.2, noticing that J̃m = Jm and
Dm = Ŝ−1m having chosen the first diagonal element of Ŝm to be equal to σ0.
Interestingly, the property discussed in [7] stems from a short-term recurrence
determined in [7] to generate an orthonormal basis for the rational Krylov

subspace K̃m(A, ṽ, σ̃m−1), which was later named Rational-Lanczos iteration
in [18, Alg.2].

Let E be a convex continuum, φ be the related conformal map as in (3.1),
and ψ be its inverse. Let D be the closed unit disk. For every function f
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continuous on ∂D and analytic in the interior of D the Faber transformation
is defined as

F(f)(w) =
1

2πi

∫
|z|=1

f(z)
ψ′(z)

ψ(z)− w
dz, w ∈ G,

with G the interior of E; see, e.g., [15, Ch.I, sec. 6], [16], and [17]. Let us set
the points θ0, θ1, . . . , with |θj | > 1 in the complex plane, and let us define the
Takenaka-Malmquist system of functions

ϕ0(z) =

√
|θ0|2 − 1

θ0 − z
,

ϕj(z) =

√
|θj |2 − 1

θj − z

j−1∏
k=0

1− θkz
θk − z

θk
|θk|

, j = 1, 2, . . . ;

see [40,30], [41, sec.9.1], and [39, Ch.13,sec.3]. As noticed, e.g., in [10,25], the
Faber-Dzhrbashyan rational functions M0,M1, . . . can be defined as the Faber
transformation of a Takenaka-Malmquist system, i.e.,

Mj(w) = F(ϕj)(w), w ∈ G, j = 0, 1, 2, . . . .

The Faber transformation maps every rational function r to a rational function
with numerator and denominator of the same degrees of the original function
r and whose poles are the image of the original poles by ψ (see, e.g., [15,
pp. 49–50]). Therefore

Mj(w) =
qj(w)

(w − σ0) · · · (w − σj)
, (7.4)

with σt = ψ(θt), and qj(w) a polynomial of degree at most j.
Consider the modified Faber operator F+ defined as

F+(g)(w) := F(g)(w) + g(0).

If the matrix A satisfies W (A) ⊂ E, for every g analytic in the interior of D
and continuous on ∂D we get

‖F+(g)(A)‖ ≤ 2 sup
z∈D
|g(z)|,

as explicitly proved by Beckermann and Reichel in [2, Theorem 2.1]1. Since
Mj(A) = F+(ϕj)(A) − ϕj(0), we can now bound the matrix FD rational
functions by

‖Mj(A)‖ ≤ 2

(
sup
z∈D
|ϕj(z)|

)
+ |ϕj(0)| ≤ 3, j = 0, 1, . . . . (7.5)

1 As remarked in [2], the bound ‖F+‖ ≤ 2 was implicitly given in [27]; moreover, the
same bound stands for the operator F−(g)(w) := F(g)(w)− g(0) and can be obtained, e.g.,
modifying the proof of Theorem 2 in [15, p. 49].
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Under the assumption that

∞∑
j=0

1− |θj |−1 =∞, (7.6)

FD rational functions satisfy the relation

ψ′(z)

ψ(z)− w
=

1

z

∞∑
j=0

ϕj

(
1

z̄

)
Mj(w), w ∈ G, |z| > 1; (7.7)

see [14] and [39, p. 259].

Lemma 7.2 Given the points θ0, . . . , θj, with |θ∗| = min{|θ0|, . . . , |θj |} > 1,
then for τ ≥ 1 it holds

max
|z|=τ

∣∣∣∣ϕj (1

z

)∣∣∣∣ ≤
√
|θj |+ 1

|θj | − 1

j−1∏
t=0

τ + |θt|
|θt|τ + 1

, (7.8)

≤

√
|θ∗|+ 1

|θ∗| − 1

(
τ + |θ∗|
|θ∗|τ + 1

)j
. (7.9)

Proof First notice that for t ∈ {0, . . . , j − 1} and τ ≥ 1 it holds

max
|z|=τ

∣∣∣∣ z − θtθtz − 1

∣∣∣∣ =
τ + |θt|
|θt|τ + 1

. (7.10)

Indeed, consider the polar coordinates z = τ exp(iα), θt = ρ exp(iβ), with
τ, ρ > 1. Then∣∣∣∣ z − θtθ̄tz − 1

∣∣∣∣2 =

∣∣∣∣exp(iβ)
τ exp(i(α− β))− ρ
τρ exp(i(α− β))− 1

∣∣∣∣2 =
τ2 + ρ2 − 2τρ cos(α− β)

τ2ρ2 + 1− 2τρ cos(α− β)
=: R(α).

The derivative of R(α) is

R′(α) =
2τρ sin(α− β)(ρ2 − 1)(τ2 − 1)

(τ2ρ2 + 1− 2τρ cos(α− β))2
.

Therefore R′(α) is nonnegative for α ∈ [β, β + π] and negative for α ∈ (β +
π, β+2π). Hence its maximum is reached at α = β+π, giving (7.10). Equation
(7.10) gives

max
|z|=τ

∣∣∣∣ϕj (1

z

)∣∣∣∣ ≤ τ
√
|θj |2 − 1

|θj |τ − 1

j−1∏
t=0

τ + |θt|
|θt|τ + 1

.

The bound in (7.8) is proved observing that

τ
√
|θj |2 − 1

|θj |τ − 1
≤
√
|θj |2 − 1

|θj | − 1/τ
≤
√
|θj |2 − 1

|θj | − 1
=

√
|θj |+ 1

|θj | − 1
.

Since τ > 1, (τ + |θ|)/(|θ|τ + 1) is decreasing for |θ| > 1. Hence, we get (7.9)
concluding the proof.
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Note that (τ + |θ|)/(|θ|τ + 1) < 1 for every τ, |θ| > 1. Moreover, the bound
(7.5) implies |Mj(w)| ≤ 3 for w ∈ G. Hence by (7.9) the series in (7.7) is
uniformly convergent. In our framework, the assumptions (7.6) and |θ∗| > 1
are not restrictive. Indeed, our analysis considers only finite sequences of poles
θ0, . . . , θm−1 which can be completed by suitable nodes θm, θm+1, . . . .

Let E be a convex compact set with interior G. By the Definition 4.1 and
by (7.7) for every matrix A with W (A) ⊂ G it holds

ψ′(z)(ψ(z)I −A)−1 =
1

z

∞∑
j=0

ϕj

(
1

z̄

)
Mj(A), |z| > 1, (7.11)

which is also uniformly convergent. For τ > 1, define the set Eτ = E ∪ {w ∈
C \ E : |φ(w)| ≤ τ} with boundary Γτ and assume f analytic in Eτ , then

f(A) =
1

2πi

∫
Γτ

f(η)(ηI −A)−1 dη =
1

2πi

∫
|z|=τ

f(ψ(z))ψ′(z)(ψ(z)I −A)−1 dz

=
1

2πi

∞∑
j=0

Mj(A)

∫
|z|=τ

f(ψ(z))

z
ϕj

(
1

z̄

)
dz,

yielding the matrix function expansion

f(A) =

∞∑
j=0

αjMj(A), αj =
1

2πi

∫
|z|=τ

f(ψ(z))

z
ϕj

(
1

z̄

)
dz. (7.12)

7.1 Proof of Proposition 2.1

Let ṽ be such that v = (A − σ0I)−1ṽ. We first prove Proposition 2.1 for the

matrix J̃m in (7.3). By (7.1) we get

s
(t)
j (A) ṽ` = s

(t)
j (A) r`−1(A) ṽ. (7.13)

Since ` ≤ t, by Lemma 3.1 in [11] it holds

s
(t)
j (A)ṽ` = Ṽm s

(t)
j (J̃m) r`−1(J̃m)Ṽ ∗m ṽ, j ≤ m− t.

Combining Lemma 3.1 in [11] and (7.1) gives

r`−1(J̃m)Ṽ ∗m ṽ = Ṽ ∗mr`−1(A) ṽ = Ṽ ∗m ṽ` = e`.

Therefore we obtain

ṽ∗k s
(t)
j (A) ṽ` = eTk s

(t)
j (J̃m) e`.

By (7.13), s
(t)
j (A)ṽ` is in K̃j+t(A, ṽ), while ṽk ⊥ K̃j+t(A, ṽ) for k ≥ j + t+ 1.

This orthogonality allows us to conclude, as

0 = ṽ∗k s
(t)
j (A) ṽ` = eTk s

(t)
j (J̃m) e`, j ≤ k − t− 1. (7.14)

Finally, for our choice of ṽ, Remark 7.1 ensures that J̃m = Jm.
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7.2 Proof of Theorem 4.2

For fixed values of the indexes k, ` with k − `− 2 ≥ 0, let {M (k,`)
j (w)}j=0,1,...

be the sequence of FD rational functions defined by φ and by the sequence of
parameters

θj = φ(σj+`), for j = 0, . . . , k−`−2, and θj = +∞, for j ≥ k−`−1.

Then

M
(k,`)
j (w) =

qj(w)

(w − σ`) · · · (w − σ`+j)
, j = 0, . . . , k − `− 2, (7.15)

with qj(w) a polynomial of degree at most j. Let ṽ be such that v = (A −
σ0I)−1ṽ. Once again, with this choice of ṽ and using Remark 7.1, it holds that

Jm = J̃m so that we can prove the result for J̃m.

Similarly to (7.12), we have the expansion f(J̃m) =
∑∞
j=0 αjM

(k,`)
j (J̃m),

which combined with Proposition 2.1 gives2

f(J̃m)k,` =

+∞∑
j=0

αj e
T
k M

(k,`)
j (J̃m) e` =

+∞∑
j=k−`−1

αj e
T
k M

(k,`)
j (J̃m) e`.

Since W (J̃m) ⊆W (A) ⊂ E, the bound (7.5) gives∣∣∣f(J̃m)k,`

∣∣∣ ≤ ‖ek‖ ‖e`‖ +∞∑
j=k−`−1

|αj |‖M (k,`)
j (J̃m)‖ ≤ 3

+∞∑
j=k−`−1

|αj |.

Since f is analytic in Eτ for τ > 1, the coefficients αj are given as in (7.12)
and are bounded by

|αj | ≤
1

2π

∣∣∣∣∣
∫
|z|=τ

f(ψ(z))

z
ϕj

(
1

z

)
dz

∣∣∣∣∣ ≤ max
|z|=τ

|f(ψ(z))|max
|z|=τ

∣∣∣∣ϕj (1

z

)∣∣∣∣ .
For t ≥ k − `− 1 we have θt = +∞ and hence√

|θt|+ 1

|θt| − 1
= 1, and

τ + |θt|
|θt|τ + 1

=
1

τ
.

Hence by (7.8) we get∣∣∣f(J̃m)k,`

∣∣∣ ≤ 3

+∞∑
j=k−`−1

|αj | ≤ 3 max
|z|=τ

|f(ψ(z))|
+∞∑

j=k−`−1

√
|θj |+ 1

|θj | − 1

j−1∏
t=0

τ + |θt|
|θt|τ + 1

≤ 3 max
|z|=τ

|f(ψ(z))|
k−`−2∏
t=0

τ + |θt|
|θt|τ + 1

+∞∑
j=0

(
1

τ

)j

≤ 3
τ

τ − 1
max
|z|=τ

|f(ψ(z))|
k−`−2∏
t=0

τ + |θt|
|θt|τ + 1

. (7.16)

2 Note that in section 7.1 we proved that Proposition 2.1 holds also for J̃m.
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We recall that θt = φ(σt+`) for t = 0, . . . , k− `− 2. Hence we can redefine the
index t in the product to go from ` to k− 2, thus establishing the first bound.

The refined bound in (4.3) is obtained as follows.∣∣∣f(J̃m)k,`

∣∣∣ ≤ 3

k−`+s−2∑
j=k−`−1

|αj |+ 3

+∞∑
j=k−`+s−1

|αj |

≤ 3

k−`+s−2∑
j=k−`−1

|αj |+ 3 max
|z|=τ

|f(ψ(z))|
k−`−2∏
t=0

τ + |θt|
|θt|τ + 1

+∞∑
j=0

(
1

τ

)j+s

≤ 3

k−`+s−2∑
j=k−`−1

|αj |+
B(k, `)

τs
.

Redefining j in the summation to start from zero, the refined bound follows.

7.3 Proof of Corollary 3.2

We consider a compact set E containing (c− a, c+ a) whose boundary is the
ellipse with center c, semi-minor axis r, and distance between the foci and
the center ρ =

√
a2 − r2. Setting R = (a + r)/ρ, we can associate to E the

conformal map

φ(w) =
w − c+

√
(w − c)2 − ρ2
ρR

, (7.17)

with inverse

ψ(z) =
ρ

2

(
Rz +

1

Rz

)
+ c. (7.18)

see, e.g., [39, Ch.II, Ex.3]. Notice that for every τ > 1 and r = 0 we get

max
|z|≤τ

|(ψ(z))| ≤ a

2
(τ + 1) + |c| ≤ aτ + |c|.

The proof is concluded using Theorem 3.1, and letting r → 0 in the Hermitian
case.

7.4 Proof of Theorem 5.1

Let φ(w) = (w − c)/a be the conformal map for E, and ψ be its inverse. The

solution Ỹm of the Lyapunov equation

J̃mỸm + ỸmJ̃
∗
m + e1e

T
1 = 0, (7.19)

can be represented as

Ỹm =
1

2π

∫
Γτ

(wI − J̃m)−1e1 e
T
1 (wI + J̃∗m)−1 dw, (7.20)
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where Γτ = {ψ(z) : |z| = τ} ⊂ C−; see, e.g., [29, Eq. (26)], [25]. Consider

a family of sequences of FD rational functions M
(j)
t (w) = F(ϕ

(j)
t )(w), s ≥ 0,

w ∈ G (the interior of E), defined by φ and by the sequence of parameters3

θ(j)s = φ(σs+1), for s = 0, . . . , j − 3, and θ(j)s = +∞, for s ≥ j − 2.
(7.21)

From (7.11) (see also (3.7) and (3.8) in [25]) we get

ψ′(φ(w))(wI − J̃m)−1 =

∞∑
s=0

1

φ(w)
ϕ
(k)
s

(
1

φ(w)

)
M (k)
s (J̃m), w /∈ E,

ψ′(φ(−w))(−wI − J̃∗m)−1 =

∞∑
t=0

1

φ(−w)
ϕ
(`)
t

(
1

φ(−w)

)
M

(`)
t (J̃∗m), w /∈ −E.

Hence (
Ỹm

)
k,`

=

∞∑
s=0

∞∑
t=0

αs,t

(
M (k)
s (J̃m)

)
k,1

(
M

(`)
t (J̃∗m)

)
1,`
,

with, using the change of variable z = φ(w),

αs,t =
1

2π

∫
Γτ

1

φ(w)ψ′(φ(w))
ϕ
(k)
s

(
1

φ(w)

)
1

φ(−w)ψ′(φ(−w))
ϕ
(`)
t

(
1

φ(−w)

)
dw

=
1

2π

∫
|z|=τ

1

z
ϕ
(k)
s

(
1

z

)
1

φ(−ψ(z))ψ′(φ(−ψ(z)))
ϕ
(`)
t

(
1

φ(−ψ(z))

)
dz;

cf. (3.11) and (3.12) in [25]. Then Proposition 2.1 and (7.5) give∣∣∣∣(Ỹm)
k,`

∣∣∣∣ ≤ 9

∞∑
s=k−2

∞∑
t=`−2

|αs,t|. (7.22)

We notice that for our choice of φ it holds that 1

φ(−ψ(z))
= −a/(za+ 2c).

For t ≥ `− 2 and |z| = τ , we substitute this quantity into the definition of the
ϕt’s and we recall (7.21), yielding∣∣∣∣∣ϕ(`)

t

(
1

φ(−ψ(z))

)∣∣∣∣∣ ≤
∣∣∣∣ a

az + 2c

∣∣∣∣t−`+2 `−3∏
j=0

∣∣∣∣∣ az + θ
(`)
j a+ 2c

θ
(`)
j (az + 2c) + a

∣∣∣∣∣ .
Since θ

(`)
j ∈ R, it holds that for z = τ exp(iα), α ∈ [0, 2π],∣∣∣∣∣ az + θ

(`)
j a+ 2c

θ
(`)
j (az + 2c) + a

∣∣∣∣∣ ≤ max
z∈{τ,−τ}

∣∣∣∣∣ az + θ
(`)
j a+ 2c

θ
(`)
j (az + 2c) + a

∣∣∣∣∣ =: B
(`)
j (τ). (7.23)

3 The index j = 3, 4, . . . parametrizes the family of sequences of FD rational functions

{M(j)
t }t=0, .... All sequences in such family share the initial (finite) shifts φ(σs+1) up to j−3.

This means that given the indexes i < j, it holds that M
(i)
t = M

(j)
t for t = 0, . . . , i− 3.
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Indeed, for z = τ exp(iα), α ∈ [0, 2π], consider the general rational function

χ(α) :=

∣∣∣∣a1τ exp(iα) + a2
b1τ exp(iα) + b2

∣∣∣∣2 =
a21τ

2 + a22 + 2a1a2τ cos(α)

b21τ
2 + b22 + 2b1b2τ cos(α)

,

with a1, a2, b1, b2 ∈ R collecting all other real terms. Then its derivative is

χ′(α) =
2τ sin(α)(a21b1b2τ

2 + a22b1b2 − a1a2b21τ2 − a1a2b22)

(b21τ
2 + b22 + 2b1b2τ cos(α))2

.

Hence the critical points of χ(α) are α = 0, π, and χ(α) ≤ max{χ(0), χ(π)}
from which the bound (7.23) follows.

Using (7.8) and assuming s ≥ k − 2, t ≥ `− 2, we get

|αs,t| ≤
∣∣∣∣ 1

aτ + 2c

∣∣∣∣ k−3∏
j=0

τ + |θ(k)j |

|θ(k)j |τ + 1

(
1

τ

)s−k+2 `−3∏
j=0

B
(`)
j (τ)

∣∣∣∣ a

aτ + 2c

∣∣∣∣t−`+2

.

Inequality (7.22) then gives∣∣∣∣(Ỹm)
k,`

∣∣∣∣ ≤ ∣∣∣∣ 9

aτ + 2c

∣∣∣∣ k−3∏
j=0

τ + |θ(k)j |

|θ(k)j |τ + 1

`−3∏
j=0

B
(`)
j (τ)

∞∑
s=0

(
1

τ

)s ∞∑
t=0

∣∣∣∣ a

aτ + 2c

∣∣∣∣t

≤
∣∣∣∣ 9

aτ + 2c

∣∣∣∣ τ

τ − 1

|aτ + 2c|
|aτ + 2c| − a

k−3∏
j=0

τ + |θ(k)j |

|θ(k)j |τ + 1

`−3∏
j=0

B
(`)
j (τ).

To conclude, we need to show that the same result holds for Ym. Let ṽ be such
that v = (A − σ0I)−1ṽ. From Remark 7.1, it holds that J̃m = Jm, so that

Ỹm = Ym for the solution uniqueness of the Lyapunov equation.

8 Conclusion

The (classical) Arnoldi method produces an orthonormal basis Un for the
Krylov subspace Pm(A,v) = span{v, Av, . . . , Am−1v}. In this framework, the
matrix Tm = U∗mAUm is an upper-Hessenberg matrix (tridiagonal for A Her-
mitian). In the rational case, Vm is the orthonormal basis for the rational
Krylov subspace Km(A,v, σ) obtained by RKSM. By Theorem 3.1, the ma-
trix Jm = V ∗mAVm has a decay in the values of its elements away from the first
sub-diagonal, i.e., exactly where the elements of Tm would be zero. Moreover,
the proof in section 7 shows that the decay property of Jm is related to the
fact that rational functions of Jm in the rational Krylov subspace can be pro-
jected back to subspaces of Km(A,v,σm−1), thus ensuring orthogonality with
respect to later basis vectors. This property is a generalization of the orthog-
onality property behind the sparsity pattern of Tm. This hidden structure has
allowed us to prove decay properties for f(Jm) which are typical of banded
matrices, without Jm being banded.
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1987. Translated from the German by Renate McLaughlin.

16. , The Faber operator and its boundedness, J. Approx. Theory, 101 (1999), pp. 265–
277.

17. T. Ganelius, Degree of rational approximation, in Lectures on approximation and value
distribution, vol. 79 of Sém. Math. Sup., Presses Univ. Montréal, Montreal, Que., 1982,
pp. 9–78.
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