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Abstract

We consider a system of evolutionary equations that is capable of describing certain viscoelastic
effects in linearized yet nonlinear models of solid mechanics. The essence of the paper is that
the constitutive relation, involving the Cauchy stress, the small strain tensor and the symmetric
velocity gradient, is given in an implicit form. For a large class of implicit constitutive relations we
establish the existence and uniqueness of a global-in-time large-data weak solution. We then focus
on the class of so-called limiting strain models, i.e., models for which the magnitude of the strain
tensor is known to remain small a priori, regardless of the magnitude of the Cauchy stress tensor.
For this class of models, a new technical difficulty arises, which is that the Cauchy stress is only an
integrable function over its domain of definition, resulting in the underlying function spaces being
nonreflexive and thus the weak compactness of bounded sequences of elements of these spaces is
lost. Nevertheless, even for problems of this type we are able to provide a satisfactory existence
theory, as long as the initial data have finite elastic energy and the boundary data fulfill natural
compatibility conditions.
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1. Introduction

This paper is devoted to the study of the following nonlinear system of partial differential
equations (PDEs). We assume that Ω ⊂ Rd is a given bounded open domain and we denote the
parabolic cylinder by Q := (0, T )× Ω and its spatial boundary by Γ := (0, T )× ∂Ω, where T > 0
is the length of the time interval of interest. For given data GGG : Rd×dsym → Rd×dsym, f : Q → Rd,
uI : Ω→ Rd, v0 : Ω→ Rd, uΓ : Γ→ Rd and α, β > 0, we seek a couple (u,TTT) : Q→ Rd × Rd×dsym

satisfying

∂2
ttu− divTTT = f in Q, (1.1a)

αεεε(u) + βεεε(∂tu) = GGG(TTT) in Q, (1.1b)

u(0) = uI , ∂tu(0) = v0 in Ω, (1.1c)

u = uΓ on Γ. (1.1d)
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Here, (1.1a) represents an approximation1 of the balance of linear momentum, where f is the
density of the external body forces, u is the displacement, TTT denotes the Cauchy stress tensor and
the operator div denotes the standard divergence operator with respect to the spatial variables
x1, . . . , xd. The Cauchy stress tensor TTT is implicitly related to the small strain tensor εεε(u) :=
1
2 (∇u+ (∇u)T) and to the symmetric velocity gradient εεε(∂tu) := ∂t(εεε(u)) via (1.1b). The initial
displacement and the initial velocity are given by (1.1c) and the Dirichlet boundary condition for
the displacement is represented by (1.1d). A more detailed discussion concerning the relevance of
(1.1) to problems in viscoelasticity is contained in Section 1.2.

It remains to specify the form of the implicit constitutive law (1.1b). The minimal assumptions
imposed on the mapping GGG throughout the paper are the following. We assume that the function
GGG : Rd×dsym → Rd×dsym is a continuous mapping such that, for some p ∈ [1,∞), some positive constants

C1 and C2, and for all TTT, WWW ∈ Rd×dsym , the following inequalities hold:(
GGG(TTT)−GGG(WWW)

)
· (TTT−WWW) ≥ 0, (A1)

GGG(TTT) ·TTT ≥ C1|TTT|p − C2, (A2)

|GGG(TTT)| ≤ C2(1 + |TTT|)p−1, (A3)

where | · | stands for the usual Frobenius matrix norm. Assumptions (A1)–(A3) are sufficient for
the existence and uniqueness of a weak solution provided that p ∈ (1,∞). For p = 1, however,
we must impose a more restrictive assumption due to the lack of compactness experienced when
working in L1. Namely, we will assume that there exists a strictly convex function φ ∈ C2(R+;R+)
such that φ(0) = φ′(0) = 0, |φ′′(s)| ≤ C(1 + s)−1 for every s ∈ R+, and for all TTT ∈ Rd×dsym there
holds

GGG(TTT) =
φ′(|TTT|)TTT
|TTT|

. (A4)

In order to simplify the exposition and avoid nonessential technical details concerning the
choice of appropriate function spaces that admit suitable trace theorems, we shall assume that
there exists a function u0 : Q → Rd fulfilling, in an appropriate sense, the initial and boundary
conditions

u0(0) = uI in Ω,

∂tu0(0) = v0 in Ω,

u0 = uΓ on Γ.

We shall henceforth formulate all assumptions on the initial and boundary data in terms of u0,
rather than uI , v0 and uΓ. We note that since the function spaces for u0 stated below are the
same as those for the weak solution u, it is in fact necessary that such a u0 exists. Otherwise our
construction of a weak solution would not be possible.

1.1. Statement of the main results

First, we formulate our result for the case when p > 1.

Theorem 1.1. Let p′ > 2d/(d + 2), let GGG satisfy (A1), (A2) and (A3), and let α, β > 0 be
arbitrary. Assume that the data satisfy the following hypotheses:

u0 ∈W 1,p′(0, T ;W 1,p′(Ω;Rd)) ∩W 2,p(0, T ; (W 1,p′

0 (Ω;Rd))∗) ∩ C1([0, T ];L2(Ω;Rd)),

f ∈ Lp(0, T ; (W 1,p′

0 (Ω;Rd))∗).
(1.2)

1In fact, the density % of the solid should also appear in (1.1a). In principle % could be a function of space and
time and should satisfy the balance of mass equation. Since we are dealing with small strains here, i.e. the case
when the deformation of the solid is small, under the assumption that the solid is homogeneous at initial time t = 0,
we can consider the density to be equal to a constant for all times t ∈ (0, T ). We shall therefore scale the density
to be identically equal to one for simplicity; see also the discussion in [3]. We note however that under suitable
assumptions it is not too difficult to extend the results presented herein to the case of variable density.
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Then, there exists a couple (u,TTT) fulfilling

u ∈ C1([0, T ];L2(Ω;Rd)) ∩W 1,p′(0, T ;W 1,p′(Ω;Rd)) ∩W 2,p(0, T ; (W 1,p′

0 (Ω;Rd))∗), (1.3)

TTT ∈ Lp(0, T ;Lp(Ω;Rd×dsym)) (1.4)

and solving (1.1) in the following sense:

〈∂ttu,w〉+

∫
Ω

TTT · ∇w = 〈f ,w〉 ∀w ∈W 1,p′

0 (Ω;Rd), for a.e. t ∈ (0, T ), (1.5)

αεεε(u) + β∂tεεε(u) = GGG(TTT) a.e. in Q, (1.6)

and

u− u0 = 0 a.e. on Γ and u(0)− u0(0) = ∂tu(0)− ∂tu0(0) = 0 a.e. in Ω. (1.7)

Furthermore, the function u is unique. If, additionally, the mapping GGG is strictly monotonic, then
TTT is also unique.

Before proceeding, we will first comment on the assertions of Theorem 1.1. The proof of
Theorem 1.1 is based on the relevant a priori estimates, for which the assumption (1.2) seems
to be both optimal and minimal. The function spaces considered in (1.3), (1.4) correspond to
the structural assumptions imposed on GGG, namely the coercivity assumption (A2) and the growth
condition (A3). Since p > 1, we have a “standard” function space setting, so the nonlinearity
in (1.6) can be identified by using a modification of Minty’s method. Theorem 1.1 can also
be understood as an extension of the results established in [3]; similarly as here, the authors
of [3] treated a viscoelastic solid model of generalized Kelvin–Voigt type, but they considered a
constitutive relation for the Cauchy stress of the following explicit form:

TTT = TTTel(εεε(u)) +TTTvis(∂tεεε(u)) a.e. in Q.

The regularity results for such models are available in [4]. It is remarkable that while (1.6) can be
fully justified from the physical point of view via implicit constitutive theory, see [12], the above
explicit form TTT = TTTel +TTTvis can be justified for particular choices of TTTel and TTTvis only.

In contrast with the case of p > 1, almost none of what was said above applies in the case p = 1,
or for the limit, as p → 1+, of the sequence of solutions constructed in Theorem 1.1. Indeed, for
similar models in the purely steady elastic setting, it was demonstrated in [1] that TTT is, in general,
a Radon measure and therefore one can hardly consider (1.6) pointwise in Q. Nevertheless, it
was shown there that under some structural assumptions on GGG (corresponding to (A4)), one may
hope for TTT to be integrable. A similar situation was also studied in [2] but with p → ∞, which,
in general, leads to solutions u in BV spaces. However, under a structural assumption related
to (A4), one can again overcome such difficulties and show the existence of a solution that belongs
to a Sobolev space.

A similar situation can be expected in our setting when p = 1. Therefore, in order to avoid
difficulties associated with the interpretation of ∂ttu and the interpretation of the sense in which
the initial data are attained, we assume here, for simplicity, that the right-hand side f ∈ L2(Q;Rd).

Thus, inspired by [1], if p = 1 we assume in addition to (A1)–(A3) that we have (A4). It then
follows from the structural assumptions that for all s ∈ R+ we have

C1s

2
− C2 ≤ φ(s) ≤ C2s,

0 ≤ φ′(s) ≤ C2.

Since φ is convex, we deduce that there exists an L > 0 such that

L := lim
s→∞

φ′(s) ≥ φ′(t) ∀ t ∈ R. (1.8)

3



The number L plays an essential role in the subsequent analysis, in particular in the assumptions
on the initial and boundary data. Indeed, thanks to (A4), we see that

L = lim
|WWW|→∞

|GGG(WWW)| ≥ |GGG(TTT)| ∀TTT ∈ Rd×dsym . (1.9)

Hence, if (1.1b) is satisfied then we must necessarily have

|αεεε(u) + β∂tεεε(u)| ≤ L a.e. in Q. (1.10)

Consequently, if such a u should exist then it is natural to assume the same requirement as (1.10)
also for the initial and boundary data, that is, we must have

|αεεε(u0) + β∂tεεε(u0)| ≤ L a.e. in Q. (1.11)

In fact, we require in the existence analysis that (1.11) is satisfied with a strict inequality sign;
such a condition is called the safety strain condition.

Theorem 1.2. For some strictly convex φ ∈ C2(R+;R+), let GGG satisfy (A1)–(A4) with p = 1.
Assume that the data satisfy the following hypotheses:

u0 ∈W 1,∞(0, T ;W 1,2(Ω;Rd)) ∩W 2,1(0, T ;L2(Ω;Rd)),
f ∈ L2(0, T ;L2(Ω;Rd)),

(1.12)

with the safety strain condition

‖αεεε(u0) + β∂tεεε(u0)‖L∞(Q;Rd×dsym ) < L (1.13)

and the following bound holds for every δ > 0:

ess sup
(t,x)∈(δ,T )×Ω

|∂ttεεε(u0(t, x))| <∞. (1.14)

Then, there exists a unique couple (u,TTT) fulfilling

u ∈W 1,∞(0, T ;W 1,2(Ω;Rd)) ∩ C1([0, T ];L2(Ω;Rd)) ∩W 2,2
loc (0, T ;L2(Ω;Rd)), (1.15)

εεε(u) ∈ L∞(Q;Rd×dsym), (1.16)

∂tεεε(u) ∈ L∞(Q;Rd×dsym), (1.17)

TTT ∈ L1(0, T ;L1(Ω;Rd×dsym)) (1.18)

and satisfying∫
Ω

∂ttu ·w +TTT · ∇w dx =

∫
Ω

f ·w dx ∀w ∈W 1,∞
0 (Ω;Rd), for a.e. t ∈ (0, T ), (1.19)

αεεε(u) + β∂tεεε(u) = GGG(TTT) a.e. in Q, (1.20)

and

u− u0 = 0 a.e. on Γ and u(0)− u0(0) = ∂tu(0)− ∂tu0(0) = 0 a.e. in Ω. (1.21)

This theorem answers the question of existence of weak solutions to the problem under the
assumptions (A1)–(A3) when p→ 1+ and therefore provides an existence result for limiting strain
models for which the symmetric displacement gradient and symmetric velocity gradient remain
bounded; see Section 1.2 for the physical background and the importance of the model. We
note that a very similar existence result was established recently in [6]; there are however certain
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essential differences, which make the results of the present paper much stronger. First, in [6] the
authors only consider the prototypical model

GGG(TTT) :=
TTT

(1 + |TTT|q)
1
q

, (1.22)

while we are able to cover here a more general class of models under hypothesis (A4). The
corresponding potential φ (whose existence is assumed in (A4)) is, for the model (1.22), given by

φ(s) :=

∫ s

0

t

(1 + tq)
1
q

dt, s ∈ R+.

The role of the parameter q in (1.22) is indicated in Fig. 1. Second, the paper [6] is concerned

|GGG(TTT)|

|TTT|

1

Figure 1: Dependence of |GGG| on |TTT| for the prototype model (1.22). The three curves correspond to q = 1 (solid
curve), q = 2 (dashed curve) and q = 10 (dash-dotted curve). Clearly, |TTT| tends to 1 more rapidly with increasing q.

with the spatially periodic setting, which simplifies the analysis in an essential way, most notably
with regard to the derivation of the relevant a priori estimates. Finally, in [6] the initial data are
assumed to be quite regular (they are supposed to belong to the Sobolev space W k,2(Ω;Rd) with
k > d

2 ), which is related to the choice of the method used therein to prove the existence of a weak
solution. In this paper we do not require such strong regularity of the initial data. Nevertheless,
since in our context here it is difficult to describe the correct space-time trace spaces, because we
are dealing with L∞-type spaces and symmetric gradients, and since we want to state the result
in its full generality (so as to be able to admit time-dependent boundary data), we do assume a
certain compatibility condition via an a priori prescribed space-time function u0 that we use in
order to impose the initial and boundary conditions. Indeed, the existence of u0 satisfying the
safety strain condition (1.13) is necessary for the existence of a solution. Next, the assumption
(1.12)1, requiring temporal regularity of u0, is required in order to ensure that u0 and ∂tu0 have
meaningful traces at time t = 0. Finally, the assumption (1.14) prescribes the required temporal
smoothness of the boundary data, but since it only involves t ∈ (δ, T ) with δ > 0, it has nothing to
do with either the regularity of the initial condition or its compatibility with the boundary data.
We give several examples for simplified settings in the following remark.

Remark 1.3. We discuss two cases of boundary and initial data from (1.1c)–(1.1d) for which it
is easy to construct a function u0 that satisfies the assumptions (1.12)–(1.14).

Boundary data independent of time. Suppose that uΓ is independent of time and uI ∈W 1,2(Ω;Rd)
satisfies the compatibility condition uI |∂Ω = uΓ. Because the boundary data are independent of
time, it is natural to assume that v0 ∈W 1,2

0 (Ω;Rd), where

‖αεεε(uI) + βεεε(v0)‖L∞(Ω;Rd×dsym) < L. (1.23)

Then we can set

u0(t, x) := e−
αt
β uI(x) +

αuI(x) + βv0(x)

α
(1− e−

αt
β ).
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Indeed, a direct computation yields that

∂tu0(t, x) = v0(x) e−
αt
β ,

and thus, u0(0, x) = uI(x), ∂tu0(0, x) = v0(x) for x ∈ Ω and u0|Γ = uΓ. Moreover,

αεεε(u0) + β∂tεεε(u0) = αεεε(uI) + βεεε(v0).

Consequently, u0 satisfies (1.13) provided (1.23) holds. The validity of (1.14) is obvious.

Time-dependent boundary data. In this setting, we a priori assume the existence of some ũ such
that ũ(0, x) = uI(x) for x ∈ Ω and ũ|Γ = uΓ. In addition, it is natural to assume the compatibility
condition v0(·) = ∂tuΓ(0, ·) on ∂Ω. We adopt the following assumption on ũ and v0:

‖αεεε(ũ) + β(∂tεεε(ũ)− ∂tεεε(ũ(0, ·)) + εεε(v0(·)))‖L∞(Q;Rd×dsym) < L. (1.24)

We define

u0(t, x) := ũ(t, x) +
β(v0(x)− ∂tũ(0, x))

α
(1− e−

αt
β ).

Clearly, u0(0, x) = ũ(0, x) = uI(x) for x ∈ Ω and u0 = uΓ on Γ. The time derivative of u0 is

∂tu0(t, x) = ∂tũ(t, x) + (v0(x)− ∂tũ(0, x)) e−
αt
β

and thus ∂tu0(0, x) = v0(x) for x ∈ Ω. In addition, since

αεεε(u0) + β∂tεεε(u0) = αεεε(uI) + β(∂tεεε(uI)− ∂tεεε(uI(0)) + εεε(v0)),

we see that (1.13) is equivalent to (1.24). The assumption (1.14) is then only related to our
extension of the boundary data inside of Ω and the temporal regularity of the boundary data.

1.2. Relevance to the modelling of viscoelastic solids

With these results in mind, we will now discuss the importance of such problems. We often
encounter materials exhibiting viscoelastic response. By definition, viscoelasticity involves the
material response of both elastic solids and viscous fluids, which can be modelled linearly or
nonlinearly (see [8] for an extensive overview). On the other hand, it is well-known that implicit
constitutive theories allow for a more general structure in modelling than explicit ones (cf. [12],
[13]), where the strain could be given as a function of the stress. Indeed, this is the case in our
constitutive relation (1.1b) in system (1.1). Rajagopal’s main contribution [14] to the theory was
to show that a nonlinear relationship between the stress and the strain can be obtained after
linearizing the strain. The relation (1.1b) was first obtained by Erbay and Şengül in [9] as a result
of the linearization of the relation between the stress and the strain tensors under the assumption
that the magnitude of the strain is small. For models of this type it is possible that once the
magnitude of the strain has reached a certain limiting value (as is the case in Theorem 1.2), any
further increase of the magnitude of the stress will cause no changes in the strain. These models are
called strain-limiting (strain-locking) models and such behaviour has been observed in numerous
experiments (see [7] and references therein). For a further discussion of such models in the purely
elastic setting or in the setting of the generalized Kelvin–Voigt model we refer to [3], and in the
viscoelastic setting to [9, 7].

Now we introduce some basic kinematics in order to discuss these limiting strain models from
a mathematical perspective. We denote by u(X, t) := x(X, t) − X the displacement of a given
body at a space-time point (X, t), where X is the position vector in the reference configuration
and x(X, t) is the position vector in the current configuration. We denote the deformation of the
body, which is assumed to be stress-free initially, by χ(X, t). The deformation gradient is defined
as F = ∂χ/∂X. By the polar decomposition theorem, we can ensure the existence of positive
definite, symmetric tensors UUU, VVV, and a rotation RRR such that

FFF = RRRUUU = VVVRRR,
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where UUU and VVV are the right and left Cauchy–Green stretch tensor, respectively. Moreover, we
know that each of these decompositions is unique and

CCC = UUU2 = FFFTFFF, BBB = VVV2 = FFFFFFT,

where BBB, CCC are called the right and left Cauchy–Green deformation tensor, respectively. We define
the velocity as v = ∂χ/∂t and denote by DDD the symmetric part of the gradient of the velocity field
LLL = ∂v/∂x. Under the assumption that

‖∇u‖L∞(Q;Rd×d) = O(δ), 0 < δ � 1, (1.25)

one can obtain the linearized strain, mentioned previously, as

εεε(u) =
1

2

[
∇u+ (∇u)T

]
. (1.26)

As is explained in [7], in the purely elastic setting, starting from the following constitutive
relation between the stress and the strain

GGG(TTT,BBB) = 0, (1.27)

for frame-indifferent and isotropic bodies, one can obtain the representation

GGG(TTT,BBB) = χ0III + χ1TTT + χ2TTT + χ3TTT
2 + χ4BBB

2 + χ5(TTTBBB +BBBTTT)

+ χ6(TTT2BBB +BBBTTT2) + χ7(BBB2TTT +TTTBBB2) + χ8(TTT2BBB2 +BBB2TTT2),
(1.28)

where the functions χi, i = 0, . . . , 8, depend only on the scalar invariants of TTT and BBB, which can
be expressed in terms of

trTTT, trBBB, trTTT2, trBBB2, trTTT3, trBBB3, trTTTBBB, trTTT2BBB, trTTTBBB2, trTTT2BBB2.

Under the smallness assumption (1.25), we have that |BBB− (III + εεε)| = O(δ2), with εεε = εεε(u). Thus,
at the end of the linearization process, (1.28) gives a nonlinear relationship between TTT and εεε. In
many studies a simpler subclass of constitutive relations than (1.28) is considered, namely

BBB = χ̃0III + χ̃1TTT + χ̃2TTT
2. (1.29)

Under the assumption (1.25), the equality (1.29) becomes

εεε = χ̄0III + χ̄1TTT + χ̄2TTT
2, (1.30)

with some invariant-dependent coefficients χ̄i, i = 0, 1, 2. The analysis of a limiting strain problem
with a constitutive relation of the form εεε = GGG(TTT), which is a more general version of (1.30), with
a bounded mapping GGG, as those considered here, was also studied in [5], [1], where the authors
highlight the analytical difficulties associated with such models, most notably the lack of weak
compactness of approximations to the stress tensor in L1(Ω;Rd×dsym). We rely on methods developed
in [1] in order to show that (1.19) holds for our proposed solution of the problem. The additional
time-dependence here presents further difficulties in the analysis. In particular, we must develop
suitable space-time estimates.

Next we focus on the derivation of the constitutive relation of interest in this paper. In the
viscoelastic setting, as is explained in [9], instead of (1.27) one would start with a general implicit
constitutive relation of the form

GGG(TTT,BBB,DDD) = 0. (1.31)

For simplicity and in view of (1.29), we study the following subclass of such models:

αBBB + βDDD = γ0III + γ1TTT + γ2TTT
2, (1.32)

7



where γi = γi(I1, I2, I3), i = 0, 1, 2, I1 = trTTT, I2 = 1
2 trTTT2, I3 = 1

3 trTTT3, and α, β are nonnegative
constants. We note that under assumption (1.25) we may interchange derivatives with respect
to x and X. In particular, the linearized counterpart of D can be identified with εεεt = εεε(ut).
Therefore, assuming (1.25) and writing the right-hand side of (1.32) more generally as a nonlinear
function of TTT, one obtains (1.1b) as required.

Models of the type (1.32) were considered in [15] in order to describe viscoelastic solid bodies.
The model is a generalization of the classical (linear) Kelvin–Voigt model, which in one space
dimension involves the constitutive relation

σ = Eε+ ηεt, (1.33)

where σ denotes the scalar stress, ε the scalar strain, and E, η are constants signifying the modulus
of elasticity and the viscosity, respectively. As mentioned before, it is worth noting that similar
models have been considered in [3, 4], where the authors assumed that the stress TTT was a sum of the
elastic TTTel and viscous TTTvis parts. Considering implicit relations for each component separately,
they obtained TTTel = HHH(εεε), TTTvis = GGG(εεεt) for nonlinear mappings HHH, GGG. However, the assumptions
that were made there on HHH and GGG result in a problem that is no longer of strain-limiting type.
This, together with the additive decomposition of the stress considered there, led to an analysis
that is very different from the one performed here.

Some analysis (albeit limited) of the problem (1.1) is available in the literature, which we now
discuss. In one space dimension the authors of [9] derived the equation

σxx + βσxxt = g(σ)tt, (1.34)

using the equation of motion (1.1a) together with the constitutive relation (1.1b) and setting
α = 1, where, as in (1.33), σ refers to the scalar stress. In (1.34), the nonlinearity g corresponds
to GGG in the current case. The authors investigated conditions on the function g under which
travelling wave solutions exist. Furthermore, in [11] the authors proved the local-in-time existence
of solutions for equation (1.34). In this work, we use the same set of equations without deriving
a single equation on account of the fact that we are working in a higher-dimensional setting.
In particular, the symmetric gradient does not reduce to a classical gradient operator as in the
one-dimensional case, a property that is exploited in [9] and [11].

A related problem is studied in [10] where the authors looked at the stress-rate case instead of
the strain-rate case. In the one-dimensional setting, this resulted in the equation

σxx + γσttt = h(σ)tt. (1.35)

The constitutive law for that study was ε + γσt = h(σ) instead of (1.1b). The authors pointed
out that travelling wave solutions of equations (1.34) and (1.35) will coincide. However, we do not
attempt to explore the stress-rate problem here.

We close this section with a thermodynamical justification of the model (1.1). We will show in
particular that the total energy of the system is constant and the sum of the kinetic energy and
the elastic energy is a decreasing function of time. We suppose that the constitutive relation can
be written as

εεε+ β∂tεεε =
∂ϕ

∂TTT
(TTT) =: GGG(TTT)

where ϕ is a function from Rd×d to R+ defined by ϕ(TTT) = φ(|TTT|) and εεε = εεε(u). We shall suppose
that φ(0) = φ′(0) = 0 and assume that φ ∈ C2(R+;R+) is strictly convex. Clearly this is the
case if (A4) holds. Under these assumptions, ϕ is also strictly convex, noting that φ is strictly
increasing on [0,∞). Furthermore GGG is monotone. Next, we define the convex conjugate ϕ∗ by

ϕ∗(εεε) = sup
TTT∈Rd×dsym

(
εεε ·TTT− ϕ(TTT)

)
.

We note that ϕ∗ is also convex and, for any TTT ∈ Rd×dsym, the following identity holds:

ϕ∗(GGG(TTT)) + ϕ(TTT) = GGG(TTT) ·TTT.
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Thus, the function GGG−1 = ∂ϕ∗

∂TTT is also monotone. With these facts in mind, formally testing (1.1a)
against ∂tu and assuming the absence of all body forces, we obtain

1

2

d

dt

∫
Ω

|∂tu|2 dx+

∫
Ω

TTT · ∂tεεε(u) dx = 0. (1.36)

However, the integrand in the second term on the right-hand side can be rewritten as

TTT · ∂tεεε =
∂ϕ∗

∂TTT
· ∂tεεε+

(
TTT− ∂ϕ∗

∂TTT
(εεε)

)
· ∂tεεε

= ∂t(ϕ
∗(εεε)) +

1

β

(
TTT− ∂ϕ∗

∂TTT
(εεε)

)
· (GGG(TTT)− εεε)

= ∂t(ϕ
∗(εεε)) +

1

β

(
TTT−GGG−1(εεε)

)
· (GGG(TTT)− εεε).

Substituting this back into (1.36) and defining TTT0 := GGG−1(εεε), we see that

d

dt

(∫
Ω

1

2
|∂tu|2 + ϕ∗(εεε) dx

)
+

1

β

∫
Ω

(TTT−TTT0) · (GGG(TTT)−GGG(TTT0)) dx = 0. (1.37)

Recalling that GGG is monotone, we deduce that

sup
t∈(0,T )

(∫
Ω

1

2
|∂tu|2 + ϕ∗(εεε) dx

)
≤
∫

Ω

1

2
|v0|2 + ϕ∗(εεε(uI)) dx.

In particular the sum of the kinetic energy and elastic energy is decreasing. The extra term that
appears in (1.37) corresponds to the dissipation; thus energy is conserved in accordance with the
laws of thermodynamics.

The structure of the remainder of the paper is as follows. In Section 2 we prove Theorem 1.1.
We structure the proof in the following way. First, in Section 2.1 we use a Galerkin method and
find a weak solution to an approximate problem. In Section 2.2, we obtain uniform bounds on the
sequence of Galerkin solutions, and use these in Section 2.3 in order to take the limit as n→∞.
Finally, we show that the limit is the correct one in Section 2.4. Uniqueness is then proved in
Section 2.5. In Section 3 we obtain further temporal and spatial regularity estimates for these
solutions. Finally, in Section 4 we look at the case when p = 1 and give the proof of Theorem 1.2.

2. Proof of Theorem 1.1

To prove the existence of a weak solution, we use a compactness argument based on a se-
quence of Galerkin approximations. However, since GGG is not invertible in general, we introduce
the following regularization:

GGGn(TTT) := GGG(TTT) + n−1|TTT|p−2TTT.

Note that for all n ∈ N, the regularized mapping still satisfies (A1)–(A3) (with C2 replaced by
(C2+1)) and in addition the inequality (A1) is strict wheneverTTT 6= WWW. Therefore, it directly follows
from the theory of monotone operators that there exists a continuous inverse GGG−1

n : Rd×dsym → Rd×dsym .

2.1. Galerkin approximation

Let {ωj}∞j=1 be a basis of W 2d,2
0 (Ω;Rd), which is orthonormal in L2(Ω;Rd).2 We denote by

Pn the projection of W 2d,2
0 (Ω;Rd) onto the linear hull of {ωj}nj=1, which is continuous. We look

2Such a basis can be found by looking for eigenfunctions ωj ∈W 2d,2
0 (Ω;Rd) of the problem

−∆2dωj = λjωj on Ω.
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for un of the form

un(t, x) = u0(t, x) +

n∑
i=1

Cni (t)ωi(x),

by solving, for all j = 1, 2, . . . , n and almost all t ∈ (0, T ), the following problem:∫
Ω

∂2
ttu

n · ωj +GGG−1
n (αεεε(un) + β∂tεεε(u

n)) · ∇ωj dx = 〈f ,ωj〉, (2.1a)

un(0) = u0(0), (2.1b)

∂tu
n(0) = ∂tu0(0). (2.1c)

We note that (2.1b) and (2.1c) are equivalent to Cn(0) = 0 and ∂tC
n(0) = 0, respectively. Since

GGG−1
n is continuous and the basis functions {ωj}∞j=1 are orthonormal in L2(Ω;Rd), the equation

(2.1a) reduces to
∂ttC

n
i (t) = Fi(t,C

n(t), ∂tC
n(t)),

where Fi are Carathéodory mappings. Hence, using standard Carathéodory theory for a system
of ordinary differential equations, we deduce that there exists a solution on some maximal time
interval (0, T ∗). Furthermore, either we must have |Cn(t)| + |∂tCn(t)| → ∞ as t → T ∗− or we
can extend the solution to the whole interval (0, T ). We shall next show that the latter is true by
establishing uniform bounds on the sequence of Galerkin approximations.

2.2. Uniform bounds

First, let us define
TTTn := GGG−1

n (αεεε(un) + β∂tεεε(u
n)) ,

which is clearly equivalent to

αεεε(un) + β∂tεεε(u
n) = GGG(TTTn) + n−1|TTTn|p−2TTTn. (2.2)

Then, we multiply (2.1a) by Cnj and also by ∂tC
n
j and sum the resulting identities with respect

to j = 1, . . . , n to obtain∫
Ω

∂ttu
n · ∂t(un − u0) +TTTn · ∂tεεε(un − u0) dx = 〈f , ∂t(un − u0)〉,∫

Ω

∂ttu
n · (un − u0) +TTTn · εεε(un − u0) dx = 〈f , (un − u0)〉.

(2.3)

Next, it follows from (2.2) that

TTTn · ∂tεεε(un) =
1

β

(
GGG(TTTn) ·TTTn + n−1|TTTn|p − αTTTn · εεε(un)

)
.

Also, we can write∫
Ω

∂tt(u
n − u0) · (un − u0) dx =

d

dt

∫
Ω

∂t(u
n − u0) · (un − u0) dx−

∫
Ω

|∂t(un − u0)|2 dx.

Using these two identities in (2.3), we obtain

1

2

d

dt

∫
Ω

|∂t(un − u0)|2 dx+
1

β

∫
Ω

GGG(TTTn) ·TTTn + n−1|TTTn|p dx

=
α

β

∫
Ω

TTTn · εεε(un) dx+ 〈f , ∂t(un − u0)〉+

∫
Ω

TTTn · ∂tεεε(u0)− ∂ttu0 · ∂t(un − u0) dx,

(2.4)

and

d

dt

α

β

∫
Ω

∂t(u
n − u0) · (un − u0) dx+

α

β

∫
Ω

TTTn · εεε(un) dx

=
α

β

∫
Ω

|∂t(un − u0)|2 − ∂ttu0 · (un − u0) +TTTn · εεε(u0) dx+
α

β
〈f , (un − u0)〉.

(2.5)
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By summing these equalities we find that one term cancels and we deduce that

1

2

d

dt

∫
Ω

|∂t(un − u0)|2 +
2α

β
∂t(u

n − u0) · (un − u0) dx+
1

β

∫
Ω

GGG(TTTn) ·TTTn + n−1|TTTn|p dx

= 〈f , ∂t(un − u0)〉+

∫
Ω

TTTn · ∂tεεε(u0)− ∂ttu0 · ∂t(un − u0) dx

+
α

β

∫
Ω

|∂t(un − u0)|2 − ∂ttu0 · (un − u0) +TTTn · εεε(u0) dx+ 〈f , (un − u0)〉.

(2.6)

Next, we define on [0, T ] the function

Y n :=
1

4

∫
Ω

|∂t(un − u0)|2 + |un − u0|2 +

∣∣∣∣∂t(un − u0) +
2α

β
(un − u0)

∣∣∣∣2 dx.

Using this, we can rewrite the first term on the left-hand side of (2.6) as

1

2

d

dt

∫
Ω

|∂t(un − u0)|2 +
2α

β
∂t(u

n − u0) · (un − u0) dx = Y n −
(
α2

β2
+

1

4

)
d

dt

∫
Ω

|un − u0|2 dx.

Consequently, using this identity in (2.6), applying (A2) to the second term on the left-hand side,
and the Hölder inequality to the terms on the right-hand side together with the Poincaré and
Korn inequalities, it follows that

d

dt
Y n +

C1

β

∫
Ω

|TTTn|p dx ≤ C (1 + Y n) + C(‖εεε(u0)‖p′ + ‖∂tεεε(u0)‖p′)‖TTTn‖p

+ C(‖εεε(un)‖p′ + ‖∂tεεε(un)‖p′ + ‖εεε(u0)‖p′ + ‖∂tεεε(u0)‖p′)(‖f‖(W 1,p′
0 )∗

+ ‖∂ttu0‖(W 1,p′
0 )∗

),
(2.7)

where C is a generic constant that is independent of n. To bound the right-hand side, we use (2.2)
to observe that

∂t

(
e
α
β tεεε(un)

)
=

e
α
β t

β
(GGG(TTTn) + n−1|TTTn|p−2TTTn),

which, after integration with respect to time, gives

εεε(un(t)) = e−
α
β tεεε(u0(0)) + e−

α
β t

∫ t

0

e
α
β τ

β
(GGG(TTTn(τ) + n−1|TTTn(τ)|p−2TTTn(τ)) dτ.

Using properties of the Bochner integral, it follows that

‖εεε(un(t))‖p
′

p′ ≤ C
(∫ t

0

‖GGG(TTTn) + n−1|TTTn|p−2TTTn‖p
′

p′ dτ + ‖u0(0)‖p
′

1,p′

)
≤ C

(∫ t

0

‖TTTn‖pp dτ + ‖u0(0)‖p
′

1,p′ + 1

)
,

(2.8)

where for the second inequality we have used (A3). Consequently, using (2.8) and (2.2), we have
also the following bound on the time derivative:

‖∂tεεε(un(t))‖p
′

p′ ≤ C
(

1 + ‖u0(0)‖p
′

1,p′ + ‖TTTn(t)‖pp +

∫ t

0

‖TTTn‖pp dτ

)
. (2.9)

Hence, using (2.8) and (2.9) for the terms appearing on the right-hand side of (2.7), and applying
Young’s inequality to the resulting right-hand side, we see that

d

dt

(
Y n +

C1

4β

∫ t

0

‖TTTn‖pp dτ

)
+
C1

4β
‖TTTn‖pp ≤ C

(
Y n +

C1

4β

∫ t

0

‖TTTn‖pp dτ

)
+ C sup

t∈[0,T ]

‖u0(t)‖p
′

1,p′ + C

(
‖∂tεεε(u0)‖p

′

p′ + ‖f‖p
(W 1,p′

0 )∗
+ ‖∂ttu0‖p

(W 1,p′
0 )∗

)
.

(2.10)
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Thus, using Grönwall’s lemma and the assumptions on the data, we have that

sup
t∈(0,T )

Y n(t) +

∫ T

0

‖TTTn‖pp dτ ≤ C(u0,f) + Y n(0) = C(u0,f). (2.11)

Finally, from the definition of Y n, the bounds (2.8), (2.9), and Korn’s inequality, we deduce that

sup
t∈(0,T )

(
‖∂tun‖22 + ‖un‖22 + ‖un‖p

′

1,p′

)
+

∫ T

0

‖TTTn‖pp + ‖∂tun‖p
′

1,p′ dt ≤ C(u0,f). (2.12)

It remains to provide a bound on ∂ttu
n. We define the set V := {w ∈ W 2d,2

0 (Ω;Rd), ‖w‖ = 1}.
Using the orthonormality of the basis and the continuity of Pn, we deduce from (2.1a) that

‖∂ttun(t)‖(W 2d,2
0 (Ω;Rd))∗ = sup

w∈V

∫
Ω

∂ttu
n(t) ·w dx

= sup
w∈V

∫
Ω

∂ttu
n(t) · Pnw dx

= sup
w∈V

(
〈f ,w〉 −

∫
Ω

TTTn(t) · ∇(Pnw) dx

)
≤ sup

w∈V
(‖f(t)‖

(W 1,p′
0 (Ω;Rd))∗

+ ‖TTTn(t)‖p)‖Pnw‖1,p′

≤ C sup
w∈V

(‖f(t)‖
(W 1,p′

0 (Ω;Rd))∗
+ ‖TTTn(t)‖p)‖Pnw‖2d,2

≤ C(‖f(t)‖
(W 1,p′

0 (Ω;Rd))∗
+ ‖TTTn(t)‖p),

where we have used the fact that W 2d,2(Ω;Rd) is continuously embedded into W 1,p′(Ω;Rd). There-
fore, it follows from (2.12) that∫ T

0

‖∂ttun‖p
(W 2d,2

0 (Ω;Rd))∗
dt ≤ C

∫ T

0

‖f‖p
(W 1,p′

0 (Ω;Rd))∗
+ ‖TTTn‖pp dt ≤ C(u0,f). (2.13)

2.3. Limit n→∞
Using the bounds from Section 2.2 in conjunction with the reflexivity and separability of the

underlying spaces, we can find a subsequence, that we do not relabel, such that

GGG(TTTn) ⇀ ḠGG weakly in Lp
′
(0, T ;Lp

′
(Ω;Rd×dsym)),

un
∗
⇀ u weakly∗ in W 1,∞(0, T ;L2(Ω;Rd)),

un ⇀ u weakly in W 1,p′(0, T ;W 1,p′(Ω;Rd)),
TTTn ⇀ TTT weakly in Lp(0, T ;Lp(Ω;Rd×dsym)),

∂ttu
n ⇀ ∂ttu weakly in Lp(0, T ; (W 2d,2

0 (Ω;Rd))∗).

(2.14)

Hence, we see that TTT fulfills (1.4) and u belongs to the first two spaces indicated in (1.3). In
addition, thanks to the fact that W 1,p′(Ω;Rd) is compactly embedded into L2(Ω;Rd), using the
Aubin–Lions lemma (for a further subsequence, not indicated,) we even have that

un → u strongly in C([0, T ];L2(Ω;Rd),

∂tu
n → ∂tu strongly in L2(0, T ;L2(Ω;Rd)) ∩ C([0, T ]; (W 2d,2

0 (Ω;Rd))∗).
(2.15)

Thus, it follows directly from the fact that un(0) = u0(0) and ∂tu
n(0) = ∂tu0(0) and the above

convergence result (2.15) that

u(0) = u0 and ∂tu(0) = ∂tu0(0).
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Next, we let n → ∞ in (2.1a). Let φ ∈ C∞([0, T ]) be arbitrary. We multiply (2.1a) by φ and
integrate the result over (0, T ) to get∫ T

0

〈∂ttun,ωjφ〉dt+

∫ T

0

∫
Ω

TTTn · ∇(φωj) dxdt =

∫ T

0

〈f ,ωj〉dt,

for every j ∈ {1, . . . , n}. Thus, for a fixed j, we can let n → ∞ and using the weak convergence
result (2.14) we deduce that∫ T

0

〈∂ttu,ωjφ〉dt+

∫ T

0

∫
Ω

TTT · ∇(φωj) dxdt =

∫ T

0

〈f ,ωj〉dt.

Since j and φ were arbitrary and recalling that {ωj}∞j=1 forms a basis of W 2d,2
0 (Ω;Rd), it follows

that

〈∂ttu,w〉+

∫
Ω

TTT · ∇w dx = 〈f ,w〉 ∀w ∈W 2d,2
0 (Ω;Rd), for a.e. t ∈ (0, T ). (2.16)

Consequently, thanks to the density of W 2d,2
0 (Ω;Rd) in W 1,p′

0 (Ω;Rd), we see that for almost all

t ∈ (0, T ) we have ∂ttu ∈ (W 1,p′

0 (Ω;Rd))∗. Furthermore, we have

‖∂ttun(t)‖
(W 1,p′

0 (Ω;Rd))∗
= sup

w∈W 1,p′
0 (Ω;Rd); ‖w‖=1

[
−
∫

Ω

TTTn(t) · ∇w dx+ 〈f(t),w〉
]
.

Thus, using (2.12) and (2.14), it follows that∫ T

0

‖∂ttun‖p
(W 1,p′

0 (Ω;Rd))∗
dt ≤ C

∫ T

0

‖TTTn‖pp + ‖f‖p
(W 1,p′

0 (Ω;Rd))∗
dt ≤ C(u0,f). (2.17)

Hence, (2.16) can be strengthened so that (1.5) holds. In addition, by standard parabolic inter-
polation and the fact that ∂tu0 ∈ C([0, T ];L2(Ω;Rd)), we see that u satisfies (1.3).

Finally, letting n→∞ in (2.2) and using (2.14), we see that

αεεε(u) + β∂tεεε(u) = GGG a.e. in Q. (2.18)

Hence, in order to show (1.6) and deduce the existence of a weak solution, it remains to show that
GGG = GGG(TTT) a.e. in Q.

2.4. Identification of the nonlinearity

In order to identify the nonlinearity, we will use monotone operator theory. Let φ ∈ C1
0([0, T ])

be an arbitrary nonnegative function. We multiply both identities in (2.3) by φ and integrate the
result over (0, T ). With the help of integration by parts and the fact that un(0) = u0(0) and
φ(T ) = 0, we observe that∫ T

0

∫
Ω

TTTn · ∂tεεε(un)φdxdt =

∫ T

0

∫
Ω

|∂t(un − u0)|2φ′

2
+TTTn · ∂tεεε(u0)φ dxdt

+

∫ T

0

〈f , ∂t(un − u0)〉φ− 〈∂ttu0, ∂t(u
n − u0)〉φ dt

(2.19)

and ∫ T

0

∫
Ω

TTTn · εεε(un)φdx dt =

∫ T

0

∫
Ω

∂t(u
n − u0) · (un − u0)φ′ dx dt

+

∫ T

0

∫
Ω

|∂t(un − u0)|2φ+TTTn · εεε(u0)φ dx dt

+

∫ T

0

〈f , (un − u0)〉φ− 〈∂ttu0, (u
n − u0)〉φdt.

(2.20)
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Next, we use the weak convergence results (2.14) and the strong convergence results (2.15) to
identify the limits on the right-hand sides of (2.19) and (2.20). In particular, we obtain

lim
n→∞

∫ T

0

∫
Ω

TTTn · ∂tεεε(un)φdxdt =

∫ T

0

∫
Ω

|∂t(u− u0)|2φ′

2
+TTT · ∂tεεε(u0)φ dx dt

+

∫ T

0

〈f , ∂t(u− u0)〉φ− 〈∂ttu0, ∂t(u− u0)〉φ dt

(2.21)

and

lim
n→∞

∫ T

0

∫
Ω

TTTn · εεε(un)φ dx dt =

∫ T

0

∫
Ω

∂t(u− u0) · (u− u0)φ′ dxdt

+

∫ T

0

∫
Ω

|∂t(u− u0)|2φ+TTT · εεε(u0)φ dxdt

+

∫ T

0

〈f , (u− u0)〉φ− 〈∂ttu0, (u− u0)〉φdt.

(2.22)

Next, we use (1.5) to evaluate the terms on the right-hand sides of (2.21), (2.22). We note that,
thanks to the regularity of u, both u− u0 and ∂t(u− u0) are admissible test functions in (1.5).
Using these two choices as the test function w, multiplying each of the resulting equalities by φ
and integrating over (0, T ), we may apply integration by parts in order to obtain the following
identities: ∫ T

0

∫
Ω

TTT · ∂tεεε(u)φdx dt =

∫ T

0

∫
Ω

|∂t(u− u0)|2φ′

2
+TTT · ∂tεεε(u0)φ dxdt

+

∫ T

0

〈f , ∂t(u− u0)〉φ− 〈∂ttu0, ∂t(u− u0)〉φdt

(2.23)

and ∫ T

0

∫
Ω

TTT · εεε(u)φ dx dt =

∫ T

0

∫
Ω

∂t(u− u0) · (u− u0)φ′ dx dt

+

∫ T

0

∫
Ω

|∂t(u− u0)|2φ+TTT · εεε(u0)φ dx dt

+

∫ T

0

〈f , (u− u0)〉φ− 〈∂ttu0, (u− u0)〉φdt.

(2.24)

Comparing (2.21) with (2.23) and (2.22) with (2.24), we see that

lim sup
n→∞

∫
Q

φTTTn · (αεεε(un) + β∂tεεε(u
n)) dxdt ≤

∫
Q

φTTT · (αεεε(u) + β∂tεεε(u)) dxdt. (2.25)

Therefore, using the nonnegativity of φ, we observe that

lim sup
n→∞

∫
Q

φGGG(TTTn) ·TTTn dxdt ≤ lim sup
n→∞

∫
Q

φ(GGG(TTTn) + n−1|TTTn|p−2TTTn) ·TTTn dxdt

(2.2)
= lim sup

n→∞

∫
Q

φTTTn · (αεεε(un) + β∂tεεε(u
n)) dxdt

(2.25)

≤
∫
Q

φTTT · (αεεε(u) + β∂tεεε(u)) dxdt

(2.18)
=

∫
Q

φTTT ·GGGdxdt.

(2.26)
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The inequality (2.26) is the key to identifying the nonlinearity. Let WWW ∈ Lp(Q,Rd×dsym) be arbitrary.
Using the monotonicity assumption (A1), the weak convergence results (2.14), the bound (2.26)
and the nonnegativity of φ, we obtain

0 ≤ lim sup
n→∞

∫
Q

φ (GGG(TTTn)−GGG(WWW)) · (TTTn −WWW) dxdt ≤
∫
Q

φ
(
GGG−GGG(WWW)

)
· (TTT−WWW) dx dt.

Setting WWW = TTT − κBBB for an arbitrary BBB ∈ Lp
′
(Q;Rd×dsym) and κ > 0, we divide through by κ to

deduce that

0 ≤
∫
Q

φ
(
GGG−GGG(TTT− κBBB)

)
·BBBdxdt.

Hence, since GGG is continuous, we may let κ→ 0+ to deduce that

0 ≤
∫
Q

φ
(
GGG−GGG(TTT)

)
·BBBdxdt.

As BBB and φ are arbitrary, we conclude that

GGG = GGG(TTT) a.e. in Q.

Thus we have proved the existence of a weak solution.

2.5. Uniqueness of solution

To complete the proof of Theorem 1.1 it remains to show uniqueness of the weak solution. To
this end, let (u1,TTT1) and (u2,TTT2) be two weak solutions of (1.1) emanating from the same data.
We denote u := u1 − u2. Then, using (1.5), we see that

〈∂ttu,w〉+

∫
Ω

(TTT1 −TTT2) · εεε(w) dx = 0 ∀w ∈W 1,p′

0 (Ω;Rd) and a.e. t ∈ (0, T ).

Since u and ∂tu belong to W 1,p′

0 (Ω;Rd) for almost all t ∈ (0, T ), we can set w = u and w = ∂tu
in the above to deduce that, for almost all t, the following holds:

1

2

d

dt
‖∂tu‖22 +

∫
Ω

(TTT1 −TTT2) · ∂tεεε(u) dx = 0,

d

dt

∫
Ω

∂tu · u dx+

∫
Ω

(TTT1 −TTT2) · εεε(u) dx =

∫
Ω

|∂tu|2 dx.

Therefore,

d

dt

(∫
Ω

β

2
|∂tu|2 + α∂tu · udx

)
+

∫
Ω

(TTT1 −TTT2) · (β∂tεεε(u) + αεεε(u)) dx =

∫
Ω

α|∂tu|2 dx.

Using the same procedure as in the a priori estimates and also the constitutive relation (1.6), we
obtain

1

4

d

dt

∫
Ω

β|∂tu|2 + β|u|2 + β

∣∣∣∣∂tu+
2α

β
u

∣∣∣∣2 dx+

∫
Ω

(GGG(TTT1)−GGG(TTT2)) · (TTT1 −TTT2) dx

=

∫
Ω

α|∂tu|2 +

(
β +

α2

β

)
|u|2 dx

≤ C(α, β)

∫
Ω

β|∂tu|2 + β|u|2 + β

∣∣∣∣∂tu+
2α

β
u

∣∣∣∣2 dx.

The second term on the left-hand side is nonnegative thanks to (A1) so we may apply Grönwall’s
inequality. Since u(0) = ∂tu(0) = 0, we deduce that u = 0 a.e. in Q. In addition, by monotonicity,
we also obtain that

(
GGG(TTT1)−GGG(TTT2)

)
· (TTT1 −TTT2) = 0 a.e. in Q. This proves that u1 = u2 a.e. in

Q, and if GGG is strictly monotone then also TTT1 = TTT2.

15



3. Regularity estimates

In this section we prove the higher regularity estimates for the solution from Theorem 1.1. We
note that this is an essential part in the proof of the existence of a solution for the limiting strain
model, i.e., the case p = 1, as it involves passing to the limit p→ 1+.

As the focus turns to the limiting strain model, in this part we will now assume that there
exists a strictly convex C2-function F : Rd×dsym → Rd such that, for all TTT ∈ Rd×dsym ,

∂F (TTT)

∂TTT
= GGG(TTT). (3.1)

In this case, GGG is strictly monotone. To simplify the subsequent notation, for an arbitraryTTT ∈ Rd×dsym ,
we denote

A(TTT) :=
∂2F (TTT)

∂TTT∂TTT
=
∂GGG(TTT)

∂TTT
, Aijkl(TTT) :=

∂GGGij(TTT)

∂TTTkl
.

We also define a new scalar product on Rd×dsym by

(VVV,WWW)A := A(TTT)VVV ·WWW =

d∑
i,j,k,l=1

∂GGGij(TTT)

∂TTTkl
VVVijWWWkl. (3.2)

The fact that (3.2) does indeed define a scalar product follows from the fact that GGG has a poten-

tial F . In particular, we know that for all TTT ∈ Rd×dsym there holds
∂GGGij(TTT)
∂TTTkl

= ∂GGGkl(TTT)
∂TTTij

, i.e., symmetry,

and also A is positive definite as a result of the convexity assumption.
In what follows, we will split the regularity estimates. First, we focus on time regularity and

then we consider regularity with respect to the spatial variable. Here, we provide only a formal
proof. Nevertheless, the time regularity proof is in fact fully rigorous since it can be deduced
already at the level of Galerkin approximations. The spatial regularity proof is only formal, but
can be justified by using a standard difference quotient technique. We emphasise that we do not
impose any coercivity and growth assumptions on A here because, in the case p = 1, we lose such
information.

We note that when p ∈ (1,∞) one can usually assume that

|(VVV,WWW)A| ≤ C3(1 + |TTT|)p−2 |VVV| |WWW|, (WWW,WWW)A ≥ C4(1 + |TTT|)p−2 |WWW|2. (3.3)

Under assumption (3.3), the regularity estimates can be deduced in an easier way. However, they
are not included here as the more challenging case of p = 1 is our primary interest. Also, it is worth
observing that our prototype models (1.22) do not satisfy (3.3)2 and in general, the assumption
(3.3)2 cannot be satisfied when p = 1.

Defining the convex conjugate F ∗ of F as in Section 1.2, we recall that, from the definition
of GGG, we have that

F (TTT) + F ∗(GGG(TTT)) = GGG(TTT) ·TTT. (3.4)

3.1. Time regularity

Here, we improve the bound on the time derivative. This bound will be used for the limiting
strain model in order to pass to the limit in the term ∂ttu in the weak formulation. We formulate
the following lemma locally in time in order to keep the initial data as general as possible.

Lemma 3.1. Let p ∈ (1,∞) and suppose that (3.1) holds with GGG fulfilling (A1)–(A3). Assume

that f ∈ L2(0, T ;L2(Ω;Rd)) and u0 ∈ W 2,p′

loc (0, T ;W 1,p′(Ω;Rd)). Then for any weak solution
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to (1.1) and for every δ > 0, the following bound holds:

sup
t∈(δ,T )

∫
Ω

F ∗(GGG(TTT)) dx+

∫ T

δ

‖∂ttu‖22 dt

≤ C(α, β)

(∫ T

δ
2

∫
Ω

|f |22 + |∂tu|22 + |∂ttu0|22 + |∂tu0|22 + |TTT · ∂t(β∂tεεε(u0) + αεεε(u0))|dxdt

)

+
C(α, β)

δ

∫ δ

0

∫
Ω

F ∗(αεεε(u(τ)) + β∂tεεε(u(τ))) + |∂tu(τ)|2 dx dτ.

(3.5)

If additionally u0 ∈W 2,p′(0, T ;W 1,p′(Ω;Rd)), then we have the following global-in-time bound:

sup
t∈(0,T )

∫
Ω

F ∗(GGG(TTT)) dx+

∫ T

0

‖∂ttu‖22 dt

≤ C(α, β)

(∫
Q

|f |22 + |∂tu|22 + |∂ttu0|22 + |∂tu0|22 + |TTT · ∂t(β∂tεεε(u0) + αεεε(u0))|dxdt

)
+ C(α, β)

∫
Ω

F ∗(αεεε(u0(0)) + β∂tεεε(u0(0))) + |∂tu0(0)|2 dx.

(3.6)

Proof. Recalling that f ∈ L2(0, T ;L2(Ω,Rd)), we set w := ∂tt(u − u0) in (1.5) to observe that,
for almost all t ∈ (0, T ),∫

Ω

|∂ttu|2 +TTT · ∂ttεεε(u) dx =

∫
Ω

f · ∂tt(u− u0) + ∂ttu · ∂ttu0 +TTT · ∂ttεεε(u0) dx.

This identity can be rewritten as

β‖∂ttu‖22 +

∫
Ω

TTT · (β∂ttεεε(u) + α∂tεεε(u)) dx

= β

∫
Ω

f · ∂tt(u− u0) + ∂ttu · ∂ttu0 +TTT · ∂ttεεε(u0) +
α

β
TTT · ∂tεεε(u) dx.

(3.7)

First, we evaluate the last term on the right-hand side. Setting w := ∂t(u − u0) in (1.5), we see
that ∫

Ω

TTT · ∂tεεε(u) dx = −1

2

d

dt
‖∂tu‖22 +

∫
Ω

f · ∂t(u− u0) + ∂ttu · ∂tu0 +TTT · ∂tεεε(u0) dx.

From the second term on the left-hand side of (3.7), using (1.1b), we see that∫
Ω

TTT · (β∂ttεεε(u) + α∂tεεε(u)) dx =

∫
Ω

TTT · ∂tGGG(TTT) dx =

∫
Ω

∂t(TTT ·GGG(TTT))− ∂tTTT ·GGG(TTT) dx

=

∫
Ω

∂t(TTT ·GGG(TTT)− F (TTT)) dx =
d

dt

∫
Ω

F ∗(GGG(TTT)) dx.

Thus, using these two identities in (3.7) and applying Young’s inequality, we obtain the following:

d

dt

(∫
Ω

F ∗(GGG(TTT)) +
α|∂tu|2

2β
dx

)
+
β

2
‖∂ttu‖22

≤ C(α, β)(‖f‖22 + ‖∂tu‖22 + ‖∂ttu0‖22 + ‖∂tu0‖22) +
1

β

∫
Ω

TTT · ∂t(β∂tεεε(u0) + αεεε(u0)).

(3.8)

Integrating (3.8) over (0, T ) and using the fact that

F ∗(GGG(TTT(0))) = F ∗(αεεε(u0) + β∂tεεε(u0)),
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we deduce (3.6). Similarly, integrating (3.8) over (τ, t) where δ/2 ≤ τ ≤ δ ≤ t ≤ T are arbitrary,
we deduce that

sup
t∈(δ,T )

(∫
Ω

F ∗(GGG(TTT)) +
α|∂tu|2

2β
dx

)
+

∫ T

δ

‖∂ttu‖22 dt

≤ C(α, β)

∫ T

δ
2

∫
Ω

|f |2 + |∂tu|2 + |∂ttu0|2 + |∂tu0|2 + |TTT · ∂t(β∂tεεε(u0) + αεεε(u0))|dxdt

+ C(α, β)

∫
Ω

F ∗(αεεε(u(τ)) + β∂tεεε(u(τ))) + |∂tu(τ)|2 dx.

(3.9)

Integrating with respect to τ ∈ (δ/2, δ) and dividing by δ, we directly obtain (3.5).

3.2. Spatial regularity

Here, we will improve the spatial regularity of a weak solution. In particular, we prove a
weighted bound on ∇TTT, which is a key tool for obtaining the existence of a weak solution for the
limiting strain model, i.e., in the case p = 1.

Lemma 3.2. Let all of the assumptions of Lemma 3.1 be satisfied. In addition, assume that
∂tu0(0) ∈W 1,2(Ω;Rd) and ∫ T

0

∫
Ω

|A(TTT)||TTT|2 + |A(TTT)||f |2 dxdt <∞.

Then, for an arbitrary open set Ω′ ⊂ Ω′ ⊂ Ω and any δ > 0, we have the following bound:

sup
t∈(δ,T )

‖∂t∇u‖L2(Ω′) +

d∑
k=1

∫ T

δ

∫
Ω′

(∂kTTT, ∂kTTT)A(TTT) dxdt

≤ C(Ω′, δ)

∫ T

0

∫
Ω

|TTT||GGG(TTT)|+ |A(TTT)||TTT|2 + |f |2 + |∇u|2 + |∂t∇u|2 + |A(TTT)||f |2 dxdt.

(3.10)

If, additionally, u0 ∈ C1([0, T ];W 1,2(Ω;Rd)), then we also have

sup
t∈(0,T )

‖∂t∇u‖L2(Ω′) +

d∑
k=1

∫ T

0

∫
Ω′

(∂kTTT, ∂kTTT)A(TTT) dxdt

≤ C(Ω′)

∫ T

0

∫
Ω

|TTT||GGG(TTT)|+ |A(TTT)||TTT|2 + |f |2 + |∇u|2 + |∂t∇u|2 + |A(TTT)||f |2 dxdt

+ C‖∂t∇u0(0)‖22.

(3.11)

Proof. Fix an arbitrary nonnegative smooth compactly supported ϕ ∈ C∞0 (Ω). Then, we can
choose w := −div(ϕ2∇∂tu) in (1.5) and integrate by parts to deduce the following identity:

β

2

d

dt

∫
Ω

|∂t∇uϕ|2 dx+

∫
Ω

d∑
i,j,k=1

∂kTTTij∂j(ϕ
2β∂t∂kui) dx = −β

∫
Ω

f · div(ϕ2∇∂tu) dx. (3.12)

Similarly, setting w := −div(ϕ2∇u) in (1.5) leads to

α
d

dt

∫
Ω

∂t∇u · ∇uϕ2 dx+

∫
Ω

d∑
i,j,k=1

∂kTTTij∂j(ϕ
2α∂kui) dx

= −α
∫

Ω

f · div(ϕ2∇u) dx+ α

∫
Ω

|∂t∇uϕ|2 dx.

(3.13)
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Summing these two identities, we deduce that

β

4

d

dt

∫
Ω

|∂t∇uϕ|2 +

∣∣∣∣∂t∇uϕ+
2α

β
∇uϕ

∣∣∣∣2 dx+

∫
Ω

d∑
i,j,k=1

∂kTTTij∂j(ϕ
2(α∂kui + β∂t∂kui)) dx

= −
∫

Ω

f · div(ϕ2(β∇∂tu+ α∇u)) dx+
2α2

β

∫
Ω

∂t∇u · ∇uϕ2 dx+ α

∫
Ω

|∂t∇uϕ|2 dx.

(3.14)

Now we show that the second integral on the left-hand side is the key source of information. We
use (1.1b), integration by parts and the symmetry of TTT in order to observe that∫

Ω

d∑
i,j,k=1

∂kTTTij∂j(ϕ
2(α∂kui + β∂t∂kui)) dx

=

d∑
i,j,k=1

∫
Ω

∂kTTTij(ϕ
2(α∂k∂jui + β∂t∂k∂jui)) + 2∂kTTTijϕ∂jϕ(α∂kui + β∂t∂kui) dx

=

d∑
i,j,k=1

∫
Ω

∂kTTTijϕ
2∂k(αεεεij(u) + β∂tεεεij(u)) + 4∂kTTTijϕ∂jϕ(αεεεik(u) + β∂tεεεik(u)) dx

− 2

d∑
i,j,k=1

∫
Ω

∂kTTTijϕ∂jϕ(α∂iuk + β∂t∂iuk) dx

=

d∑
i,j,k=1

∫
Ω

∂kTTTijϕ
2∂kGGGij(TTT)− 4TTTij∂k(ϕ∂jϕ)GGGik(TTT)− 4TTTijϕ∂jϕ∂kGGGik(TTT) dx

+

d∑
i,j,k=1

∫
Ω

TTTij∂kj(ϕ
2)∂i(αuk + β∂tuk) dx+ 2

d∑
i,j,k=1

∫
Ω

TTTijϕ∂jϕ∂i(α∂kuk + β∂t∂kuk) dx

=

∫
Ω

d∑
k=1

(∂kTTTϕ, ∂kTTTϕ)A(TTT) − 4

d∑
i,j,k=1

TTTij∂k(ϕ∂jϕ)GGGik(TTT)− 4

d∑
i,j,k=1

TTTijϕ∂jϕ∂kGGGik(TTT) dx

−
d∑

i,j,k=1

∫
Ω

∂jTTTij∂k(ϕ2)∂i(αuk + β∂tuk) dx−
d∑

i,j,k=1

∫
Ω

TTTij∂k(ϕ2)∂ij(αuk + β∂tuk) dx

+ 2

d∑
i,j,k=1

∫
Ω

TTTijϕ∂jϕ∂iGGGkk(TTT) dx

=:

6∑
m=1

Im.

(3.15)
We need to determine what bounds can be deduced from (3.15). In particular, we show that the
terms I2, . . . , I6 can be bounded in terms of I1 and the data. The simplest bound is for I2. In
particular, it directly follows that

|I2| ≤ C(ϕ)

∫
Ω

|TTT| |GGG(TTT)|dx.

Letting δnk denote the Kronecker delta, in order to bound I3 we first rewrite it in the following
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way:
d∑

i,j,k=1

TTTijϕ∂jϕ∂kGGGik(TTT) =

d∑
i,j,k,l,m,n=1

δnkTTTijϕ∂jϕAiklm(TTT)∂nTTTlm

=

d∑
j,n=1

 d∑
i,k,l,m=1

Aiklm(TTT)∂nTTTlmδnkTTTijϕ∂jϕ

 .

Using the Cauchy–Schwarz inequality and the fact that A generates a scalar product, by applying
Young’s inequality we find that

|I3| ≤ C
∫

Ω

∣∣∣∣∣∣
d∑

j,n=1

 d∑
i,k,l,m=1

Aiklm(TTT)∂nTTTlmδnkTTTijϕ∂jϕ

∣∣∣∣∣∣ dx

≤ C
∫

Ω

∣∣∣∣∣∣∣
d∑

j,n=1

 d∑
i,k,l,m=1

Aiklm(TTT)∂nTTTlmϕ∂nTTTikϕ

 1
2
 d∑
i,k,l,m=1

Aiklm(TTT)δnmTTTlj∂jϕδnkTTTij∂jϕ

 1
2

∣∣∣∣∣∣∣ dx

≤ I1
8

+ C(ϕ)

∫
Ω

|A(TTT)||TTT|2 dx.

The term I6 can be bounded in a very similar way. In particular, we have

|I6| ≤
I1
8

+ C(ϕ)

∫
Ω

|A(TTT)||TTT|2 dx.

For I4, we use the equation (1.1a) and Young’s inequality to obtain

|I4| =

∣∣∣∣∣∣
d∑

i,k=1

∫
Ω

(f i − ∂ttui)∂k(ϕ2)∂i(αuk + β∂tuk) dx

∣∣∣∣∣∣
≤ C(ϕ)

∫
Ω

|f |2 + |∂ttu|2 + |∂t∇uϕ|2 + |∇uϕ|2 dx.

Finally, to evaluate I5, we first recall the following identity

∂ij(αuk + β∂tuk)

= ∂i(αεεεjk(u) + β∂tεεεjk(u)) + ∂j(αεεεik(u) + β∂tεεεik(u))− ∂k(αεεεij(u) + β∂tεεεij(u)).
(3.16)

Then, we can rewrite I5 with the help of (1.1b) to find that

I5 = −
d∑

i,j,k=1

∫
Ω

TTTij∂k(ϕ2) (∂iGGGjk(TTT) + ∂jGGGik(TTT)− ∂kGGGij(TTT)) dx.

Hence, we see that we are in the same situation as with the term I3 and we can deduce that

|I5| ≤
I1
8

+ C(ϕ)

∫
Ω

|A(TTT)||TTT|2 dx.

Thus we have suitable bounds on the left-hand side of (3.14). Next we rewrite the first term on
the right-hand side of (3.14) in the following way:∫

Ω

f · div(ϕ2(α∇u+ β∂t∇u)) dx

=

d∑
i,j=1

∫
Ω

f i(∂j(ϕ
2)(α∂jui + β∂t∂jui) + ϕ2(α∂jjui + β∂t∂jjui)) dx

=

d∑
i,j=1

∫
Ω

f i(∂j(ϕ
2)(α∂jui + β∂t∂jui) + ϕ2(2∂jGGGij(TTT)− ∂iGGGjj(TTT)) dx.

20



Hence, using Young’s inequality in the first term and a procedure similar to the one used for I3
in the second, we get∣∣∣∣∫

Ω

f · div(ϕ2(α∇u+ β∂t∇u)) dx

∣∣∣∣
≤ I1

8
+ C(ϕ)

∫
Ω

|f |2 + |∇u|2 + |∂t∇u|2 + |A(TTT)||f |2 dx.

(3.17)

Substituting the above bounds into (3.14) and using a similar procedure to the one used in the
proof of Lemma 3.1, we deduce (3.11) and (3.10).

4. Limiting strain - Proof of Theorem 1.2

As in the proof of Theorem 1.1, in order to prove Theorem 1.2 we first introduce an approximate
problem. However, we are able to make use of the knowledge obtained from Theorem 1.1. Indeed,
we define a function on Rd×dsym by

GGGn(TTT) := GGG(TTT) + n−1TTT. (4.1)

Since GGG satisfies (A1)–(A3) with p = 1, it is evident that GGGn satisfies (A1)–(A3) with p = 2.
Therefore, thanks to Theorem 1.1, we know that there exists a couple (un,TTTn), fulfilling3

un ∈ C1([0, T ];L2(Ω;Rd)) ∩W 1,2(0, T ;W 1,2(Ω;Rd)) ∩W 2,2(0, T ; (W 1,2
0 (Ω;Rd))∗), (4.2)

TTTn ∈ L2(0, T ;L2(Ω;Rd×dsym)) (4.3)

and satisfying

〈∂ttun,w〉+

∫
Ω

TTTn · ∇w dx =

∫
Ω

f ·w dx ∀w ∈W 1,2
0 (Ω;Rd) for a.e. t ∈ (0, T ), (4.4)

and
αεεε(un) + β∂tεεε(u

n) = GGGn(TTTn) = GGG(TTTn) + n−1TTTn a.e. in Q. (4.5)

We note that we can replace the duality pairing by the integral over Ω in the term containing f
thanks to the assumed regularity of f . Moreover, we know that4

un = u0 on Γ ∪ ({0} × Ω), ∂tu
n = ∂tu0 on {0} × Ω.

We want to consider the limit as n → ∞ in order to prove the existence of a solution to the
limiting strain problem in the sense of Theorem 1.2.

4.1. A priori n-independent bounds
We start with bounds that are independent of the order of approximation. For this purpose,

we use and mimic many steps from preceding sections. We start with the first uniform bound.
Setting w := β∂t(u

n − u0) + α(u − u0) in (4.4), after exactly the same algebraic manipulations
as those used for (2.6) we deduce that

1

4

d

dt

∫
Ω

β|∂t(un − u0)|2 + β

∣∣∣∣∂t(un − u0) +
2α

β
(un − u0)

∣∣∣∣2 dx+

∫
Ω

GGGn(TTTn) ·TTTn dx

=

∫
Ω

TTTn · (αεεε(u0) + β∂tεεε(u0)) dx+ α

∫
Ω

|∂t(un − u0)|2 dx

+

∫
Ω

(f − ∂ttu0) · (α(un − u0) + β∂t(u
n − u0)) dx+

2α2

β

∫
Ω

∂t(u
n − u0) · (un − u0) dx.

(4.6)

3We assume a slightly different restriction on u0 than in Theorem 1.1. However, the proof of Theorem 1.1 can
be easily adapted to this case.

4In case that Ω is not a Lipschitz domain, the identity below is not understood in the sense of traces but in the
sense that u− u0 ∈W 1,1

0 (Ω;Rd) for almost all t ∈ (0, T ), where W 1,1
0 (Ω;Rd) defined as the closure of C∞0 (Ω;Rd)

in the norm of W 1,1(Ω;Rd).
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In order to obtain the required a priori estimate, we need to use the safety strain condition. In
particular, it follows from (1.13) that there exists a δ > 0 such that

|αεεε(u0) + β∂tεεε(u0)| ≤ L− 2δ a.e. in Q, (4.7)

where L is as defined in (1.9). In addition, if we define F (TTT) := φ(|TTT|), it follows from the convexity
of φ that, for any δ̃ > 0, there exists a Cδ̃ such that, for all TTT ∈ Rd×dsym,

F (TTT) ≥ (L− δ̃)|TTT| − Cδ̃. (4.8)

We choose δ̃ = δ as in (4.7) and let Cδ be the corresponding constant from (4.8). Since Cδ depends
in principle on u0 and F , and δ is now given, we do not trace the dependence of C on δ in what
follows. Consequently, for the second term on the left-hand side of (4.6), we can use (3.4) and
(4.5) to deduce that

GGGn(TTTn) ·TTTn = n−1|TTTn|2 + F (TTTn) + F ∗(GGG(TTTn)) ≥ (L− δ)|TTTn|+ n−1|TTTn|2 − C(δ).

Furthermore, the first term on the right-hand side of (4.6) can be bounded by using (4.7) in the
following way: ∫

Ω

TTTn · (αεεε(u0) + β∂tεεε(u0)) dx ≤ (L− 2δ)‖TTTn‖1.

Therefore, it follows from (4.6), the above bounds and Hölder’s inequality that

1

4

d

dt

∫
Ω

β|∂t(un − u0)|2 + β

∣∣∣∣∂t(un − u0) +
2α

β
(un − u0)

∣∣∣∣2 dx+ δ‖TTTn‖1 + n−1‖TTTn‖22

≤ C

(∫
Ω

β|∂t(un − u0)|2 + β

∣∣∣∣∂t(un − u0) +
2α

β
(un − u0)

∣∣∣∣2 dx+ ‖f‖22 + ‖∂ttu0‖22 + 1

)
.

(4.9)

The application of Grönwall’s lemma then leads to

sup
t∈(0,T )

(
‖∂tu(t)‖22 + ‖u(t)‖22

)
+

∫ T

0

‖TTTn‖1 + n−1‖TTTn‖22 dt ≤ C(f ,u0), (4.10)

where we have used the assumption (1.12) on the data. It also follows from (1.6) and the above
bound that ∫

Q

|αεεε(u) + β∂tεεε(u)|2 dxdt ≤
∫
Q

(L+ n−1|TTTn|)2 dxdt ≤ C(f ,u0).

Consequently, since εεε(u(0)) ∈ L∞(Ω,Rd×d) and GGGn(TTTn) ·TTTn is nonnegative, arguing similarly as
in the bound (2.8), we deduce with the help of Korn’s inequality and (4.6) that∫

Q

|GGGn(TTTn) ·TTTn|dxdt+

∫ T

0

‖∂tun‖21,2 + ‖un‖21,2 dt ≤ C(f ,u0). (4.11)

4.2. Regularity via n-independent bounds

The bounds (4.10), (4.11) are not sufficient to pass to the limit n → ∞, since we only have
a priori control on TTTn in a nonreflexive space L1(Q;Rd×d). In particular, at best we have that the
weak star limit of TTTn is a measure. Therefore, the pointwise relation (1.20) is neither meaningful
nor likely to be valid in this case. Instead, we improve our information by using the regularity
technique introduced in Section 3. Namely, we use Lemma 3.1 and Lemma 3.2. First, we define
an approximatinon Fn of the potential F by

Fn(TTT) := F (TTT) +
|TTT|2

2n
.
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Then we have that
∂Fn(TTT)

∂TTT
= GGGn(TTT) = GGG(TTT) + n−1TTT.

We may now apply the results from Section 3 with p = 2, replacing (u, F,GGG) with the triple
(un, Fn,GGGn). We note that using the definition of GGGn we may define An in an analogous way to A.
In particular, we write

(An(TTTn))ijkl :=
∂

∂TTTnkl

(
φ′(|TTTn|)
|TTTn|

TTTnij + n−1TTTnij

)
= δikδjl

(
n−1 +

φ′(|TTTn|)
|TTTn|

)
+

(
φ′′(|TTTn|)|TTTn| − φ′(|TTTn|)

|TTTn|

)
TTTnijTTT

n
kl

|TTTn|2
.

Consequently, using the fact that φ′(0) = 0 and φ′′(s) ≤ C(1 + s)−1, we see that

|An(TTTn)| ≤ Cn−1 +
C

1 + |TTTn|
. (4.12)

With this in mind, let us first discuss regularity with respect to time. We see that all assump-
tions of Lemma 3.1 are satisfied. Therefore we have, for every δ > 0, that the following inequality
holds:

sup
t∈(δ,T )

∫
Ω

F ∗n(GGGn(TTTn)) dx+

∫ T

δ

‖∂ttun‖22 dt

≤ C(α, β)

(∫ T

δ
2

∫
Ω

|f |22 + |∂tun|22 + |∂ttu0|22 + |∂tu0|22 + |TTTn · ∂t(β∂tεεε(u0) + αεεε(u0))|dx dt

)

+
C(α, β)

δ

∫ δ

0

∫
Ω

F ∗n(αεεε(un(τ)) + β∂tεεε(u
n(τ))) + |∂tun(τ)|2 dxdτ.

(4.13)

We focus on the bound of the right-hand side. For the second integral on the right-hand side, it
follows from the properties of the convex conjugate function and the uniform bounds (4.10), (4.11)
that ∫ δ

0

∫
Ω

F ∗n(αεεε(un) + β∂tεεε(u
n)) + |∂tun|2 dx dτ =

∫ δ

0

∫
Ω

F ∗n(GGGn(TTTn)) + |∂tun|2 dxdτ

≤
∫
Q

GGGn(TTTn) ·TTTn + |∂tun|2 dx dt ≤ C(u0,f).

For the first term on the right-hand side of (4.13), we use Hölder’s inequality, the assumptions on
the data (1.12), (1.13), (1.14) and the uniform bound (4.10) in order to deduce that∫ T

δ
2

∫
Ω

|f |22 + |∂tun|22 + |∂ttu0|22 + |∂tu0|22 + |TTTn · ∂t(β∂tεεε(u0) + αεεε(u0))|dx dt

≤ C(u0,f) + ‖|∂ttεεε(u0)|+ |∂tεεε(u0)|‖L∞(( δ2 ,T )×Ω)

∫ T

0

∫
Ω

|TTTn|dxdt

≤ C(u0,f).

It follows from the above bounds and (4.13) that, for every δ > 0, we have

sup
t∈(δ,T )

∫
Ω

F ∗n(GGGn(TTTn)) dx+

∫ T

δ

‖∂ttun‖22 dt ≤ C(f ,u0). (4.14)
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Similarly, in case that (1.14) holds even for δ = 0, we can use (3.6). By a very similar
computation to the one above we deduce that

sup
t∈(0,T )

∫
Ω

F ∗n(GGGn(TTTn)) dx+

∫ T

0

‖∂ttun‖22 dt

≤ C(f ,u0) + C

∫
Ω

F ∗n(αεεε(u0(0)) + β∂tεεε(u0(0))) dx

≤ C(f ,u0) + C

∫
Ω

F ∗(αεεε(u0(0)) + β∂tεεε(u0(0))) dx

≤ C(f ,u0),

(4.15)

using the fact that F ∗n ≤ F ∗ and assumptions (1.13), (1.14) with δ = 0.
Next, we consider the spatial regularity estimates. For an arbitrary open set Ω′ ⊂ Ω′ ⊂ Ω and

for any δ > 0, it follows from (3.10) that

sup
t∈(δ,T )

‖∂t∇un‖L2(Ω′) +

d∑
k=1

∫ T

δ

∫
Ω′

(∂kTTT
n, ∂kTTT

n)An(TTTn) dxdt

≤ C(Ω′, δ)

∫
Q

|TTTn||GGGn(TTTn)|+ |An(TTTn)||TTTn|2 + |f |2 + |∇un|2 + |∂t∇un|2 + |An(TTTn)||f |2 dx dt.

(4.16)

Since |TTTn||GGGn(TTTn)| = |TTTn ·GGGn(TTTn)|, we can use (4.10), (4.11) to deduce that∫
Q

|TTTn||GGGn(TTTn)|+ |f |2 + |∇un|2 + |∂t∇un|2 dxdt ≤ C(u0,f).

Thus, it only remains to bound the terms involving An on the right-hand side of (4.16). To this
end, we note that∫

Q

|An(TTTn)||TTTn|2 + |An(TTTn)||f |2 dxdt ≤ C
∫
Q

n−1|TTTn|2 + |TTTn|+ |f |2 ≤ C(u0,f),

where the last inequality follows from (4.10) and the assumptions on f . Using these inequalities
for the terms appearing on the right-hand side of (4.16), we immediately deduce that

sup
t∈(δ,T )

‖∂t∇un‖L2(Ω′) +

d∑
k=1

∫ T

δ

∫
Ω′

(∂kTTT
n, ∂kTTT

n)An(TTTn) dxdt ≤ C(u0,f ,Ω
′). (4.17)

Similarly, if u0 ∈ C1([0, T ];W 1,2(Ω;Rd)) we can use (3.11) and perform similar computations to
find that

sup
t∈(0,T )

‖∂t∇un‖L2(Ω′) +

d∑
k=1

∫ T

0

∫
Ω′

(∂kTTT
n, ∂kTTT

n)An(TTTn) dxdt ≤ C(Ω′,u0,f). (4.18)

Next, we focus on the bounds on the second derivatives of ∂tu
n and un. It follows from (4.5) and

the Cauchy–Schwarz inequality that

|∂k(αεεε(un) + β∂tεεε(u
n))|2 = (∂k(αεεε(un) + β∂tεεε(u

n))) · ∂kGGGn(TTTn)

= (∂k(αεεε(un) + β∂tεεε(u
n)), ∂kTTT

n)An(TTTn)

≤ (∂k(αεεε(un) + β∂tεεε(u
n)), ∂k(αεεε(un) + β∂tεεε(u

n)))
1
2

An(TTTn)(∂kTTT
n, ∂kTTT

n)
1
2

An(TTTn)

≤ C|∂k(αεεε(un) + β∂tεεε(u
n))|(∂kTTTn, ∂kTTTn)

1
2

An(TTTn).
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Therefore,
|∂k(αεεε(un) + β∂tεεε(u

n))|2 ≤ C(∂kTTT
n, ∂kTTT

n)An(TTTn).

Using this and (4.17), simple algebraic manipulations imply that∫ T

δ

∫
Ω′
|∇(αεεε(un) + β∂tεεε(u

n))|2 dx dt ≤ C(u0,f ,Ω
′). (4.19)

4.3. Convergence results as n→∞ based on uniform bounds

From the uniform bounds (4.10), (4.11), we see that we can find a subsequence, that we do
not relabel, such that

un ⇀ u weakly in W 1,2(0, T ;W 1,2(Ω;Rd)), (4.20)

un ⇀∗ u weakly∗ in W 1,∞(0, T ;L2(Ω;Rd)), (4.21)

n−1TTTn → 0 strongly in L2(0, T ;L2(Ω;Rd×d)). (4.22)

In addition, using the regularity estimates (4.14), (4.19), as well as the Aubin–Lions lemma, we
deduce that

un ⇀ u weakly in W 2,2
loc (0, T ;L2(Ω;Rd)), (4.23)

un ⇀ u weakly in W 1,2
loc (0, T ;W 2,2

loc (Ω;Rd)), (4.24)

un → u strongly in W 1,2
loc (0, T ;W 1,2

loc (Ω;Rd)). (4.25)

Next, we focus on the limiting passage in (4.5). Since the mapping GGG is bounded, we know that

GGG(TTTn) ⇀∗ GGG weakly∗ in L∞(Q;Rd×d). (4.26)

Our goal is to identify GGG. We first note that from (4.5), (4.21) and (4.22) we must have

GGG = αεεε(u) + β∂tεεε(u) a.e. in Q. (4.27)

Next, we want to show that there exists a T̃TT such that GGG = GGG(T̃TT). To do so, we appeal to Chacon’s
biting lemma to deduce from (4.10) that there exists a TTT ∈ L1(Q;Rd×d) and a nondecreasing
sequence of sets Q1 ⊂ Q2 ⊂ · · · , with |Q \Qi| → 0 as i→∞, such that for each i ∈ N there holds

TTTn ⇀ TTT weakly in L1(Qi;Rd×d). (4.28)

However, thanks to (4.25), (4.27) and Egoroff’s theorem, we also know that for every ε > 0 and
every i ∈ N there exists a Qi,ε ⊂ Qi, with |Qi \Qi,ε| ≤ ε, such that

αεεε(un) + β∂tεεε(u
n)→ GGG strongly in L∞(Qi,ε;Rd×d).

Therefore, using the monotonicity of GGG and the above convergence result, we deduce that, for an
arbitrary WWW ∈ L1(Q;Rd×d), that

0 ≤ lim
n→∞

∫
Qi,ε

(GGG(TTTn)−GGG(WWW)) · (TTTn −WWW) dxdt

=

∫
Qi,ε

GGG(WWW) · (WWW −TTT)−GGG ·WWW dxdt+ lim
n→∞

∫
Qi,ε

GGG(TTTn) ·TTTn dxdt

≤
∫
Qi,ε

GGG(WWW) · (WWW −TTT)−GGG ·WWW dxdt+ lim
n→∞

∫
Qi,ε

GGGn(TTTn) ·TTTn dxdt

=

∫
Qi,ε

GGG(WWW) · (WWW −TTT)−GGG ·WWW dxdt+ lim
n→∞

∫
Qi,ε

(αεεε(un) + β∂tεεε(u
n)) ·TTTn dx dt

=

∫
Qi,ε

(GGG−GGG(WWW)) · (TTT−WWW) dxdt.
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Since GGG is a monotone mapping and WWW is arbitrary, we can use Minty’s method to deduce that

GGG = GGG(TTT) a.e. in Qi,ε.

Recalling that ε > 0 and i ∈ N are arbitrary, we see that (1.20) follows from (4.27) and the above
identity. Additionally, setting WWW := TTT in the above and using the fact that GGG = GGG(TTT), we see that

lim
n→∞

∫
Qi,ε

|(GGG(TTTn)−GGG(TTT)) · (TTTn −TTT)|dxdt = lim
n→∞

∫
Qi,ε

(GGG(TTTn)−GGG(TTT)) · (TTTn −TTT) dxdt = 0.

Consequently, we must have that

TTTn → TTT a.e. in Qi,ε,

as a result of the strict monotonicity of GGG. However, as before, since ε > 0 and i ∈ N are arbitrary,
we deduce that

TTTn → TTT a.e. in Q. (4.29)

Using (4.10), (4.29) and Fatou’s lemma, it follows that∫
Q

|TTT|dxdt ≤ C(u0,f). (4.30)

Next, we focus on the boundary and initial conditions for u. It is evident from the convergence
result (4.20), combined with the fact that un = u0 on Γ and un(0) = u0 on Ω, that we must have
u = u0 on Γ as well. Furthermore, it follows that

‖u(t)− u0(0)‖1,2 → 0 as t→ 0+.

Concerning the attainment of the initial condition for ∂tu(0) we need to proceed slightly differently
since we have control on ∂ttu locally in (0, T ). We integrate (4.6) over a time interval (0, t), where
0 < t < T , and since we know that for each n the initial datum is attained we deduce that

1

4

∫
Ω

β|∂t(un − u0)(t)|2 + β

∣∣∣∣∂t(un − u0)(t) +
2α

β
(un − u0)(t)

∣∣∣∣2 dx

=

∫ t

0

∫
Ω

TTTn · ((αεεε(u0) + β∂tεεε(u0))−GGGn(TTTn)) + α|∂t(un − u0)|2 dxdτ

+

∫ t

0

∫
Ω

(f − ∂ttu0) · (α(un − u0) + β∂t(u
n − u0)) +

2α2

β
∂t(u

n − u0) · (un − u0) dx dτ.

(4.31)

Our goal is to let n → ∞. Since t > 0, we can use the “local” convergence result (4.23) to let
n → ∞ in the left-hand side of (4.31). To bound also the right-hand side, we first use the safety
strain condition (1.13), which implies that there exists a TTT0 ∈ L1(Q;Rd×d) such that

αεεε(u0) + β∂tεεε(u0) = GGG(TTT0) a.e. in Q.

Thus, using the monotonicity of GGG, we see that

TTTn · ((αεεε(u0) + β∂tεεε(u0))−GGGn(TTTn)) ≤ TTTn · (GGG(TTT0)−GGG(TTTn)) ≤ TTT0 · (GGG(TTT0)−GGG(TTTn)).

Using the convergence results (4.20)–(4.27) applied to all terms in (4.31) with the above inequality
yields the following:

1

4

∫
Ω

β|∂t(u− u0)(t)|2 + β

∣∣∣∣∂t(u− u0)(t) +
2α

β
(u− u0)(t)

∣∣∣∣2 dx

≤
∫ t

0

∫
Ω

TTT0 · ((αεεε(u0) + β∂tεεε(u0))−GGG(TTT)) + α|∂t(u− u0)|2 dx dτ

+

∫ t

0

∫
Ω

(f − ∂ttu0) · (α(u− u0) + β∂t(u− u0)) +
2α2

β
∂t(u− u0) · (u− u0) dx dτ

≤ C
∫ t

0

‖TTT0‖1 + ‖f‖2 + ‖∂ttu0‖2 + 1 dτ.

(4.32)
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Letting t→ 0+, we see that

lim
t→0+

(‖u(t)− u0(0)‖22 + ‖∂tu(t)− ∂tu0(0)‖22) = 0.

In addition, it also follows from (4.23) that u ∈ C1
loc(0, T ;L2(Ω;Rd)), which combined with the

above result gives that u ∈ C1([0, T ];L2(Ω;Rd)).

4.4. Validity of the equation in the limit

To summarize the results so far, we have found a couple (u,TTT) that satisfies (1.3)–(1.18) and
(1.20), (1.21). It remains to show (1.19). To do so, we use the method developed in [1]. Let g be
a smooth nonnegative nonincreasing function satisfying

g(s) =

{
1, for s ∈ [0, 1],

0, for s > 2.

For each k ∈ N, let us define
gk(s) := g(s/k).

It is clear that gk ↗ 1. Next let v ∈ C∞0 (Q;Rd) be arbitrary but fixed. Thanks to (4.23) and
(4.29), all terms in (1.19) are well-defined for almost all t ∈ (0, T ) and we just need to check that
the equality holds.

Using the properties of gk, we have

I :=

∫
Q

∂ttu · v +TTT · ∇v − f · v dxdt

= lim
k→∞

∫
Q

∂ttu · vgk(|TTT|) +TTT · ∇vgk(|TTT|)− f · vgk(|TTT|) dx dt.

(4.33)

Using (4.23), (4.28), the fact that TTTn ∈ L2
loc(0, T ;W 1,2

loc (Ω;Rd×d)), which follows from (4.17), and
the fact that gk(|TTTn|) is supported only in the set where |TTTn| ≤ k, we can rewrite the right-hand
side of (4.33) in the following way:

I = lim
k→∞

lim
n→∞

∫
Q

∂ttu
n · vgk(|TTTn|) +TTTn · ∇vgk(|TTTn|)− f · vgk(|TTTn|) dx dt

= lim
k→∞

lim
n→∞

∫
Q

∂ttu
n · vgk(|TTTn|) +TTTn · ∇(vgk(|TTTn|))− f · vgk(|TTTn|) dxdt

− lim
k→∞

lim
n→∞

∫
Q

TTTn · (∇gk(|TTTn|)⊗ v) dxdt

= − lim
k→∞

lim
n→∞

∫
Q

TTTn · (∇gk(|TTTn|)⊗ v) dx dt,

(4.34)

where for the last equality we have used (4.4) with w := vgk(|TTTn|). It remains to show that the
right-hand side of (4.34) vanishes. We define

Mk,n(s) :=

∫ s

0

g′k(t)
φ′(t)
t + n−1

dt ≤
∫ s

0

tg′k(t)

φ′(t)
dt =: Mk(s).

Then, using that |g′k(s)| ≤ Cs−1χ{s∈(k,2k)}, we see that

Mk(s)

{
≤ C min{s, k} for all s ≥ 0,

= 0 for s ≤ k.
(4.35)
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Next we can use the structural assumption (A4) to rewrite the term under the limit in (4.34) as

−
∫
Q

TTTn · (∇gk(|TTTn|)⊗ v) dxdt

= −
∫
Q

GGGn(TTTn) · (∇|TTTn| ⊗ v)
g′k(|TTTn|)

φ′(|TTTn|)
|TTTn| + n−1

dxdt

= −
∫
Q

GGGn(TTTn) · (∇Mk,n(|TTTn|)⊗ v) dxdt

=

∫
Q

divGGGn(TTTn) · vMk,n(|TTTn|) dxdt+

∫
Q

GGGn(TTTn) · ∇vMk,n(|TTTn|) dxdt.

(4.36)

For the first term on the right-hand side of (4.36), we use the definition of An alongside the
Cauchy–Schwarz inequality to obtain

|divGGGn(TTTn) · vMk,n(|TTTn|)| =

∣∣∣∣∣∣
d∑

i,j,a,b=1

(An(TTTn))ijab∂jTTT
n
abviMk,n(|TTTn|)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
d∑

m=1

d∑
i,j,a,b=1

(An(TTTn))ijab∂mTTT
n
abδmjviMk,n(|TTTn|)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣
d∑

m=1

(∂mTTT
n, ∂mTTT

n)
1
2

An(TTTn)

 d∑
i,j,a,b=1

(An(TTTn))ijabδmjviδmavbM
2
k,n(|TTTn|)

 1
2

∣∣∣∣∣∣∣
≤

∣∣∣∣∣
d∑

m=1

(∂mTTT
n, ∂mTTT

n)
1
2

An(TTTn)

(
(n−1 +

C

1 + |TTTn|
)|v|2M2

k,n(|TTTn|)
) 1

2

∣∣∣∣∣ .
Using this bound in (4.36) and then in (4.34), recalling the fact that v is compactly supported,
we deduce with the help of Hölder’s inequality and the uniform bound (4.16) that

|I| ≤ lim
k→∞

lim
n→∞

∫
Q

∣∣∣∣∣
d∑

m=1

(∂mTTT
n, ∂mTTT

n)
1
2

An(TTTn)

((
n−1 +

C

1 + |TTTn|

)
|v|2M2

k,n(|TTTn|)
) 1

2

∣∣∣∣∣ dxdt

≤ C(v) lim
k→∞

lim
n→∞

(∫
Q

(
n−1 +

C

1 + |TTTn|

)
M2
k,n(|TTTn|) dx dt

) 1
2

= C(v) lim
k→∞

(∫
Q

M2
k (|TTT|)
|TTT|

dxdt

) 1
2

,

(4.37)

where for the last equality we used (4.29) and the boundedness of Mk. Consequently, using that
TTT ∈ L1(Q;Rd×d) and the structure of Mk (4.35), we deduce that

|I| ≤ C(v) lim
k→∞

(∫
Q

M2
k (|TTT|)
|TTT|

dxdt

) 1
2

≤ C(v) lim
k→∞

(∫
Q∩{|TTT|>k}

|TTT|dxdt

) 1
2

= 0.

Since v is arbitrary, we see that (1.19) holds for almost all t ∈ (0, T ) and all smooth compactly
supported w. Finally, using a weak∗ density argument based on [1, Lemma A.3] we deduce that
(1.19) holds for an arbitrary w ∈ W 1,2

0 (Ω,Rd) fulfilling εεε(w) ∈ L∞(Q;Rd×d). This concludes the
proof of the existence of a solution as asserted in Theorem 1.2.
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4.5. Uniqueness of the solution

It remains to prove the uniqueness of such weak solutions. Let (u1,TTT1) and (u2,TTT2) be two
solutions emanating from the same data and denote v := u1 − u2. Then it follows from (1.19)
that, for almost all t ∈ (0, T ) and for every w ∈W 1,∞

0 (Ω;Rd),∫
Ω

∂ttv ·w + (TTT1 −TTT2) · εεε(w) dx = 0. (4.38)

Since ∂tεεε(v) and εεε(v) belong to L∞(Ω;Rd×d) for almost all t ∈ (0, T ), we can again use the weak∗

density argument as in the previous section to deduce that (4.38) holds with w := αv + β∂tv.
Consequently, since we have

αv + β∂tv = GGG(TTT1)−GGG(TTT2),

we can use the monotonicity of GGG and integration over (t0, t), with 0 < t0 < t < T , to deduce from
(4.38) that

0 ≥ 2

∫ t

t0

∫
Ω

∂ttv · (αv + β∂tv) dx dτ

= β

∫
Ω

|∂tv(t)|2 − |∂tv(t0)|2 + 2α∂tv(t) · v(t)− 2αv(t0) · v(t0) dx− 2α

∫ t

t0

∫
Ω

|∂tv|2 dx dτ.

We note that this procedure is rigorous for every such t0 > 0 thanks to the regularity of u1 and
u2 asserted in (1.15). Since v ∈ C1([0, T ];L2(Ω;Rd)) as a result of (1.15), we can use (1.21) and
let t0 → 0+ in the above inequality in order to deduce that

0 ≥ β
∫

Ω

|∂tv(t)|2 + 2α∂tv(t) · v(t) dx− 2α

∫ t

0

∫
Ω

|∂tv|2 dxdτ

= β

∫
Ω

|∂tv(t)|2 + 2α∂tv(t) ·
(∫ t

0

∂tv(τ) dτ

)
dx− 2α

∫ t

0

∫
Ω

|∂tv|2 dxdτ

≥ β

2

(
‖∂tv(t)‖22 − C(α, β, T )

∫ t

0

‖∂tv(τ)‖22 dτ

)
= e−tC(α,β,T ) d

dt

(
e−tC(α,β,T )

∫ t

0

‖∂tv(τ)‖22 dτ

)
.

Simple integration with respect to t then gives that ∂tv ≡ 0 almost everywhere in Q and conse-
quently u1 = u2. By strict monotonicity, we necessarily also have that TTT1 = TTT2 almost everywhere
in Q and, hence, uniqueness follows.
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