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Abstract. The choice of the boundary conditions in mechanical problems has to reflect the
interaction of the considered material with the surface, despite the assumption of the no-slip

condition is preferred to avoid boundary terms in the analysis and slipping effects are usually

overlooked. Besides the “static slip models”, there are phenomena not accurately described
by them, e.g. in the moment when the slip changes rapidly, the wall shear stress and the slip

can exhibit a sudden overshoot and subsequent relaxation. When these effects become signif-

icant, the so-called dynamic slip phenomenon occurs. We develop a mathematical analysis of
Navier-Stokes-like problems with dynamic slip boundary condition, which requires a proper

generalisation of the Gelfand triplet and the corresponding function spaces setting.

1. Introduction

In fluid mechanics, the flows of homogeneous incompressible fluids are driven, at the macro-
scopic level, by the incompressibility condition, the balance equations for the linear momen-
tum and for the angular momentum complemented with the constitutive equations. These
laws are partial differential equations, describing the change of and the relation between the
relevant quantities, namely the velocity of the fluid v, the symmetric part of the velocity
gradient 2Dv :=

(
∇v + (∇v)>

)
, the Cauchy stress tensor T (especially its deviatoric part

S := T − tr T
3 I), the pressure p = tr T

3 and the given density of external body forces f .
The constitutive equations in the bulk explain the material properties of the fluid and on the
boundary its interaction with the surroundings. Such system of PDEs in a bounded domain is
completed prescribing the boundary and initial conditions for the crucial variables. The bound-
ary conditions can be viewed as constitutive relations at the interface between two materials. In
particular, no-slip and static slip models are not always valid according to measurements (ref-
erences can be found e.g. in [12, Section 6.2]). Therefore, motivated by [12] and the references
therein, our aim in this study is to perform an analysis for the so-called dynamic slip phenom-
enon on the boundary of the domain. In this setting, we consider the impermeable boundary,
i.e., the normal component of the velocity remains zero, while the tangential part of the velocity
and of its time derivative is related to the wall shear stress s via the following formula

(1.1) s = ασ + β∂tv

with α, β > 0 and where σ represents an auxiliary stress vectorial function, typically dependent
on v. Boundary condition (1.1) enables us to capture the non-monotone behaviour of the slip
velocity on the boundary. To the best of our knowledge there are no analytical results for models
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of type (1.1). We prove the long-time and large-data existence results for the evolutionary flows
of models that follow the Navier–Stokes-like structure prescribing the dynamic slip condition on
the boundary.

We want to emphasize at the very beginning that the presence of the time derivative of the
velocity of the fluid in the boundary condition essentially change the setting of the problem. In
classical problems of fluid mechanics with Dirichlet or slip boundary conditions the underlying
function space is just a subspace of Sobolev or Lebesgue spaces and consists of functions having
zero divergence, which in addition have zero normal component at the boundary. However, here
it would not be a proper space and we would not have a proper Gelfand triplet to introduce the
meaning of the time derivative on the boundary. Note that here the difficulty does not come
from the convective term and one has to face the same problem also for the Stokes flow. In
addition, in the setting of the present paper, we need to prescribe the initial data also on the
boundary, which must be reflected in the analysis. Therefore, we must invent a new function
space setting and a new concept of (weak) solution, which satisfy two essential properties:

1) The concept of a weak solution is compatible with the notion of classical solution, i.e.,
a weak solution which is sufficiently regular is also a classical solution.

2) The concept of a weak solution is compatible with the standard notion of weak solution
for Dirichlet or slip boundary conditions.

These two tasks can be viewed as a continuation of the program initiated by Leray [17] who
developed the mathematical theory for Navier–Stokes equation in the whole R3 and later ex-
tended by Hopf [13], who developed the concept of a weak solution also in bounded domains
with Dirichlet data and established its existence. Hence, our result goes in the spirit of Leray
and Hopf and provides the framework for essentially new boundary conditions. Furthermore,
although it is not the goal of the paper, the theory built here allows one to introduce a proper
notion of the Stokes semigroup related to the dynamic slip models and therefore we have a new
concept of mild solutions for dynamic slip models, which may be a starting point for subsequent
analysis of dynamic slip models from many different perspectives.

Finally, we want to point out that we do not restrict ourselves to a Navier–Stokes model
with linear dynamic slip boundary conditions only, but we consider rather general class of fluids
with very complicated rheology. Indeed, we look at the constitutive equations in the bulk and
on the boundary in terms of maximal monotone graphs. Particularly, the constitutive relations
between S and Dv are expressed through a maximal monotone r-graph, while σ and v are
related via a maximal monotone 2-graph.

Problem formulation. The theoretical background for our problem is formulated for general
dimension d ≥ 1. However, we apply the results only in the dimension d = 3. We consider a
bounded time interval (0, T ) and a Lipschitz domain Ω ⊂ R3, and denote Q := (0, T ) × Ω the
time–space domain and Γ := (0, T )× ∂Ω its spatial boundary. We study the relations between
the velocity field v : Q → R3, the deviator of the Cauchy stress tensor S : Q → R3×3, and the
pressure p : Q→ R. We denote by n : Γ→ R3 the outward unit normal vector to the boundary
and by f : Q → R3 the given external forces. Also, the initial velocity v0 : Ω → R3 is given.
Finally, we consider parameters α, β ≥ 0 and r ∈ (6/5,∞).

The incompressibility condition, the balance of linear momentum, the boundary conditions
for the velocity (impermeability of the boundary, implying that the velocity on the boundary
only acts in the tangential direction, vτ = v on Γ) and for the stress (here, we use the standard
notation s := −(Sn)τ for the shear stress, and σ is an auxiliary function which has no physical
meaning, but serves to relate the shear stress s to the slip velocity vτ via (1.2g)), and the initial
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condition for the velocity1 are

div v = 0 in Q,(1.2a)

∂tv + div(v ⊗ v)− divS +∇p = f in Q,(1.2b)

v · n = 0 on Γ,(1.2c)

−(Sn)τ =: s = ασ + β∂tv on Γ,(1.2d)

v(0) = v0 in Ω,(1.2e)

As was already mentioned, the balance of angular momentum guarantees the symmetry of the
stress tensor T = T> (and therefore also S = S>), which will be considered and not explicitly
repeated throughout the work. To complete the problem, we need to prescribe the constitutive
equations relating S and σ to Dv and v. In general, we consider the constitutive relations

(S,Dv) ∈ A in Q,(1.2f)

(σ,v) ∈ B on Γ,(1.2g)

where A is a maximal monotone r-graph and B is a maximal monotone 2-graph (see Defini-
tion 4.1). The value of the parameter r characterizes the response of the fluid inside the domain
(for illustration, see Figure 1), on the other hand, the parameters α and β determine the slip
regime on the boundary (as summarized in (1.6)).

Regarding the boundary condition (1.2d), we could in principle prescribe some surface force
g : Γ→ R3. Such an equation would look like

(1.3) ασ + β∂tv = s+ g on Γ.

It would lead to two classes of external forces – f , representing the external body forces in Q
(like for example the gravitational force), and g, representing the surface forces on Γ. Such
a generalization is definitely possible, and we refer to (3.6) and the description therein for
more details. However, on Γ, the external surface forces usually cause the deformation of the
boundary. Since our domain, as well as its boundary, is always given and fixed, such forces are
of no physical relevance and should not be considered. Therefore, we simply set g ≡ 0.

Implicit theory - the role of parameter r. We briefly explain the use of the maximal
monotone graphs in the formulation of the constitutive relations and the importance of the
parameter r. The class of implicit models is commonly described via some function G, or
equivalently, via graph A, defined as

(1.4) G(S,Dv) = 0 ⇐⇒ (S,Dv) ∈ A.
For physical reasons, it is natural to impose some assumptions on the functionG, or equivalently,
on the graph A. Namely, we require that the origin belongs to the graph; that the shear rate is
non-decreasing with respect to the shear stress2; and that the energy dissipation ξ = S : Dv is
not only positive, but also provides some useful information - here, r enters the game. Depending
on the information, we can talk about different classes of graphs (for details, see the definition
of the maximal monotone graph (Definition 4.1)).

The credit for the study of the models of the type (1.4) is given to the works [23, 24, 25]
and [6, 7]. A systematic classification of such class of models is provided for example in [3]. In [9],
the authors find equivalent, easy-to-verify conditions for G to describe a maximal monotone
graph according to relation (1.4) and we use the convergence result from [9] later in this work
when solving an approximative problem.

1If β = 0, then (1.2d) does not see the time derivative and the initial condition (1.2e) is prescribed only in Ω.
2This holds for the fluids whose microstructure does not affect their mechanical properties.
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r →∞ rigid body limiting shear-
rate

Euler/limiting
shear-rate

r ∈ (2,∞) rigid/shear-
thickening

shear-thickening Euler/shear-
thickening

r = 2 Bingham =
rigid/Navier-
Stokes

Navier-Stokes Euler/Navier-
Stokes

r ∈ (1, 2) rigid/shear-
thinning

shear-thinning Euler/shear-
thinning

r → 1 perfect plastic limiting shear
stress

Euler

|S| ≤ σ2 ⇐⇒ Dv = O no activation |Dv| ≤ σ1 ⇐⇒ S = O

Figure 1. A systematic classification of fluid-like responses with respect to
the power-law index r and the activating effect. The table includes correspond-
ing |S| vs |Dv| diagrams, where σ2 and σ1, respectively, are the activating
coefficients. Reproduced (and adjusted) with kind permission from [3, Table
2.1]

The most studied models in the theory of PDEs are of type (1.4). For the linear model
S = 2ν∗Dv, ν∗ ∈ (0,∞), the existence theory for weak solutions was established in [17] for
the dimension d = 3 and in the whole space, later extended to bounded domains and Dirichlet
boundary condition in [13]. The non-linear explicit models of the type

S = 2ν(|Dv|)Dv, with ν : R+ → R+,

where the mapping Dv 7→ S is monotone and continuous, were first studied in [14, 15, 16].
Especially, the case where

S = 2ν∗(α∗ + |Dv|2)
r−2

2 Dv, with r ≥ 1, ν∗ > 0, α∗ ∈ [0,∞),

which for α∗ = 0 is called the power-law model. Ladyzhenskaya established the existence of
weak solution for r ≥ 11/5 in 3-dimensional case (this corresponds to the possibility of testing
by the weak solution and thus the use of the classical monotone operator theory). Despite
their importance, these results were unsatisfactory since they even did not cover the case r = 2.
Nevertheless, it was the starting point, which finally gave birth to many new methods developed
in the theory of non-linear PDEs, and which finally led to the complete theory for all r > 6/5
(the power which guarantees the compactness of the convective term in 3-dimensional setting).

To mention the methods, we recall the higher differentiability method from [18] giving the
existence for r > 9/5 for spatially periodic problem; the L∞ truncation method from [11]
providing the existence for r > 8/5 for perfect slip case or spatially periodic problem; up to the
Lipschitz approximation method in [10] leading to the result for r > 6/5 for Dirichlet boundary
conditions. These results for explicit models were later systematically studied in the works [6, 7],
that provide results in the setting of maximal monotone graphs for the same range of exponents
(even more, the authors considered the setting of Orlicz spaces) and for the Navier slip boundary
conditions. Last, we want to mention the recent result for r ≤ 6/5 in [1], where the authors
introduced a very generalized concept of solution suitable for parameters r ≤ 6/5 and proved
the existence of such solution. Moreover, they showed that in case that smooth solution exists,
their definition provides equivalent notion of solution. However, this concept of solution heavily
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relies on the fact that the graph A comes as3 a subdifferential of a convex potential. Moreover,
in case r > 6/5, the concept of a solution introduced in [1] is much weaker than the concept we
deal with in the present paper. In addition, for graphs, which are maximally monotone but do
not have a potential, such procedure cannot be used. Therefore, we do not consider the methods
developed in [1] here although they may be easily adapted also to the dynamic slip boundary
conditions.

All of the models mentioned above relate the quantities inside the domain Ω. Finally, the
work [8] also studies the (implicit) stick-slip condition acting on the boundary ∂Ω, i.e., for
functions G and h, such that

(1.5) G(S,Dv) = 0 in Ω, h(s,v) = 0 on ∂Ω.

This boundary condition can be (for suitable h) viewed as an approximation of the Dirichlet
boundary condition v = 0 on Γ. In [20], the authors studied all models from Figure 1 except the
limiting ones, also in the case when they depend on the temperature. In the presented result, we
use the setting similar to (1.5), however, we importantly generalise the boundary condition (1.2d)
by the use of parameters α and β, and by incorporating also the time derivative of the velocity
on the boundary.

Dynamic slip model. We study the phenomenon which has not attracted so much mathe-
matical attention yet. It is called the dynamic slip and terms the response of certain fluids
(typically polymers) to a sudden increase and consequent relaxation of the flow velocity, which
results in the “overshoot” of the slip on the boundary - the fluid first starts to slip very quickly,
but after the sudden relaxation, it smoothly slows down and stabilizes its slip velocity.

We prove the existence for rather general classes of fluids, not only thanks to the range
r ∈ (6/5,∞), we also do not prescribe any formulae for the graphs, nor assume the existence of
a Borel measurable selection; we only require the maximality and monotonicity according to the
definition of the maximal monotone graph (Definition 4.1). Moreover, we allow great generality
thanks to the presence of the non-negative parameters α and β. In the following, we provide an
explanation of their use in the typical combinations. In (1.2d), we obtain

perfect slip if α = 0 and β = 0,(1.6a)

Navier’s slip if α > 0 and β = 0,(1.6b)

no slip if α→ +∞ and β = 0,(1.6c)

dynamic slip if α > 0 and β > 0.(1.6d)

Moreover, in the case when α > 0, the structure of the graph B plays its role and the model can
describe many non-linear and implicit relations.

Motivation. It is measured that under transient flow (by transient flow we mean the flow in the
moment when the slip of the fluid starts), the slip velocity of the polymers exhibits relaxation
behaviour in the sense that relaxation of polymer molecules next to solid walls is different
compared to that in the bulk, and thus, delayed slip is observed. In such a case, the standard
“static” slip models (in our setting, corresponding to β = 0) do not follow the characteristics
of the flow and therefore it is necessary to include the dynamical response of the fluid in the
formulation of the model. In the dynamic slip models, the slip velocity might depend on the
past deformation history undergone by the polymer, therefore the use of such dynamic models
can explain basic slip rheological data, not otherwise explained by the use of static slip models.

We are not aware of any mathematical work which would analytically study such models.
On the other hand, in polymer science, this effect is already well-known. First, referred to as

3It was already observed in [26], that the subdifferential of a convex function generates maximal monotone

graph defined by [21]. But in general, maximal monotone graph may not have a potential.
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“retarded” slip boundary condition or “memory” slip velocity model, it was studied in [22] and
since then, many other models were proposed, improving the original work and including some
other effects. An illustrative overview on these models is presented in [12, Section 6.2]. In fact,
these works take into account reactions which occur on the boundary and in general relate the
slip velocity of the polymer melt with the wall shear stress, the normal stress difference at the
wall, the molecular weight, the molecular weight distribution, and the temperature, but also the
reaction between bonded and free macromolecules at the interface.

Nonetheless, our model is macroscopic and these effects, as well as the molecular architecture
of the polymer, can possibly be incorporated via coefficients α and β, and via appropriate
definition of the graph B. The dependence on these coefficients of models with simple geometries
(the situation reduced to one dimensional flow) is demonstrated in the simulations in the next
part, where the simple shear and the periodic flows are studied.

Result. In Section 2, we provide several explicit solutions in simplified geometry to illustrate
the role of parameters in the dynamic slip boundary condition - these explicit solutions are
computed and studied just for linear problems for simplicity. Next, in Section 3, we fix the proper
function space setting. The key difficulty is to incorporate the time derivative of the velocity
on the boundary to a proper function space leading to a reasonable Gelfand triplet. When
constructing the Gelfand triplets Vr ↪→ H ≡ H∗ ↪→ V ∗r , we pay close attention to incorporating
the boundary term, and the presence of its norm with the coefficient β also in the definition of the
norm on the Hilbert space H (according to (3.2), the norm is ‖f‖2H := ‖f‖2L2(Ω) +β‖tr f‖2L2(∂Ω)

for smooth f) is highly non-standard. Then, in Section 4, we recall the basic concepts from
the maximal monotone graph setting and finally in Section 5, we precisely formulate the key
result of the paper and provide its proof. Next, for completeness, the Appendix A is devoted
to the study of the basis orthogonal in V and orthonormal in H, which is used for defining the
Galerkin approximations. Finally, to provide the complete information about the result also at
the beginning of the manuscript, we formulate it here, but without any ambition to be rigorous
- for precise formulation we refer to Section 5.

Theorem. For any sufficiently smooth data and maximal monotone r-graph with r ∈ (6/5,∞)
there exists a global-in-time weak solution to the system (1.2). Moreover, the solution satisfies
the energy inequality and for r ∈ [11/5,∞) the energy equality.

Notation. Domains. For d ≥ 1, we consider an open Lipschitz set Ω ⊂ Rd, and for t ∈ (0, T ],
we denote Qt := [0, t)× Ω and Γt := [0, t)× ∂Ω. Also, we use simply Q and Γ for QT and ΓT ,
respectively (this does not concern the part with explicit examples).
Functions. No explicit distinction between spaces of scalar- and vector-valued functions will be
made, but we employ small boldfaced letters to denote vectors and bold capitals for tensors.
Outward normal vector is denoted by n, and for any vector-valued function z : ∂Ω → Rd, the
symbol zτ stands for the projection to the tangent plane, i.e., zτ := z − (z · n)n. If it is clear
from the context, we denote the traces of Sobolev functions like the original functions, and if
we want to emphasize it, we use the symbol “tr”. Also, we do not relabel the original sequence
when selecting a subsequence. The symbols “ ·” and “ : ” stand for the scalar product of vectors
or tensors, respectively, and “ ⊗ ” signifies the tensor product. In a time-space domain, the
standard differential operators, like gradient (∇) and divergence (div), are always related to
the spatial variables only. Also, we use standard notation for partial (∂· or ∂··) and total ( dd· )
derivatives or just the symbol ‘′’ for the derivative of function of one variable. The Kronecker
delta is denoted by δi,j . Generic constants, that depend just on data, are denoted by C and
may vary line to line.
Spaces. For a Banach space X, its dual is denoted by X∗. For x ∈ X and x∗ ∈ X∗, the duality
is denoted by 〈x∗, x〉X . For r ∈ [1,∞], we denote (Lr(Ω), ‖·‖Lr(Ω)) and (W 1,r(Ω), ‖·‖W 1,r(Ω))
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the corresponding Lebesgue and Sobolev spaces with norms. Bochner space is designated by
Lr(0, T ;X). For r ∈ [1,∞], we set

W 1,r
div (Ω) :=

{
f ∈ C0,1(Ω); div f = 0 in Ω

}‖·‖W1,r(Ω)
,

W 1,r
n (Ω) :=

{
f ∈ C0,1(Ω); f · n = 0 on ∂Ω

}‖·‖W1,r(Ω)
,

W 1,r
n,div(Ω) :=

{
f ∈ C0,1(Ω); f · n = 0 on ∂Ω,div f = 0 in Ω

}‖·‖W1,r(Ω)
,

C([0, T ];X) := {f ∈ L∞(0, T ;X); [0, T ] 3 tn→ t⇒ f(tn)→f(t) strongly in X},
Cw([0, T ];X) := {f ∈ L∞(0, T ;X); [0, T ] 3 tn→ t⇒ f(tn)⇀f(t) weakly in X}.

2. Explicit examples

We list several prototypes of the problem we want to solve. We provide two explicit examples
(without the use of the maximal monotone graphs), where in simple situations, we clearly
demonstrate the use of the dynamic slip boundary condition. Analytical computations are
sketched and supported by numerical simulations.

The solutions are found more or less in the same way as for the classical slip boundary con-
dition with one proviso - the basis in which we construct the solution corresponds to a different
boundary condition. This however changes the properties of the solution drastically, in particu-
lar (and it will be also evident from computation), the first few eigenvalues and eigenfunctions
are of most importance to give the character of the flow.

The general setting is the same for both examples. For simplicity, both flows act in one
direction only, and they differ by the use of the boundary conditions and assumption on pressure,
which determines the regime of the flow. In the first case, we talk about the flow induced by
moving boundary, whereas in the second case, the pressure initiates a time-periodic flow.

For h, T > 0, define Q := (0, T )×R2 × (0, h) and consider the Navier–Stokes problem for an
incompressible fluid in a three-dimensional domain, given by the system

div v = 0 in Q,(2.1a)

∂tv + div(v ⊗ v)− divS = −∇p in Q,(2.1b)

S = 2Dv = ∇v +∇vT in Q,(2.1c)

σ = v in (0, T )× R2 × {0, h}.(2.1d)

We look for a solution to the simple shear which is represented by a scalar function u : (0, T )×
(0, h)→ R,

(2.1e) v(t,x) := (u(t, x), 0, 0),

where variable x of u corresponds to x3 (x = (x1, x2, x3)) of v. Due to the definition (2.1e), the
condition div v = 0 is automatically satisfied.

2.1. Flow induced by moving boundary. For given δ, 0 < δ � 1, the flow between two
infinite planes is induced by moving one of them, R2×{h}, with the velocity Vδ(t) := min{t/δ, 1}.
It means that for small times, the upper plane accelerates really quickly, and after reaching
velocity equal to 1, it suddenly relaxes and continues to move with this constant velocity. The
lower plane, R2 × {0}, does not move. Also, the pressure is only a function of time,

(2.2a) ∇p = 0.

We consider the following initial and boundary conditions, representing zero velocity of the fluid
everywhere at the beginning as well as on the lower boundary for all times, whereas the velocity
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on the upper part of the boundary is expressed as a difference between the actual velocity of
the fluid and the velocity of the moving plane,

v = 0 in {0} × R2 × (0, h),(2.2b)

v = 0 in (0, T )× R2 × {0},(2.2c)

α[σ − (Vδ, 0, 0)] + β∂t[v − (Vδ, 0, 0)]− s = 0 in (0, T )× R2 × {h}.(2.2d)

Especially, we aim to study the dependence of solution on α and β if δ � 1 (this condition
enhances the sudden acceleration of the boundary at the initial moment). We can reformulate
the system (2.1)–(2.2) in terms of function u,

∂tu(t, x)− ∂xxu(t, x) = 0 in (0, T )×(0, h),(2.3a)

u(0, x) = 0 in (0, h),(2.3b)

u(t, 0) = 0 in (0, T ),(2.3c)

α[u(t, h)− Vδ(t)] + β∂t[u(t, h)− Vδ(t)] + ∂xu(t, h) = 0 in (0, T ).(2.3d)

We wish to construct a weak solution to (2.3) in terms of Fourier series. The crucial step to
do so is to properly define the function space for u and properties of its basis. To insure (2.3c),
let

(2.4) V := {v ∈W 1,2(0, h); v(0) = 0}, 〈v1, v2〉V :=

∫ h

0

v1v2 dx+ β(v1v2)(h),

be the function space with duality and take a basis {ui}i∈N of V which fulfills

−u′′i (x) = λ2
iui(x) for x ∈ (0, h),(2.5a)

αui(h) + u′i(h) = λ2
iβui(h), and(2.5b)

(ui, uj)V :=

∫ h

0

uiuj dx+ β(uiuj)(h) = δi,j for all i, j ∈ N,(2.5c)

where we let (2.5c) define the scalar product in V , and then the basis is orthonormal in V .
We first prove existence of such basis and study the properties of the sequence {λi}i∈N. After

that, we use this information to demonstrate the existence of the dynamic slip phenomenon as
well as the fact that this effect vanishes as β tends to 0.

From (2.5a) we know that ui is of the form ui(x) = Ai sin(λix) + Bi cos(λix) (for Ai, Bi
constants), however, due to the condition ui(0) = 0 (according to the definition of V (2.4)), this
reduces to

(2.6) ui(x) = Ai sin(λix).

As we generate a basis, without loss of generality we can assume that Ai, λi > 0. Also, using
(2.5b) for this ui we get the condition on λi,

(2.7) (α− βλ2
i ) sin(λih) = −λi cos(λih).

To have an idea about the arrangement of the eigenvalues {λi}i∈N within R+, for every j ∈ N0,
we define an auxiliary function fj : [0, 2π/h]→ R as

fj(y) :=

(
α− β

(
y + j

2π

h

)2
)

sin(yh) +

(
y + j

2π

h

)
cos(yh).

For every j ∈ N0, there exist at least two solutions to fj(y) = 0. In fact, there are at most two,
as the following explains,

(2.8) fj(y) = 0 ⇐⇒ cot(yh) = β

(
y + j

2π

h

)
− α

y + j 2π
h

.
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Here, the function on the right hand side is increasing for every j and cotangent is decreasing
on (0, πh ) and (πh ,

2π
h ). Therefore,

(2.9) for every i ∈ N there exists a unique λi ∈
(

(i− 1)
π

h
, i
π

h

)
solving (2.7).

Thanks to (2.7) and (2.8),

(2.10) βλ2
i − α < 0 ⇔ β

(
i− 1

2

)
π

h
− α(

i− 1
2

)
π
h

< 0 ⇔ (2i− 1)2 <
4h2α

π2β
.

Finally, using (2.7) in (2.5c), we obtain the formula for Ai,

(2.11) Ai =

(
h

2
+
α+ βλ2

i

2λ2
i

sin2(λih)

)− 1
2

.

Therefore, the basis {ui}i∈N exists and is prescribed by (2.6) such that (2.7), (2.9) and (2.11)
hold.

Next, we look for a weak solution to our system w(t, x) defined by means of this basis,
i.e., w(t, x) =

∑∞
i=1 ci(t)ui(x) so that for all ϕ ∈ W 1,2(0, h) fulfilling ϕ(0) = 0 and almost all

t ∈ (0, T ), the integral formulation of (2.3a) holds,∫ h

0

∂twϕ+ ∂xwϕ
′ dx+ [α(w − Vδ)ϕ+ β∂t(w − Vδ)ϕ]x=h = 0,

where we first used integration by parts and consequently the boundary conditions (2.3c) and
(2.3d) (for simplicity, we a priori assume that our solution is smooth enough so that the integral

exists and we can substitute 〈∂tw,ϕ〉V =
∫ h

0
∂twϕ dx+ β(∂twϕ)(h) according to (2.4)).

Now, we set ϕ := uj and use (2.5) to obtain

c′j(t) + λ2
jcj(t) = (αVδ(t) + βV ′δ (t))uj(h),

which, completed with the initial condition cj(0) = 0 (due to (2.3b)) and using the definition of
Vδ, turns into

c
δ−
j (t) =

uj(h)

δλ2
j

(
αt+ (βλ2

j − α)
e−λ

2
j t − 1

−λ2
j

)
' βuj(h)

t

δ
t < δ � 1,(2.12)

c
δ+
j (t) =

uj(h)

λ2
j

(
α+ (βλ2

j − α)e−λ
2
j t
eλ

2
jδ − 1

λ2
jδ

)
' uj(h)

λ2
j

(
α+

βλ2
j − α
e−λ

2
j t

)
δ � 1,(2.13)

having defined c
δ−
j (t) := cj(t)χt<δ and c

δ+
j (t) := cj(t)χt≥δ. It is not difficult to check that

limt→δ− c
δ−
j (t) = c

δ+
j (δ) and that cj(t) = c

δ−
j (t) + c

δ+
j (t) is continuous. Finally,

w(t, x) =



∞∑
i=1

1

δλ2
i

(
αt+ (βλ2

i − α)
e−λ

2
i t − 1

−λ2
i

)
ui(h)ui(x), t ∈ (0, δ),

∞∑
i=1

1

λ2
i

(
α+ (βλ2

i − α)e−λ
2
i t
eλ

2
i δ − 1

λ2
i δ

)
ui(h)ui(x), t ∈ (δ, T ).

(2.14)

For us, it is important to study the behaviour of this solution on the boundary where x = h and
for δ → 0+. Applying (2.7), (2.6), and (2.11) in (2.14) for x = h, and proceeding with δ → 0+,
we get that

(2.15) w(t, h)→
∞∑
i=1

2

h(λ2
i + (βλ2

i − α)2) + α+ βλ2
i

(
α+ (βλ2

i − α)e−λ
2
i t
)
.
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In (2.15), we already neglected the first part of (2.14), where t ∈ (0, δ), and also used that

limδ→0+
(eλ

2
i δ − 1)/(λ2

i δ) = 1.
Once we have a weak solution, we want to check whether it converges to the stationary one,

w̄(x) = Ax =
∑∞
i=1 c̄iui(x), as t = T → ∞. Here, A is a constant and c̄i are coefficients that

satisfy

c̄i =

 ∞∑
j=1

c̄juj , ui


V

= (w̄, ui)V =
ui(h)

λ2
i

A(αh+ 1).

The difference w(t, x)− w̄(x) vanishes for t→∞ if A := α
αh+1 ,

w(t, x)→ w̄(x) =
α

αh+ 1
x.

This limiting solution corresponds to the stationary solution with the standard Navier slip
response. Therefore, to study the dynamic slip phenomenon, one pays attention to the difference
of these solutions on the boundary for small (although relevant) times,

(2.16) w(t, h)− w̄(h) =

∞∑
i=1

u2
i (h)

λ2
i

(
(βλ2

i − α)e−λ
2
i t
)

for t ≥ δ.

From the relation (2.16) one can see that for small times, the impact of the several first terms
is much more important than that of the terms for larger values of λi (note that the sequence
{λi}i∈N is increasing as it is arranged according to (2.9)). Also, as discussed in (2.10), these
first terms (their number depends on α, β and h) in the sum (2.16) can be negative, whereas for
larger values of i they become positive.

Simulations. The importance of the number of negative terms in (2.16) can be demonstrated
using the computational software. In what follows, we numerically computed the sequence
{λi}10

i=1 and present the corresponding graphs of the solution 1−w(t, h) (which is Vδ(t)−w(t, h)
for δ → 0+) in several situations; namely for α/β ∈ {1/4, 20,+∞}. Then, we compare the
graphs for fixed α and three different values of β with the graph of the stationary solution
1− w̄(h) (which only depends on α and h and therefore is the same for the three solutions). In
all simulations, we fixed the constant h = π.

In Figure 2, we are interested in the response for short times, therefore, we set T = 1. From
(2.10) we can read that the number of terms for which βλ2

i − α < 0 is

(2.17) N :=
∣∣{i;βλ2

i − α < 0
}∣∣ = max

{
i; i <

√
α

β
+

1

2

}
.

First simulation corresponds to α = 1 and β = 4. Due to (2.17), N = 0 and we can see that
every term in (2.16) (which correspond to the difference 1 − w̄(h) − (1 − w(t, h))) is positive
and therefore the graph of 1−w(t, h) monotonically increases while approaching the stationary
solution 1− w̄(h).

In the second situation, we used α = 10 and β = 0.5. According to (2.17), N = 4. This
combination allows to model the dynamic slip phenomenon, as it clearly demonstrates that the
behaviour of the fluid on the boundary is not monotone. Indeed, the relative velocity 1−w(t, h)
first continues to increase and subsequently slows down and starts decreasing to approach the
stationary solution 1− w̄(h).

Finally, we used α = 10 and β = 0. Such a choice corresponds to the Navier slip situation, as
the effect of the time derivative in (2.3d) is cancelled. Also, consistently with (2.17), N → +∞
and all terms in (2.16) are negative. This results in significant jump at origin and subsequently,
the graph of the solution 1 − w(t, h) immediately monotonically decreases as it approaches its
stationary solution.
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0.0 0.2 0.4 0.6 0.8 1.0
time, t0.0

0.2

0.4

0.6

0.8

1.0
slip velocity, 1 - w (t, h)

Figure 2. Comparison of
the slip velocities 1 − w(t, h)
for different values of α
and β. For the dotted style
(α, β,N ) = (1, 4, 0); for the full
line (α, β,N ) = (10, 0.5, 4) (two
dynamic slips) and for the dashed
style (α, β,N ) = (10, 0,+∞)
(Navier’s slip).

0 1 2 3 4 5
time, t0.00

0.01

0.02

0.03

0.04

0.05
slip velocity, 1 - w (t, h)

Figure 3. Comparison of the
slip velocities 1−w(t, h) for fixed
value of α = 30 and different val-
ues of β. For the dashed style
(β,N ) = (5, 2); for the full line
(β,N ) = (30, 1) and for the dot-
ted line (β,N ) = (150, 0).

These simulations, especially comparison of the second and the third one, clearly explain
why in our modelled situation with significant impulse in the beginning (which in the picture
corresponds to the jump at t = 0) and sudden relaxation thereafter, it is much more natural to
expect the smooth dynamic slip response than the sharp Navier slip.

The second simulation indicates the importance of the value of β for the dynamic slip, as
well as the convergence property of the solutions. For this reason, we set T = 5, which is large
enough to see the converging tendency. We fix α = 30 and compare the graphs of 1 − w(t, h)
for β ∈ {5, 30, 150} against the stationary solution w̄(h) = αh/(αh + 1). Since the stationary
solution is independent of β, we can also see that all three graphs converge to this stationary
solution. The results are presented in the Figure 3.

2.2. Periodic flow induced by pressure. In the second example, we consider the pressure
of the form

(2.18a) p = x1 cos

(
2πt

T

)
,

which induces a time-wise periodic flow, so that the initial and boundary conditions are

v(0,x) = v(T,x) in R2 × (0, h),(2.18b)

v = 0 in (0, T )× R2 × {0},(2.18c)

ασ + β∂tv − s = 0 in (0, T )× R2 × {h}.(2.18d)
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By means of u, we can reformulate the system (2.1), (2.18) to

∂tu(t, x)− ∂xxu(t, x) = − cos

(
2πt

T

)
in (0, T )× (0, h),(2.19a)

u(0, x) = u(T, x) in (0, h),(2.19b)

u(t, 0) = 0 in (0, T ),(2.19c)

αu(t, h) + β∂tu(t, h) + ∂xu(t, h) = 0 in (0, T ).(2.19d)

Similarly as in the previous part, we wish to construct a weak solution to (2.19) and thanks to
(2.19c) (which is identical to (2.3c)), we can work with exactly the same space V as before, de-
fined in (2.4), and its base {ui}i∈N satisfying (2.5) and prescribed by (2.6) (ui(x) = Ai sin(λix))
such that (2.7), (2.9) and (2.11) hold.

The essence of the problem now lies in finding the coefficients ci, where our weak solution to
(2.19) is again of the form w(t, x) =

∑∞
i=1 ci(t)ui(x) and for all ϕ ∈ W 1,2(0, h) and almost all

t ∈ (0, T ) satisfies

(2.20)

∫ h

0

∂twϕ+ ∂xwϕ
′ dx+ [(αw + β∂tw)ϕ]x=h = − cos

(
2πt

T

)∫ h

0

ϕ dx,

which we obtained by multiplying (2.19a) by ϕ, using integration by parts, (2.19c), and (2.19d).
Now, we set ϕ := uj for j ∈ N and use the definition of w, the orthonormality of the basis (2.5c),
(2.5b) and (2.6) to get

(2.21) c′j(t) + λ2
jcj(t) = − cos

(
2πt

T

)∫ h

0

uj dx =
Aj
λj

(cos(λjh)− 1) cos

(
2πt

T

)
.

Solving this equation, using that cj(0) = cj(T ) and that∫ t

0

eλ
2
jτ cos

(
2πτ

T

)
dτ=

2πT

4π2 + λ4
jT

2

[
eλ

2
j t sin

(
2πt

T

)
+
λ2
jT

2π

(
eλ

2
j t cos

(
2πt

T

)
−1

)]
,

we obtain the formula for the initial condition cj(0) and for cj(t),

cj(0) = cj(T ) =
λjT

2

4π2 + λ4
jT

2
Aj(cos(λjh)− 1),(2.22a)

cj(t) =
2πT

4π2 + λ4
jT

2

Aj
λj

(cos(λjh)− 1)

[
sin

(
2πt

T

)
+
λ2
jT

2π
cos

(
2πt

T

)]
.(2.22b)

To sum up, using (2.22b), (2.6) and (2.11), the solution satisfies

w(t, x) =

∞∑
i=1

ci(t)Ai sin(λix),

∂xw(t, h) =

∞∑
i=1

ci(t)λiAi cos(λih),(2.23)

where the spatial derivative represents the wall shear stress, which is the quantity that we finally
compare.

Once we have the weak solution w(t, x), similarly as before, we want to compare it with some
reference solution - in this case, the periodic solution with the Dirichlet boundary condition,
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i.e., w̄(t, x) =
∑∞
i=1 c̄i(t)ūi(x), such that w̄(t, x) is a weak solution to

∂tu(t, x)− ∂xxu(t, x) = − cos

(
2πt

T

)
in (0, T )× (0, h),(2.24a)

u(0, x) = u(T, x) in (0, h),(2.24b)

u(t, 0) = u(t, h) = 0 in (0, T ).(2.24c)

Then, for every i ∈ N, the eigenfunctions ūi(x) of W 1,2(0, h) with their eigenvalues λ̄i solve

−ū′′i (x) = λ̄2
i ūi(x) for x ∈ (0, h),(2.25a)

ūi(0) = ūi(h) = 0 and(2.25b) ∫ h

0

ūiūj dx = δi,j for all i, j ∈ N,(2.25c)

to form a basis in W 1,2
0 (0, h), and c̄i(t) is computed using ūi(x). From (2.25a) we know that

the eigenfunctions are of the form

(2.26)

ūi(x) = Āi sin(λ̄ix) + B̄i cos(λ̄ix), where

B̄i = 0, λ̄i =
iπ

h
and Āi =

√
2

h
,

using (2.25b) and (2.25c). Altogether,

(2.27) ūi(x) = Āi sin(λ̄ix) =

√
2

h
sin

(
iπ

h
x

)
.

Then, for all ϕ ∈W 1,2
0 (0, h) and almost all t ∈ (0, T ), w̄ satisfies

(2.28)

∫ h

0

∂tw̄ϕ+ ∂xw̄ϕ
′ dx = − cos

(
2πt

T

)∫ h

0

ϕ dx,

and for ϕ := ūj , j ∈ N, repeating a very similar procedure like before, we obtain that c̄i(t) solves

(2.29) c̄′i(t) + λ̄2
i c̄i(t) = − cos

(
2πt

T

)∫ h

0

ūi dx =

{
2 Āi
λ̄i

cos
(

2πt
T

)
, i = 2k + 1,

0, i = 2k,

for k ∈ N. Then,

(2.30) c̄i(t) =

{
2πT

4π2+λ̄4
iT

2
2Āi
λ̄i

[
sin
(

2πt
T

)
+

λ̄2
iT
2π cos

(
2πt
T

)]
, i = 2k + 1,

0, i = 2k,

and we can finally write the formulae similar to those for w(t, x), but incorporating (2.30) and
(2.26),

w̄(t, x) =

∞∑
i=1

c̄i(t)Āi sin(λ̄ix),

∂xw̄(t, h) =

∞∑
i=1

c̄i(t)λ̄iĀi cos(λ̄ih).(2.31)

In Figure 4 and Figure 5, we compare several examples of the periodic wall shear stress (2.23)
of a solution corresponding to the dynamic slip condition with the reference wall shear stress
(2.31) of a solution that satisfies the Dirichlet condition. The constants are chosen as h = π and
T = 2π. The eigenvalues of the reference “Dirichlet” solution are the natural numbers (thanks
to the proper choice of the parameter h).
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1 2 3 4 5 6
time, t

-1.0

-0.5

0.0

0.5

1.0

wall shear stress, dx w (t, h) Figure 4. Comparison of the
wall shear stresses ∂xw(t, h) for
fixed value of α = 1 and
three different values of β ∈
{0.1, 4.2, 100}. For the dot-
dashed style β = 0.1; for the
dashed style β = 4.2 and for the
dotted style β = 100. The full
line corresponds to the Dirichlet
solution, which is independent of
α and β.

1 2 3 4 5 6
time, t

-1.0

-0.5

0.0

0.5

1.0

wall shear stress, dx w (t, h) Figure 5. Comparison of the
wall shear stresses ∂xw(t, h) for
fixed value of β = 1 and
three different values of α ∈
{0.1, 4.2, 100}. For the dot-
dashed style α = 0.1; for the
dashed style α = 4.2 and for the
dotted style α = 100. The full
line corresponds to the Dirichlet
solution, which is independent of
α and β.

In particular, we compare the values of the shear stresses on the boundary (and not the slip
velocities as before), for the simple reason that due to the presence of the (complete) Dirichlet
boundary condition, the slip velocity is equal to zero, and in this case the wall shear stress
represents the behaviour on the boundary better.

In Figure 4, we fix the value of α = 1 and compare the wall shear stresses for values β ∈
{0.1, 4.2, 100} with the Dirichlet solution, which is independent of α and β. On the other hand,
in Figure 5, we did the opposite - we fixed the value of β = 1 and compare the wall shear stress
for values α ∈ {0.1, 4.2, 100} with the Dirichlet solution, which is independent of α and β.

Using these simulations, we can see how the values of α and β influence the wall shear stresses
of solutions. We basically see two effects - translation in time and significant difference in the
magnitudes of the solutions. In particular, we can observe that the dynamic solution narrows
the Dirichlet solution in the case when the value of α in Figure 5 and the value of β in Figure 4
are large. To explain this, we notice that these parameters enter the formula (2.23) via Ai only,
and when comparing (2.11) and (2.26), Ai → Āi whenever α + β →∞. Finally, both of them,
Ai in (2.23) and Āi in (2.31), are present in the second power.

3. Function spaces

We work with a special type of boundary condition which includes the time derivative of the
velocity of the fluid weighted by the parameter β. Such a structure demands a definition of
specific function spaces, as well. In this part, we introduce the Gelfand triplets that consist of
the function spaces which take into account our general boundary condition.
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Gelfand triplet. For Ω a Lipschitz domain in Rd, β ≥ 0 and r ∈ (1,∞)4, we define V ⊂
C0,1(Ω)× C0,1(∂Ω) as

V := {(v, g) ∈ C0,1(Ω)×C0,1(∂Ω); div v = 0 in Ω,v · n = 0 and v = g on ∂Ω}.
With the help of V, we also define

Vr := V‖·‖Vr , where ‖(v, g)‖Vr := ‖v‖W 1,r(Ω) + ‖v‖L2(Ω) + ‖g‖L2(∂Ω)(3.1)

H := Vr
‖·‖H

, where ‖(v, g)‖2H := ‖v‖2L2(Ω) + β‖g‖2L2(∂Ω).(3.2)

For r = 2, due to the Trace theorem, the norm on V2 defined by (3.1) is equivalent to the
W 1,2-norm on V2. Also, using the definitions of the Vr- and H-norms, we emphasize that for
(v, g) ∈ Vr it holds that g = tr v on ∂Ω, however, it need not be the case for (v, g) ∈ H, since
the latter one does not keep the Sobolev property of the function and the trace may not exists.
Moreover, even if the trace of v exists it is not necessarily equal to g.

As Vr is a closed subspace of (W 1,r
n,div(Ω) ∩ L2(Ω)) × L2(∂Ω), which is a reflexive separable

space, it is itself reflexive and separable. Also, H is a Hilbert space identified with its own dual
H ≡ H∗ with the inner product defined by

(3.3) ((ṽ, g̃), (v, g))H :=

∫
Ω

ṽ · v dx+ β

∫
∂Ω

g̃ · g dS.

By definition, Vr is continuously embedded into H and is also dense in H, therefore also the
embedding Vr ↪→ H is dense. Next, restricting every functional f ∈ H∗ to Vr ⊂ H, we get that
H∗ ≡H is embedded in V ∗r . This last embedding is also continuous because the adjoint map
i∗ : H∗ → V ∗ to the continuous embedding i : V → H is continuous. Finally, the embedding
H∗ ↪→ V ∗r is dense because Vr is reflexive and dense in H (cf. [5, Remark 17, p. 46]). Thus, we
have the Gelfand triplet

(3.4) Vr ↪→ H ≡ H∗ ↪→ V ∗r ,

and both embeddings are continuous and dense. Moreover, for r > 2d/(2 + d), W 1,r(Ω) is
compactly embedded into L2(Ω) and for r > 2d/(d + 1), the trace operator is compact from
W 1,r(Ω)→ L2(∂Ω), according to the corollary of the Trace theorem. Therefore,

Vr ↪→↪→ H whenever r >
2d

d+ 1
.

We define the duality pairing between Vr and V ∗r in a standard way as a continuous extension
of the inner product (·, ·)H on H. That is, for any (v, g) ∈ Vr ⊂ H and (ṽ, g̃) ∈ H∗ ⊂ V ∗r we
have

〈(ṽ, g̃), (v, g)〉Vr := ((ṽ, g̃), (v, g))H .

Subsequently, for any (v, g) ∈ Vr and (ṽ, g̃) ∈ V ∗r we define

(3.5) 〈(ṽ, g̃), (v, g)〉Vr := lim
k→+∞

((ṽk, g̃k), (v, g))H ,

where {(ṽk, g̃k)}k∈N is a sequence in H∗ converging to (ṽ, g̃) in V ∗r .
Finally, we specify how to generate the duality pairing for object defined only inside of Q or

Ω, which is for example the case of the external body forces f . Hence, for f ∈ (W 1,r
n (Ω))∗, we

can identify it with (f ,0) ∈ V ∗r , and we can write

(3.6) 〈f ,ϕ〉Vr := 〈(f ,0), (ϕ, tr ϕ)〉Vr = lim
k→+∞

∫
Ω

fk ·ϕ dx = 〈f ,ϕ〉W 1,r
n (Ω),

4In our result, Theorem 5.2, we only allow r ∈ (6/5,∞). However, this restriction is arising due to the lack

of compactness in the convective term, i.e., it is initiated by the properties of the system. For other problems,
e.g. the Stokes-like one, where the convective term is not present, we can use this theory for any r ∈ (1,∞).
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for any (ϕ, tr ϕ) ∈ Vr, where {(fk,0}k∈N is a sequence in H converging to (f ,0) in V ∗r . Note
that in the case when f ∈ L2(Ω), this definition just means

(3.7) 〈f ,ϕ〉L2(Ω) =

∫
Ω

f ·ϕ dx,

which is exactly the formula requiring the consistency of a definition of a weak solution. It is
evident that this term does not see any information coming from the boundary ∂Ω. Although,
it would not be the case if we considered the generalisation (1.3). In this setting, for given
g ∈ L2(∂Ω), we would set

(3.8) 〈(f , g), (ϕ, tr ϕ)〉Vr := 〈f ,ϕ〉W 1,r
n (Ω) +

∫
∂Ω

g · tr ϕ dS,

which would again correspond to a proper definition of a weak solution. From another point
of view, if we considered a standard couple (ṽ, g̃) ∈ V ∗r , this is a continuous linear functional
which is bounded, i.e., for any (ϕ, tr ϕ) ∈ Vr,

|(ṽ, g̃)(ϕ, tr ϕ)| ≤ ‖(ṽ, g̃)‖V ∗r
(
‖ϕ‖W 1,r(Ω) + ‖ϕ‖L2(Ω) + ‖tr ϕ‖L2(∂Ω)

)
.

In contrary, for (f ,0) ∈ V ∗r we only have that for any (ϕ, tr ϕ) ∈ Vr,
|(f ,0)(ϕ, tr ϕ)| ≤ ‖(f ,0)‖V ∗r

(
‖ϕ‖W 1,r(Ω) + ‖ϕ‖L2(Ω)

)
.

Notation.

1. For simplicity, the fact that (ϕ, tr ϕ) ∈ Vr or H will be only denoted by ϕ ∈ Vr or H,
respectively, however, understood in the sense of definition of the corresponding space.
Especially, we always write f ∈ V ∗r and understand it in the sense (f ,0) ∈ V ∗r .

2. For r = 2, we simplify the notation and denote the Hilbert space V := V2.
3. In the space V , the V -norm defined in (3.1), the W 1,2-norm, and the norm generated

by the scalar product defined in (A.1) are equivalent. We use them interchangeably.

The basis orthogonal in V and orthonormal in H is defined and studied in the Appendix A.

4. Maximal monotone graphs

In this part, we only shortly introduce the theory for the maximal monotone r-graphs. As
opposed to other works on the maximal monotone graph setting, here we do not assume the
existence of a Borel measurable selection operator, i.e., a mapping S∗ : Rd×d → Rd×d fulfilling
(S∗(D),D) ∈ A.

A detailed attention to the formulations and proofs of the lemmata from this section is paid
in [9, Section 4] and similarly also in [19, Chapter 4]. We use the results from these works in
order to approximate the graphs, and focus on the dynamic slip effects in the proof presented
here.

Due to (1.2f) and (1.2g), the implicit character of the response of the fluid inside the domain
is described via maximal monotone r-graph (and on the boundary via maximal monotone 2-
graph), so we start with its definition.

Definition 4.1 (Maximal monotone r-graph). Let r ∈ (1,∞), r′ := r/(r − 1) and let A ⊂
Rd×d × Rd×d. We say that A is a maximal monotone r-graph, if

(A1) (0,0) ∈ A,
(A2) monotonicity: for any (S1,D1), (S2,D2) ∈ A,

(S1 − S2) : (D1 −D2) ≥ 0,
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(A3) maximality: if for some (S,D) ∈ Rd×d × Rd×d and all (S,D) ∈ A
(S − S) : (D −D) ≥ 0

holds, then (S,D) ∈ A,
(A4) r-coercivity: there exist C1, C2 ∈ R+ such that for all (S,D) ∈ A there holds

S : D ≥ C1(|S|r′ + |D|r)− C2.

In general, the maximal monotone graph theory can cover a rather wide class of models,
especially the implicit ones. However, the explicit description allows us to approach the problem
via proper Galerkin approximation, in particular, when estimating the time derivative on the
Galerkin level, where the properties of the explicit basis5 and the continuity of the selection are
heavily used. Therefore, our primary goal is to approximate maximal monotone r-graph by an
explicit maximal monotone 2-graph.

In what follows, we construct the approximative graphs Aε and Aεε, which bring us to the
situation of a 2-graph with explicit formulation. We postulate a lemma about this approximative
property, as well as several other lemmata that describe the properties of the maximal monotone
graphs. Finally, we make a note on the graph B which describes the constitutive relation on the
boundary Γ.
Construction. Let A be a maximal monotone r-graph and let ε > 0. We define

Aε := {(S̃, D̃) ∈ Rd×d × Rd×d; ∃(S,D) ∈ A, S̃ = S, D̃ = D + εS},(4.1a)

Aεε := {(S,D) ∈ Rd×d × Rd×d; ∃(S̃, D̃) ∈ Aε,S = S̃ + εD̃,D = D̃}.(4.1b)

Lemma 4.2. Let A be a maximal monotone r-graph. Then for every ε ∈ (0, 1), Aεε is a
maximal monotone 2-graph. Moreover, there exists a unique S∗ε : Rd×d → Rd×d, which is
Lipschitz continuous and uniformly monotone, and satisfies

(4.2) (S,D) ∈ Aεε ⇐⇒ S = S∗ε(D).

Also, for an arbitrary measurable and bounded U ⊂ Q, let Sε,Dε : U → Rd×d be such that
(Sε,Dε) ∈ Aεε almost everywhere in U , and let

(4.3)

∫
U

Sε : Dε dx dt ≤ C uniformly with respect to ε.

Then there exist S ∈ Lr′(U), D ∈ Lr(U) so that for subsequences

(4.4)
Sε ⇀ S weakly in Lmin{2,r′}(U),

Dε ⇀D weakly in Lmin{2,r}(U).

Moreover, if

(4.5) lim sup
ε→0+

∫
U

Sε : Dε dx dt ≤
∫
U

S : D dx dt,

then (S,D) ∈ A almost everywhere in U and for a subsequence,

(4.6) (Sε : Dε) ⇀ (S : D) weakly in L1(U).

The above lemma deals with the convergence of approximative graphs and corresponding
approximative quantities. For the sake of completeness, we also formulate the result about the
fixed graph and the convergence properties therein.

5The key property is the continuity of the projection operator in the space V (A.5b). We believe that for

smooth domains, one could construct a basis for which the projection would be continuous also in Vr, however,
we omit such procedure here in order to avoid the technical difficulties.
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Lemma 4.3. For every n ∈ N, let (Sn,Dn) ∈ A, and let∫
U

Sn : Dn dx dt ≤ C uniformly with respect to n

for U ⊂ Q measurable and bounded. Then

Sn ⇀ S weakly in Lr
′
(U),

Dn ⇀D weakly in Lr(U).

Moreover, if

lim sup
n→∞

∫
U

Sn : Dn dx dt ≤
∫
U

S : D dx dt,

then (S,D) ∈ A almost everywhere in U and Sn : Dn ⇀ S : D weakly in L1(U).

The next lemma is in fact a replacement of the assumption about the existence of a measurable
selection. Indeed, assuming that the Borel measurable selection exists, the claim of the following
lemma is straightforward. In our case, we need to show that for any measurable D there exists
the corresponding measurable S such that (S,D) ∈ A.

Lemma 4.4. Let r ∈ (1,∞). For every D ∈ Lr(Q) there exists S ∈ Lr′(Q) such that (S,D) ∈
A almost everywhere in Q.

Lemma 4.5. Let (Sε,Dε) ∈ Aεε, then there exist C̃1, C̃2 > 0 such that

(4.7) Sε : Dε ≥ C̃1(|Sε|min{r′,2}) + |Dε|min{r,2})− C̃2.

For clarity, we mention also the graph B acting on the boundary, and we formulate the
convergence lemma for it. Also, we only formulate that the statements of other lemmata hold
equivalently for B, as well.

The maximal monotone r-graph B ⊂ Rd × Rd and its approximations Bε and Bεε are defined
to possess exactly the same qualities like their counterparts A from the Definition 4.1, Aε and
Aεε from (4.1), although, being the subsets of Rd ×Rd. They are related via the approximating
property described in the Lemma 4.6.

Lemma 4.6. Let B ⊂ Rd × Rd be a maximal monotone r-graph. Then for every ε ∈ (0, 1),
Bεε is a maximal monotone 2-graph. Moreover, there exists a unique σ∗ε : Rd → Rd, which is
Lipschitz continuous and uniformly monotone, and satisfies

(σ,v) ∈ Bεε ⇐⇒ σ = σ∗ε(v).

Also, for an arbitrary measurable and bounded U ⊂ Γ, let σε,vε : U → Rd be such that
(σε,vε) ∈ Bεε almost everywhere in U and let

(4.8)

∫
U

σε · vε dS dt ≤ C uniformly with respect to ε.

Then there exist σ ∈ Lr′(U), v ∈ Lr(U) so that for subsequences

σε ⇀ σ weakly in Lmin{2,r′}(U),

vε ⇀ v weakly in Lmin{2,r}(U).

Moreover, if

(4.9) lim sup
ε→0+

∫
U

σε · vε dS dt ≤
∫
U

σ · v dS dt,

then (σ,v) ∈ B almost everywhere in U and for a subsequence,

(σε · vε) ⇀ (σ · v) weakly in L1(U).
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5. Navier–Stokes-like flow

We finally apply the theory which was built and motivated up to now. We consider A to be a
general r-graph with r ∈ (6/5,∞) and B to be a 2-graph. This restriction for r comes from the
system and the condition on B is posited for practical reasons - the proof would work for any
A, B which are r- and q-graphs with appropriately redefined spaces Vr to V qr . Also, we prove
the result for β > 0, as the case β = 0 is already treated in the work [7].

We recall the problem (1.2) and properly formulate the main result of this work. We start
with the definition of a weak solution.

Definition 5.1. Let T > 0, α, β > 0, r ∈ (6/5,∞), Ω ⊂ R3 be a Lipschitz domain, f ∈
Lr
′
(0, T ; (Vr)

∗), and v0 ∈ H. Let A be a maximal monotone r-graph in Q and B be a maximal
monotone 2-graph on the boundary Γ. Set z := max{r, 5r/(5r − 6)}. We say that the triplet
(v,S,σ) is a weak solution to the Navier–Stokes-like problem (1.2) if

v ∈ Lr(0, T ;Vr) ∩ Cw([0, T ];H),

∂tv ∈ Lz
′
(0, T ; (Vz)

∗),

S ∈ Lr′(Q),

σ ∈ L∞(0, T ;L2(∂Ω)),

the balance of linear momentum is satisfied in the weak sense, i.e., for almost all t ∈ (0, T ) and
for all ϕ ∈ Vz,

(5.1a) 〈∂tv,ϕ〉Vz −
∫

Ω

(v ⊗ v) : ∇ϕ dx+

∫
Ω

S : Dϕ dx+ α

∫
∂Ω

σ ·ϕ dS = 〈f ,ϕ〉Vz ,

and (S,Dv) ∈ A almost everywhere in Q and (σ,v) ∈ B almost everywhere on Γ. The initial
condition is attained in the strong sense,

lim
t→0+

‖v(t)− v0‖H = 0.

Moreover, we say that a solution satisfies the energy inequality if for all t ∈ (0, T ),

(5.1b)
1

2
‖v(t)‖2H +

∫ t

0

∫
Ω

S : Dv dx dτ + α

∫ t

0

∫
∂Ω

σ · v dS dτ ≤
∫ t

0

〈f ,v〉V dτ +
1

2
‖v0‖2H .

First, we show that the above definition is compatible with the concept of a classical solution.
Indeed, let us assume for a moment that the weak solution has an additional regularity

∂tv ∈ L2(0, T ;H),

divS ∈ L2(Q).

and that also f ∈ L2(Q). Then we can use integration by parts in (5.1a) and also the definition
of a duality pairing in V to obtain that for almost all t ∈ (0, T ) there holds

(5.2)

∫
Ω

(∂tv + div(v ⊗ v)− divS) ·ϕ dx+

∫
∂Ω

(∂tv + ασ + Sn) ·ϕ dS =

∫
Ω

f ·ϕ dx.

In particular, (5.2) holds for any smooth compactly supported ϕ having zero divergence and
therefore we can use the de Rham theorem to find a pressure p such that (1.2b) holds almost
everywhere in Q. Furthermore, since the tangential part of ϕ can be arbitrary, it also follows
from (5.2) that (1.2d) is satisfied almost everywhere on Γ. Hence, the required compatibility
condition holds true. It is worth noticing here, that in case we would consider the Stokes-like
problem, i.e., the problem without the convective term, the required regularity ∂tv ∈ L2(0, T ;H)
can be proven easily provided that the initial data v ∈ V and the graph A represents a sub-
differential of some convex potential.
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Theorem 5.2. Let all assumptions of the Definition 5.1 be met. Then for any T > 0, α, β > 0
and r ∈ (6/5,∞), there exists a weak solution to the system (1.2), which satisfies the energy
inequality. Moreover, if r ≥ 11/5, then the energy inequality holds with the equality sign.

To prove this result, we approach the problem (1.2) by a proper approximation. In order to
define it, we introduce an auxiliary function Φ : R→ R,

Φ(s) :=


1 if |s| ∈ [0, 1),

2− s if |s| ∈ [1, 2),

0 if |s| ∈ [2,∞),

and for every δ ∈ (0, 1), we define the cut-off function Φδ : R→ R,

(5.3) Φδ(s) := Φ(δs), therefore Φδ(s)→ 1 as δ → 0+.

This function helps us with splitting the approximation into two steps - in the first one, we
converge in the graphs (i.e., with ε) with the cut-off convective term, and in the second one,
we converge with δ in order to obtain the result for the regular Navier–Stokes-like problem.
But first, we prove the existence of a solution to the ε, δ-approximating problem with cut–off
convective term and continuous 2-graphs Aεε and Bεε.

Since we deal with a completely new setting of function spaces, we want to reprove all classical
results in this new setting rigorously. Therefore, we also focus on attainment of initial condition
and the validity of the energy inequality in detail. For such purposes, we define a certain function
that is used frequently in what follows. For given arbitrary T > 0, 0 < κ� 1 and t ∈ (0, T −κ),
we consider η ∈ C0,1([0, T ]) as a piece-wise linear function of three parameters, such that

(5.4) η(τ) :=


1 if τ ∈ [0, t),

1 + t−τ
κ if τ ∈ [t, t+ κ),

0 if τ ∈ [t+ κ, T ].

This function is typically used in proofs on attainment of the initial data and on identification
of the graphs.

On the other hand, we do not discuss in detail the standard methods and estimates related
to Navier-Stokes-like systems and refer rather to [7, 10, 16] for details.

5.1. Existence for the ε, δ-approximating problem. First, we prove existence of a solution
(vε,Sε,σε) for every ε ∈ (0, 1) and for every δ ∈ (0, 1) to the problem

div vε = 0 in Q,(5.5a)

∂tv
ε + div

(
(vε ⊗ vε)Φδ(|vε|2)

)
− divSε +∇p = f in Q,(5.5b)

−(Sεn)τ = ασε + β∂tv
ε on Γ,(5.5c)

vε · n = 0 on Γ,(5.5d)

vε(0) = v0 in Ω,(5.5e)

(Sε,Dvε) ∈ Aεε in Q,(5.5f)

(σε,vε) ∈ Bεε on Γ,(5.5g)

where Aεε and Bεε are constructed from A and B, respectively, according to (4.1b), and they are
2-graphs with selection due to Lemmata 4.2 and 4.6.

For simplicity, we drop using the index ε and from now on, we look for (v,S,σ) instead of
(vε,Sε,σε), however, we continue writing Aεε and Bεε to enhance the use of the approximating
graphs.
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We know that for Aεε, there exists S∗ : Rd×d → Rd×d such that

(5.6) (S,Dv) ∈ Aεε ⇐⇒ S = S∗(Dv).

Similarly, for Bεε, we denote the selection σ∗ : Rd → Rd and

(5.7) (σ,v) ∈ Bεε ⇐⇒ σ = σ∗(v).

Moreover, both S∗ and σ∗ are Lipschitz continuous and uniformly monotone.

Theorem 5.3. Let T > 0, α, β > 0, δ ∈ (0, 1), Ω ⊂ R3 be Lipschitz, f ∈ L2(0, T ;V ∗) and
v0 ∈ H. Let Φδ be defined by (5.3). Then there exists a triplet (v,S,σ) such that

v ∈ L2(0, T ;V ) ∩ C([0, T ];H),

∂tv ∈ L2(0, T ;V ∗),

S ∈ L2(Q),

σ ∈ L2(Γ),

and (5.5) is satisfied in the weak sense, i.e., for almost all t ∈ (0, T ) and for all ϕ ∈ V ,

(5.8a) 〈∂tv,ϕ〉V −
∫

Ω

(v ⊗ v)Φδ(|v|2) : ∇ϕ dx+

∫
Ω

S : Dϕ dx+ α

∫
∂Ω

σ ·ϕ dS = 〈f ,ϕ〉V ,

and (S,Dv) ∈ Aεε almost everywhere in Q, and (σ,v) ∈ Bεε almost everywhere on Γ. The initial
condition is attained in the strong sense,

(5.8b) lim
t→0+

‖v(t)− v0‖H = 0.

Proof of Theorem 5.3. Let {wi}i∈N be a basis of V constructed in Appendix A. Recall the
definition of the selections (5.6) and (5.7) for Aεε and Bεε, respectively. For every n ∈ N, we
define the Galerkin approximation

(5.9) vn(t,x) :=

n∑
i=1

cni (t)wi(x) for (t,x) ∈ Q,

where the functions cni (t) are defined such that for i = 1, . . . , n, they solve the following system
of ordinary differential equations

(5.10a)

(∂tv
n,wi)H −

∫
Ω

(vn ⊗ vn)Φδ(|vn|2) : ∇wi dx+

∫
Ω

S∗(Dvn) : Dwi dx

+ α

∫
∂Ω

σ∗(vn) ·wi dS = 〈f ,wi〉V

with initial conditions

(5.10b) cni (0) =

∫
Ω

v0 ·wi dx+ β

∫
∂Ω

v0 ·wi dS = (v0,wi)H .

Due to the Carathéodory theory (recall that the selections are Lipschitz continuous), existence
of such a solution is obtained in an interval [0, tn) for some tn ∈ (0, T ) and thanks to the uniform
estimates derived in the following part we can set tn = T . Furthermore, recall the definition of
the projection Pn (A.4) to see (using (5.9) and (5.10b)) that

(5.11) ‖vn(0)‖2H = ‖
n∑
i=1

(v0,wi)Hwi‖2H = ‖Pnv0‖2H ≤ ‖v0‖2H ,
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where we used the estimate (A.5a), as {wi}i∈N is an orthonormal basis of H. Moreover, from
(A.4) and (5.9) we get for any ϕ ∈ V that

(5.12) (vn, Pnϕ)H =

 n∑
j=1

cnjwj ,

n∑
i=1

(ϕ,wi)Hwi


H

=

 n∑
j=1

cnjwj ,ϕ


H

= (vn,ϕ)H .

The formula (5.10a) holds only for w from the linear hull of {wj}nj=1. However, with the help
of (5.12), we can work with (5.10a) for any w ∈ V .

Uniform estimates. We multiply the i-th equation in (5.10a) by cni (t) and sum them together
over i = 1, . . . , n to obtain6

1

2

d

dt
‖vn‖2H +

∫
Ω

S∗(Dvn) : Dvn dx+ α

∫
∂Ω

σ∗(vn) · vn dS = 〈f ,vn〉V ,(5.14)

Since, Aεε and Bεε are 2-graphs and (S∗(Dvn),Dvn) ∈ Aεε and (σ∗(vn),vn) ∈ Bεε, we can use
the coercivity assumption (A4), the Young and the Korn inequalities and the estimate (5.11),
and it follows from (5.14) that there is a constant C depending only on f , v0, Ω and ε such that

(5.15)
‖vn‖L2(0,T ;V )∩L∞(0,T ;H) ≤ C uniformly with respect to n,

‖S∗(Dvn)‖L2(Q) + ‖σ∗(vn)‖L2(Γ) ≤ C uniformly with respect to n.

Using the properties of the projection Pn, see (5.12), we can reconstruct the estimate for the
time derivative for ∂tv

n. We know that ∂tv
n ∈ H and using this information we show that it is

also uniformly bounded in L2(0, T ;V ∗). For an arbitrary ϕ ∈ V , using (5.12) and the continuity
of the projection in V (A.5b),

〈∂tvn,ϕ〉V = (∂tv
n, Pnϕ)H =

∫
Ω

∂tv
n · (Pnϕ) dx+ β

∫
∂Ω

∂tv
n · (Pnϕ) dS

=

∫
Ω

(
(vn ⊗ vn)Φδ(|vn|2)− S∗(Dvn)

)
:∇(Pnϕ) dx

− α
∫
∂Ω

σ∗(vn)·(Pnϕ) dS + 〈f , Pnϕ〉V

≤ C
(
‖S∗(Dvn)‖L2(Ω) + ‖σ∗(vn)‖L2(∂Ω) + C(δ) + ‖f‖V ∗

)
‖ϕ‖V .

Thus, we define P := {ϕ ∈ V, ‖ϕ‖V ≤ 1} and recall (5.15), and the assumption on f to obtain∫ T

0

‖∂tvn‖2V ∗ dt =

∫ T

0

(
sup
ϕ∈P
〈∂tvn,ϕ〉V

)2

dt

≤ C
∫ T

0

(
‖S∗(Dvn)‖L2(Ω) + ‖σ∗(vn)‖L2(∂Ω) + C(δ) + ‖f‖V ∗

)2
dt

≤ C uniformly with respect to n.

(5.16)

6The convective term vanishes due to the fact that div vn = 0 in Q and vn · n = 0 on Γ as it follows from
the following computation (for P a primitive function to Φδ)

(5.13)

∫
Ω
(v ⊗ v)Φδ(|v|2) : ∇v dx =

1

2

∫
Ω
v · ∇|v|2Φδ(|v|2) dx

=
1

2

∫
Ω
v · ∇P (|v|2) dx = −

1

2

∫
Ω
P (|v|2) div v dx = 0.



ON THE DYNAMIC SLIP BOUNDARY CONDITION FOR NAVIER–STOKES-LIKE PROBLEMS 23

Limit passage. By virtue of the uniform estimates (5.15) and (5.16), reflexivity of spaces V
and V ∗, the Aubin–Lions lemma (recall the compact embedding V ↪→↪→ H) and integration by
parts for Sobolev Bochner functions, there exist (not relabelled) subsequences and functions v,
S and σ such that as n→∞,

vn ⇀∗ v weakly∗ in L∞(0, T ;H),(5.17a)

vn ⇀ v weakly in L2(0, T ;V ),(5.17b)

∂tv
n ⇀ ∂tv weakly in L2(0, T ;V ∗),(5.17c)

vn → v strongly in L2(0, T ;H),(5.17d)

(vn ⊗ vn)Φδ(|vn|2)→ (v ⊗ v)Φδ(|v|2) strongly in Lγ(Q), γ ∈ [1,∞),(5.17e)

S∗(Dvn) ⇀ S weakly in L2(Q),(5.17f)

σ∗(vn) ⇀ σ weakly in L2(Γ).(5.17g)

We add a short comment on (5.17e). For fixed δ, v 7→ (v⊗v)Φδ(|v|2) is bounded and continuous,
and this together with (5.17d) imply the almost everywhere convergence of vn to v in Q.
Then (5.17e) holds, and the result follows e.g. by the use of the Lebesgue dominated convergence
theorem.

In (5.10a), for any ψ ∈ C1(0, T ) and ϕ ∈ V , we multiply the i-th equation by ψ(ϕ,wi)H ,
sum over i = 1, . . . , k for k ≤ n and integrate over t ∈ (0, T ) to get for every k = 1, . . . , n∫ T

0

(
∂tv

n, P kϕ
)
H
ψ dt−

∫
Q

(vn ⊗ vn)Φδ(|vn|2) : ∇(P kϕ)ψ dx dt

+

∫
Q

S∗(Dvn) :D(P kϕ)ψ dx dt+ α

∫
Γ

σ∗(vn)·(P kϕ)ψ dS dt =

∫ T

0

〈f , P kϕ〉V ψ dt.

Using the convergence results (5.17), we can proceed with the limit n→∞. The limit integral
holds for any ψ, therefore we obtain

〈∂tv, P kϕ〉V −
∫

Ω

(v ⊗ v)Φδ(|v|2) : ∇(P kϕ) dx+

∫
Ω

S : D(P kϕ) dx

+ α

∫
∂Ω

σ · (P kϕ) dS = 〈f , P kϕ〉V

for almost all t ∈ (0, T ) and for all k ∈ N. Finally, we can use the property of the projection
P kϕ→ ϕ in V as k →∞ from (A.5) and obtain the weak formulation (5.8a).

Initial data attainment. Since the initial condition involves also behavior on the boundary, we
prove the attainment rigorously here, although it somehow follows step by step the standard
setting with the only change in the definition of the function spaces. From the previous parts,
we know that v ∈ L2(0, T ;V ) and ∂tv ∈ L2(0, T ;V ∗), which implies that v ∈ C([0, T ];H). From
the definition of the space C([0, T ];H), we get that

(5.18) v(t)→ v(0) strongly in H as t→ 0+.

In what follows, we show that v(t) ⇀ v0 weakly in H as t→ 0+, and these convergence results
together identify the limit (5.8b), that we want to prove.
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Let 0 < κ � 1 and t ∈ (0, T − κ). We recall the definition of an auxiliary η in (5.4),
multiply (5.10a) by this η, and integrate over (0, T ) to obtain for every i = 1, . . . , n∫ T

0

(∂tv
n,wi)Hη dτ +

∫
Q

(
S∗(Dvn)− (vn ⊗ vn)Φδ(|vn|2)

)
: ∇wiη dx dτ

+ α

∫
Γ

σ∗(vn) ·wiη dS dτ =

∫ T

0

〈f ,wi〉V η dτ.

Next, we integrate by parts in the first term, use that η(T ) = 0, and the equality in (5.11)
(vn(0) = Pnv0), to get

−
∫ T

0

(vn,wi)Hη
′ dτ +

∫
Q

(
S∗(Dvn)− (vn ⊗ vn)Φδ(|vn|2)

)
: ∇wiη dx dτ

+ α

∫
Γ

σ∗(vn) ·wiη dS dτ =

∫ T

0

〈f ,wi〉V η dτ + (Pnv0,wi)Hη(0),

and this equation is ready for the use of the weak convergence results (5.17) and the convergence
of the projection (A.5c) to obtain for any i ∈ N that

−
∫ T

0

(v,wi)Hη
′ dτ +

∫
Q

(
S − (v ⊗ v)Φδ(|v|2)

)
: ∇wiη dx dτ

+ α

∫
Γ

σ ·wiη dS dτ =

∫ T

0

〈f ,wi〉V η dτ + (v0,wi)Hη(0).

Next, we use the properties of η, namely that η(τ) = 1 for τ ∈ [0, t), η(τ) = 0 for τ ∈ (t+ κ, T ],
and η′(τ) = − 1

κ for τ ∈ (t, t+ κ). Then we have

1

κ

∫ t+κ

t

(v,wi)H dτ +

∫
Qt+κ

(
S − (v ⊗ v)Φδ(|v|2)

)
: ∇wiη dx dτ

+ α

∫
Γt+κ

σ ·wiη dS dτ =

∫ t+κ

0

〈f ,wi〉V η dτ + (v0,wi)H .

Further, we wish to proceed with the limit as κ → 0+. In the first term, the integrand is well-
defined (v ∈ C([0, T ];H)), and the mean-value integral converges to (v(t),wi)H . In the other
terms, we take the limit as κ→ 0+ together with t→ 0+, use that all quantities are integrable
in appropriate spaces and arrive at

lim
t→0+

(v(t),wi)H = (v0,wi)H .

This holds for every i ∈ N, and since {wi}i∈N is a basis in H, this is nothing but the weak
convergence result we hoped for, and it identifies the strong limit in (5.18) of the initial condition
in H.

Graphs identification. After proceeding with the limit, it remains to show that the limiting
objects relate to each other in the way we want them to, i.e., that (S,Dv) ∈ Aεε and (σ,v) ∈ Bεε.
To do so, we multiply (5.14) by piece-wise linear η(t) defined in (5.4) and integrate over (0, T )
to obtain ∫

Qt+κ

S∗(Dvn) : Dvnη dx dτ + α

∫
Γt+κ

σ∗(vn) · vnη dS dτ

=

∫ t+κ

0

〈f ,vn〉V η dτ +
1

2
‖Pnv0‖2H −

1

2κ

∫ t+κ

t

(vn,vn)H dτ.
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Since S∗(0) = 0 and it is monotone (and the same holds for σ∗), we have for every n ∈ N

S∗(Dvn) : Dvn ≥ 0,

σ∗(vn) · vn ≥ 0.

Therefore,

lim sup
n→∞

∫
Qt

S∗(Dvn) : Dvn dx dτ + α

∫
Γt

σ∗(vn) · vn dS dτ

≤ lim sup
n→∞

∫
Qt+κ

S∗(Dvn) : Dvnη dx dτ + α

∫
Γt+κ

σ∗(vn) · vnη dS dτ

= lim sup
n→∞

∫ t+κ

0

〈f ,vn〉V η dτ +
1

2
‖Pnv0‖2H − lim inf

n→∞

1

2κ

∫ t+κ

t

(vn,vn)H dτ

≤
∫ t+κ

0

〈f ,v〉V η dτ +
1

2
‖v0‖2H −

1

2κ

∫ t+κ

t

(v,v)H dτ,

where we used the results from (5.17) and the weak lower semicontinuity of the norm. If we
proceed with κ→ 0+, we note that the left hand side is independent of κ, and on the right hand
side, all quantities are well-defined for such limit (since v ∈ C([0, T ];H)), and using again the
weak lower semicontinuity of the norm we finally obtain for an arbitrary t ∈ (0, T )

(5.19)

lim sup
n→∞

∫
Qt

S∗(Dvn) : Dvn dx dτ + α

∫
Γt

σ∗(vn) · vn dS dτ

≤
∫ t

0

〈f ,v〉V dτ +
1

2

(
‖v0‖2H − ‖v(t)‖2H

)
.

Now, we set ϕ := v in (5.8a), use (5.13), integrate over time (0, t), and use that we can integrate
by parts in the duality (thanks to the fact that we have the Gelfand triplet) and the attainment
of the initial value,

(5.20)

∫
Qt

S : Dv dx dτ + α

∫
Γt

σ · v dS dτ =

∫ t

0

〈f ,v〉V − 〈∂tv,v〉V dτ

=

∫ t

0

〈f ,v〉V dτ +
1

2

(
‖v0‖2H − ‖v(t)‖2H

)
.

If we compare (5.19) and (5.20), we obtain the condition

(5.21)

lim sup
n→∞

∫
Qt

S∗(Dvn) : Dvn dx dτ + α

∫
Γt

σ∗(vn) · vn dS dτ

≤
∫
Qt

S : Dv dx dτ + α

∫
Γt

σ · v dS dτ.

Now, let W ∈ L2(Q) and w ∈ L2(Γ) be arbitrary, then by monotonicity of the graphs

0 ≤
∫
Qt

(S∗(Dvn)− S∗(W )) : (Dvn −W ) dx dτ

+ α

∫
Γt

(σ∗(vn)− σ∗(w)) · (vn −w) dS dτ

=

∫
Qt

S∗(Dvn) : Dvn dx dτ + α

∫
Γt

σ∗(vn) · vn dS dτ

−
∫
Qt

S∗(Dvn) : W + S∗(W ) : (Dvn −W ) dx dτ
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− α
∫

Γt

σ∗(vn) ·w + σ∗(w) · (vn −w) dS dτ.

For the first two integrals, we use the estimate (5.21), and for the rest, we use the weak conver-
gence results in (5.17),

0 ≤
∫
Qt

(S − S∗(W )) : (Dv −W ) dx dτ + α

∫
Γt

(σ − σ∗(w)) · (v −w) dS dτ.

Now, we set W := Dv ± µZ, w := v ± µz, divide by µ > 0 and let µ → 0+ (at this point we
use the continuity of the selections) to obtain for arbitrary Z and z and given α ≥ 0

(5.22) 0 =

∫
Qt

(S − S∗(Dv)) : Z dx dτ + α

∫
Γt

(σ − σ∗(v)) · z dS dτ.

Here, we followed the Minty method from [21], with small modifications in order to adapt it to
our setting.

Finally, setting Z := (S−S∗(Dv)) and z := (σ−σ∗(v)) in (5.22) implies7 that S = S∗(Dv)
in Qt and σ = σ∗(v) in Γt for any t ∈ (0, T ), therefore (S,Dv) ∈ Aεε almost everywhere in Q,
and (σ,v) ∈ Bεε almost everywhere in Γ.

5.2. Limit ε → 0+. Having the existence of a solution (vε,Sε,σε) for every ε ∈ (0, 1) and for
every δ ∈ (0, 1) to the problem (5.5), the next step is to prove the existence of a solution to
the same problem, however, now with A a maximal monotone r-graph, r ∈ (6/5,∞), and B a
maximal monotone 2-graph, possibly without a Borel measurable selection. However, this was
done in [9] for a general parabolic problem, and we do not repeat the whole procedure here
rigorously but we just point out the essential steps. Indeed, due to the presence of the cut-off
function Φδ, the convective term can be understood as a compact perturbation and satisfies
the strong convergence result (5.17e), and therefore creates no additional difficulties in the limit
passage as ε→ 0+. Hence, the goal of this section is to prove the following result.

Theorem 5.4. Let T > 0, α, β > 0, δ ∈ (0, 1), r ∈ (6/5,∞), Ω ⊂ R3 be Lipschitz, f ∈
Lr
′
(0, T ; (Vr)

∗) and v0 ∈ H. Then there exists a triplet (vδ,Sδ,σδ) such that

vδ ∈ Lr(0, T ;Vr) ∩ C([0, T ];H),

∂tv
δ ∈ Lr′(0, T ;V ∗r ),

Sδ ∈ Lr′(Q),

σδ ∈ L∞(0, T ;L2(∂Ω)),

and for almost all t ∈ (0, T ) and for all ϕ ∈ Vr,

(5.23a)

〈∂tvδ,ϕ〉Vr −
∫

Ω

(
(vδ ⊗ vδ)Φδ(|vδ|2)

)
: ∇ϕ dx

+

∫
Ω

Sδ : Dϕ dx+ α

∫
∂Ω

σδ ·ϕ dS = 〈f ,ϕ〉Vr

and (Sδ,Dvδ) ∈ A almost everywhere in Q, and (σδ,vδ) ∈ B almost everywhere on Γ. The
initial condition is attained in the strong sense,

(5.23b) lim
t→0+

‖vδ(t)− v0‖H = 0.

7In case α = 0, it does not imply that σ = σ∗(v). However, in this case, we can use (5.17d) to obtain the
strong convergence vn → v in L2(0, T ;L2(∂Ω)) and due to continuity of σ∗ the claim follows.
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Sketch of the proof of Theorem 5.4: We use Theorem 5.3 and for any ε ∈ (0, 1) we have the
solution (vε,Sε,σε) fulfilling (5.8a). Setting, ϕ := vε in (5.8a) and following the estimates done
in preceding section, we obtain the starting inequality
(5.24)

sup
t∈(0,T )

‖vε(t)‖2H+

∫ T

0

∫
Ω

Sε : Dvε dx dt+

∫ T

0

∫
∂Ω

σε ·vε dx dt ≤ C uniformly with respect to ε.

Next, since (Sε,Dvε) ∈ Aεε and (σε,vε) ∈ Bεε, we can use Lemma 4.2 and Lemma 4.6 and
thanks to (5.24), we have

(5.25)

vε ⇀∗ v weakly∗ in L∞(0, T ;H),

vε ⇀ v weakly in Lmin(r,2)(0, T ;Vmin(r,2)),

Sε ⇀ S weakly in Lmin(2,r′)(Q),

σε ⇀ σ weakly in L2(Γ).

In addition, it also follows from Lemma 4.2 and the Korn inequality that

(5.26) S ∈ Lr′(Q) and v ∈ Lr(0, T ;Vr).

Then, following the computation in (5.16) and using (5.25), we also have∫ T

0

‖∂tvε‖min(2,r′)
V ∗

max(2,r)
dt

≤ C
∫ T

0

(
‖Sε‖Lmin(2,r′)(Ω) + ‖σε‖L2(∂Ω) + C(δ) + ‖f‖V ∗

max(2,r′)

)min(2,r′)

dt

≤ C uniformly with respect to ε

(5.27)

and consequently using also the Aubin–Lions lemma and the Trace theorem, we deduce

(5.28)

∂tv
ε ⇀ ∂tv weakly in Lmin(r′,2)(0, T ;V ∗max(r,2)),

vε → v strongly in L1(Q),

vε → v strongly in L1(Γ).

Having (5.25), (5.27) and (5.28), we can easily let ε → 0+ in (5.8a) to obtain (5.23a) with one
proviso, namely, that ϕ ∈ Vmax(2,r). However, thanks to (5.26), we can improve the estimate
for time derivative and conclude that

(5.29) ∂tv ∈ Lr
′
(0, T ;V ∗r )

and that (5.23a) holds true for all ϕ ∈ Vr. The attainment of the initial condition can be shown
exactly as in the proof of Theorem 5.3.

The crucial part is to check that (S,Dv) ∈ A and (σ,v) ∈ B. For this purpose, it is just
enough to verify remaining assumptions of Lemma 4.2 and Lemma 4.6, namely to show that

lim sup
ε→0+

∫
Q

Sε : Dvε dx dt+

∫
Γ

σε · vε dS dt ≤
∫
Q

S : Dv dx dt+

∫
Γ

σ · v dS dt.

This can be however achieved by repeating the procedure from the proof of Theorem 5.3, namely,
we set ϕ := vε in the equation for vε (5.8a), and we set ϕ := v in the equation for v (5.23a),
let ε→ 0+ and compare the limit. We do not provide more details here, since it is very similar
to the preceding section and almost exactly the same as in [9].
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5.3. Proof of Theorem 5.2. Having Theorem 5.4 in hands, we proceed to the proof of The-
orem 5.2, which in this situation means to explain the procedure of taking the limit as δ → 0+

in (5.23a). We consider r > 6/5 and for every δ ∈ (0, 1), we have (vδ,Sδ,σδ), a solution accord-

ing to Theorem 5.4 such that (Sδ,Dvδ) ∈ A almost everywhere in Q and (σδ,vδ) ∈ B almost
everywhere on Γ.

Uniform estimates and limit passage. To obtain a priori estimates, we set ϕ := vδ in (5.23a)
(the term with the convective term cancels due to (5.13)), integrate over time (0, t), integrate by
parts in the first term, use (5.11) for the initial condition and “usual” estimate for the duality
on the right hand side with the help of the Hölder and Young inequalities, to obtain

sup
t∈(0,T )

‖vδ(t)‖2H +

∫
Q

Sδ :Dvδ dx dt+ α

∫
Γ

σδ ·vδ dS dt ≤ C uniformly with respect to δ.

Due to the r-coercivity of A and 2-coercivity of B, we obtain that

(5.30)
‖vδ‖L∞(0,T ;H)∩Lr(0;T ;Vr)∩L2(Γ) ≤ C uniformly with respect to δ,

‖Sδ‖Lr′ (Q) + ‖σδ‖L2(Γ) ≤ C uniformly with respect to δ.

To improve the estimate of the terms σδ,vδ on the boundary, we use that β > 0 to obtain

vδ ∈ L∞(0, T ;H) =⇒ vδ ∈ L∞(0, T ;L2(∂Ω)).

Then we can estimate

C1

(
|σδ|2 + |vδ|2

)
− C2 ≤ σδ · vδ ≤

C2
1

2
|σδ|2 + C|vδ|2,

and subsequently

(5.31) sup
t∈(0,T )

‖σδ(t)‖2L2(∂Ω) ≤ C sup
t∈(0,T )

∫
∂Ω

(
1 + |vδ|2

)
dS ≤ C uniformly with respect to δ.

Furthermore, since δ is not fixed here, we cannot claim that the convective term remains bounded
and therefore need more precise estimate on vδ. To do so, we recall the interpolation inequality

‖vδ‖
5r
3

L
5r
3 (Ω)

≤ C‖vδ‖
2r
3

L2(Ω)‖vδ‖rVr .

Then, it follows from the uniform estimate (5.30) (recall that r ≥ 6/5) that

‖vδ‖
L

5r
3 (Q)

≤ C uniformly with respect to δ.(5.32)

Next, we explain the definition of z and z′ := min{r′, 5r/6}. Using (5.32), we obtain that∫ T

0

‖(vδ ⊗ vδ)Φδ(|vδ|2)‖
5r
6

L
5r
6 (Ω)

dt ≤
∫ T

0

‖vδ‖
5r
3

L
5r
3 (Ω)

dt ≤ C uniformly with respect to δ.

Then, recalling all above uniform δ-independent estimates, we can also observe the following
bound for the time derivative (we skip the computation identical to e.g. (5.27))∫ T

0

‖∂tvδ‖z
′

(Vz)∗ dt

≤ C
∫ T

0

(
‖Sδ‖Lr′ (Ω) + ‖(vδ ⊗ vδ)Φδ(|vδ|2)‖

L
5r
6 (Ω)

+ ‖σδ‖L2(∂Ω) + ‖f‖(Vr)∗

)z′
dt

≤ C uniformly with respect to δ.
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Finally, the uniform estimates and the Aubin–Lions lemma, complemented with the Trace the-
orem conclude that for subsequences,

vδ ⇀∗ v weakly∗ in L∞(0, T ;H),(5.33a)

vδ ⇀ v weakly in Lr(0, T ;Vr),(5.33b)

(vδ ⊗ vδ)Φδ(|vδ|2)→ (v ⊗ v) strongly in Lρ(Q) for ρ ∈ [1, 5r/6) ,(5.33c)

∂tv
δ ⇀ ∂tv weakly in Lz

′
(0, T ; (Vz)

∗),(5.33d)

vδ → v strongly in Lr(0, T ;L2(Ω)),(5.33e)

vδ → v strongly in Lγ(Q) for γ ∈ [1, 5r/3) ,(5.33f)

Sδ ⇀ S weakly in Lr
′
(Q),(5.33g)

σδ ⇀∗ σ weakly∗ in L∞(0, T ;L2(∂Ω)),(5.33h)

vδ ⇀∗ v weakly∗ in L∞(0, T ;L2(∂Ω)),(5.33i)

vδ → v strongly in L1(Γ).(5.33j)

Then, we consider ϕ ∈ Lz(0, T ;Vz) in (5.23a), integrate over t ∈ (0, T ), and after proceeding
with δ → 0+ while using the results from (5.33), we obtain∫ T

0

〈∂tv,ϕ〉Vz dt+

∫
Q

(S − (v ⊗ v)) : ∇ϕ dx dt+ α

∫
Γ

σ ·ϕ dS dt =

∫ T

0

〈f ,ϕ〉Vz dt.

Therefore, the weak formulation (5.1a) holds for almost every time t ∈ (0, T ). Moreover, the
results (5.33a), (5.33b), and (5.33d) imply that v ∈ Cw([0, T ];H).

Identification on the boundary. By virtue of (5.33j), we can use the Egoroff theorem to get that
for every ζ > 0 there exists Γζ which satisfies |Γ \ Γζ | < ζ and vδ → v strongly in L∞(Γζ).
Then, using also (5.33h),∫

Γζ

σδ · vδ dx dt→
∫

Γζ

σ · v dx dt as δ → 0+.

Then, from Lemma 4.6, (σ,v) ∈ B almost everywhere on Γζ , and if we let ζ → 0+, we obtain
the identification of B almost everywhere on Γ, and also that for all ζ > 0,

(5.34) σδ · vδ ⇀ σ · v weakly in L1(Γζ).

Identification inside the domain. Identification of the graph A is not so straightforward, es-
pecially due to the lack of proper duality pairing in the convective term and consequently in
possible non-validity of the energy equality for the limiting equation. We start with subtracting
the weak formulation for vδ (5.23a) from the one for v (5.1a), and integrating the difference
over time (0, T ), to deduce that∫ T

0

〈∂t(vδ − v),ϕ〉Vz dt−
∫
Q

(
(vδ ⊗ vδ)Φδ(|vδ|2)− v ⊗ v

)
: ∇ϕ dx dt

+

∫
Q

(Sδ − S) : Dϕ dx dt+ α

∫
Γ

(σδ − σ) ·ϕ dS dt = 0
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holds for every ϕ ∈ Lz(0, T ;Vz). Consider8 ϕ ∈ C∞0 ([0, T ]; C∞0,div(Ω)), then the boundary term
vanishes and we obtain∫

Q

(vδ − v) · ∂tϕ dx dt =

∫
Q

(
(Sδ − S) + v ⊗ v − (vδ ⊗ vδ)Φδ(|vδ|2)

)
:∇ϕ dx dt.

For further purposes, let us denote

(5.35)

uδ := vδ − v,
Gδ

1 := Sδ − S,
Gδ

2 := v ⊗ v − (vδ ⊗ vδ)Φδ(|vδ|2).

In what follows, we use the result from [4, Theorem 2.2 and Corollary 2.4], which we first adapt
to our setting.

Lemma 5.5 (Breit, Diening, Schwarzacher (2013)). Let Q0 ⊂⊂ Q and let Q0 = I0 × B0.
Assume that for δ ∈ (0, 1),

uδ ⇀ 0 weakly in Lr(I0;W 1,r
div (B0)),

uδ ⇀∗ 0 weakly∗ in L∞(I0;L2(B0)),

uδ → 0 strongly in L1(Q0),

Gδ
1 ⇀ 0 weakly in Lr

′
(Q0),

Gδ
2 → 0 strongly in L1+ε(Q0).

as δ → 0+. Also, assume that for every ϕ ∈ C∞0 (I0; C∞0,div(B0))∫
Q0

uδ · ∂tϕ− (Gδ
1 +Gδ

2) : ∇ϕ dx dt = 0

holds, which is a weak formulation of

∂tu
δ − div(Gδ

1 +Gδ
2) = −∇pδ.

Then there exists ξ ∈ C∞0 (Q0) such that

(5.36) χ 1
8Q0
≤ ξ ≤ χ 1

6Q0
,

and for every k ∈ N there exists {Qδ,k}δ∈(0,1) fulfilling

(5.37) Qδ,k ⊂ Q, lim sup
δ→0+

|Qδ,k| ≤ 2−k

such that for every S ∈ Lr′(Q),

(5.38) lim sup
δ→0+

∣∣∣∣∫
Q

(Gδ
1 + S) · ∇uδξχQ\Qδ,k dx dt

∣∣∣∣ ≤ C2
−k
r .

Then the triplet (uδ,Gδ
1,G

δ
2) defined in (5.35) satisfies assumptions of the Lemma 5.5. Due

to Lemma 4.4, for Dv we can find S̃ such that (S̃,Dv) ∈ A almost everywhere in Q. In (5.38),

8Here the space C∞0 ([0, T ]; C∞0,div(Ω)) is defined as

C∞0 ([0, T ]; C∞0,div(Ω)) := {w ∈ C∞(Q); divw = 0 in Q, supp w ⊂⊂ Q}.
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we set S := S − S̃ to get that

lim sup
δ→0+

∣∣∣∣∫
Q

(Sδ − S̃) : (Dvδ −Dv)ξχQ\Qδ,k dx dt

∣∣∣∣
= lim sup

δ→0+

∣∣∣∣∫
Q

(Gδ
1 + S) : ∇uδξχQ\Qδ,k dx dt

∣∣∣∣ ≤ C2
−k
r .

Due to (5.36), ξ ≥ χ 1
8Q0

and since (S̃,Dv) ∈ A and (Sδ,Dvδ) ∈ A, the product in the first

integral is non-negative thanks to the monotonicity of A, and we have

(5.39) lim sup
δ→0+

∫
1
8Q0

∣∣∣(Sδ − S̃) : (Dvδ −Dv)
∣∣∣χQ\Qδ,k dx dt ≤ C2

−k
r .

For any a ∈ (0, 1), we can provide the following computation,∫
1
8Q0

∣∣∣(Sδ − S̃) : (Dvδ −Dv)
∣∣∣a dx dt

=

∫
1
8Q0

∣∣∣(Sδ − S̃) : (Dvδ −Dv)
∣∣∣a χQδ,k dx dt

+

∫
1
8Q0

∣∣∣(Sδ − S̃) : (Dvδ −Dv)
∣∣∣a χQ\Qδ,k dx dt

≤
(∫

1
8Q0

∣∣∣(Sδ − S̃) : (Dvδ −Dv)
∣∣∣χQδ,k dx dt

)a
|Qδ,k|1−a

+

(∫
1
8Q0

∣∣∣(Sδ − S̃) : (Dvδ −Dv)
∣∣∣χQ\Qδ,k dx dt

)a
|Q|1−a

≤ C|Qδ,k|1−a + C

(∫
1
8Q0

∣∣∣(Sδ − S̃) : (Dvδ −Dv)
∣∣∣χQ\Qδ,k dx dt

)a
.

Then, as k →∞, using (5.37) and (5.39), we obtain that as δ → 0+,∫
1
8Q0

∣∣∣(Sδ − S̃) : (Dvδ −Dv)
∣∣∣a dx dt ≤ C2

−k
r → 0.

However, then also ∣∣∣(Sδ − S̃) : (Dvδ −Dv)
∣∣∣a → 0 strongly in L1

(
1

8
Q0

)
.

Due to the Egoroff theorem, for every ζ > 0 there exists Qζ such that | 18Q0 \Qζ | ≤ ζ, and∣∣∣(Sδ − S̃) : (Dvδ −Dv)
∣∣∣a → 0 strongly in L∞(Qζ).

Consequently,

(5.40) (Sδ − S̃) : (Dvδ −Dv)→ 0 strongly in L∞(Qζ).

Since limδ→0+

∫
Qζ
S̃ : (Dvδ − Dv) dx dt = 0, which follows from (5.33b), then from (5.40)

follows also

lim
δ→0+

∫
Qζ

Sδ : (Dvδ −Dv) dx dt = 0,

which finally implies (using the weak convergence result for Sδ (5.33g)),

lim
δ→0+

∫
Qζ

Sδ : Dvδ dx dt =

∫
Qζ

S : Dv dx dt.
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According to Lemma 4.2, (S,Dv) ∈ A almost everywhere in Qζ , and we can proceed with ζ →
0+ to obtain the identification of A almost everywhere in Q. Also, we have that for all ζ > 0

(5.41) Sδ : Dvδ ⇀ S : Dv weakly in L1(Qζ).

Energy inequality. For 0 < κ� 1 and t ∈ (0, T −κ), let η be defined as in (5.4). We set ϕ := vδ

in (5.23a), multiply it by η, and integrate the result over τ ∈ (0, T ),

1

2

∫ T

0

d

dt
‖vδ‖2Hη dτ −

∫
Q

(
(vδ ⊗ vδ)Φδ(|vδ|2)

)
: ∇vδη dx dτ

+

∫
Q

Sδ : Dvδη dx dτ + α

∫
Γ

σδ · vδη dS dτ =

∫ T

0

〈f ,vδ〉Vrη dτ.

Next, we integrate by parts in the first term, use the convective term cancellation due to (5.13)
and properties of η, to obtain

1

2κ

∫ t+κ

t

‖vδ(τ)‖2H dτ +

∫
Qt+κ

Sδ : Dvδη dx dτ + α

∫
Γt+κ

σδ · vδη dS dτ

=

∫ t+κ

0

〈f ,vδ〉Vrη dτ +
1

2
‖v0‖2H .

The next step is the limit as δ → 0+. For the first term, we can use the weak lower semicontinuity

of the H-norm. For the products (Sδ : Dvδ) and (σδ ·vδ), we use the monotonicity of the graphs
and that thanks to (5.41) and (5.34), with the use of the Biting lemma (from [2]), there exist
sequences {Ql}l∈N and {Γl}l∈N such that as l→∞, (for subsequences)

|Q \Ql| → 0+ and Sδ : Dvδ ⇀ S : Dv weakly in L1(Ql),

|Γ \ Γl| → 0+ and σδ · vδ ⇀ σ · v weakly in L1(Γl).

For the duality term, we use (5.33b), and get that

1

2κ

∫ t+κ

t

‖v(τ)‖2H dτ +

∫
Qt+κ∩Ql

S : Dvη dx dτ + α

∫
Γt+κ∩Γl

σ · vη dS dτ

≤
∫ t+κ

0

〈f ,v〉Vrη dτ +
1

2
‖v0‖2H .

Next, we proceed with l → ∞, then Qt+κ ∩ Ql → Qt+κ and Γt+κ ∩ Γl → Γt+κ, and finally,
thanks to v ∈ Cw([0, T ];H) and the fact that the other terms are well-defined, we can pass
with κ→ 0+ to obtain the energy inequality (5.1b) for any t ∈ (0, T ).

Initial data attainment. Similarly as in the previous part, we consider η from (5.4), and multiply
(5.23a) by this η, and integrate over τ ∈ (0, T ),∫ T

0

〈∂tvδ,ϕ〉Vrη dτ −
∫
Q

(
(vδ ⊗ vδ)Φδ(|vδ|2)

)
: ∇ϕη dx dτ

+

∫
Q

Sδ : Dϕη dx dτ + α

∫
Γ

σδ ·ϕη dS dτ =

∫ T

0

〈f ,ϕ〉Vrη dτ.

As ϕ is independent of t, we can integrate by parts in the first term and subsequently proceed
with the limit δ → 0+ using the arguments from the previous part and (5.33c) for the convective
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term,

1

κ

∫ t+κ

t

(v,ϕ)H dτ −
∫
Qt+κ

(v ⊗ v) : ∇ϕη dx dτ +

∫
Qt+κ

S : Dϕη dx dτ

+ α

∫
Γt+κ

σ ·ϕη dS dτ =

∫ t+κ

0

〈f ,ϕ〉Vrη dτ +
1

2
(v0,ϕ)2

Hη(0).

Due to the arguments that are all explained in the previous sections, we can proceed with κ→ 0+

and t→ 0+, using that ϕ ∈ Vz is arbitrary and v ∈ Cw([0, T ];H) and obtain

v(t) ⇀ v0 weakly in H.

Also, taking the limes superior in the energy inequality (5.1b), we obtain that

lim sup
t→0+

‖v(t)‖2H ≤ ‖v0‖2H ,

and these two information imply the strong convergence in H as claimed in (5.1b).

Appendix A. Orthonormal basis of V

For α > 0, define a scalar product on V by

(A.1) (u,v)V :=

∫
Ω

Du : Dv dx+ α

∫
∂Ω

u · v dS.

Thanks to the Korn inequality and the definition of the W 1,2-norm, this scalar product (A.1) on
V is equivalent to the norm on V defined in (3.1). Moreover, one can show, see Lemma A.2 that
there exists a basis of V , which is orthogonal in V with respect to the scalar product defined
in (A.1) and orthonormal in H. We denote such basis in what follows as {wi}∞i=1.
Construction. Set V 1 = V , find λ1 := min‖u‖H=1(u,u)V , and denote by w1 the minimizer, i.e.,
λ1 = (w1,w1)V .

For every i ∈ N,

define V i+1 := {v ∈ V ; (v,wj)V = 0 for every j = 1, . . . , i}(A.2a)

find λi+1 := min
u∈V i+1,‖u‖H=1

(u,u)V ,(A.2b)

and denote wi+1 the minimizer, λi+1 = (wi+1,wi+1)V .(A.2c)

Lemma A.1. The sequence {wj}j∈N defined in (A.2) is a basis of V and H, it is orthogonal
in V and orthonormal in H. Also, the sequence {λi}i∈N is non-decreasing with limi→∞ λi = +∞.
For every i ∈ N, λi and wi solve the problem

− divDwi = λiwi in Ω,(A.3a)

Dwi n+ αwi = λiβwi on ∂Ω,(A.3b)

in the weak sense. Moreover, for PN , a projection of V to the linear hull of {wi}Ni=1 defined by

(A.4) PNu :=

N∑
i=1

(u,wi)Hwi,

it holds that for any u ∈ V
‖PNu‖H ≤ ‖u‖H ,(A.5a)

‖PNu‖V ≤ ‖u‖V ,(A.5b)

PNu→ u strongly in V as N → +∞.(A.5c)
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Proof. Orthogonality in V is evident from the definition of the spaces V i in (A.2a). The fact
that for every i, ‖wi‖H = 1, follows from (A.2b). We show that for every i ∈ N, wi exists and

(A.6) (wi,ϕ)V = λi(wi,ϕ)H for all ϕ ∈ V.
This is a weak formulation of (A.3) and also implies orthogonality in H.

We start with taking {un}n∈N, a minimizing sequence to

(un,un)V =

∫
Ω

|Dun|2 dx+ α

∫
∂Ω

|un|2 dS with ‖un‖H = 1 for all n ∈ N.

From reflexivity of V and its compact embedding in H we get that

un ⇀ w1 weakly in V,

un → w1 strongly in H.

Therefore w1 ∈ V exists, ‖w1‖H = 1, and for every v ∈ V , ‖v‖H = 1, there holds

(A.7) λ1 = (w1,w1)V ≤ (v,v)V

by weak lower semicontinuity of the norm.
In (A.7), set v := (w1 + εϕ)‖w1 + εϕ‖−1

H where ε > 0 and ϕ ∈ V are arbitrary. Then v ∈ V ,
‖v‖H = 1, and we get that

0 ≤ (w1 + εϕ,w1 + εϕ)V
‖w1 + εϕ‖2H

− (w1,w1)V

=
(w1,w1)V
‖w1 + εϕ‖2H

− (w1,w1)V + 2ε
(w1,ϕ)V
‖w1 + εϕ‖2H

+ ε2 (ϕ,ϕ)V
‖w1 + εϕ‖2H

=
ε

‖w1 + εϕ‖2H
(
−λ1(2(w1,ϕ)H + ε‖ϕ‖2H) + 2(w1,ϕ)V + ε(ϕ,ϕ)V

)
,

were we used that (w1,w1)V /λ1 = 1 = ‖w1‖H . Next, we divide the expression by ε and take
the limit ε→ 0+ to obtain

λ1(w1,ϕ)H ≤ (w1,ϕ)V .

However, it works for −ϕ as well, and we obtain the equality

(w1,ϕ)V = λ1(w1,ϕ)H for all ϕ ∈ V = V 1.

We can do the same for any (fixed) i ∈ N to obtain

(A.8) (wi,ϕ)V = λi(wi,ϕ)H for all ϕ ∈ V i.
The next step is to show that (A.8) is true for any ϕ ∈ V , i.e., also for ϕ ∈ V \ V i. Note that
according to (A.2a),

V = V 1 ⊃ . . . ⊃ V i−1 ⊃ V i ⊃ . . . =⇒ V \ V i ⊂
i−1⋃
j=1

V j .

Now, let j < i be arbitrary. Due to (A.8), it holds that

(A.9) (wj ,ϕ)V = λj(wj ,ϕ)H for all ϕ ∈ V j

and wj ∈ V j . Therefore, set ϕ := wi in (A.9) (note that wi is admissible test function since
wi ∈ V i ⊂ V j as j < i) to get (wj ,wi)V = λj(wj ,wi)H . However, from the definition of V i,
(wj ,wi)V = 0, and therefore also (wj ,wi)H = 0. Since i ∈ N and j < i were arbitrary, we
obtain (A.6).

Next, we study the sequence {λi}i∈N, namely, we want to show that it is non-decreasing with
the limit equal to +∞. The first fact is obvious. Regarding the unboundedness, let us assume
that it is bounded. Then, from (A.2c) and from the reflexivity of V , it is weakly convergent in
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V , and from the compact embedding of V into H, we get that it converges strongly in H, which
means that it is Cauchy in H. However,

‖wi −wj‖2H = ‖wi‖2H + ‖wj‖2H − 2(wi,wj)H = 2,

which contradicts the Cauchy property.
To show that {wi}i∈N is indeed a basis of V , we prove two claims: that there are no more

eigenvectors wi, and that there are no more eigenvalues λi.
First, assume that there exists v ∈ V such that ‖v‖V 6= 0, ‖v‖H = 1, and (v,wi)V = 0 for

every i ∈ N. The last claim means that v ∈ V i for every i, i.e.,

λi = min
u∈V i,‖u‖H=1

(u,u)V ≤ (v,v)V .

Due to unboundedness of {λi}i∈N, taking the limit i→ +∞ in this inequality results in contra-
diction with the assumption that v ∈ V .

For the second contradiction, assume that there is an eigenvalue λ, such that λ 6= λi for every
i ∈ N, and that there exists wλ ∈ V such that ‖wλ‖V 6= 0, ‖wλ‖H = 1, and

(A.10) (wλ,ϕ)V = λ(wλ,ϕ)H for all ϕ ∈ V.
For an arbitrary i ∈ N, use ϕ := wλ in (A.6), use ϕ := wi in (A.10) and subtract from each
other to get

(λ− λi)(wλ,wi)H = 0 =⇒ (wλ,wi)H = 0.

However, either (wλ,wi)H = 0 for every i ∈ N and we are back in the situation from the
previous paragraph, i.e., that wλ ∈ V i for every V i, which leads to a contradiction, or there
exists i such that (wλ,wi)H 6= 0, but then necessarily λ = λi which conflicts the assumption
λ 6= λi for every i ∈ N. Therefore, {wi}i∈N is a basis of V , and by density, it is also a basis of
H.

Finally, we prove the continuity of the projection PN . Note that {wi/
√
λi}i∈N is orthonormal

basis in V and compute

(A.11)

(PNu, PNu)V =

 N∑
i=1

(u,wi)Hwi,

N∑
j=1

(u,wj)Hwj


V

=

N∑
i=1

(u,wi)
2
H(wi,wi)V

=

N∑
i=1

λi(u,wi)
2
H =

N∑
i=1

(
u,

wi√
λi

)2

V

≤
∞∑
i=1

(
u,

wi√
λi

)2

V

= (u,u)V .

In the last equality, we used the fact that (for simplicity, ϕi := wi√
λi

for every i)

(A.12)

∞∑
i=1

(u,ϕi)V ϕi = u.

This is true, as it is equivalent to( ∞∑
i=1

(u,ϕi)V ϕi,ϕj

)
V

=

∞∑
i=1

(u,ϕi)V (ϕi,ϕj)V = (u,ϕj)V for every j ∈ N,

which holds thanks to the orthonormality of {ϕj}j∈N in V .
Due to the equivalence of the norm induced by the scalar product on V with the norm on V ,

(A.11) proves the estimate of the V -norms (A.5b) and the same arguments are used to estimate
the H-norms (A.5a) (without the renormalizing by

√
λi). Also, from the last line of (A.11) it is

clear that ‖PNu− u‖V → 0 as N →∞, i.e., (A.5c). �
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