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Abstract. We study systems of nonlinear partial differential equations of parabolic type,

in which the elliptic operator is replaced by the first order divergence operator acting on a
flux function, which is related to the spatial gradient of the unknown through an additional

implicit equation. This setting, broad enough in terms of applications, significantly expands

the paradigm of nonlinear parabolic problems. Formulating four conditions concerning the
form of the implicit equation, we first show that these conditions describe a maximal monotone

p-coercive graph. We then establish the global-in-time and large-data existence of (weak)

solution and its uniqueness. Towards this goal, we adopt and significantly generalize the
Minty method of monotone mappings. A unified theory, containing several novel tools, is

developed in a way to be tractable numerically.

1. Introduction

An initial and boundary value problem for a scalar linear parabolic equation is usually for-
mulated in the following way:

(1.1)

For any given Ω ⊂ Rd, T > 0, u0 : Ω→ R, uD : ΣD → R,
f : Q→ R, g : ΣN → R, find a function u : Q→ R satisfying1

∂tu−∆u = f in Q,

u = uD on ΣD,

∇u · n = g on ΣN ,

u(0, ·) = u0 in Ω.

Here, Ω ⊂ Rd, d ≥ 2, is supposed to be an open, bounded, connected set with a Lipschitz
boundary ∂Ω consisting of two mutually disjoint parts ΓD and ΓN so that ΓD ∪ ΓN = ∂Ω.
Furthermore, n : ∂Ω → Rd is the outer unit normal, Q := (0, T ) × Ω, ΣD := (0, T ) × ΓD, and
ΣN := (0, T ) × ΓN . The set Ω having the above properties will be called Lipschitz domain in
what follows.
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The problem (1.1) can be equivalently rewritten into the form:

(1.2)

To find, for any data given in (1.1), a couple of functions (u, j) : Q→ R× Rd satisfying

∂tu− div j = f in Q,

j = ∇u in Q,

u = uD on ΣD,

j · n = g on ΣN ,

u(0, ·) = u0 in Ω.

The mixed formulation (1.2) has several advantages: it frequently reflects how the problem
is generated (as the first equation in (1.2) is in the form of balance equation and the second
equation is the simplest example of the constitutive equations describing how the flux j and ∇u
are related); it is focused simultaneously on the quantities of interest, i.e., on u and the flux j;
and it also serves as the starting point of numerical methods that are different from those
designed for (1.1).

The a priori information associated with (1.2), the so-called energy (in)equality, provides a
natural functional setting in which a robust mathematical theory should be developed. Taking
for simplicity uD = 0, the energy equality associated with (1.2) takes the form

1

2
‖u(t)‖22 +

∫ t

0

∫
Ω

j · ∇udx dt =

∫ t

0

∫
Ω

fudxdt+

∫ t

0

∫
ΓN

gudS dt+
1

2
‖u0‖22.

Using j = ∇u twice, one observes that j · ∇u = |j|2
2 + |∇u|2

2 , hence the energy equality leads to

(1.3) ‖u(t)‖22 +

∫ t

0

‖j‖22 dt+

∫ t

0

‖∇u‖22 dt = 2

∫ t

0

∫
Ω

fudx dt+ 2

∫ t

0

∫
ΓN

gudS dt+ ‖u0‖22.

It is well known that in the setting dictated by (1.3), the problem (1.1), as well as (1.2), are
well-posed. For example, the following theorem can be found in [18, Theorem 10.1, page 616],
see also [22, Chapter 2] for the elliptic version:

Theorem 1.1. Let Ω ⊂ Rd be a Lipschitz domain and T > 0. Furthermore, assume that
u0 ∈ L2(Ω), uD ∈ W 1,2(0, T ; (W 1,2

ΓD
(Ω))∗) ∩ L2(0, T ;W 1,2(Ω)), f ∈ L2(0, T ; (W 1,2(Ω))∗) and

g ∈ L2(0, T ; (W
1
2 ,2(∂Ω))∗). Then there exists a unique u : Q→ R fulfilling2

u ∈ L2(0, T ;W 1,2(Ω)) ∩ C([0, T ];L2(Ω)),

∂tu ∈ L2(0, T ; (W 1,2
ΓD

(Ω)∗))

such that u = uD on ΣD and for a.a. t ∈ (0, T ) there holds:

(1.4a) 〈∂tu, ϕ〉W 1,2
ΓD

(Ω) +

∫
Ω

∇u · ∇ϕ dx = 〈f, ϕ〉W 1,2
ΓD

(Ω) for all ϕ ∈W 1,2
ΓD

(Ω).

The initial condition is attained in the strong sense, i.e.,

(1.4b) lim
t→0+

‖u(t)− u0‖L2(Ω) = 0.

The aim of this study is to present a robust and possibly elegant mathematical theory for
a class of problems similar to (1.2), with one remarkable difference, namely, the linear relation
between the flux j and ∇u is replaced by an implicit constitutive equation

(1.5) g(j,∇u) = 0 in Q,

where g : Rd × Rd → Rd is a given continuous (nonlinear) function. The key examples we have
in mind and will be covered by the theory presented below are listed in Table 1.

2Here, W 1,2
ΓD

(Ω) is the standard Sobolev space consisting of functions vanishing on ΓD.
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j = k(∇u) ∇u = k(j)

j = |∇u|p−2∇u ∇u = |j|p′−2j

j = (1 + |∇u|)p−2∇u ∇u = (1 + |j|)p′−2j

j = (1 + |∇u|2)
p−2

2 ∇u ∇u = (1 + |j|2)
p′−2

2 j

j = (|∇u| − δ∗)+ ∇u
|∇u| ∇u = (|j| − σ∗)+ j

|j|

Table 1. The implicit relation (1.5) contains two classes of explicit relations
(the left and the right column) that include various power-law relations as
well as the problems with activations (jumps and degeneracies). Regarding the
parameters, p ∈ (1,+∞), p′ = p/(p − 1), and δ∗, σ∗ > 0. The structure of
these relations is motivated by the classification of incompressible fluid models
presented recently in [3].

Examples that belong to the class (1.5) and are covered by the theory presented below, but
cannot be included into any column in Table 1, are sketched in Figure 1. These are simple
examples underlying the full strength of the implicit constitutive theory.

Figure 1. The drawing at left represents a relation that can remind the step
function both from j and ∇u viewpoint. Note that one can obtain this drawing
by considering the

√
2-periodic zig-zag function with the magnitude

√
2/2 ro-

tated by 45 degrees in (j,∇u)-plane. The drawing at right represents a relation
characterized by one simple step followed by the linear relation j = ∇u. Both
curves are continuous, none of then can be written in the form j = k(∇u) or
k = k(∇u).

Note that Table 1 includes relations that lead to standard p-Laplace operator div(|∇u|p−2∇u)

and their variants div((1+ |∇u|2)
p−2

2 ∇u) or div((1+ |∇u|)p−2∇u), however, it also contains less
investigated forms, namely

div j with ∇u = (1 + |j|2)
p′−2

2 j.
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It also covers degenerate operators of type div((|∇u| − δ∗)+ ∇u
|∇u| ) as well as the “multivalued”

relations of the type

div j with ∇u = (|j| − σ∗)+ j

|j|
,

which are more frequently written in the form

|j| ≤ σ∗ ⇐⇒ ∇u = 0,

|j| > σ∗ ⇐⇒ j = σ∗
∇u
|∇u|

+∇u.

In the theory developed in this work we show that the implicit relation (1.5) is fulfilled almost
everywhere (i.e., point-wise) in Q provided that g fulfills the following conditions:

(g1) g is Lipschitz continuous3, i.e., g ∈ C0,1(Rd × Rd)d and g(0,0) = 0,
(g2) for almost all (j,d) ∈ Rd × Rd:

gj(j,d) ≥ 0, gd(j,d) ≤ 0, gj(j,d)− gd(j,d) > 0 and gd(j,d)(gj(j,d))T ≤ 0,

(g3) one of the following conditions holds:

either ∀d ∈ Rd lim inf
|j|→+∞

g(j,d) · j > 0 or ∀j ∈ Rd lim sup
|d|→+∞

g(j,d) · d < 0,

(g4) for an arbitrary but fix p ∈ (1,∞) there exist c1, c2 > 0 such that for all (j,d) ∈ Rd×Rd
fulfilling g(j,d) = 0 the following condition holds:

j · d ≥ c1(|j|p
′
+ |d|p)− c2. (p′ := p/(p− 1))

In (g1)–(g4), we used the following notation. The mappings gj , gd : Rd×Rd → Rd×d are defined
via

gj(j,d) :=
∂g(j,d)

∂j
and gd(j,d) :=

∂g(j,d)

∂d
,

which written component-wise means (here, g = (g1, . . . , gd), j = (j1, . . . , jd), and d = (d1, . . . , dd))

(gj)ab :=
∂ga(j,d)

∂jb
and (gd)ab :=

∂ga(j,d)

∂db
.

Further, (gd)T denotes the transposed matrix to gd and gj(j,d)(gd(j,d))T is the standard

matrix multiplication. Also, for any matrix A ∈ Rd×d, the expression A ≥ 0 means that for any
x ∈ Rd there holds

Ax · x ≥ 0 (which written in components is
d∑

i,j=1

Aijxixj ≥ 0).

In addition, if we write A > 0 then it means that the above inequality is strict for all x 6= 0.
Also, since we can replace g by −g, it is clear that all inequalities in (g2) and (g3) can be
equivalently formulated with the opposite sign except the last inequality in (g2).

The assumptions (g1)–(g4) are fulfilled by all constitutive equations listed in Table 1. As the
assumptions (g1)–(g4) might not seem intuitive at the first sight, for reader’s convenience, we
show the validity of (g1)–(g4) for few selected constitutive equations listed above in Appendix A.
Defining α := {(j,d) ∈ Rd×Rd : g(j,d) = 0}, we will also show (see Section 3, Lemma 3.4 and

3Lipschitz continuity is required in order to guarantee the existence of derivatives, which are used in (g2). It
would be possible to require merely continuity of g and replace (g2) by the condition:

(g2)∗ for any (j1,d1), (j2,d2) ∈ Rd × Rd satisfying g(ji,di) = 0, i = 1, 2, the following condition holds:

(j1 − j2) · (d1 − d2) ≥ 0.

However, in the setting of implicit equations of the form (1.5), it seems easier to check (g2) than to prove that
(g2)∗ holds, unless the considered constitutive equation belongs to one of explicit classes given in Table 1.
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Lemma 3.3) that α is a maximal monotone p-coercive graph (see Section 3 for definitions). More
precisely, the assumption (g2) implies that α is monotone and then (g3) in combination with
continuity of g guarantees that α is maximal monotone. We prefer to start with the assumptions
(g1)–(g4) as they can be verified directly from a given form of g and this verification is easier
than showing that corresponding α is a maximal monotone p-coercive graph.

As said above, we aim to develop a robust (i.e., large data) theory for parabolic problems
with implicit relations between j and ∇u of the form (1.5) assuming that g fulfills (g1)–(g4).
Since the tools we are using are not restricted to scalar problems, we develop the theory for
general systems. Thus, instead of considering a vector valued g, we impose our assumption on
its tensorial analogue G. Hence, we assume that for some p ∈ (1,∞) and N ∈ N, the function G
and its derivatives GJ and GD, defined in analogous way as gj and gd, fulfill

(G1) G ∈ C0,1(Rd×N × Rd×N )d×N and G(0,0) = 0,
(G2) for almost all (J ,D) ∈ Rd×N × Rd×N :

GJ (J ,D) ≥ 0, GD(J ,D) ≤ 0, GJ (J ,D)−GD(J ,D) > 0,

and GD(J ,D)(GJ (J ,D))T ≤ 0

(G3) one of the following holds:

either ∀D ∈ Rd×N lim inf
|J|→+∞

G(J ,D) : J > 0

or ∀J ∈ Rd×N lim sup
|D|→+∞

G(J ,D) : D < 0,

(G4) there exist c1, c2 > 0 such that for all (J ,D) ∈ Rd×N ×Rd×N fulfilling G(J ,D) = 0 we
have

J : D ≥ c1(|J |p
′
+ |D|p)− c2.

Recall that the constitutive equation G(J ,D) = 0 can be replaced by −G(J ,D) = 0. Then all
inequalities in (G2) and (G3) have the opposite signs except the last inequality in (G2). This
ambiguity could be fixed for example by requiring that G is such that the first condition in (G2)
holds.

For simplicity, in what follows, we restrict ourselves to homogeneous boundary data, and
then the vector-valued analogue of (1.1) reads as follows:

(1.6)

For any given Ω ⊂ Rd, T > 0,u0 : Ω→ RN ,f : Q→ RN and

G : Rd×N × Rd×N → Rd×N satisfying (G1)–(G4),

find a couple u : Q→ RN and J : Q→ Rd×N solving the problem

∂tu− divJ = f in Q,

G(J ,∇u) = 0 in Q,

u = 0 on ΣD,

Jn = 0 on ΣN ,

u(0, ·) = u0 in Ω.

Considering a system of equations is of real importance. Indeed, all models depicted in Table 1
are of the so-called diagonal form. However, in many real applications, one has to deal with
systems of equations that contain the non-diagonal terms in order to describe observed physical
effects. The Maxwell–Stefan systems may serve as prototypic examples. The Maxwell–Stefan
system describes the diffusive transport of multicomponent mixtures (see for example [14], [4],
[16]; regarding the notation we follow [16]), where the governing equations for the concentrations
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uν : (0, T )× Ω→ R, 0 ≤ uν ≤ 1, take, for ν = 1, . . . , N , N ≥ 2, the form

∂tuν − div jν = rν(u),(1.7)

∇uν =

N∑
µ=1,µ6=ν

αµν
(
cµjν − cνjµ

)
.(1.8)

Here, the constants ανµ are all positive for ν 6= µ and u := (u1, . . . , uN ). Denoting dν := ∇uν ,
D := (d1, . . . ,dN )T and J := (j1, . . . , jN )T , the equations (1.8) can be written in the form

D = B(u)J ,(1.9)

where B is N ×N -matrix. It is shown in Appendix B, that G : RN×d × RN×d defined through

G(J ,D) = B(u)J −D
fulfill the conditions (G1)–(G3). Of course, since the matrix B and the right-hand side of the
first set of equations in (1.7) depend on the unknown u, the theory developed below cannot
be applied to (1.7) and the existence analysis of relevant initial- and boundary-value problems
must be done in a more delicate way, for which we refer to the above studies [4] and [16].
A thermodynamical basis for diffusive transport of multicomponent mixtures that go beyond
Maxwell-Stefan systems (1.9) and are more appropriate for realistic description of mixtures and
that belong into the class of fully implicit relations is developed in a recent study [5].

We conclude this introductory section by formulating freely the main result of this study:

For any Ω ⊂ Rd, T > 0,u0,f , p ∈ (1,∞) and G satisfying (G1)–(G4),

there is (u,J) solving (1.6).

The structure of the remaining parts of the paper is the following. In Section 2 we provide
the precise formulation of our main result and summarize its novelties. We also formulate anal-
ogous result for the boundary-value problem in the elliptic (i.e., time-independent) case. Then,
in Section 3, we recall the concept of the maximal monotone p-coercive graph and establish
its connection to implicit constitutive equation G(J ,D) = 0. In particular, we show that the
assumptions (G1)–(G4) imply that the null points of G form a maximal monotone p-coercive
graph. In Section 4, we construct the appropriate approximating 2-coercive graphs, parameter-
ized by ε, that are shown to be Lipschitz continuous and uniformly monotone mappings. This
construction is made very explicitly by using an algebraic structure of monotone graphs. We
then investigate the convergence properties between the maximal monotone p-coercive graphs
and their approximations and we also add a few additional results useful on its own to this sec-
tion. Then, in Section 5, we prove the main theorem using the approximation of the null points
of G by the Lipschitz continuous and uniformly monotone single-valued mappings constructed
and analyzed in the previous section and letting the approximation parameter ε tend to zero.
The standard theory regarding the well-posedness of the approximate problems, based on the
classical Minty method [23], is, for the sake of completeness, proved in Appendix C. As indicated
above, in the Appendices A and B, we focus on several constitutive equations that belong to
the class G(J ,D) = 0 and verify that they fulfill the structural assumptions (G1)–(G4).

2. Main result

Before we state the main result of the paper, we fix some notation. We recall that throughout
the whole paper Ω ⊂ Rd is a Lipschitz domain (with two mutually non-intersecting essential
parts ΓD and ΓN of the boundary ∂Ω), as defined in Section 1 after (1.1). For t ∈ (0, T ], we
denote Qt := [0, t)× Ω and we also set Q := QT . The shortcut a.a. t stands for almost all t.

We employ small boldfaced letters to denote vectors and bold capitals for tensors. We do not
relabel the original sequence when selecting a subsequence. The symbols j · d and J : D stand
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for the scalar product of vectors j and d or tensors J and D, respectively. In a time-space
domain, the standard differential operators, like gradient (∇) and divergence (div), are always
related to the spatial variables only. Also, we use standard notation for partial (∂·) and total
( dd· ) derivatives. Generic constants, that depend just on data, are denoted by C and may vary
on every line.

For a Banach space X, its dual is denoted by X∗. For x ∈ X and x∗ ∈ X∗, the duality is
denoted by 〈x∗, x〉X . For p ∈ [1,∞], we denote (Lp(Ω), ‖·‖Lp(Ω)) and (W 1,p(Ω), ‖·‖W 1,p(Ω)) the
corresponding Lebesgue and Sobolev spaces with the norms defined in standard way,

‖f‖Lp(Ω) :=

{(∫
Ω
|f |p dx

) 1
p if p ∈ [1,∞),

ess supx∈Ω |f(x)| if p =∞,
‖f‖W 1,p(Ω) := ‖f‖Lp(Ω) + ‖∇f‖Lp(Ω).

Bochner space is designated by Lp(0, T ;X) and we set

C([0, T ];X) := {f ∈ L∞(0, T ;X); [0, T ] 3 tn → t =⇒ f(tn)→ f(t) strongly in X}.

We use the notation Lp(Ω;RN ) and Lp(Ω;Rd×N ) for Lebesgue spaces of vector- or matrix-valued
functions, respectively.

Next, we define the function spaces related to our setting. We set

(2.1)

Vp := {u;u ∈W 1,p(Ω;RN ) ∩ L2(Ω;RN ), u = 0 on ΓD},
H := L2(Ω;RN ),

V ∗p := (Vp)
∗,

and equip the space Vp by the norm4 ‖u‖Vp := ‖∇u‖Lp(Ω) + ‖u‖L2(Ω). Then for any p ∈ (1,∞)

(2.2) Vp ↪→ H ≡ H∗ ↪→ V ∗p ,

and both embeddings are continuous and dense. Therefore, these spaces form a Gelfand triplet.
For simplicity, we also set V := V2 and V ∗ := V ∗2 . Note that V and H are Hilbert spaces. Also,
the duality in Vp is defined via

(2.3) 〈f ,ϕ〉Vp := lim
k→+∞

∫
Ω

fk ·ϕ dx

for any ϕ ∈ Vp, where {fk}k∈N is a sequence in H converging to f in V ∗p . Note that in the case

when f ∈ L2(Ω;RN ), this definition just means

(2.4) 〈f ,ϕ〉Vp =

∫
Ω

f ·ϕ dx.

Having introduced the notation, we can now formulate the main result of the paper.

Theorem 2.1. Let Ω ⊂ Rd be a Lipschitz domain, T > 0 and p ∈ (1,∞). Let f ∈ Lp′(0, T ;V ∗p )
and u0 ∈ H. Assume that G satisfies (G1)–(G4). Then there exists a weak solution to the

4Note that in case p ≥ 2d/(d+ 2), we have, due to the Sobolev embedding and the Poincaré inequality, that

Vp = W 1,p
ΓD

(Ω;RN ), where

W 1,p
ΓD

(Ω;RN ) := {u;u ∈W 1,p(Ω;RN ), u = 0 on ΓD}

and the norm in Vp is equivalent to the standard Sobolev norm.
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problem (1.6), i.e., there exists a couple (u,J) fulfilling

u ∈ Lp(0, T ;Vp) ∩ C([0, T ];H),

∂tu ∈ Lp
′
(0, T ;V ∗p ),

J ∈ Lp
′
(Q;Rd×N ),

so that

〈∂tu,ϕ〉Vp +

∫
Ω

J : ∇ϕ dx = 〈f ,ϕ〉Vp for a.a. t ∈ (0, T ) and for all ϕ ∈ Vp,(2.5a)

G(J ,∇u) = 0 almost everywhere in Q,(2.5b)

and the initial condition is attained in the strong sense, i.e.,

(2.5c) lim
t→0+

‖u(t)− u0‖H = 0.

In addition, u is uniquely determined.

Several comments regarding this result and its novelties are in order:

(i) As explicit constitutive equations (as those listed in Table 1) represent important subparts
of implicit constitutive equations, there are plenty of (even classical) examples in various areas
of science (solid and fluid mechanics, heat transfer, chemistry, electro-magnetism, etc.) named
Hooke’s, Fourier’s, Fick’s laws and their various non-linear generalizations that are covered by
the equation G(J ,D) = 0. The systematic study of implicit constitutive equations is however
more recent and goes back to works by Rajagopal (see [24, 25] for original papers in elasticity and
fluid mechanics5, and also survey papers [10, 26] and Section 4.5 in [21]). This new viewpoint on
constitutive theory in terms of implicit equations has been reflected into the analysis of general
problems in fluid mechanics in [8, 9, 7], where both the stationary and evolutionary situations
have been treated. However, there are, in our opinion, two shortcomings in the theory developed
in [8, 9, 7] for incompressible fluid flow problems and in [11] for flows in porous media, and used in
some subsequent studies. First, the theory assumes the existence of a Borel measurable selection
and the whole proof stems from this a priori existence of such a selection. Second, the proof
is highly nonconstructive as it applies standard mollification (to the selection) by convolution,
which is very hard to implement numerically, see recent studies [12, 17, 27, 13] devoted to the
analysis of finite element discretizations of implicitly constituted fluid flow problems. In our
proof below, we do not use the convolution at all. Instead we introduce a very simple algebraic
modification/approximation of G, which is easy to implement In fact, we offer two possible
approximations of G(J ,D) = 0. In addition, these approximative schemes always lead to the
setting in the Hilbert spaces on which the approximation graph is Lipschitz continuous and
uniformly monotone, which seems to be the most friendly situation for numerical purposes.

(ii) Although our proof uses the concepts as monotone and maximal monotone map-
pings/graphs, we formulate the result without using these terms. This is due to the fact that we
have found easy-to-verify conditions on the function G, see the conditions (G1)–(G4) (almost)
characterizing that the corresponding A is a maximal monotone p-coercive graph.

(iii) If we identify the null points of G with a set A, subset of the Cartesian product
Rd×N × Rd×N , then one can reformulate the problem in terms of A, which leads to the theory
of monotone mappings. This theory goes back to the seminal work [23]. This theory when
further extended to the analysis of partial differential equations or to the problems of calculus
of variations has been however stick to the assumption that the flux is a (possibly multivalued)

5Note that when reducing the governing equations for incompressible implicitly constituted fluids to simple
shear flows one obtains a scalar version of the problem (1.6) studied here.
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function of the gradient of the unknown function. It means it reflects mostly the first row in
Table 1. Several concepts such as multivalued sets, subdifferential calculus, variational inequal-
ities, differential inclusions, etc. have been used to set-up rigorous mathematical background
for relevant problems. One of the aims of this study is to avoid using such objects and provide,
in our opinion, more simple mathematical description, see also the point (iv) below.

(iv) There are many results where the null points of G are assumed to be described by a
convex potential. To be more precise, if one assumes that there exist a convex Φ : Rd×N → R
and its convex conjugate Φ∗ : Rd×N → R such that

(2.6) G(J ,D) = 0 ⇐⇒ J : D = Φ(J) + Φ∗(D)

then the condition “G(J ,∇u) = 0 almost everywhere in Q” stated in Theorem 2.1, can be
equivalently6 replaced by the following inequality

1

2

d

dt
‖u‖2H +

∫
Ω

Φ(J) + Φ∗(∇u) dx ≤ 〈f ,∇u〉Vp .(2.7)

It is then obvious that due to the convexity of Φ and Φ∗, one can usually pass to the inequal-
ity (2.7) easily without any major difficulties. Unfortunately, such a procedure works only in
the case (2.6), which decreases the applicability of such theory significantly. The second (and
more important) limitation of this approach is that for consistency, it requires the possibility
of using u as a test function in (2.5a), which is typically not the case in problems arising in
fluid dynamics, see e.g. [1], where the inequality of the type (2.7) is used to define a notion of
solution.

(v) We wish to emphasize that there are interesting constitutive equations of the form
G(J ,D) = 0 that generate the non-monotone graph and consequently the analysis of cor-
responding problems is not covered by the theory developed in this paper. In fact, a sounding
analysis for problems with non-monotone graphs is a challenging open problem. We refer to
[19, 15] for more details.

We complete this section by stating the result for the time-independent case. We however
do not give the explicit proof of this result here since it is easier than in the time-dependent
situation and in fact the proof can be deduced from the detailed proof of Theorem 2.1 directly
by eliminating the steps that are due to the dependency of the quantities on time.

Theorem 2.2. Let p ∈ (1,∞), Ω ⊂ Rd be a Lipschitz domain, ΓD 6= ∅ and f ∈ (W 1,p
ΓD

(Ω;RN ))∗.
Assume that G satisfies (G1)–(G4). Then there exists a couple (u,J) fulfilling

u ∈W 1,p
ΓD

(Ω;RN ),

J ∈ Lp
′
(Ω;Rd×N ),

G(J ,∇u) = 0 almost everywhere in Ω,

which satisfies for all ϕ ∈W 1,p
ΓD

(Ω;RN )

(2.8a)

∫
Ω

J : ∇ϕ dx = 〈f ,ϕ〉W 1,p
ΓD

(Ω;RN ).

In addition, if G satisfies

6Indeed, if we set ϕ := u in (2.5a) and compare it with (2.7), we see that∫
Ω

Φ(J) + Φ∗(∇u) dx ≤
∫

Ω
J : ∇u dx.

Then it follows due to the Young inequality that Φ(J) + Φ∗(∇u) = J : ∇u almost everywhere and consequently,
the assumption (2.6) gives G(J ,∇u) = 0 almost everywhere.



10 M. BULÍČEK, J. MÁLEK, AND E. MARINGOVÁ

(G2)∗ for any (J1,D1), (J2,D2) ∈ Rd×N × Rd×N fulfilling G(J i,Di) = 0 and D1 6= D2:

(J1 − J2) : (D1 −D2) > 0,

then the solution u is unique.

The above result does not include the purely Neumann problem, i.e., ΓN = ∂Ω. Nevertheless,
the existence statement of Theorem 2.2 remains true provided that the right hand side fulfills
the necessary compatibility condition

〈f ,ϕ〉W 1,p(Ω;RN ) = 0 for all constant ϕ ∈ RN .

Moreover, the uniqueness result holds true if restricted to functions with prescribed mean value.

3. Null points of G and maximal monotone graphs

In this part, we identify the null set of G with a subset A of Rd×N × Rd×N and show that
the assumptions (G1)–(G4) delimiting the structure of G imply that A is a maximal monotone
p-coercive graph (see the definition below). Before doing so, we develop a generalized monotone
operator theory following the original work [23] as well as [2] and [6] where a similar but less
general approach is used.

Let us start with recalling the notion of maximal monotone graphs.

Definition 3.1 (Maximal monotone p-coercive graph). Let p ∈ (1,∞) and p′ := p
p−1 . We say

that a subset A of Rd×N × Rd×N is a maximal monotone p-coercive graph if

(A1) (0,0) ∈ A.
(A2) For any (J1,D1), (J2,D2) ∈ A

(J1 − J2) : (D1 −D2) ≥ 0.

(A3) If for some (J ,D) ∈ Rd×N × Rd×N and for all (J ,D) ∈ A

(J − J) : (D −D) ≥ 0,

then (J ,D) ∈ A.
(A4) There exist C1, C2 > 0 such that for all (J ,D) ∈ A

J : D ≥ C1(|J |p
′
+ |D|p)− C2.

The condition (A1) means that A passes through the origin, (A2) states that the graph A
is monotone, while (A3) states that A is maximal monotone, i.e., A cannot be extended to a
properly larger domain while preserving its monotoneity7. Finally, (A4) states that the graph A
is p-coercive.

Remark 3.2. For further generality, one could replace (A4) with the following condition:

(A4∗) There exist c∗, c∗ > 0 and a Young function ψ such that for all (J ,D) ∈ A

J : D ≥ c∗(ψ(|D|) + ψ∗(|J |))− c∗.

Here, ψ : R→ R+ is a Young function, i.e., ψ is an even continuous convex function such that

lim
s→0+

ψ(s)

s
= 0 and lim

s→+∞

ψ(s)

s
= +∞,

and the convex conjugate function ψ∗ is defined as the Legendre transform of ψ, i.e.,

ψ∗(s) := sup
l∈R

(s · l − ψ(l)).

7The text in italics is exact citation from [23].
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The study of the models related via maximal monotone ψ-graphs, i.e., the graphs satisfying
(A1)–(A3) and (A4∗), are of interest; however, such an extension is nowdays rather routine
and it is not included in this work.

Next, we prove an auxiliary result adopted from Minty [23] and [2, Proposition 1.1 (applied
to dimension d×N)] and adjusted to our situation. More precisely, having a monotone graph A
we can identify it with two possibly multivalued (monotone) mappings J∗ and D∗, each defined
on a subset of Rd×N through

(3.1) (J ,D) ∈ A ⇐⇒ J ∈ J∗(D) ⇐⇒ D ∈D∗(J).

Then, J∗ is maximal monotone if and only if J∗+εI is onto for any ε ∈ (0, 1] andD∗ is maximal
monotone if and only if D∗ + εI is onto for any ε ∈ (0, 1]. In the next lemma, we will prove
the first statement noting that the proof of the second equivalence can be done in the same way
just by interchanging the role of D and J .

Lemma 3.3. Let ε ∈ (0, 1] and A be a monotone graph identified with J∗ via (3.1), i.e., A
satisfies (A1) and (A2). Then, A is maximal monotone, i.e., A satisfies (A3), if and only if
the mapping J∗ + εI is onto.

Proof. We split the proof into two steps. In the first one, we show that if A is maximal monotone
graph then J∗+I is onto (i.e., the domain of (J∗+I)−1 is Rd×N ). In the second step we prove
the converse implication. In the proof, we restrict ourselves to the case ε = 1 as the proof can
be easily extended to the case ε ∈ (0, 1).
Step 1. We start with defining a set

(3.2) Im := {Z ∈ Rd×N ;∃(J ,D) ∈ A,Z = J +D}
and our goal is to define (J∗ + I)−1 on Im and show that Im = Rd×N .

Im is nonempty and closed . As 0 ∈ Im, the set Im is nonempty. In addition, Im is closed, i.e.,
the following condition holds:

(3.3) Zj ∈ Im for j ∈ N, Zj → Z in Rd×N as j →∞ =⇒ Z ∈ Im.

Indeed, since Zj ∈ Im there exist (J j ,Dj) ∈ A such that Zj = J j +Dj for every j and since
{Zj} is bounded, it follows from (A2) and (A1) that

|J j |2 + |Dj |2 ≤ |J j +Dj |2 = |Zj |2 ≤ C.
Thus, the sequences {J j} and {Dj} are bounded and there exists a couple (J ,D) such that
for a subsequence (that we do not relabel) J j → J and Dj → D as j → ∞. As Zj → Z, we
conclude that Z = J +D. Due to (A2) and the fact that (J j ,Dj) ∈ A we also get

(J −A) : (D −B) = lim
j→∞

(J j −A) : (Dj −B) ≥ 0 for all (A,B) ∈ A.

Then, in virtue of the maximality (A3), (J ,D) ∈ A. Hence, Z ∈ Im.

Definition of the mapping (J∗ + I)−1. On Im, we define

(3.4) (J∗ + I)−1(Z) := {D ∈ Rd×N ; ∃J , (J ,D) ∈ A, J +D = Z}
and show in the following lines that (J∗ + I)−1 is well-defined single-valued mapping and
Im = Rd×N .

We first check that (J∗+I)−1 is 1-Lipschitz on Im. Towards this goal, let us takeZ1,Z2 ∈ Im,
Z1 6= Z2, and D1 ∈ (J∗ + I)−1(Z1), D2 ∈ (J∗ + I)−1(Z2). Then, with help of (A2), we have

(Z1 −Z2) : (D1 −D2) = (J1 − J2 +D1 −D2) : (D1 −D2) ≥ |D1 −D2|2.
Then, 1-Lipschitz continuity directly follows from the Cauchy-Schwarz inequality.
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Im = Rd×N . Next, for contradiction, assume that Im ( Rd×N . We then define an auxiliary
function

(3.5) F (Z) := Z −
√

2(J∗ + I)−1(
√

2Z), Z ∈ 1√
2

Im

and observe that F is also 1-Lipschitz on 1√
2
Im. Indeed, let Z1,Z2 ∈ 1√

2
Im, Z1 6= Z2 and

consider J i,Di, i = 1, 2, such that J1 +D1 =
√

2Z1, J2 +D2 =
√

2Z2. Then with the help
of (3.4) and (A2) we observe that

|F (Z1)− F (Z2)|2 = |Z1 −Z2|2 + 2|D1 −D2|2 − 2
√

2(Z1 −Z2) : (D1 −D2)

= |Z1 −Z2|2 − 2(J1 − J2) : (D1 −D2) ≤ |Z1 −Z2|2.

As we assume that 1√
2
Im is proper subset of Rd×N , i.e., 1√

2
Im ( Rd×N , we can extend F defined

on 1√
2
Im to F̃ defined on Rd×N in such a way that

F̃ (Z) =

F (Z) Z ∈ 1√
2

Im,

is 1-Lipschitz on Rd×N .

Let us now define, for an arbitrary
√

2Z̃ ∈ Rd×N \ Im,

(3.6) J̃ :=
1√
2

(Z̃ + F̃ (Z̃)) and D̃ :=
1√
2

(Z̃ − F̃ (Z̃)).

If we prove that

(3.7) (J̃ , D̃) ∈ A,
then J̃+D̃ =

√
2Z̃ and, due to the definition of Im,

√
2Z̃ ∈ Im, which is a sought contradiction.

Thus, the definition domain of (J∗ + I)−1 is Rd×N . It means that J∗ + I is onto.
It remains to verify (3.7). For this purpose, we use the maximality of A, i.e., the assumption

(A3), and show that for all (J ,D) ∈ A the following holds:

(3.8) (J̃ − J) : (D̃ −D) ≥ 0.

Taking an arbitrary (J ,D) ∈ A and setting
√

2Z := J +D, we observe that
√

2Z ∈ Im. Then,
in virtue of the definition F (see (3.5)), we have

(3.9) J =
1√
2

(Z + F (Z)) and D =
1√
2

(Z − F (Z)).

Using then (3.6), (3.9) and the fact that F̃ is 1-Lipschitz continuous on Rd×N , we obtain

2(J̃ − J) : (D̃ −D) = (Z̃ −Z + F̃ (Z̃)− F (Z)) : (Z̃ −Z − (F̃ (Z̃)− F (Z)))

= |Z̃ −Z|2 − |F̃ (Z̃)− F (Z)|2 ≥ 0,

which proves (3.8). Thus, the proof of (3.7) is complete.

Step 2. It remains to prove the second implication, i.e., if J∗ + I is onto, then the monotone
graph A is maximal, i.e., (A3) holds. Let (J̃ , D̃) ∈ Rd×N×Rd×N be such that for all (J ,D) ∈ A
(3.8) holds. Our goal is to show that (J̃ , D̃) ∈ A. Since J∗+I is onto, we know that for (J̃ , D̃)
there exists a couple (J ,D) ∈ A such that

(3.10) (J∗ + I)(D) = J +D = J̃ + D̃.

Now, since (J ,D) ∈ A, we use the decomposition (3.10) in (3.8) and deduce that

0 ≤ 2(J̃ − J) : (D̃ −D) = (J̃ − (J̃ + D̃ −D)) : (D̃ −D) + (J̃ − J) : (D̃ − (J̃ + D̃ − J))

= −|D̃ −D|2 − |J̃ − J |2.
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Consequently, D̃ = D and J̃ = J and (J̃ , D̃) ∈ A, which finishes the proof. �

Lemma 3.4. Let G satisfy assumptions (G1)–(G4). Let

(3.11) A := {(J ,D) ∈ Rd×N × Rd×N : G(J ,D) = 0}.

Then A is a maximal monotone p-coercive graph.

Here, we would like to emphasize that the assumptions (G1)–(G4) are associated with the
implicit constitutive equation G(J ,D) = 0 and it is not evident a priori that the null set of
G is a maximal monotone p-coercive graph. However, we will show below that the monotone
condition (A2) is in fact a consequence of (G2) while the maximality (A3) follows from the
continuity of G and (G3).

Proof of Lemma 3.4. We start the proof with several simple observations. Recalling the defi-
nition of A given in (3.11), we see directly that (G1) =⇒ (A1) and (G4) ⇐⇒ (A4). Thus, it
remains to verify the conditions (A2) and (A3). We show that they follow from (G2), (G3) and
the continuity of G. Without loss of generality, we assume here that the second condition in
(G3) is fulfilled. In case that the first condition of (G3) was true, we would have to change the
role of J and D in the proof below. We split the proof into several steps.
Step 1. We first show that for every ε ∈ (0, 1] and every Z ∈ Rd×N there exists D ∈ Rd×N
such that

(3.12) G(Z − εD,D) = 0.

Once (3.12) is proved and once we show that the graph A is monotone (which we shall prove
in Step 4 below), then (3.12) implies that A is maximal by means of Lemma 3.3. Indeed,
we need to check that J∗ + εI is onto, i.e., that for every Z ∈ Rd×N there exists a couple
(J ,D) ∈ Rd×N × Rd×N such that

G(J ,D) = 0 and J + εD = Z.

However, substituting the second relation into the first one, we observe that it is exactly (3.12).
To summarize, once we verify (3.12) and show that A is monotone, the proof of Lemma 3.4

is complete.

Proof of (3.12). For arbitrary Z1, Z2 ∈ Rd×N , set Zt := tZ1 + (1 − t)Z2. Then, in virtue

of (G2), GJ (Zt,D) ≥ 0 for all D ∈ Rd×N . Consequently

(G(Z1,D)−G(Z2,D)) : (Z1 −Z2) =

∫ 1

0

d

dt
G(Zt,D) : (Z1 −Z2) dt

=

∫ 1

0

GJ (Zt,D)(Z1 −Z2) : (Z1 −Z2) dt ≥ 0.

Taking, in particular, Z1 = Z − εD and Z2 = Z, where Z and D ∈ Rd×N are arbitrary, it
implies that

(3.13) −ε(G(Z − εD,D)−G(Z,D)) : D ≥ 0.

Using then (G3), we observe that for arbitrary ε ∈ (0, 1] and any Z ∈ Rd×N

(3.14) lim sup
|D|→∞

G(Z − εD,D) : D
(3.13)

≤ lim sup
|D|→∞

G(Z,D) : D < 0.

Thus, there exists R > 0 such that for all D ∈ Rd×N fulfilling |D| ≥ R, we have

(3.15) G(Z − εD,D) : D ≤ 0.
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Having this piece of information, we prove (3.12) by contradiction. We thus assume that for all
D ∈ Rd×N such that |D| ≤ R it holds:

(3.16) G(Z − εD,D) 6= 0.

Then, due to (3.16) and the continuity of G, the mapping

D 7→ R
G(Z − εD,D)

|G(Z − εD,D)|
is defined in a closed ball of radius R, is continuous and maps a closed ball of radius R into itself
(in fact it maps the ball of radius R onto its sphere). Consequently, by Browder fixed point
theorem, there is D ∈ Rd×N , |D| = R, such that

D = R
G(Z − εD,D)

|G(Z − εD,D)|
.

Taking the scalar product of both sides of this equality with D and using (3.15), we see that

R2 = D : D = R
G(Z − εD,D) : D

|G(Z − εD,D)|
≤ 0,

a contradiction. Hence, for an arbitrarily given Z ∈ Rd×N there is D satisfying (3.12).

Step 2. Next we show that for any couple (Z1,D1), (Z2,D2) ∈ Rd×N × Rd×N fulfilling, for
i = 1, 2, G(Zi − εDi,Di) = 0, the following condition holds:

(3.17) |D1 −D2| ≤ C(Z1,Z2,D1,D2)|Z1 −Z2|.

It means that D can be understood as a locally Lipschitz function of Z.

Proof of (3.17). Let us denote Zt := tZ1 + (1 − t)Z2 and Dt := tD1 + (1 − t)D2. Then it

follows from the assumption (G2) that

0 = G(Z1 − εD1,D1)−G(Z2 − εD2,D2)

=

∫ 1

0

d

dt
G(Zt − εDt,Dt) dt

=

∫ 1

0

GJ (Zt − εDt,Dt)(Z1 −Z2 − ε(D1 −D2)) +GD(Zt − εDt,Dt)(D1 −D2) dt.

Consequently,

(3.18)

∫ 1

0

εGJ (. . . )−GD(. . . ) dt (D1 −D2) =

∫ 1

0

GJ (. . . ) dt (Z1 −Z2),

where (. . . ) stands for (Zt − εDt,Dt). Thanks to (G2), we know that GJ ≥ 0, −GD ≥ 0 and
GJ −GD > 0. Consequently, for arbitrary ε > 0 we also have εGJ −GD > 0, and also

I :=

∫ 1

0

εGJ (. . . )−GD(. . . ) dt > 0.

It means that I is positive definite, and consequently, I is an invertible matrix. It thus follows
from (3.18) that

D1 −D2 =

(∫ 1

0

εGJ (. . . )−GD(. . . ) dt

)−1 ∫ 1

0

GJ (. . . ) dt (Z1 −Z2)

and (3.17) follows.
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Step 3. In this step, we show that for arbitrary (Z1,D1), (Z2,D2) ∈ Rd×N × Rd×N fulfilling,
for i = 1, 2, G(Zi − εDi,Di) = 0, there holds

(3.19) (D1 −D2) : (Z1 −Z2) ≥ 0.

Proof of (3.19). It follows from Step 2, that for the null points of G(Z− εD,D), we can under-

standD as a locally Lipschitz mapping of Z and we can writeD(Z). SinceD is Lipschitz, its de-
rivativeDZ(Z) exists for almost allZ. By applying this derivation toG(Z−εD(Z),D(Z)) = 0,
we obtain

0 =
∂

∂Z
G(Z − εD(Z),D(Z))

= GJ (Z − εD(Z),D(Z))(I − εDZ(Z)) +GD((Z − εD(Z),D(Z))DZ(Z)

It implies that

(εGJ (Z − εD(Z),D(Z))−GD(Z − εD(Z),D(Z)))DZ(Z) = GJ (Z − εD(Z),D(Z)).

Since the matrix on the left-hand side is regular thanks to the assumption (G2), we observe (we
omit writing the dependence on Z for simplicity) that

(3.20) DZ = (εGJ −GD)−1GJ .

Our next goal is to show that

(3.21) DZ ≥ 0.

To do so, consider arbitrary nonzero X ∈ Rd×N . Since (εGJ −GD) is invertible, we can also
define Y := (εGJ −GD)−TX and with the help of (3.20) obtain

DZX : X = (εGJ −GD)−1GJX : X = (GJX) : ((εGJ −GD)−TX)

= GJ (εGJ −GD)TY : Y = ((εGJ −GD)TY ) : ((GJ )TY )

= ε|(GJ )TY |2 −GD(GJ )TY : Y ≥ 0,

where the last inequality follows from the third assumption in (G2). Finally, since

D(Z1)−D(Z2) =

∫ 1

0

d

dt
D(Zt) dt =

∫ 1

0

DZ(Zt) dt (Z1 −Z2)

with Zt := tZ1 + (1− t)Z2, we can use (3.21) to deduce that

(D(Z1)−D(Z2)) : (Z1 −Z2) =

∫ 1

0

DZ(Zt) dt(Z1 −Z2) : (Z1 −Z2) ≥ 0

and (3.19) follows.

Step 4. Finally, it remains to verify that A is monotone, i.e., (A2) holds. Let J1, J2, D1 and
D2 ∈ Rd×N fulfilling, for i = 1, 2, G(J i,Di) = 0 be arbitrary. The aim is to show that

(3.22) (J1 − J2) : (D1 −D2) ≥ 0.

To prove it, we define Zi := J i+εDi, i = 1, 2. Then it follows from the assumptions on (J i,Di)
that G(Zi − εDi,Di) = 0. Hence the inequality (3.19) from Step 3 is valid for (Z1,D1) and
(Z2,D2). Thus, we can continue as follows

(J1 − J2) : (D1 −D2) = (Z1 −Z2 − ε(D1 −D2)) : (D1 −D2)

= (Z1 −Z2) : (D1 −D2)− ε|D1 −D2|2 ≥ −ε|D1 −D2|2,

where the last inequality follows from (3.19). Since the left-hand side is independent of ε, letting
ε→ 0+, we deduce (3.22). The proof of Lemma 3.4 is complete. �
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4. Algebraic ε-approximations of the graph A

In this section, we construct two different suitable ε-approximations of the maximal mono-
tone p-coercive graph and show that these approximate graphs are Lipschitz continuous and
uniformly monotone 2-coercive graphs. Another advantage of these approximate graphs comes
from their algebraic construction that is easy to incorporate into numerical schemes and their
implementation. Finally, we study the convergence properties. In fact, the first approxima-
tion in Definition 4.1 starts with the notion of maximal monotone p-coercive graph, while the
second approximation in Definition 4.3 is directly linked to the implicit constitutive equation
G(J ,D) = 0 with G fulfilling (G1)-(G4).

Definition 4.1 (Construction of the approximate graphs). Let A be a maximal monotone p-
coercive graph, see Definition 3.1, and let ε > 0. We define

Aε := {(J̃ , D̃) ∈ Rd×N × Rd×N ;∃(J ,D) ∈ A, J̃ = J , D̃ = D + εJ},(4.1a)

Aεε := {(J ,D) ∈ Rd×N × Rd×N ;∃(J̃ , D̃) ∈ Aε,J = J̃ + εD̃,D = D̃}.(4.1b)

Remark 4.2. There is no apparent reason for the lower and the upper index in the definition
of the graph Aεε to be the same. However, making them different (e.g., Aeε for ε, e > 0) would
not bring any analytical advantage, generality, or simplicity.

Definition 4.3 (Construction of the approximative constitutive equations). Let G satisfy (G1)–
(G4) and let ε > 0. We set Gε(J ,D) := G(J − εD,D − εJ).

Remark 4.4. Instead of null points of Gε, one could also use an alternative approximation
G̃ε(J ,D) := G(J ,D) ± ε(J −D) where positive sign is used if GJ (J ,D) ≥ 0 in (G2), while
negative sign would be associated if all inequality signs (besides the last one in (G2)) are opposite.
Such an approximation then also leads to the strictly monotone and locally Lipschitz graphs but
we cannot guarantee 2-coercivity and therefore the Hilbert structure of the approximative problem
is lost. On the other hand, G̃ε seems to be the easiest way how to approximate the constitutive
equation G(J ,D) = 0.

For the approximations introduced in Definitions 4.1 and 4.3 above, we establish the following
results playing a key role in the subsequent analysis developed in this paper.

Lemma 4.5. Let A be a maximal monotone p-coercive graph. Then for every ε ∈ (0, 1), Aεε is
a maximal monotone 2-coercive graph. Moreover, there exists a unique single-valued mapping
J∗ε : Rd×N → Rd×N satisfying

(4.2) (J ,D) ∈ Aεε ⇐⇒ J = J∗ε (D).

Moreover, J∗ε (0) = 0 and J∗ε is Lipschitz continuous and uniformly monotone, i.e., there exist
C1, C2 > 0 such that for all D1, D2 ∈ Rd×N

|J∗(D1)− J∗(D2)| ≤ C2|D1 −D2|,
(J∗(D1)− J∗(D2)) : (D1 −D2) ≥ C1|D1 −D2|2.

(4.3)

Also, for any arbitrary measurable and bounded U ⊂ Q, let Jε,Dε : U → Rd×N be such that
(Jε,Dε) ∈ Aεε almost everywhere in U and there is a C > 0 such that

(4.4)

∫
U

Jε : Dε dx dt ≤ C uniformly with respect to ε.

Then there exist J ∈ Lp′(U ;Rd×N ), D ∈ Lp(U ;Rd×N ) so that (modulo subsequences)

(4.5)
Jε ⇀ J weakly in Lmin{2,p′}(U ;Rd×N ),

Dε ⇀D weakly in Lmin{2,p}(U ;Rd×N ).
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Moreover, if

(4.6) lim sup
ε→0+

∫
U

Jε : Dε dx dt ≤
∫
U

J : D dx dt,

then (J ,D) ∈ A almost everywhere in U and,

(4.7) Jε : Dε ⇀ J : D weakly in L1(U).

The next assertion concerns the properties of Gε, see Definition 4.3.

Lemma 4.6. Let G satisfy (G1)–(G4) with p ∈ (1,∞). Then for every ε ∈ (0, 1), the null

points of Gε generate a maximal monotone 2-coercive graph Ãεε and (4.2)–(4.5) hold. Moreover,
if (4.6) holds true then G(J ,D) = 0 almost everywhere in U and (4.7) holds as well.

The importance and the novelty of these results are twofold. First, we approximate, in a
constructive way, a general maximal monotone p-coercive graph A by Lipschitz continuous and
uniformly monotone 2-coercive graphs Aεε that can be identified with a single-valued (Lipschitz
continuous and uniformly monotone) mapping. For such mappings there are many tools to
obtain the existence of solution to corresponding systems of PDEs. (We provide one such proof
in Appendix C.) Then, referring to the convergence part of the above lemma, we observe that
to identify the limiting graph, it is just enough to check the validity of (4.6). Note that several
subtle tools have been developed to achieve (4.6) for various nonlinear problems of elliptic or
parabolic type, mostly in fluid and solid mechanics, that can be used even if the energy equality
is not available (or saying differently, if the solution itself is not regular enough to be admissible
test function for the limiting problem). We refer to [3] for details. The second point worth
noticing is that we do not a priori assume the existence of a Borel measurable selection J∗

linked to the graph A. Indeed, in all previous papers we are aware of, this assumption seems to
be crucial for solving the corresponding system of partial differential equations. However, here,
we are able to avoid such an assumption by a proper definition of the approximate graphsAεε that
are identified with a continuous single-valued mappings J∗ε . Last, we would like to emphasize,
that the approximation by using Gε might be more efficient when solving the problem (1.6)
numerically, while the approximation by using Aεε is easier to handle from theoretical point of
view and follows the classical approaches in the theory of maximal monotone graphs.

Proof of Lemma 4.5. Throughout the proof of Lemma 4.5, we follow the notation indicated in
the Definition 4.1, namely (J ,D) ∈ Aεε, (J̃ , D̃) ∈ Aε, and (J ,D) ∈ A, possibly with indices.
The only exception is the limiting object defined in (4.5) as it is not a priori defined to be in
any of the graphs. We hope this notation may help to clarify the construction as well as the
limiting procedure.

Step 1. The existence of J∗ε . In (3.1), we identified the maximal monotone graph A with a

possibly multivalued maximal monotone mapping D∗ defined on a subset of Rd×N . Thanks to
Lemma 3.3 we know that D∗ + εI is onto Rd×N for any ε ∈ (0, 1]. This surjectivity and the

definition of D∗ then imply that for any D̃ ∈ Rd×N there is (J ,D) ∈ A such that D̃ = D+εJ .

Setting simply J̃ := J , then

(4.8)
for any D̃ ∈ Rd×N there exist (J ,D) ∈ A and J̃ ∈ Rd×N such that

J̃ = J , D̃ = D + εJ , and (J̃ , D̃) ∈ Aε.

By definition ofAεε, for any (J ,D) ∈ Aεε there exists (J̃ , D̃) ∈ Aε such that J = J̃+εD̃,D = D̃.
However, thanks to (4.8), we obtain that

for any D ∈ Rd×N , there exists J ∈ Rd×N such that (J ,D) ∈ Aεε,
which guarantees the existence a single-valued mapping J∗ε as defined in (4.2).
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Step 2. Properties of J∗ε . To prove its properties, for i = 1, 2, let (J i,Di) ∈ Aεε, (J̃ i, D̃i) ∈ Aε,
and (J i,Di) ∈ A, which relate to each other according to the definitions in (4.1). By means of
the monotonicity (A2), we obtain

(4.9)
(J̃1 − J̃2) : (D̃1 − D̃2) = (J1 − J2) : (D1 −D2 + ε(J1 − J2))

≥ ε|J1 − J2|2 = ε|J̃1 − J̃2|2,

which implies that |J̃1 − J̃2|2 ≤ c(ε)|D̃1 − D̃2|2. Moreover, using (4.9), we obtain

(J1 − J2) : (D1 −D2) = (J̃1 − J̃2 + ε(D̃1 − D̃2)) : (D̃1 − D̃2)

≥ ε|J̃1 − J̃2|2 + ε|D̃1 − D̃2|2

= ε|J1 − J2 − ε(D1 −D2)|2 + ε|D1 −D2|2

= ε
(
|J1 − J2|2 + (1 + ε2)|D1 −D2|2 − 2ε(J1 − J2) : (D1 −D2)

)
,

and consequently

(J1 − J2) : (D1 −D2) ≥ ε

1 + 2ε2

(
|J1 − J2|2 + (1 + ε2)|D1 −D2|2

)
,

which proves the Lipschitz continuity and the uniform monotonicity of J∗ε . It also gives the
2-coercivity (A4) of Aεε (and J∗ε as well) by taking (J2,D2) = (0,0).
Step 3. Proof of (4.5). Let (Jε,Dε) ∈ Aεε almost everywhere in U , and let

∫
U
Jε : Dε dx ≤ C.

From the 2-coercivity of the graph Aεε, we know that Jε,Dε ∈ L2(Q;Rd×N ) and for

(4.10) Jε := Jε − εDε, Dε := Dε − εJε

it holds that (Jε,Dε) ∈ Aε almost everywhere in Q and (Jε,Dε) ∈ A almost everywhere in Q.
Thanks to the monotonicity (A2),

(4.11) Jε :Dε=(Jε + εDε) :Dε=ε|Dε|2 + Jε :Dε=ε|Dε|2 + ε|Jε|2 + Jε :Dε ≥ 0,

but also

(4.12) Jε : Dε ≥ ε|Dε|2 + ε|Jε|2 + C1|Jε|p
′
+ C1|Dε|p − C2,

due to the p-coercivity (A4) of A. Therefore, using the assumption (4.4),

(4.13)

∫
U

ε|Dε|2 + ε|Jε|2 + |Jε|p
′
+ |Dε|p dx dt ≤ C uniformly with respect to ε.

Using the definitions in (4.10),∫
U

|Jε|min{2,p′} dxdt =

∫
U

|Jε + εDε|min{2,p′} dxdt ≤ C,∫
U

|Dε|min{2,p} dxdt =

∫
U

|Dε + εJε|min{2,p} dx dt ≤ C,

and due to reflexivity of Lp(Q;Rd×N ) for any p > 1, there exist J , D, J , and D such that

(4.14)

Jε ⇀ J weakly in Lmin{2,p′}(U ;Rd×N ),

Dε ⇀D weakly in Lmin{2,p}(U ;Rd×N ),

Jε ⇀ J weakly in Lp
′
(U ;Rd×N ),

Dε ⇀D weakly in Lp(U ;Rd×N ).
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Next, we show that J = J almost everywhere in U and D = D almost everywhere in U . From
(4.13) and (4.14) we have

(4.15)
εDε ⇀ 0 weakly in L2(U ;Rd×N ),

εJε ⇀ 0 weakly in L2(U ;Rd×N ),

and also

(4.16)
J ↼ Jε = Jε + εDε ⇀ J =⇒ J = J in Lmin{2,p′}(U ;Rd×N ),

D ↼Dε = Dε + εJε ⇀D =⇒ D = D in Lmin{2,p}(U ;Rd×N ).

Together, (4.14) and (4.16) prove the statement (4.5).

Step 4. Proof of (4.7). First, we converge in A itself using very special sequences, and later

we show that these special sequences really can be approximated by the points from Aεε (in
fact, they are constructed in such way). For η ∈ (0, 1), let (Jε,Dε) ∈ Aεε, and (Jη,Dη) ∈ Aηη.

Then, using (4.10) as an inverse definition to (4.1), (Jε,Dε) and (Jη,Dη) ∈ A. From the
monotonicity of A,

(4.17) |(Jε − Jη) : (Dε −Dη)| = (Jε − Jη) : (Dε −Dη).

Also, for any fixed ε, η ∈ (0, 1) it holds that Jε,Jη,Dε,Dη ∈ L2(Q;Rd×N ). Then, for any
U ⊂ Q, using the weak convergence results (4.14) and (4.16),

(4.18)

lim sup
η→0+

∫
U

(Jε − Jη) : (Dε −Dη) dxdt

= lim sup
η→0+

∫
U

Jε : (Dε −Dη) + Jη : (Dη −Dε) dxdt

=

∫
U

Jε : (Dε −D) dxdt−
∫
U

J : Dε dxdt+ lim sup
η→0+

∫
U

Jη : Dη dxdt

and

(4.19)

lim sup
ε→0+

lim sup
η→0+

∫
U

(Jε − Jη) : (Dε −Dη) dxdt

= lim sup
ε→0+

∫
U

Jε : Dε dxdt− lim inf
ε→0+

∫
U

Jε : D dxdt

− lim inf
ε→0+

∫
U

J : Dε dx dt+ lim sup
η→0+

∫
U

Jη : Dη dx dt

= 2

(
lim sup
ε→0+

∫
U

Jε : Dε dxdt−
∫
U

J : D dxdt

)
.

However, using the definitions (4.10), we obtain the estimate

Jε : Dε = Jε :
(
Dε − εJε

)
≤ Jε : Dε = (Jε − εDε) : Dε ≤ Jε : Dε,

and if we combine it with the assumption (4.6),

(4.20) lim sup
ε→0+

∫
U

Jε : Dε dxdt ≤ lim sup
ε→0+

∫
U

Jε : Dε dxdt ≤
∫
U

J : D dxdt.

Now, the results (4.17), (4.19) and (4.20) together imply that

(4.21) lim
ε→0+

lim
η→0+

∫
U

|(Jε − Jη) : (Dε −Dη)|dxdt = 0,
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which proves that for any ϕ ∈ L∞(U),

lim
ε→0+

lim
η→0+

∫
U

(Jε − Jη) : (Dε −Dη)ϕdx dt = 0.

Using the boundedness of ϕ and a procedure very similar to that in (4.18) and (4.19) we observe
that

0 = lim
ε→0+

(∫
U

Jε : (Dε −D)ϕdxdt−
∫
U

J : Dεϕdxdt+ lim
η→0+

∫
U

Jη : Dηϕdx dt

)
= 2

(
lim
ε→0+

∫
U

Jε : Dεϕdxdt−
∫
U

J : Dϕdxdt

)
.

As it is true for any ϕ ∈ L∞(U), we obtain

(4.22) Jε : Dε ⇀ J : D weakly in L1(U).

Step 5. (J ,D) ∈ A. Let x be a Lebesgue point of J , D, and J : D. Let (J ,D) ∈ A be

arbitrary (independent of ε and x). Then for any ϕ ∈ L∞(U), ϕ ≥ 0, using monotonicity of A
and the weak convergence results (4.14), (4.16), and (4.22), we have that

0 ≤ lim
ε→0+

∫
U

(Jε − J) : (Dε −D)ϕdxdt

= lim
ε→0+

∫
U

Jε : Dεϕ− Jε : Dϕ− J : (Dε −D)ϕdxdt

=

∫
U

(J − J) : (D −D)ϕdxdt.

Set ϕ := 1
|Bρ(x)|χBρ(x), and let ρ→ 0+. Since x is a Lebesgue point,

0 ≤ lim
ρ→0+

1

|Bρ(x)|

∫
Bρ(x)

(J − J) : (D −D) dx dt = (J(x)− J) : (D(x)−D),

and it holds for any (J ,D) ∈ A, then from maximality of A, see (A3), we obtain that
(J(x),D(x)) ∈ A.

Finally, we converge with (Jε,Dε) ∈ Aεε, using the assumption (4.6) and the results (4.11)
for the first, and (4.19) with (4.21) for the second equality,∫

U

J : D dx dt ≥ lim sup
ε→0+

∫
U

Jε : Dε dxdt

= lim sup
ε→0+

∫
U

Jε : Dε + ε|Dε|2 + ε|Jε|2 dxdt

=

∫
U

J : D dxdt+ lim sup
ε→0+

∫
U

ε|Dε|2 + ε|Jε|2 dxdt.

Hence, the last integral vanishes as ε → 0+, and therefore (
√
εDε) and (

√
εJε) converge

strongly to zero in L2(U ;Rd×N ), as opposed to the weak result in (4.15).

Finally, since (Jε : Dε) = (Jε : Dε + ε|Jε|2 + ε|Dε|2), we use that the first term converges
weakly in L1(U) to the desired limit thanks to (4.22) and the last two converge strongly to zero
in L1(U) to obtain the final statement (4.7). �

Proof of Lemma 4.6. First, recalling that Gε(J ,D) = G(J−εD,D−εJ), it is straightforward
to observe that (J̄ , D̄) is a null point of G if and only if the couple (J ,D) defined through

(4.23) D =
D̄ + εJ̄

(1− ε2)
, J =

J̄ + εD̄

(1− ε2)
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is a null point of Gε. Then, since D∗ + εI is onto (see (3.1) for the definition of D∗ and Step
1 in proof of Lemma 3.3), we see that D can be understood as a (single valued) function of
J and analogously (by interchaning the role of J and D) J can be understood as a function
of D. Next, we show that these mappings are uniformly monotone and Lipschitz continuous,
which implies that Gε generates maximal monotone 2-coercive graph. Indeed, let (J1,D1) and
(J2,D2) be two null points of Gε. Then, (J i− εDi,Di− εJ i) are null points of G and, as the
graph generated by G is by Lemma 3.4 monotone, we have

0 ≤ ((J1 − εD1)− (J2 − εD2)) : ((D1 − εJ1)− (D2 − εJ2))

= ((J1 − J2)− ε(D1 −D2)) : ((D1 −D2)− ε(J1 − J2))

= (1 + ε2)(J1 − J2) : (D1 −D2)− ε(|D1 −D2|2 + |J1 − J2|2).

Consequently,

(4.24)
ε

1 + ε2
(|D1 −D2|2 + |J1 − J2|2) ≤ (J1 − J2) : (D1 −D2),

which is the desired uniform monotonicity and which implies, after applying the Cauchy–Schwarz
inequality to the right-hand side, the Lipschitz continuity. Consequently, the null points of Gε

generate a maximal monotone 2-coercive graph.
The rest of the proof coincides with the proof of Lemma 4.5 with necessary minor changes

due to a slightly different relation between the null points of G and Gε given by (4.23) and the
relation between the graphs A and Aεε given by Definition 4.1. �

Further auxiliary results. We finish this section by stating three results. Two of them,
Lemma 4.7 and Lemma 4.9, will be needed in the proof of the main theorem. The third
result, see Lemma 4.8, is of independent interest within the context of earlier established results
requiring a priori the existence of a Borel measurable selection.

The first result establishes the condition that guarantees the stability of the graph A with
respect to weakly converging sequences. It is a simpler variant of Lemma 4.5 above.

Lemma 4.7. Let A be a maximal monotone p-coercive graph and U ⊂ Rd be a measurable
bounded set. Assume that for every n ∈ N, the mappings Jn,Dn : U → Rd×N are such that
(Jn,Dn) ∈ A almost everywhere in U . In addition, let∫

U

Jn : Dn dx dt ≤ C uniformly with respect to n ∈ N.

Then there exist J ∈ Lp′(U ;Rd×N and D ∈ Lp(U ;Rd×N ) such that

Jn ⇀ J weakly in Lp
′
(U ;Rd×N ),

Dn ⇀D weakly in Lp(U ;Rd×N ).

Moreover, if

lim sup
n→∞

∫
U

Jn : Dn dx dt ≤
∫
U

J : D dx dt,

then (J ,D) ∈ A almost everywhere in U and Jn : Dn ⇀ J : D weakly in L1(U).

Proof. See Lemma 1.2.2 in [7] or Lemma 4.5 above. �

The next lemma is of interest within the context of the mathematical methods for general
constitutive equations of the form G(J ,D) = 0 (associated with the graph A) developed earlier
for fluid flow problems, see [8, 9, 7, 11]. In these studies, the assumption on the existence
of a Borel measurable selection played an important role both for constructing approximating
single-valued mappping (by convolution) and for showing that

(4.25) for each D ∈ Lp there is J ∈ Lp
′

such that (J ,D) ∈ A.



22 M. BULÍČEK, J. MÁLEK, AND E. MARINGOVÁ

In this study, we do not require the existence of a Borel measurable selection due to a different
approximation scheme developed above in this section. For the sake of completeness, we also
show that the property (4.25) is available.

Lemma 4.8. Let p ∈ (1,∞) and A be a maximal monotone p-coercive graph. Then for every

D ∈ Lp(Q;Rd×N ) there exists J ∈ Lp′(Q;Rd×N ) such that (J ,D) ∈ A almost everywhere in
Q.

Proof. For k ∈ N, define Dk := Dχ{|D|≤k}. Recall the definition of Aεε (4.1b) and its selection
J∗ε (4.2). Then, by definition of selection, (J∗ε (Dk),Dk) ∈ Aεε almost everywhere in Q. We can
estimate

|J∗ε (Dk)| ≤ C(|Dk|2 + |Dk|p) ≤ C(k2 + kp),

which implies that there exists Jk such that as ε→ 0+,

J∗ε (Dk) ⇀∗ Jk weakly∗ in L∞(Q;Rd×N ).

Then we have the limit

lim
ε→0+

∫
Q

J∗ε (Dk) : Dk dx dt =

∫
Q

Jk : Dk dx dt,

and thanks to Lemma 4.7 we know that (Jk,Dk) ∈ A almost everywhere in Q. Therefore,

C1(|Jk|p
′
+ |Dk|p)− C2 ≤ Jk : Dk ≤

C1

p′
|Jk|p

′
+ C|Dk|p,

and then ∫
Q

|Jk|p
′
+ |Dk|p dxdt ≤ C

∫
Q

|Dk|p dxdt ≤
∫
Q

|D|p dxdt ≤ C,

where the boundedness follows from the assumption. Finally, as k → +∞, we have for subse-
quences that

Jk ⇀ J weakly in Lp
′
(Q;Rd×N ),

Dk →D strongly in Lp(Q;Rd×N ),

so limk→∞
∫
Q
Jk : Dk dx dt =

∫
Q
J : D dxdt, which finishes the proof by use of Lemma 4.7. �

We finish this section by proving the uniform (ε-independent) coercivity estimate for Aεε.

Lemma 4.9. There exist C̃1, C̃2 ∈ R+ such that for all ε ∈ (0, 1) and all (Jε,Dε) ∈ Aεε there
holds

(4.26) Jε : Dε ≥ C̃1(|Jε|min{p′,2}) + |Dε|min{p,2})− C̃2.

Proof. Let (J ,D) ∈ A be the couple corresponding to (Jε,Dε) ∈ Aεε according to Definition 4.1.
Then

Jε = J + εDε, and Dε = D + εJ .

Now, using the p-coercivity of A, we get (4.12), and if we compute

|Dε|min{p,2} = |D + εJ |min{p,2} ≤ C(|D|p + ε|J |2 + 1),

|Jε|min{p′,2} = |J + εDε|min{p′,2} ≤ C(|J |p
′
+ ε|Dε|2 + 1),

and combine it together, we obtain

|Jε|min{p′,2} + |Dε|min{p,2} ≤ C(|D|p + ε|J |2 + |J |p
′
+ ε|Dε|2 + 1) ≤ C(Jε : Dε + 1).

�
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5. Proof of Theorem 2.1

The proof is based on the identification of the null set of G with a maximal monotone p-
coercive graphA and on its subsequent approximation by the Lipschitz continuous and uniformly
monotone 2-coercive graphs Aεε constructed and analyzed in Section 4. The solution of the
problem is then obtained by limiting process as ε → 0+. In order to link original p-coercive
graph with approximating 2-coercive graphs, we need to consider smoother right-hand side f .
More precisely, we define

(5.1)
µ := min{p, 2}, µ′ := max{p′, 2},
ν := min{p′, 2}, ν′ := max{p, 2}.

and then, in the first seven steps of the proof, we prove Theorem 2.1 for f ∈ Lµ
′
(0, T ;V ∗µ ).

In the final Step 8, once having a solution for such f , we consider a sequence of solutions
{(um,Jm)}m∈N of the problem (1.6) in the sense of Theorem 2.1 with the right-hand side

{fm}m∈N ⊂ Lµ
′
(0, T ;V ∗µ ) satisfying8 fm → f in Lp

′
(0, T ;V ∗p ) and we briefly comment why the

weak limits (u,J) of suitable subsequences {(um,Jm)}m∈N solve the problem (1.6) with the
righ-hand side f .
Step 1. Approximations. First, we introduce a graph A by

A := {(J ,D) : G(J ,D) = 0}.

Then, due to Lemma 3.4, it follows from the assumptions (G1)–(G4) that A is a maximal
monotone p-coercive graph, i.e., A satisfies (A1)–(A4) in Definition 3.1. Consequently, for
an arbitrary ε ∈ (0, 1), we use (4.1) to construct ε-approximate graphs Aεε. Then, due to
Lemma 4.5, we observe that Aεε can be identified with a Lipschitz continuous and uniformly
monotone single-valued mapping J∗ε so that

(J ,D) ∈ Aεε ⇐⇒ J = J∗ε (D).

Consequently, for every ε ∈ (0, 1), we can apply Lemma C.1 and find

(uε,Jε) ∈
(
L2(0, T ;V ) ∩ C([0, T ];H)

)
× L2(Q;Rd×N )

satisfying

〈∂tuε,ϕ〉V +

∫
Ω

Jε : ∇ϕ dx = 〈f ,ϕ〉V for a.a. t ∈ (0, T ] and for any ϕ ∈ V,(5.2)

Jε = J∗ε (∇uε) almost everywhere in Q,(5.3)

lim
t→0+

‖uε(t)− u0‖H = 0.(5.4)

Step 2. Uniform a priori estimates. We set ϕ := uε in (5.2), integrate over (0, t), use that

∂tu
ε ∈ L2(0, T ;V ∗) and properties of the Gelfand triplet (2.2), and obtain

1

2
‖uε(t)‖2H +

∫
Qt

Jε : ∇uε dxdτ =

∫ t

0

〈f ,uε〉Vµ dτ +
1

2
‖u0‖2H .

Using the estimate (4.26) from Lemma 4.9, we get

(5.5)

1

2
‖uε(t)‖2H + C̃1

∫
Qt

|Jε|ν + |∇uε|µ dxdτ ≤ 1

2
‖uε(t)‖2H +

∫
Qt

Jε : ∇uε dxdτ + C

≤
∫ t

0

〈f ,uε〉Vµ dτ +
1

2
‖u0‖2H + C.

8Since V ∗µ is dense in V ∗p for µ′ ≥ p′, such sequence surely exists.
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Next, recalling the definition of the Vµ-norm and using Young’s inequality, we get

〈f ,uε〉Vµ ≤ ‖f‖V ∗µ
(
‖uε‖H + ‖∇uε‖Lµ(Ω)

)
≤ C̃1

2
‖∇uε‖µLµ(Ω) + C

(
‖f‖µ

′

V ∗µ
+ (‖uε‖2H + 1)‖f‖V ∗µ

)
.

Inserting it into (5.5), using the assumptions on data f and u0 and applying then the Gronwall
lemma, we get

(5.6) sup
t∈(0,T )

‖uε(t)‖H ≤ C uniformly with respect to ε ∈ (0, 1).

Referring again to (5.5) we then also conclude that

(5.7) sup
t∈(0,T )

‖uε(t)‖2H +

∫
Q

|Jε|ν + |∇uε|µ dxdτ ≤ C uniformly with respect to ε ∈ (0, 1).

Moreover, we also have

(5.8)

∫
Q

Jε : ∇uε dxdτ ≤ C uniformly with respect to ε ∈ (0, 1).

Finally, note that (5.7) also implies that

(5.9) ‖uε‖Lµ(0,T ;Vµ) ≤ C uniformly with respect to ε ∈ (0, 1).

To estimate the time derivative, denote W := {w ∈ Vp ∩ V ; ‖w‖Vν′ ≤ 1}. Note that W ⊂ V ,
then we can set ϕ := w ∈ W in the equation (C.5a) to get the following

‖∂tuε‖V ∗
ν′

= sup
W
〈∂tuε,w〉Vν′ = sup

W

(
−
∫

Ω

Jε : ∇w dx+ 〈f ,w〉Vµ
)

≤ sup
W

(
‖Jε‖Lν(Ω;Rd×N )‖∇w‖Lν′ (Ω;Rd×N ) + ‖f‖Vµ′‖w‖Vµ

)
.

Using the fact that Vµ ⊂ Vν′ , taking the ν-th power and integrating the result over (0, T ) we
obtain, using also (5.7),
(5.10)∫ T

0

‖∂tuε‖νV ∗
ν′

dt ≤
∫ T

0

‖Jε‖νLν(Ω;Rd×N ) + ‖f‖νVµ′ dt ≤ C uniformly with respect to ε ∈ (0, 1).

Step 3. Limit ε→ 0+. Using (5.9), (5.7), (5.6) and (5.10), we obtain that as ε→ 0+,

(5.11)

uε ⇀ u weakly in Lµ(0, T ;Vµ),

Jε ⇀ J weakly in Lν(Q;Rd×N ),

uε ⇀∗ u weakly∗ in L∞(0, T ;H),

∂tu
ε ⇀ ∂tu weakly in Lν(0, T ;V ∗ν′).

Moreover, (5.8) in combination with the result of the Lemma 4.5 gives

(5.12) J ∈ Lp
′
(Q;Rd×N ) and ∇u ∈ Lp(Q;Rd×N ).

Next, take w ∈ Vµ′ and ξ ∈ L∞(0, T ) arbitrary. Setting ϕ := ξw in (5.2), integrating the
result over (0, T ), we obtain∫ T

0

〈∂tuε, ξw〉Vµ dt+

∫
Q

Jε : ∇wξ dxdt =

∫ T

0

〈f , ξw〉Vµ dt.
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Noticing that all terms are well-defined, we can take the limit ε→ 0+ and, by means of (5.11),
we end up with ∫ T

0

〈∂tu, ξw〉Vµ dt+

∫
Q

J : ∇wξ dxdt =

∫ T

0

〈f , ξw〉Vµ dt.

Since this holds for all ξ, it implies

(5.13) 〈∂tu,w〉Vµ +

∫
Ω

J : ∇w dx = 〈f ,w〉Vµ for a.a. t ∈ (0, T ) and for all w ∈ Vµ′ .

Since Vp ∩ V ↪→ Vp and this embedding is dense, all terms in (5.13) are well-defined. To verify
(2.5a), we need to show that (5.13) holds true for all w ∈ Vp. For this purpose, we need to
improve the information about the time derivative.
Step 4. Improved information regarding ∂tu. Thanks to the dense embedding Vp ∩ V ↪→ Vp,
we can use (5.13) for Wp := {w ∈ Vp ∩ V ; ‖w‖Vp ≤ 1} as follows

‖∂tu‖V ∗p = sup
Wp

〈∂tu,w〉Vp = sup
Wp

(
−
∫

Ω

J : ∇w dx+ 〈f ,w〉Vp
)

≤ sup
Wp

(
‖J‖Lp′ (Ω;Rd×N )‖∇w‖Lp(Ω;Rd×N ) + ‖f‖V ∗p ‖w‖Vp

)
≤ ‖J‖Lp′ (Ω;Rd×N ) + ‖f‖V ∗p .

Applying the power p′, integrating over time t ∈ (0, T ), and using the results in (5.11), we obtain∫ T

0

‖∂tu‖p
′

V ∗p
dt ≤

∫ T

0

‖J‖p
′

Lp′ (Ω;Rd×N )
+ ‖f‖p

′

V ∗p
dt ≤ C,

and again using the density of Vp ∩ V ↪→ Vp, we conclude that (5.13) is valid for any w ∈ Vp
and for almost every t ∈ (0, T ).

Moreover, thanks to u ∈ Lp(0, T ;Vp), ∂tu ∈ Lp
′
(0, T ;V ∗p ), and the Gelfand triplet (2.2),

there holds u ∈ C([0, T ];H).
Step 5. Attainment of the initial datum. For 0 < ε� 1 and t ∈ (0, T − ε), we first introduce a
cut-off function η ∈ C0,1([0, T ]) as a piece-wise linear function of three parameters:

(5.14) η(τ) =


1 if τ ∈ [0, t),

1 + t−τ
ε if τ ∈ [t, t+ ε),

0 if τ ∈ [t+ ε, T ].

Next, for w ∈ Vµ′ , we set ϕ := ηw in (C.5a) and integrate over (0, T ),

1

ε

∫ t+ε

t

(uε(τ),w)H dxdτ +

∫
Qt+ε

Jε : ∇wη dx dτ =

∫ t+ε

0

〈f ,wη〉Vµ dτ + (u0,w)H .

Letting ε→ 0+ and using the results established in (5.11), we conclude that

1

ε

∫ t+ε

t

(u(τ),w)H dxdτ +

∫
Qt+ε

J : ∇wη dxdτ =

∫ t+ε

0

〈f ,wη〉Vµ dτ + (u0,w)H .

Since u ∈ C([0, T ];H), we can also pass with ε→ 0+,

(u(t),w)H +

∫
Qt

J : ∇w dx dτ =

∫ t

0

〈f ,w〉Vµ dτ + (u0,w)H ,

and finally, we let t→ 0+ to get

lim
t→0+

(u(t),w)H = (u0,w)H .

As w ∈ Vp ∩ V was arbitrary and Vp ∩ V is dense in H, we obtain that u(t) ⇀ u0 weakly in H,
but thanks to the continuity of u in H we obtain the strong convergence (2.5c).
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Step 6. Attainment of the constitutive equation. The aim is to show that (J ,∇u) ∈ A almost
everywhere inQ, which is equivalent to showingG(J ,∇u) = 0 almost everywhere inQ. Towards
this goal, we need to verify the assumption (4.6) of Lemma 4.5, i.e., we need to prove that for
all t ∈ (0, T ),

(5.15) lim sup
ε→0+

∫
Qt

Jε : ∇uε dx dτ ≤
∫
Qt

J : ∇udxdτ.

Indeed, having (5.15), Lemma 4.5 implies that (J ,∇u) ∈ A almost everywhere in Qt and that
Jε : Dε ⇀ J : ∇u weakly in L1(Qt). Thus, we obtained the desired result on Qt for every
t ∈ (0, T ), therefore also on Q.

The relation (5.15) is achieved by the standard energy and weak lower semicontinuity tech-
niques used in parabolic systems and for the sake of completeness, we provide the proof also
here. In (5.2), we set ϕ = uε and integrate the result over (0, t) for t ∈ (0, T ). We obtain∫

Qt

Jε : ∇uε dxdτ =

∫ t

0

〈f ,uε〉Vµ dτ +
1

2
‖u0‖2H −

1

2
‖uε(t)‖2H .

Applying then the limes superior as εto0+ and using the weak convergence of uε in Lµ(0, T ;Vµ)
we conclude that

(5.16) lim sup
ε→0+

∫
Qt

Jε : ∇uε dx dτ =

∫ t

0

〈f ,u〉Vµ dτ +
1

2
‖u0‖2H −

1

2
lim inf
ε→0+

‖uε(t)‖2H .

On the other hand, setting w = u in (5.13) (we already have the right duality pairings to do
so) and integrating it over (0, t) we arrive at

(5.17)

∫
Qt

J : ∇udxdτ =

∫ t

0

〈f ,u〉Vµ dτ +
1

2
‖u0‖2H −

1

2
‖u(t)‖2H .

Subtracting (5.17) from (5.16) gives

(5.18) lim sup
ε→0+

∫
Qt

Jε : ∇uε dx dτ =
1

2
‖u(t)‖2H −

1

2
lim inf
ε→0+

‖uε(t)‖2H +

∫
Qt

J : ∇udxdτ.

That is, to verify (5.15), it remains to show that

(5.19) ‖u(t)‖2H ≤ lim inf
ε→0+

‖uε(t)‖2H .

In case Vp is compactly embedded into H (i.e., if p > 2d/(d + 2)), the above relation is for
a.a. t ∈ (0, T ) consequence of the convergence results (5.11) and the Aubin–Lions compactness
lemma. Therefore, if p > 2d/(d + 2), (5.15) holds for almost all time, which is sufficient for
finishing the proof. Nevertheless, in case we do not have Vp compactly embedded into H, we
proceed slightly differently and even more, we obtain (5.19) for all t ∈ (0, T ) (instead of for
almost all t).

Let 0 < δ � T and take ϕ = uε in (5.2). Integrating the result over (t, t+ δ) and using then
the integration by parts applied to the first term, we obtain

1

2
‖uε(t+ δ)‖2H +

∫ t+δ

t

∫
Ω

Jε : ∇uε dxdτ =

∫ t+δ

t

〈f ,uε〉Vµ dτ +
1

2
‖uε(t)‖2H .

As Aεε is monotone, we observe that Jε : ∇uε ≥ 0 and we neglect the corresponding term
receiving the inequality. Integrating it with respect to δ over (0, γ) for 0 < γ � 1, we arrive at

1

2

∫ γ

0

‖uε(t+ δ)‖2H dδ −
∫ γ

0

∫ t+δ

t

〈f ,uε〉Vµ dτ dδ ≤ γ

2
‖uε(t)‖2H .
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Taking limes inferior as ε → 0+ and using, on the left hand side, the established weak conver-
gence for uε and the weak lower semicontinuity of the norm, followed by the multiplication of
the achieved inequality by 2

γ , we get

1

γ

∫ γ

0

‖u(t+ δ)‖2H dδ − 2

γ

∫ γ

0

∫ t+δ

t

〈f ,u〉Vµ dτ dδ ≤ lim inf
ε→0+

‖uε(t)‖2H .

Finally, letting γ → 0+, using the continuity of u in H and the fact that the duality between f
and u is well-defined, we obtain (5.19).
Step 7. Uniqueness of u. Let (u1,J1) and (u2,J2) be two solutions to the problem (1.6). If
we subtract their weak formulations, we obtain

〈∂t(u1 − u2),ϕ〉Vp +

∫
Ω

(J1 − J2) : ∇ϕdx = 0.

Next, we set ϕ := (u1 − u2) to get

1

2

d

dt
‖u1 − u2‖Vp +

∫
Ω

(J1 − J2) : (∇u1 −∇u2) dx = 0,

however, due to monotonicity of the graph A, we obtain that each term is equal to zero. Finally,
after integration over time (0, t) for every t ∈ (0, T ), we use that both solutions satisfy the same
initial condition and conclude that u1(t) = u2(t) in Vp for every t ∈ (0, T ).

Step 8. Sketch of the proof of Theorem 2.1 for f ∈ Lp′(0, T ;V ∗p ). Since V ∗µ is dense in V ∗p for

µ′ ≥ p′, for a given f ∈ Lp′(0, T ;V ∗p ) there exist {fm}m∈N ⊂ Lµ
′
(0, T ;V ∗µ ) satisfying

fm → f in Lp
′
(0, T ;V ∗p ).

For each m ∈ N we consider a solution (um,Jm) of the problem (1.6) in the sense of Theorem 2.1
with the right-hand side fm. Then, we proceed as in Steps 2–7, i.e., we derive the uniform
estimates for {(um,Jm)}m∈N, find appropriate weak limits (u,J), and study the limit as m→
∞. This is all done in the same way (or slightly simpler) than above. In particular, we use
Lemma 4.7 for verification that the couple (J ,∇u) belongs toA. Note thatA remains unchanged
throughout this step.

Appendix A. Prototypic examples

Following the aim to clarify the conditions (g1)–(g4) formulated in the introductory section
and to fix the notation involved in their descriptions, we consider five examples of the implicit
constitutive equations g(j,d) = 0 and show that they satisfy (g1)–(g4).

Example A.1. The linear case j = d, i.e.,

g(j,d) = j − d.

Validity of (g1)–(g4) for Example A.1. To show that Example A.1 satisfies (g1)–(g4), we first
notice that g(0,0) = 0, gj(j,d) = I, gd(j,d) = −I, gj(j,d) − gd(j,d) = 2I and, by a

simple computation, gd(j,d)(gj(j,d))T = −I, and therefore (g1) and (g2) obviously hold.
Furthermore,

g(j,d) · j = |j|2 − j · d and g(j,d) · d = j · d− |d|2.
Consequently, for a fixed d ∈ Rd,

lim
|j|→∞

g(j,d) · j =∞

and, for a fixed j ∈ Rd,
lim
|d|→∞

g(j,d) · d = −∞,
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which proves (g3). Finally,

j · d =
1

2
(j · d+ j · d) =

1

2
|j|2 +

1

2
|d|2,

where, in the last equality, we inserted first d for j and then j for d (using 0 = g(j,d) = j−d).
Hence, (g4) holds.

Note that setting g(j,d) = d − j leads to sign changes in the all identities in (g2) and (g3)
except the last identity in (g2) that remains unchanged.

�

Example A.2. We consider d = (1 + |j|2)
p′−2

2 j with p′ = p/(p − 1), p ∈ (1,∞). This means
that

g(j,d) = (1 + |j|2)
p′−2

2 j − d.

Validity of (g1)–(g4) for Example A.2. Clearly, g(0,0) = 0, gd(j,d) = −I and

gj(j,d) = (1 + |j|2)
p′−2

2 I + (p′ − 2)(1 + |j|2)
p′−4

2 j ⊗ j,

where (j ⊗ j)k` := jkj`. Hence, for all x ∈ Rd, one has

gj(j,d)x · x = (1 + |j|2)
p′−4

2

(
(1 + |j|2)|x|2 + (p′ − 2)(j · x)2

)
≥

{
(1 + |j|2)

p′−2
2 |x|2 for p′ ≥ 2,

(p′ − 1)(1 + |j|2)
p′−2

2 |x|2 for p′ ∈ (1, 2).

Hence gj(j,d) > 0. Consequently, gj(j,d)− gd(j,d) > 0 and gd(j,d)(gj(j,d))T < 0 and the

validity of (g1) and (g2) is verified. Furthermore, for any d ∈ Rd, recalling that p′ > 1, we
obtain that

g(j,d) · j = (1 + |j|2)
p′−2

2 |j|2 − j · d→∞ as |j| → ∞.
Similarly, for any j ∈ Rd,

g(j,d) · d = (1 + |j|2)
p′−2

2 j · d− |d|2 → −∞ as |d| → ∞,

and (g3) holds. Finally,

j · d = (1 + |j|2)
p′−2

2 |j|2 ≥


|j|p′−2|j|2 = |j|p′ if p′ ≥ 2,

2
p′−2

2 |j|p′−2|j|2 = 2
p′−2

2 |j|p′ if p′ ∈ (1, 2) and |j| ≥ 1,

2
p′−2

2 |j|2 ≥ 2
p′−2

2 |j|p′ − c0 if p′ ∈ (1, 2) and |j| < 1,

where, in the last step, we used Young’s inequality |j|p′ ≤ |j|2 + c. Since

|d|2 = (1 + |j|2)
p′−2

2 |j|2 ≤ (1 + |j|2)p
′−1 =⇒ 1 + |j|2 ≥ |d|

2
p′−1 ,

we observe that

j · d = (1 + |j|2)
p′−2

2 |j|2 = (1 + |j|2)
p′−2

2 (1 + |j|2 − 1)

= (1 + |j|2)
p′
2 − (1 + |j|2)

p′−2
2

≥

{
1
2 |d|

p − c if p′ ≥ 2,

|d|p − 1 if p′ ∈ (1, 2) ,

where in the last step we used Young’s inequality (1 + |j|2)
p′−2

2 ≤ 1
2 (1 + |j|2)2 + c for p′ ≥ 2 and

the fact that (1 + |j|2)
p′−2

2 ≤ 1 for p′ ∈ (1, 2〉. The last two formulae imply (g4). �
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Example A.3. For d = (|j| − σ∗)+ j
|j| , we set9

g(j,d) = (|j| − σ∗)+ j

|j|
− d.

Validity of (g1)–(g4) for Example A.3. Clearly, g is continuous on Rd×Rd, Lipschitz continuous
almost everywhere in Rd × Rd, g(0,0) = 0, gd(j,d) = −I and

gj(j,d) =
(|j| − σ∗)+

|j|
I + χ{|j|>σ∗}

j ⊗ j
|j|2

− (|j| − σ∗)+ j ⊗ j
|j|3

,

where χU denotes the characteristic function of U ⊂ Rd. The last identity leads to

gj(j,d)x · x ≥ (|j| − σ∗)+

|j|

(
|x|2 − (j · x)2

|j|2

)
+ χ{|j|>σ∗}

(j · x)2

|j|2
≥ 0.

The above observations imply that gj(j,d) ≥ 0, gj(j,d)−gd(j,d) > 0 and gd(j,d)(gj(j,d))T ≥
0. Hence, (g1) and (g2) hold.

Next, it is easy to deduce that

g(j,d) · j = (|j| − σ∗)+|j| − d · j →∞ as |j| → ∞,

g(j,d) · d = (|j| − σ∗)+ j · d
|j|
− |d|2 → −∞ as |d| → ∞

and consequently, (g3) follows. Finally, we observe that

j · d = (|j| − σ∗)+|j| ≥

{
0 ≥ |j|2 − σ2

∗ if |j| ≤ σ∗,
|j|2 − σ∗|j| ≥ 1

2 |j|
2 − c if |j| > σ∗.

Since |d| = (|j| − σ∗)+ and consequently d = 0 if |j| ≤ σ∗ and |j| = |d|+ σ∗ is |j| ≥ σ∗, we also
get

j · d = (|j| − σ∗)+|j| ≥

{
0 = |d|2 if |j| ≤ σ∗,
|d| (|d|+ σ∗) ≥ |d|2 − c0 if |j| > σ∗.

This proves (g4). �

We end up this part by studying the models depicted in Figure 1.

Example A.4. For a : [0,∞]→ [0, 1] defined through

(A.1) a(x) :=


1 for x ∈ [0,

√
2/2],

√
2− x
x

for x ∈ (
√

2/2,
√

2),

0 for x ≥
√

2,

we set

(A.2) g(j,d) := j − d− a

(√
2|j + d|

2

)
(j + d).

Then the null points of g describes the right graph drawn in Figure 1, i.e.,

(A.3) |j| ≤ 1 if d = 0 and j = max{1, |d|−1}d if d 6= 0.

In addition, g satisfies the assumptions (g1)-(g4) with p = 2.

9Here and in what follows we tacitly assume a continuous extension at j = 0, namely d = 0 for j = 0.
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Verification of (A.3). Consider first d = 0. Then it follows from (A.2) and g(j,0) = 0 that

j = a

(√
2|j|
2

)
j

Hence, either j = 0 or

a

(√
2|j|
2

)
= 1.

It however follows from the definition of a, see (A.1), that the second option is possible if and
only if |j| ≤ 1.

Next, let d 6= 0. Then it follows from (A.2) that

(A.4) g(j,d) = 0 ⇐⇒

(
1− a

(√
2|j + d|

2

))
j =

(
1 + a

(√
2|j + d|

2

))
d,

and, as d 6= 0,
(

1− a
(√

2|j+d|
2

))
cannot be zero, which means that |j + d| > 1. Hence, the

null points of g satisfy

j = bd.

The goal is to determine b. First, we observe from (A.4) and the definition of a that j = d (and
thus b = 1) if |j +d| ≥ 2. It remains to show that b = |d|−1 if 1 < |j +d| < 2. Inserting j = bd
into (A.2) we obtain

(b− 1)d = (1 + b)a

(√
2(1 + b)|d|

2

)
d

and consequently

(b− 1) = (1 + b)a

(√
2(1 + b)|d|

2

)
.

In order to use the fact that a(x)x =
√

2− x for x ∈ (
√

2/2,
√

2), we multiply the last equality

by
√

2
2 |d| and conclude that

√
2

2
(b− 1)|d| =

√
2−
√

2

2
(1 + b)|d|,

which gives b = |d|−1.
Validity of (g1)–(g4) for Example A.4. Obviously, (g1) holds. Next, taking the scalar product
of g(j,d) = 0 first by d and then by −j and summing of the results, we obtain

2j · d = |j|2 + |d|2 − a(. . . )|j|2 + a(. . . )|d|2

≥ |j|2 + |d|2 − a(. . . )|j|2

≥

{
|j|2 + |d|2 if |j + d| > 2,

|j|2 + |d|2 − C if |j + d| ≤ 2,

which gives (g4) with p = 2, and also (g3). It remains to show the validity of (g2). Note that

gj(j,d) =

(
1− a

(√
2|j + d|

2

))
I − a′

(√
2|j + d|

2

) √
2

2

(j + d)⊗ (j + d)

|j + d|

gd(j,d) = −

(
1 + a

(√
2|j + d|

2

))
I − a′

(√
2|j + d|

2

) √
2

2

(j + d)⊗ (j + d)

|j + d|
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Then, by using the definition of a, we observe that for arbitrary x ∈ Rd

gj(j,d)x · x =


0 for |j + d| ≤ 1,

|x|2 for |j + d| ≥ 2,(
2− 2

|j + d|

)
|x|2 + 2

((j + d) · x)2

|j + d|3
for |j + d| ∈ (1, 2)

gd(j,d)x · x =


− 2|x|2 for |j + d| ≤ 1,

− |x|2 for |j + d| ≥ 2,

− 2|x|2

|j + d|
+ 2

((j + d) : x)2

|j + d|3
for |j + d| ∈ (1, 2)

Thus, gj(j,d) ≥ 0 and gd(j,d) ≤ 0. In addition also gj(j,d)−gd(j,d) > 0. Finally, as gj and
gd are symmetric, it follows directly from nonnegativity of gj and nonpositivity of gd that

gj(gd)T = gjgd ≤ 0.

Thus (g2) holds. �

Example A.5. Let b : [0,∞]→ R be
√

2-periodic and satisfy

b(x) := xa(x) for x ∈ [0,
√

2],

where a is defined in (A.1). Defining

(A.5) ã(x) :=


0 for x = 0,

b(x)

x
for x ∈ (0,∞),

we set

(A.6) g(j,d) := j − d− ã

(√
2|j + d|

2

)
(j + d).

Then the null points of g describes the graph drawn left in Figure 1. In addition, g satisfies the
assumptions (g1)-(g4) with p = 2.

We do not verify teh validity of (g1)–(g4) for the graph described by the null points of g
defined in (A.6) as the proof is almost identical to the proof for Example A.4.

Appendix B. The Maxwell–Stefan system

Here, we consider the Maxwell–Stefan system given by (1.8). We omit the dependence of
parameters on the solution itself and we just focus on the proof of the fulfilment of (G1)–(G3).

Example B.1. For d,N ∈ N, N ≥ 2, consider

(G(J ,D))νi =

N∑
µ=1

(Aνµ(cµJνi − cνJµi))−Dνi, i = 1, . . . , d; ν = 1, . . . , N,

where A is a given symmetric matrix in RN×N fulfilling Aνµ > 0 for ν, µ = 1, . . . , N and {cν}Nν=1

fulfil

cν ∈ (0, 1) for all ν = 1, . . . , N and

N∑
ν=1

cν = 1.
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Validity of (G1)–(G3). We can evaluate

∂(G(J ,D))νi
∂Jµj

= δij

(
δνµ

(
N∑
α=1

Aναcα

)
− Aνµcν

)
,

∂(G(J ,D))νi
∂Dµj

= −δijδνµ.

Then for arbitrary B ∈ RN×d, we have

N∑
ν,µ=1

d∑
i,j=1

∂(G(J ,D))νi
∂Dµj

BνiBµj = −|B|2 ≤ 0,

N∑
ν,µ=1

d∑
i,j=1

∂(G(J ,D))νi
∂Jµj

BνiBµj =

N∑
ν,µ=1

d∑
i=1

BνiBνiAνµcµ −
N∑

ν,µ=1

d∑
i=1

BνiBµiAνµcν .

While the first inequality is exactly of the form we want, we focus on the second inequality.
First, we can observe that the second identity can be rewritten into the form

N∑
ν,µ=1

d∑
i,j=1

∂(G(J ,D))νi
∂Jµj

BνiBµj =

d∑
i=1

N∑
ν,µ=1

BνiBµiBνµ,

where B is a matrix given as

Bνµ :=


N∑

α=1;α6=ν

Aναcα for ν = µ,

− Aνµcν for ν 6= µ.

Next, we can use [16, Lemma 2.1], where it is shown that the spectrum of B is nonnegative

(but contains simple eigen-value 0) and consequently, it follows that ∂(G(J,D))
∂J ≥ 0. Hence, we

see that G satisfy (G1) and (G2). Also it is evident that it satisfies (G3)2. However, since the
spectrum of B also contains 0 it cannot satisfy (G4). Nevertheless, since for all null points we
have that (note that all null points must satisfy

∑
νDν = 0)

J : D = BJ : J ,

it follows from the positivity of the spectrum of B, except simple eigen-value zero, that for all
J satisfying

∑
µ Jµ = 0 there holds

BJ : J ≥ c|BJ |2,

and consequently also,

J : D ≥ c|D|2.

Hence, (G4) with p = 2 is fulfilled on the range of B, as also used in the analysis, see [16].
�
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Appendix C. Solvability of (1.6) for Lipschitz continuous and uniformly
monotone graphs

Here, we consider the following problem: for given Ω ⊂ Rd, T > 0, f : Q → RN and
uo : Ω→ RN , find (u,J) : Q→ RN × RN×d satisfying

∂tu− divJ = f in Q,(C.1a)

J = J∗(∇u) in Q,(C.1b)

u = 0 on ΣD,(C.1c)

Jn = 0 on ΣN ,(C.1d)

u(0, ·) = u0 in Ω,(C.1e)

where J∗ : Rd×N → Rd×N is a Lipschitz continuous and uniformly monotone single-valued
mapping, which means that there are C1, C2 > 0 such that for all D1, D2 ∈ Rd×N

|J∗(D1)− J∗(D2)| ≤ C2|D1 −D2|,
(J∗(D1)− J∗(D2)) : (D1 −D2) ≥ C1|D1 −D2|2,

J∗(0) = 0.

(C.2)

Note that taking D2 = 0 and relabelling D1 by D in (C.2) we obtain

(C.3) J∗(D) : D ≥ C1

2
|D|2 +

C1

2C2
2

|J∗(D)|2 ≥ C
(
|D|2 + |J |2

)
,

where we set J = J∗(D) and C := min{C1/2, C1/(2C
2
2 )}. Consequently, the graph A defined

through the relation

(C.4) (J ,∇u) ∈ A ⇐⇒ J = J∗(∇u).

is Lipschitz continuous and uniformly monotone 2-coercive graph.
By the Faedo-Galerkin method, we establish the following well-posedness result.

Lemma C.1. Let Ω ⊂ Rd be a Lipschitz domain, T > 0, f ∈ L2(0, T ;V ∗), u0 ∈ H and J∗

satisfy (C.2). Then there exists a unique couple (u,J) such that

u ∈ L2(0, T ;V ) ∩ C([0, T ];H),

∂tu ∈ L2(0, T ;V ∗),

J ∈ L2(Q;Rd×N ),

satisfying

〈∂tu,ϕ〉V +

∫
Ω

J : ∇ϕ dx = 〈f ,ϕ〉V for a.a. t ∈ (0, T ) and for all ϕ ∈ V,(C.5a)

J = J∗(∇u) almost everywhere in Q,(C.5b)

lim
t→0+

‖u(t)− u0‖H = 0.(C.5c)

Remark C.2. Obviously, we could completely avoid using J in the formulation of Lemma C.1
and merely require that u fulfills, instead of (C.5a)-(C.5b),

〈∂tu,ϕ〉V +

∫
Ω

J∗(∇u) : ∇ϕ dx = 〈f ,ϕ〉V for a.a. t ∈ (0, T ) and for all ϕ ∈ V.

The formulation used in Lemma C.1 is more suitable for proving Theorem 2.1 in this text.

Proof. We follow the original Minty method, see [23], with small modifications adapted to our
setting. The whole proof is split into several steps.
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Step 1. Galerkin approximations. Let {wi}i∈N and corresponding λi be the solutions of the
eigenvalue problem ((wi,Z)) = λi(wi,Z) valid for all Z ∈ V . Here, ((·, ·)) stands for the scalar
product in V and (·, ·) is the scalar product in H, whereas the spaces V and H are defined in
Section 2. Then {wi}i∈N forms an orthogonal basis in V that is in addition orthonormal in H.
Furthermore, the projection Pn of V to the linear hull of {wi}ni=1 defined by

(C.6) Pnu :=

n∑
i=1

(u,wi)Hwi

satisfy ‖Pnu‖H ≤ ‖u‖H and ‖Pnu‖V ≤ ‖u‖V . See, for example [20, Section 6.4] for details.
For every n ∈ N, we set

(C.7) un(t,x) :=

n∑
i=1

cni (t)wi(x) for (t,x) ∈ Q,

where the functions cni (t) solve the following system of ordinary differential equations

(C.8a) (∂tu
n,wi)H +

∫
Ω

J∗(∇un) :∇wi dx = 〈f ,wi〉V , i = 1, . . . , n,

with the initial conditions

(C.8b) cni (0) =

∫
Ω

u0 ·wi dx = (u0,wi)H , i = 1, . . . , n.

Due to the Picard–Lindelöf theory, there exists a unique solution defined on an interval [0, tn).
In virtue of the uniform estimates established in (C.10) below, one observes that tn ≥ T for
all n.
Step 2. Uniform estimates. Multiplying the i-th equation in (C.8a) by cni (t) and summing the
result over i = 1, . . . , n, we obtain

1

2

d

dt
‖un‖2H +

∫
Ω

J∗(∇un) : ∇un dx = 〈f ,un〉V .(C.9)

Then, by means of Hölder’s and Young’s inequalities and (C.3), followed by the integration
over (0, t), we conclude, using also the assumption on data u0 and f , that
(C.10)

sup
t∈(0,T )

‖un(t)‖2H +

∫ T

0

‖un‖2V + ‖J∗(∇un)‖2L2(Ω) dt ≤ C

(∫ T

0

‖f‖2V ∗ dt+ ‖u0‖2H

)
≤ C.

This implies the following n-independent estimate

(C.11) ‖un‖L2(0,T ;V )∩L∞(0,T ;H) + ‖J∗(∇un)‖L2(Q) ≤ C uniformly with respect to n ∈ N.

Furthermore, for any ϕ ∈ V , we obtain from (C.8a)

〈∂tun,ϕ〉V = (∂tu
n, Pnϕ)H =

∫
Ω

∂tu
n · (Pnϕ) dx = −

∫
Ω

J∗(∇un) : ∇(Pnϕ) dx+ 〈f , Pnϕ〉V .

The standard duality and scalar product estimates together with (C.11) and the continuity
of Pn mentioned above imply that

(C.12)

∫ T

0

‖∂tun‖2V ∗ dt ≤ C uniformly with respect to n ∈ N.
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Step 3. Limit n→∞. By virtue of the uniform estimates (C.11) and (C.12), reflexivity of
spaces V and V ∗ and the Aubin–Lions lemma, there exist (not relabelled) subsequences and
functions u and J such that, for n→∞,

un ⇀∗ u weakly∗ in L∞(0, T ;H),(C.13a)

un ⇀ u weakly in L2(0, T ;V ),(C.13b)

∂tu
n ⇀ ∂tu weakly in L2(0, T ;V ∗),(C.13c)

un → u strongly in L2(0, T ;H),(C.13d)

J∗(∇un) ⇀ J weakly in L2(Q;Rd×N ).(C.13e)

For any ξ ∈ C1(0, T ) and ϕ ∈ V , multiplying the i-th equation by ξ(ϕ,wi)H , summing the
result over i = 1, . . . , k for k ≤ n and integrating then the outcome over (0, T ), we get, for every
k = 1, . . . , n.∫ T

0

(
∂tu

n, ξP kϕ
)
H

dt+

∫
Q

J∗(∇un) : ∇(P kϕ)ξ dxdt =

∫ T

0

〈f , ξP kϕ〉V dt.

Using the convergence results (C.13), we can easily take the limit for n → ∞. Since the limit
terms hold for any smooth ξ, we obtain

〈∂tu, P kϕ〉V +

∫
Ω

J : ∇(P kϕ) dx = 〈f , P kϕ〉V for a.a. t ∈ (0, T ) and for all k ∈ N.

As P kϕ→ ϕ in V as k →∞, we arrive at the weak formulation (C.5a).
Step 4. Attainment of the initial datum. We first notice that it follows from u ∈ L2(0, T ;V )
and ∂tu ∈ L2(0, T ;V ∗) that u ∈ C([0, T ];H). Hence

(C.14) u(t)→ u(0) strongly in H as t→ 0+.

To prove (C.5c), it is then enough to show that

(C.15) u(t) ⇀ u0 weakly in H as t→ 0+.

Towards this goal, let 0 < ε � 1 and t ∈ (0, T − ε). Recalling the definition of an auxiliary η
in (5.14), multiplying (C.8a) by such an η and integrating the result with respect to τ ∈ (0, T ),
we obtain, for every i = 1, . . . , n,∫ T

0

(∂tu
n,wi)Hη dτ +

∫
Q

J∗(∇un) :∇wiη dx dτ =

∫ T

0

〈f ,wi〉V η dτ.

Integration by parts in the first term (using η(T ) = 0) then leads to

−
∫ T

0

(un,wi)Hη
′ dτ +

∫
Q

J∗(∇un) : ∇wiη dxdτ =

∫ T

0

〈f ,wi〉V η dτ + (Pnu0,wi)Hη(0).

Applying the weak convergence results established in (C.13) as well as the convergence of the
projection Pn as n→∞ we observe, for any i ∈ N, that

−
∫ T

0

(u,wi)Hη
′ dτ +

∫
Q

J :∇wiη dxdτ =

∫ T

0

〈f ,wi〉V η dτ + (u0,wi)Hη(0).

The incorporation of the properties of η, namely η(τ) = 1 for τ ∈ [0, t), η(τ) = 0 for τ ∈ (t+ε, T ],
and η′(τ) = − 1

ε for τ ∈ (t, t+ ε), then yields

1

ε

∫ t+ε

t

(u,wi)H dτ +

∫
Qt+ε

J : ∇wiη dxdτ =

∫ t+ε

0

〈f ,wi〉V η dτ + (u0,wi)H .
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Finally, we let ε→ 0+. In the first term, the integrand is well-defined (in fact, u ∈ C([0, T ];H)),
and the term converges to (u(t),wi)H . In the other terms, due to their integrability, we can
take the limit as ε→ 0+ together with t→ 0+ and arrive at

lim
t→0+

(u(t),wi)H = (u0,wi)H .

Since {wi}i∈N forms a basis in H, (C.15) and then also (C.5c) are proved.
Step 5. Attainment of the constitutive equation. It remains to show (C.3). To do so, we mul-
tiply (C.9) by piece-wise linear η(τ) defined in (5.14) and integrate the result over (0, T ). This
yields∫

Qt+ε

J∗(∇un) : ∇unη dx dτ =

∫ t+ε

0

〈f ,un〉V η dτ +
1

2
‖Pnu0‖2H −

1

2ε

∫ t+ε

t

(un,un)H dτ.

Since J∗(0) = 0 and J∗(·) is monotone, we have, for every n ∈ N,

J∗(∇un) : ∇un ≥ 0.

Therefore, as η ≡ 1 in Qt,

lim sup
n→∞

∫
Qt

J∗(∇un) : ∇un dxdτ ≤ lim sup
n→∞

∫
Qt+ε

J∗(∇un) : ∇unη dxdτ

= lim sup
n→∞

∫ t+ε

0

〈f ,un〉V η dτ +
1

2
‖Pnu0‖2H − lim inf

n→∞

1

2ε

∫ t+ε

t

(un,un)H dτ

≤
∫ t+ε

0

〈f ,u〉V η dτ +
1

2
‖u0‖2H −

1

2ε

∫ t+ε

t

(u,u)H dτ,

where we used the results established in (C.13) and the weak lower-semicontinuity of the norm.
Letting ε → 0+, we note that the left hand side is independent of ε and the all quantities on
the right-hand side are well-defined for such limit (since u ∈ C([0, T ];H)). We thus obtain, for
an arbitrary t ∈ (0, T ),

(C.16) lim sup
n→∞

∫
Qt

J∗(∇un) : ∇un dxdτ ≤
∫ t

0

〈f ,u〉V dτ +
1

2

(
‖u0‖2H − ‖u(t)‖2H

)
.

Now, we set ϕ := u in (C.5a) and integrate the result over time interval (0, t). Using the
integration by parts formulae (thanks to the fact that we have the Gelfand triplet) and (C.5c),
we get

(C.17)

∫
Qt

J∗(∇u) : ∇udxdτ =

∫ t

0

〈f ,u〉V − 〈∂tu,u〉V dτ

=

∫ t

0

〈f ,u〉V dτ +
1

2

(
‖u0‖2H − ‖u(t)‖2H

)
.

Once comparing (C.16) and (C.17), we obtain

(C.18) lim sup
n→∞

∫
Qt

J∗(∇un) : ∇un dxdτ ≤
∫
Qt

J∗(∇u) : ∇udxdτ.

Now, let W ∈ L2(0, T ;L2(Ω)) be arbitrary, then

0 ≤
∫
Qt

(J∗(∇un)− J∗(W )) : (∇un −W ) dxdτ

=

∫
Qt

J∗(∇un) : ∇un dx dτ −
∫
Qt

J∗(∇un) : W + J∗(W ) : (∇un −W ) dx dτ.
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Letting n→∞, using the estimate (C.18) and the weak convergence results given in (C.13), we
obtain

0 ≤
∫
Qt

(J∗(∇u)− J∗(W )) : (∇u−W ) dx dτ.

Finally, setting particularly W := ∇u ± εZ, dividing the result by ε and let ε → 0+ (at this
point we use the continuity of the Lipschitz continuous single-valued mapping J∗), we obtain,
for arbitrary Z,

(C.19) 0 ≤
∫
Qt

(J − J∗(∇u)) : Z dxdτ,

which implies that J = J∗(∇u) in Qt for any t ∈ (0, T ).
Step 6. Uniqueness. Let (u1,J1) and (u2,J2) be two different weak solutions to (C.1) cor-
responding to the same set of data. Subtracting their weak formulations and inserting for J1

and J2, we obtain

〈∂t(u1 − u2),ϕ〉V +

∫
Ω

(J∗(∇u1)− J∗(∇u2)) : ∇ϕ dx = 0 for all ϕ ∈ V.

Taking ϕ := (u1(t, ·)− u2(t, ·)), we get

1

2

d

dt
‖u1 − u2‖2H +

∫
Ω

(J∗(∇u1)− J∗(∇u2)) : (∇u1 −∇u2) dx = 0,

which, due to the uniform monotonicity of J∗ = J∗(∇u), after integration over (0, t) for an
arbitrary t ∈ (0, T ), leads to

‖u1(t)− u2(t)‖2H ≤ ‖u1(0)− u2(0)‖2H = 0.

Necessarily, u1(t) = u2(t) in V for almost every t ∈ (0, T ), and obviously, J1 = J∗(∇u1) =
J∗(∇u2) = J2. �
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nology, Birkhäuser Boston, Inc., Boston, MA, 1999.
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