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The Adaptive Finite Element Method (AFEM) for approximating solutions of PDE bound-
ary value and eigenvalue problems is a numerical scheme that automatically and iteratively
adapts the finite element space until a sufficiently accurate approximate solution is found. The
adaptation process is based on a posteriori error estimators, and at each step of this process
an algebraic problem (linear or nonlinear algebraic system or eigenvalue problem) has to be
solved. In practical computations the solution of the algebraic problem cannot be obtained
exactly. As a consequence, the algebraic error should be incorporated in the context of the
AFEM and its a posteriori error estimators. The goal of this paper is to survey some exist-
ing approaches in the AFEM context that consider the interplay between the finite element
discretization and the algebraic computation. We believe that a better understanding of this
interplay is of great importance for the future development in the area of numerically solving
large-scale real-world motivated problems.
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1 Introduction

The finite element method (FEM) is widely used in order to discretize variational formulations
of partial differential equations representing boundary value or eigenvalue problems. In this
method an approximation to the exact PDE solution is found as a linear combination of basis
vectors (functions) from a finite dimensional function space, called the finite element space.
The coefficients in this linear combination are determined by solving a linear algebraic prob-
lem (linear algebraic system or algebraic eigenvalue problem). The construction of the finite
element space is based on a mesh that discretizes the domain on which the PDE is formulated.

∗ mario.arioli@stfc.ac.uk, Rutherford Appleton Laboratory, Chilton Didcot Oxfordshire, UK OX11 0QX
∗∗ liesen@math.tu-berlin.de, Institute of Mathematics, Technical University of Berlin, Straße des 17. Juni

136, 10623 Berlin, Germany
∗∗∗ miedlar@math.tu-berlin.de, Institute of Mathematics, Technical University of Berlin, Straße des 17. Juni

136, 10623 Berlin, Germany
† strakos@karlin.mff.cuni.cz, Faculty of Mathematics and Physics, Charles University in Prague, Sokolovská

83, 186 75 Praha 8, Czech Republic

Copyright line will be provided by the publisher
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The basis functions typically have a local support consisting of several mesh elements. Usu-
ally, a finer mesh leads to a better approximation. However, there is a trade-off: finer meshes
mean more finite element basis functions, hence larger algebraic problems, and consequently
a higher computational effort for determining the approximate solution.

To balance accuracy of numerical approximation and cost of computation one can use
the following idea: start with a coarse mesh, compute an approximate solution, refine the
mesh only in regions where this approximation is not good enough, and then compute a new
approximation using the refined mesh. What we have just described is one iteration of the
Adaptive Finite Element Method (AFEM), which starts with setting the mathematical model
and its initial approximation, and which can schematically be written as follows:

SOLVE //ESTIMATE //MARK //REFINE
rr

Here “SOLVE” means solving the linear algebraic problem (linear algebraic system or eigen-
value problem) and “ESTIMATE” means the local a posteriori estimation of the error between
the exact solution and its numerical approximation. The steps “MARK” and “REFINE” refer
to the actual refinement of the mesh; they are not in the focus of this paper. In short, the
AFEM can be described as a numerical scheme that automatically and iteratively adapts the
finite element space until a sufficiently accurate approximate solution is found.

The AFEM is no new development. This is documented, e.g., by a special issue of Com-
puting devoted to “adaptive techniques” published in 1995, where Hackbusch wrote in the
Editorial:

Adaptivity is a further development. Instead of solving problems with a discretiza-
tion of very high dimension, it is more reasonable to obtain the same solution qual-
ity by a lower dimensional but adapted discretization. Adaptivity has created a
new paradigm in mathematical computation. In traditional numerical mathemat-
ics, the fields “discretization” (e.g., FEM), its “numerical analysis” (e.g., error esti-
mates), and “solution algorithms” (e.g., solvers for linear systems) are well sep-
arated. Adaptive techniques, however, require a combination of all three. For
example, the error estimation has become a part of the algorithm. The concrete
discretization is now an outgrowth of the algorithm.

The special issue of Computing contains recommendable contributions, among them the pa-
per of Becker, Johnson and Rannacher [22], which affected further development related, in
particular, to multigrid finite element methods. In the Introduction, which can be considered
a rigorous formulation of the new research program, the authors write:

[F]or large size problems, in particular in three dimensions, direct methods are too
work-intensive and only iterative methods such as multigrid methods or precondi-
tioned conjugate gradient type methods may be used. ... Usually, ad hoc stopping
criteria are used, e.g. requiring an initial (algebraic) residual to be reduced by a
certain ad hoc factor, but these criteria have no clear connection to the actual error
in the corresponding approximate solution, which is the quantity of interest. This
leaves the user of iterative solutions methods in a serious dilemma: With no ob-
jective stopping criterion available, one has either to continue the iterations until
the discrete solution error is practically “zero”, which increases the computational
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cost with possibly no gain in the overall precision, or take the risk of stopping the
iterations prematurely. In the first case there would be a loss of efficiency and in
the second a loss of reliability. ... A solution to this problem can only be obtained
by combining aspects of the underlying partial differential equations and the corre-
sponding finite element discretization with aspects of the iterative discrete solution
algorithm. A “pure” numerical linear algebra point of view, for instance based on
the condition number of the stiffness matrix, does not appear to be able to lead to a
balance of discretization and solution errors.

It is remarkable that only a relatively small percentage of the research devoted to adaptive
finite element methods has adopted this point of view. In fact, in the vast majority of pub-
lications on the AFEM (and on the FEM in general) it is assumed that the step “SOLVE”
is performed exactly. Moreover, in almost all publications considering inexact solution of
the algebraic problem, the inexactness is identified with iterative methods and their prema-
ture stopping, while it is assumed that the algebraic computations are performed in exact
arithmetic. As a consequence, in the majority of publications on the AFEM it is assumed
that direct solvers are “exact” (irrespectively of the numerical properties of the problems to
be solved), and maximum attainable accuracy as well as delay of convergence of iterative
methods are excluded from consideration. These assumptions, however, cannot be satisfied
in practical computations; see, e.g. [123]. Their violation can lead to discrepancies between
proven statements for arbitrary error tolerance on the one hand, and computational results on
the other; see, e.g. Theorem 3.11 and experimental results presented in [97].

We believe that a better understanding of the interplay between discretization and algebraic
computation (including rounding errors) in the adaptive numerical solution of PDEs is of great
importance for the future development in the area of numerically solving large-scale real-
world problems. Our main intention in this paper is to survey some approaches that consider
this interplay. To illustrate the main results and algorithms we use the setting of standard
linear, elliptic and selfadjoint model problems. We state these problems in Section 2. In
Section 3 we recall adaptive discretization and a posteriori error analysis for both boundary
value and eigenvalue problems. Section 4 then discusses coupling of the discretization and
the linear algebraic computation in the AFEM context. Some concluding remarks are given
in Section 5.

Our presentation is addressed to nonspecialists, and therefore we keep technical details at
a minimum. Such details can be found in the references that are cited throughout the text.

2 Model problems, the FEM, and a priori analysis

In this section we introduce basic notation, standard model problems, and the general context
of the results stated in the following sections. Many readers are certainly familiar with the
presented concepts, but we believe it is useful to recall them here for completeness. As men-
tioned above, we restrict ourselves to linear, elliptic and selfadjoint model problems, and we
focus on the Galerkin-FEM rather than on more general (Petrov-Galerkin) methods. Extended
treatments of the FEM and its many variants can be found in numerous books devoted to this
method and its applications; see, e.g. [15, 35, 50, 51, 62, 70, 106, 121, 125].
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2.1 Boundary value model problem and the Galerkin method

We start with the standard variational formulation of a linear boundary value problem:

Find u ∈ V such that a(u, v) = ℓ(v) for all v ∈ V , (1)

where V is a real Hilbert space with scalar product (·, ·)V and the associated norm ∥ · ∥V ,
a : V ×V → R is a bilinear form, and ℓ : V → R is a bounded linear functional. Throughout
this paper we assume that a(·, ·) satisfies the following conditions:

1. a(·, ·) is symmetric: a(v, w) = a(w, v) for all v, w ∈ V .

2. a(·, ·) is continuous (or bounded):
There exists a real constant α > 0 such that a(w, v) ≤ α∥w∥V ∥v∥V for all w, v ∈ V .

3. a(·, ·) is coercive (or V-elliptic):
There exists a real constant β > 0 such that a(w,w) ≥ β∥w∥2V for all w ∈ V .

Because of conditions 2. and 3., the classical Lax-Milgram Lemma [86] (see, e.g. [62, The-
orem 2.12, p. 52], [70, Theorem 6.5.9, p. 140] or [106, Theorem 5.5.1, p. 133]), implies that
the variational problem (1) has a unique solution that depends continuously on the given data.
Since the bilinear form a(·, ·) is coercive and symmetric, it defines a scalar product on V . The
associated norm

|||v||| ≡ a(v, v)1/2

is called the energy norm on V .
A widely used example where all conditions on a(·, ·) are satisfied is the Poisson equation

−∆u = f in a polyhedral domain Ω ⊂ Rd (d = 1, 2, or 3) with a given function f ∈
L2(Ω) and with homogeneous Dirichlet boundary conditions, u = 0 on ∂Ω. The variational
formulation of this problem is of the form (1) with

V ≡ H1
0 (Ω) ≡ {v ∈ L2(Ω) |∇v ∈ [L2(Ω)]d, v = 0 on ∂Ω in the sense of traces},

a(w, v) ≡
∫
Ω

∇w · ∇v dΩ, (2)

ℓ(v) ≡
∫
Ω

f v dΩ.

Many results stated in this paper were (first) derived in the context of this model problem.
Note that continuous bilinear forms on V × V can be identified with continuous linear

mappings from V to its dual space V ′. Denoting by ⟨·, ·⟩ the V ′ × V duality pairing, this is
done by considering, for a fixed u, the linear mapping T from V to V ′ given by

⟨Tu, v⟩ = a(u, v) = ℓ(v) = ⟨f, v⟩. (3)

This mapping is coercive and continuous if the bilinear form a(·, ·) is. Given the mapping,
it can of course be used to define the bilinear forms. Summarizing, using T : V → V ′, the
variational formulation (1) can be written as an operator equation in the dual space V ′, i.e.

Tu = f, where f ∈ V ′; (4)
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for a concise description see [80, Section 2] and for details see, e.g. [35, Section 2.7], [36,
p. 81] or [59, Section 5.9.1 and Chapter 6]. The formulation (4) is conveniently used in
numerical analysis of PDE boundary value problems.

Using the inequalities of the Lax-Milgram Lemma one can show that the V -norm of the
discretization error is bounded as

∥u− uh∥V ≤ α

β
min
vh∈Vh

∥u− vh∥V . (5)

This result is known as Céa’s Lemma [47, Proposition 3.1]; see, e.g. [62, p. 61], [70, Theo-
rem 8.2.1, p. 168] or [106, Theorem 5.2.1, p. 137].

For V = H1(Ω) ≡ {v ∈ L2(Ω) | ∇v ∈ [L2(Ω)]d} and the corresponding norm,

∥w∥H1(Ω) ≡
(∫

Ω

(w2 +∇w · ∇w) dΩ

)1/2

for all w ∈ H1(Ω),

it can be shown that

|||w||| ≤ ∥w∥H1(Ω) ≤ c |||w||| for all w ∈ H1
0 (Ω), (6)

where the energy norms on the left and right correspond to the bilinear form a(·, ·) from the
Poisson model problem (2), and c > 0 is some generic constant1 that is independent of w.
In the context of the Poisson model problem the norm equivalence expressed in (6) allows to
derive error bounds with respect to the H1(Ω)-norm from those for the energy norm, and vice
versa.

Here it is important to point out some differences between analysis of PDEs and numerical
solution of PDEs. While in analysis the (topological) equivalence of norms represents a basic
tool, in computations one should always specify the possible size of any unspecified constant.
As an example, if we solve the discretized problem iteratively, it does make a difference in
which norm (or, more generally, in which way) we measure the distance of the computed
approximation to the true solution. The algebraic error should, as a rule, be measured in a
norm conforming to the underlying PDE or its variational formulation. Hence, in particular,
the algebraic residual norm should not be used for stopping the algebraic iterations unless
there is a well justified reason for doing so; for further comments on this issue see Section 4
below.

We will now consider the Galerkin method for finding an approximation to the solution of a
variational problem of the form (1). In this method one chooses a finite dimensional subspace
Vh ⊂ V and then solves the variational problem on Vh:

Find uh ∈ Vh such that a(uh, vh) = ℓ(vh) for all vh ∈ Vh. (7)

By the assumptions on a(·, ·) and ℓ(·), and since Vh is a subspace of V , the Lax-Milgram
Lemma implies that (7) has a uniquely determined solution uh. For any vh ∈ Vh we have the
Galerkin orthogonality property

a(u− uh, vh) = a(u, vh)− a(uh, vh) = ℓ(vh)− ℓ(vh) = 0, (8)

1 Throughout this paper we use, for ease of notation, the letter c to denote a constant independent of the solu-
tion u. The actual values of c will be different in different contexts.
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which means that the discretization error u − uh ∈ V is orthogonal to the subspace Vh with
respect to the scalar product a(·, ·) on V . This implies that the method is optimal with respect
to the energy norm, i.e. the discretization error satisfies

|||u− uh||| = min
vh∈Vh

|||u− vh|||. (9)

The bounds (5) and (9) are essential ingredients in the a priori error analysis of the FEM for
boundary value problems; see Section 2.3 below.

Let Vh be of dimension nh, and let ϕ1, ϕ2, . . . , ϕnh
be a basis of Vh. Then we can write

uh =

nh∑
j=1

µh,jϕj , (10)

where the coefficients in this linear combination are to be determined. This can be done by
rewriting the problem (7) in the form

Find µh,1, µh,2, . . . , µh,nh
∈ R such that∑nh

j=1 a(ϕj , ϕi)µh,j = ℓ(ϕi) for all i = 1, 2, . . . , nh,

which is equivalent to finding the solution uh = [µh,i] ∈ Rnh of the linear algebraic system

Auh = b, A = [aij ] = [a(ϕj , ϕi)] ∈ Rnh×nh , b = [bi] = [ℓ(ϕi)] ∈ Rnh . (11)

The matrix A, which by our assumptions on a(·, ·) is symmetric and positive definite, is often
called the stiffness matrix. This term goes back to early applications of the method in structural
mechanics.

Suppose that
u
(n)
h = [µ

(n)
h,i ] ∈ Rnh

is an approximation of the vector uh, with the corresponding approximation of the function
uh ∈ Vh given by

u
(n)
h ≡

nh∑
j=1

µ
(n)
h,jϕj ∈ Vh.

Then the algebraic error is

uh − u
(n)
h ∈ Rnh or uh − u

(n)
h ∈ Vh.

The total error is given by the the sum of the discretization error and the algebraic error, i.e.

u− u
(n)
h = (u− uh) + (uh − u

(n)
h ). (12)

Since uh − u
(n)
h ∈ Vh, the Galerkin orthogonality property (8) implies that

|||u− u
(n)
h |||2 = |||u− uh|||2 + |||uh − u

(n)
h |||2. (13)

This equality for the energy norms of the respective quantities indicates that in practical ap-
plications the discretization error and the algebraic error should be in a reasonable balance,
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so that neither one of them dominates the total error. This observation has important con-
sequences for coupling of the linear algebraic computations with the FEM discretization in
particular in the AFEM context. We will explore these consequences in Section 4 below.

It is worth to point out that in (13) the relation between the total error, the discretization
error and the algebraic error is described in terms of their global norms. In the context of
adaptive numerical solution of PDEs this is not sufficient. For an instructive discussion of this
point we refer to the book [15], where Babuška and Strouboulis state on p. 417:

In engineering practice it is not sufficient to estimate only the energy norm of the
error because a small value of the global energy norm of the error does not neces-
sarily imply that the error in the outputs of interest is also small (e.g. a 5% relative
error in the global energy norm does not imply 5% relative error in the maximum
stress in a region of interest). ... An essential requirement is that the quantity of in-
terest has to be well defined; for example, it is meaningless to ask for an estimate of
the maximum error in the derivative, flux, or stress for a problem set in a polygonal
non-convex domain, because the exact value does not exists (the derivative, flux, or
stress in the neighborhood of a corner point is usually unbounded).

Moreover, there is no guarantee that the spatial distributions of the (properly measured) dis-
cretization error and algebraic error are similar; see [87, Chapter 5] and [102] for illustrations
of this fact. When evaluating the local error indicators in practice one should therefore con-
sider local distributions of the appropriately measured individual errors u−u

(n)
h and uh−u

(n)
h .

2.2 Eigenvalue model problem and the Galerkin method

The standard variational formulation of a linear PDE eigenvalue (and eigenfunction) problem
considered in this paper can be written as follows:

Find u ∈ V \ {0} and λ ∈ R such that a(u, v) = λ (u, v)W for all v ∈ V . (14)

Here V,W are two real Hilbert spaces such that the embedding V ⊂ W is compact and V
is dense in W , (·, ·)W is the scalar product on W , and a : V × V → R is a (symmetric,
continuous and coercive) bilinear form.

A standard example is given by the Poisson eigenvalue (and eigenfunction) model problem
formulated in a polyhedral domain Ω ⊂ Rd (d = 1, 2, or 3) with homogeneous Dirichlet
boundary conditions. The task is to find a nonzero function u : Ω → R and a scalar λ ∈ R,
such that −∆u = λu in Ω, where u = 0 on ∂Ω. The variational formulation of this problem
is given by (14) with

V ≡ H1
0 (Ω) ⊂ W ≡ L2(Ω),

a(w, v) ≡
∫
Ω
∇w · ∇v dΩ,

(w, v)W ≡
∫
Ω
w v dΩ.

(15)

Consider, for any given f ∈ V , the following (variational) boundary value problem:

Find z ∈ V such that a(z, v) = (f, v)W for all v ∈ V .
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By our assumptions on a(·, ·) this problem has a unique solution z ∈ V . Hence we can
introduce the (linear and compact) solution operator S : V → V such that

a(Sf, v) = (f, v)W for all v ∈ V. (16)

Since a(·, ·) is symmetric and coercive, which holds in particular for a(·, ·) in (15), the operator
S has countably many eigenvalues that are real and positive. Their reciprocals, denoted by

0 < λ1 ≤ λ2 ≤ · · · ≤ λm ≤ · · · ,

give the eigenvalues of the problem (14); see, e.g. [13, p. 650], [59, p. 355] or [70, The-
orem 11.1.2, p. 253–254]. The corresponding (normalized) eigenfunctions uj form an or-
thonormal basis for the space W ; see, e.g. [59, p. 355]. Using the operator S with f = u and
(14) we get

a(Su, v) = (u, v)W =
1

λ
a(u, v) = a(

1

λ
u, v) for all v ∈ V.

Hence {λ, u} is a solution of the eigenvalue problem (14) if and only if { 1
λ , u} is an eigenpair

of the operator S. For further details see, e.g. [48, Chapter 4, pp. 203–204], [59, p. 355–356]
or [31, 82, 117].

Analogously to the Galerkin method for boundary value problems, the Galerkin method
for the eigenvalue problem (15)–(14) consists in solving the variational problem on a finite
dimensional subspace Vh ⊂ V :

Find uh ∈ Vh \ {0} and λh ∈ R such that
a(uh, vh) = λh (uh, vh)W for all vh ∈ Vh.

(17)

As in the previous section, let nh be the dimension of Vh, and let ϕ1, ϕ2, . . . , ϕnh
be a basis

of Vh. Writing the function uh as a linear combination of the basis functions (as in (10)), the
problem (17) can be transformed into the equivalent generalized algebraic eigenvalue problem

Auh = λhMuh, where

A = [aij ] = [a(ϕj , ϕi)] ∈ Rnh×nh , M = [mij ] = [(ϕj , ϕi)W ] ∈ Rnh×nh ,

for the eigenvalue λh ∈ R and a corresponding eigenvector uh ∈ Rnh . The matrix A is (as
above) called the stiffness matrix, and M is the mass matrix.

Both A and M are symmetric positive definite (since both a(·, ·) and (·, ·)W are scalar
products), and hence the problem (17) has a finite sequence of eigenvalues

0 < λh,1 ≤ λh,2 ≤ · · · ≤ λh,nh

with the corresponding eigenvectors uh,1,uh,2, . . . ,uh,nh
∈ Rnh that can be chosen M-

orthonormal, i.e. uT
h,iMuh,j = δij . They determine, analogously to (10), the respective

eigenfunction approximations uh,1, uh,2, . . . , uh,nh
∈ Vh. The eigenvalue λh,j and the cor-

responding function uh,j are called the Galerkin approximation of the j-th eigenvalue λj and
the corresponding eigenfunction uj of the problem (14). From the Courant-Fischer minimax
theorem it directly follows that

λj ≤ λh,j , j = 1, 2, . . . , nh;
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see, e.g. [13, equation (8.42), p. 699] or [125, equation (23), p. 223].
If we solve the generalized eigenvalue problem inexactly, and hence obtain an eigenvector

approximation u
(n)
h,j and a corresponding eigenvalue approximation λ

(n)
h,j , we get the algebraic

errors
uh,j − u

(n)
h,j ∈ Rnh or uh,j − u

(n)
h,j ∈ Vh, and λh,j − λ

(n)
h,j .

The total errors are then given by

uj − u
(n)
h,j = (uj − uh,j) + (uh,j − u

(n)
h,j ) and (18)

λj − λ
(n)
h,j = (λj − λh,j) + (λh,j − λ

(n)
h,j ). (19)

In both cases the total error is the sum of the discretization error and the algebraic error.
All this looks very similar to the formulations for the boundary value problems in the

previous section. However, results obtained for boundary value problems can typically not be
directly transferred because eigenvalue problems are by their nature nonlinear. In particular,
there exists no simple analogy to the Galerkin orthogonality property (8) for the boundary
value problems: When {λ, u} and {λh, uh} are eigenpairs of (14) and (17), respectively, we
get

a(u− uh, vh) = (λu− λhuh, vh)W . (20)

This is usually nonzero for any nonzero vh ∈ Vh.

2.3 The FEM and a priori error estimation

The FEM (more precisely, the Galerkin-FEM) generates the subspace Vh in order to obtain
a sparse matrix A, respectively sparse matrices A and M. The method is based on a de-
composition of Ω into a finite number of subdomains τj , called the elements. In case Ω is a
polyhedral domain one typically considers simplicial elements. Popular choices are triangles
when Ω ⊂ R2, and tetrahedra when Ω ⊂ R3. We denote by Th the set of all the elements in
the decomposition Ω = ∪j τj . This decomposition is called the mesh, with the mesh size h
given by the maximal diameter of any element. A standard assumption is that each intersec-
tion of two distinct elements is either empty, or a common vertex, or a common edge in R2 (a
common face or a common edge in R3) of the two elements.

In the standard FEM, the finite element basis functions ϕ1, ϕ2, . . . , ϕnh
are globally (i.e.

throughout Ω) continuous functions that are piecewise (i.e. on individual elements) polyno-
mials, and that are nonzero only on a few of the elements. Considering higher-degree polyno-
mials but preserving the geometry of the mesh is called a p-refinement. Below we will mostly
consider h-refinements, also called mesh refinements, where the decomposition of Ω is refined
by subdividing elements.

When the supports of ϕi and ϕj do not overlap, the corresponding entries aij = a(ϕj , ϕi)
of A and mij = (ϕj , ϕi)W of M will be zero. Hence the local nature of the FEM basis func-
tions guarantees sparsity of the stiffness and mass matrices. At the same time it means that the
solutions uh of the variational problem (7) or uh,j of the problem (17) are linear combinations
of functions with significantly local supports. The global approximation properties of uh or
uh,j have to be obtained by solving the linear algebraic system or the algebraic eigenvalue
problem.
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10 M. Arioli, J. Liesen, A. Międlar, and Z. Strakoš: Discretization and algebraic computation in AFEM

Standard a priori convergence theory for the FEM is concerned with bounding the dis-
cretization error of the boundary value or the eigenvalue problem globally in some norm. We
point out that the choice of the polynomial degree used for the basis of the FEM approxi-
mation is linked with the regularity of the solution of the boundary value problem or of the
eigenfunctions we want to approximate; see, e.g. [69] for an extensive analysis of the regu-
larity of the solutions when Ω is not convex, and [11, 125] for the convergence analysis for
Sobolev spaces Hs(Ω) for real s (so-called fractional order Sobolev spaces [1]). Under some
regularity assumptions on the mesh, the usual goal of an a priori analysis is to find bounds on
the discretization error that depend on the mesh size h. For example, a standard regularity as-
sumption used in the context of triangular meshes is a minimum angle condition to guarantee
that the interior angles of the elements do not become too acute; see, e.g. [56, Definition 1.15,
p. 44] or [125, Chapter 3, Section 3.1 and 3.2].

A classical result for boundary value problems of the form (1) on a polygonal domain
Ω ⊂ R2 can be formulated as follows: If a(·, ·) and ℓ(·) satisfy the Lax-Milgram conditions,
the solution satisfies u ∈ Hs(Ω) for some integer s > 1, the FEM basis functions are (locally)
polynomials of degree k, where 1 ≤ k < s, and the triangular mesh is regular, then

∥u− uh∥H1(Ω) ≤ c ∥u∥Hr+1(Ω) h
r, where r ≡ min(k, s− 1). (21)

Here c > 0 is a constant depending on the ratio α/β (from the Lax-Milgram conditions)
and on the minimum angle in the mesh, but c does not depend on the mesh size h and the
solution u. This result can be generalized to real values of s [11]; see also [70, Theorem 8.4.8,
p. 189] for the case 1 < s ≤ 2, [106, Theorem 6.2.1, p. 171] for the case s ≥ 2, and the
classical book [51] for a general treatment. A less technical presentation valid for integer
s > 1 is given in [62, Section 5.3]. The exponent r on the right hand side of (21) is called the
method’s rate of convergence. The inequality indicates that when the solution is sufficently
smooth, higher degree finite elements (i.e. p-refinement) yield a larger rate of convergence.
Results of the form (21) are derived by bounding the minimization problem on right hand side
of (5) or (9).

In eigenvalue problems the analysis is complicated due to the lack of a Galerkin-type or-
thogonality property; see Section 2.2 above. Nevertheless, one can derive a priori bounds on
the discretization error that depend on the regularity of the eigenfunction and hence, in par-
ticular, on the geometry of the domain Ω; see, e.g. [125, Chapter 8] or [69] for details on the
regularity of eigenfunctions.

One of the first a priori error results for eigenvalues and eigenfunctions of elliptic oper-
ators was obtained by Strang and Fix in [125, Chapter 6], where the eigenfunction approx-
imations are determined by the Rayleigh-Ritz method, i.e. as the stationary (fixed) points
of the Rayleigh-quotient a(·, ·)/(·, ·)W . Improvements for selfadjoint operators were made
in [48, 81, 112], and for compact operators in [12, 13].

To state a well known a priori error bound for the problem (14) with a(·, ·) symmetric
and satisfying the Lax-Milgram conditions, suppose that {λ, u} is an eigenpair, where λ is a
simple eigenvalue and the eigenfunction satisfies u ∈ Hs(Ω) for some (real) s ∈ (1, 2]. When
the triangular mesh is regular and linear finite elements are used, there exists an eigenpair
{λh, uh} of the discretized problem (17) such that

∥u− uh∥H1(Ω) ≤ c hs−1 and |λ− λh| ≤ c h2(s−1), (22)
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where the constant c > 0 depends on the eigenvalue λ, the eigenfunction u, and on the mesh;
see, e.g. [70, Corollary 11.2.21, p. 264]. A key observation to be made in (22), which is
also made in the standard matrix perturbation theory, is that the eigenvalue approximation is
usually much more accurate than the corresponding eigenfunction approximation. A gener-
alization of this result to the case of multiple eigenvalues is given by Babuška and Osborn
in [13]; see also the recent survey paper [31].

3 Adaptivity and a posteriori estimators

A priori bounds of the form (21) or (22) indicate that the discretization error decreases (at
least asymptotically) with a decreasing mesh size h. Since h is the maximum diameter of any
element, we get h → 0 only if the mesh is refined everywhere. Such refinement, however,
is costly and it is usually prohibitive in challenging practical applications. The key idea of
adaptive mesh refinement is to refine the mesh only where it is necessary. This requires
information on the local distribution of the error within the domain, which is provided by
a locally efficient and computable a posteriori error estimator. In the following we will
summarize main ideas of a posteriori error estimation in the FEM context. For further details
we refer in particular to the books [3, 15, 17, 129], or the surveys given in [57, 67, 97, 100,
118].

Using an appropriate norm induced by a scalar product on L2(Ω) or H1(Ω), an a posteriori
error estimator for a stationary boundary value problem like (1)–(3) is typically written as

∥u− uh∥ ≈ η, η ≡

(∑
τ∈Th

η2τ

)1/2

(23)

(similarly for the eigenvalue problem), where ητ is an indicator for the local error on the
element τ . This indicator depends on uh and some known information about the problem, for
example the domain Ω and its boundary. Other forms of a posteriori error estimators can be
found, e.g., in [3, Section 2.5].

A posteriori error estimators should be computable from uh at a low cost, and they should
ideally satisfy the following additional properties:

1. Reliability (guaranteed upper bound): The right hand side in the approximation (23)
represents an upper bound on the left hand side,

∥u− uh∥ ≤

(∑
τ∈Th

η2τ

)1/2

.

This definition of reliability corresponds to the ideal situation where the estimator on the
right hand side is not multiplied by a constant c > 0. Some important estimators satisfy
a weaker form of reliability, where a constant c is present; see, e.g. (25)–(26) below.

2. Local efficiency: For each element τ ∈ Th the corresponding ητ represents a lower bound
on the error in the vicinity τ̂ of τ (typically τ̂ is the union of τ and its neighbors) up to a
mesh size independent constant c > 0,

ητ ≤ c∥u− uh∥τ̂ +h.o.t. for all τ ∈ Th.
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The constant c should not be close to zero and it should not be substantially (orders of
magnitude) larger than one; h.o.t. represents a higher order term related to data oscilla-
tions.

3. Asymptotic exactness: The ratio of the error and its estimator in (23) approaches one
when the estimators are used to locally refine the mesh within the AFEM loop (cf. the
Introduction).

It is highly desirable that the a posteriori estimators are also robust, i.e. the above men-
tioned properties should hold for a wide range of parameters defining the practical problems.
Not every existing a posteriori estimator satisfies all these desirable properties. In the follow-
ing we will give examples of some techniques and mention which properties have been shown
for them.

For a typical example we consider the variational boundary value model problem (1)–(2)
in a bounded polygonal domain Ω ⊂ R2 and its Galerkin discretization as in (7). Let Th be a
regular triangulation of Ω. Considering the discretization error u − uh and any given v ∈ V
we can write

a(u− uh, v) = ℓ(v)− a(uh, v) =
∑
τ∈Th

(∫
τ

f vdτ −
∫
τ

∇v · ∇uh

)
. (24)

Let Eh be the set of edges in the triangulation Th excluding the boundary of Ω. For a scalar
function w that is defined in an open neighborhood of ε ∈ Eh one defines the jump across ε
by

[w](x) ≡ lim
t→0

(w(x− tnε)− w(x+ tnε)) , x ∈ ε,

where nε denotes the outward normal of ε (this is defined analogously in R3 for element
faces). Let hτ and hε denote the mesh sizes of the element τ and the edge ε, respectively.
Substituting v = u− uh ∈ V in (24), and using the Galerkin orthogonality property, integra-
tion by parts and some subtle technical ingredients, one obtains the a posteriori bound

|||u− uh|||2 ≤ c η2res,Th
, where (25)

ηres,Th
≡

(∑
τ∈Th

h2
τ∥∆uh + f∥2L2(τ) +

∑
ε∈Eh

hε∥ [∇uh · nε] ∥2L2(ε)

)1/2

; (26)

see the original work of Babuška and Rheinboldt in [14] or, e.g. the books [35, Section 9.2],
[62, Section 15.2], or [129, Section 1.2].

In (25)–(26) the energy norm of the discretization error is bounded by the sums of local
contributions of the residual ∆uh + f on the individual elements and of the jumps of the
gradient of uh at the element edges. The expression (26) is called residual a posteriori error
estimator. The value of the constant c is in principle computable (even if quite costly). It
depends on the minimal angle allowed in the mesh elements, on the Poincaré-Friedrichs in-
equality constant (which is a function of the volume of Ω and the area of the portion of ∂Ω
where the Dirichlet condition are imposed; see [129, p. 11]), and, in an analogous estimator
for a more general a(·, ·), on the constants α and β from the Lax-Milgram conditions. How-
ever, the possibly large value of c can produce a significant overestimate of the error; see,
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e.g. [40, 49]. The residual a posteriori error estimator satisfies the property 1. (reliability) in a
weaker form, namely with the estimator multiplied by a suitable constant c > 0 (see (25)–(26)
and the evaluation of c in, e.g. [40, 41, 127]), and it satisfies the property 2. (local efficiency);
for the proofs see, e.g. [3, 129]. The third property (asymptotic exactness) usually does not
hold in practical computations.

Analogous residual estimators can be derived for the variational eigenvalue model problem
(14)–(15) and its Galerkin discretization (17). Here the interior element residual is given by
the function ∆uh + λhuh, and one obtains the bound

|||u− uh|||2 ≤ c ηres,Th
|||u− uh|||+

λ+ λh

2
∥u− uh∥2L2(Ω) , (27)

ηres,Th
≡

(∑
τ∈Th

h2
τ∥∆uh + λhuh∥2L2(τ) +

∑
ε∈Eh

hε∥ [∇uh · nε] ∥2L2(ε)

)1/2

,

(28)

where for c the above considerations are valid; see [32, Section 6.3], [55, Theorem 3.1], [133,
Section 4], or the earlier work of Larson [85]. It was shown that the L2-norm of the error is of
higher order than the energy norm of the error (see [55]), so that (27)–(28) indeed represents
an a posteriori estimate for the energy norm of the error. As for the properties 1.–3., the
situation is analogous to (25)–(26) for the boundary value problem; for a proof see, e.g. [55].

The residual a posteriori estimators, though well-understood and well-established in prac-
tice, may significantly overestimate the actual error. The reason is that the constant c present
in the bounds may be very large. Therefore, several other techniques were introduced over the
last years, and they can be classified as follows (see, e.g. [3, 50, 129]):

Local problem-based estimators (implicit estimators): Instead of considering the original
discrete problem, local analogues of the residual equations are solved and suitable norms of
the local solutions are used for the error estimation. The local problems usually involve only
small subdomains of Ω and more accurate finite element approximations. In terms of cost, the
solution of all local problems should be much less demanding than assembling the stiffness
matrix of the original discrete problem. More details for boundary value problems are given
in [3, Chapter 3], [50, Section 6.3.2], [62, Section 15.3], [129, Section 1.3] and [2, 34, 45]. A
proof of the property 2. for this type of estimator can be found, e.g., in [3]. The properties 1.
and 3. are, in general, not formally proved, but they are often satisfied, in a bit relaxed form,
in practical computations. We are not aware of any local problem-based error estimators
designed specifically for eigenvalue problems.

Averaging estimators (recovery-based estimators): These error estimators use a local ex-
trapolation or averaging technique. The error of the approximation can be controlled by a
difference of a low-order approximation (e.g., a piecewise constant function) and a finite
element solution obtained in the space of higher-order elements (e.g., globally continuous
piecewise linear functions), which additionally satisfy more restrictive continuity conditions
than the approximation itself; see, e.g. [3, Chapter 4], [50, Section 6.3.3] or [129, Section
1.5]. Carstensen gives in [39] a nice overview of averaging techniques in a posteriori finite
element error analysis in general. Particular error estimators are discussed in [42, 90, 139].
The property 1. can, in general, not be proved for averaging estimators. The proof of property
3. can be found, e.g., in [3, 129], and the property 2. is often satisfied in practice.
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Hierarchical estimators (multilevel estimators): The main idea of a hierarchical error es-
timator is to evaluate the residual for the finite element solution uH ∈ VH with respect to
another finite element space Vh that satisfies VH ⊂ Vh ⊂ V . Then the error |||u − uH ||| can
be bounded by η ≡ |||uh − uH |||, where uh ∈ Vh; see [19, 53, 60], [50, Chapter 6], or [129,
Section 1.4] for details. Usually Vh corresponds to a refinement Th of TH or consists of
higher-order finite elements. This approach takes advantage of the so-called saturation as-
sumption; see, e.g. [20]. The error of a fine discrete solution uh is supposed to be smaller than
the error of the coarse solution uH in the sense of an error reduction property, i.e.

|||uh − u||| ≤ γ |||uH − u|||, where γ ∈ (0, 1).

Hierarchical error estimators for eigenvalue problems are discussed in [91, 99].
Estimators based on equilibrated flux reconstruction: A recent general framework for a

posteriori error estimators founded on potential and equilibrated flux reconstruction, which
can be traced back to the ideas of Prager and Synge [105] and to the hypercircle method [126],
is described in [77, 130, 131]. As recalled in [71], the flux reconstruction idea has been used
for construction of a posteriori error estimators by many authors, possibly starting with [84].
The resulting estimators consist of the residual part, the flux part and the so-called nonconfor-
mity part, and they can be applied to various discretization methods and inexact computations;
see [71, 132]. The following section will present more details. The estimators are proved to
satisfy properties 1. and 2., while property 3. typically holds, in a bit relaxed form, in practice.

As an example from the classical approaches based on the flux reconstruction we point out
the equilibrated residual method, which is comprehensively described (with many references
to the original papers) in [3, Chapter 6]. Here the fluxes are reconstructed using the discretized
solution uh, i.e. it is assumed that the algebraic problems are solved exactly.

Finally, we wish to mention goal-oriented estimators, which are more general than the
previous approches estimating (23). The objective in goal-oriented error estimation is to de-
termine the accuracy of the finite element solution uh with respect to some physically relevant
scalar quantity of the solution u, the so-called “quantity of interest” J(·), e.g., velocity or flow
rates. The error in the quantity of interest is then related to the residual, i.e.

|J(u)− J(uh)| ≈
∑
τ∈Th

ρτ (uh)ωτ ,

where ρτ (uh) denotes the so-called “cell residuals” of the approximate solution, and ωτ a
corresponding “cell weights”. The latter are obtained from the solution of the so-called dual
problem. The solution of this problem is typically not available, and in practice it is replaced
by some local postprocessing of the computed discrete approximation. One of the well-known
techniques of goal-oriented error estimation is the Dual Weighted Residual (DWR) method
introduced by Rannacher in [107]. More details on this method and many further references
are given in the following section. Approaches based on goal oriented estimators such as
DWR do not typically aim at proving the properties 1.–3. from above. They, however, target a
much more difficult result and allow complicated settings without strong assumptions on the
problem to be solved, and they are very sucessful in most of their practical applications.
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4 Coupling discretization with algebraic computation

As described in the Introduction, the AFEM is an iterative procedure consisting of the four
steps SOLVE, ESTIMATE, MARK, and REFINE. It starts with an initial (usually coarse)
mesh Th0 and a corresponding finite element space Vh0 . The finite element approximation of
the continuous solution obtained in the first SOLVE step is used in the following ESTIMATE
step for the local a posteriori estimation of the error. This estimation yields a set of elements
on which the local error is indicated too large, so that a refinement is necessary. The actual
refinement procedure happens in the steps MARK and REFINE (see [17, 34, 54] for details),
and it leads to a mesh Th1 and a corresponding finite element space Vh1 . The AFEM loop
is continued in this way until the a posteriori estimator indicates that no further refinement is
necessary. It should also be pointed out that although the last step is called REFINE, it can
also include a possible coarsening of the mesh in the areas where the error appears to be small.

This description, the bounds in the previous section, and the majority of the AFEM pub-
lications are based on exact solutions of the linear algebraic problems. This is an acceptable
assumption when the cost for solving these problems is small and the problems are well con-
ditioned independently of the mesh refinement (results in this direction can be found, e.g.,
in [18] and [35, Section 9.5]). In real-world applications, however, adaptive finite element
methods can lead to very large and possibly ill-conditioned linear algebraic problems. Conse-
quently, in practical applications an exact (i.e. to machine precision) solve of the related linear
algebraic problems is not possible. Here it is important to point out that the accuracy can not
be measured by the algebraic residual; cf. the quote from the paper by Becker, Johnson and
Rannacher [22] in the Introduction. Some works suggest the algebraic residual as a measure of
convergence in the numerical PDE context even for the Conjugate Gradient (CG) method [73];
see, e.g. [104]. It should be understood that unless the problem is easily preconditioned, this
approach hardly can work in practice. The arguments can be found already in [73]; for a
recent discussion we refer to, e.g., [5, Section 4]. For numerically challenging problems even
residuals proportional to machine precision (such as those obtained by direct solvers) do not
necessarily guarantee any reasonably accuracy of the computed approximate solution. More-
over, solving the linear algebraic problems to a (much) higher accuracy than the order of the
discretization error usually does not improve the overall computed approximate solution and
it just inadequately increases the computational cost; see the quote from [22] or [62, Section
13.4.1]. We have also mentioned this fact in our discussion of equations (12)–(13) above.

In practical applications of the AFEM the algebraic error should be considered a part of the
estimation of the total error, i.e. one should use some appropriate norm and aim at estimates
of the form

∥u− u
(n)
h ∥ ≈ ηn, (29)

where ηn is a function of the approximate solution u
(n)
h (or λ(n)

h and u
(n)
h ) of the linear alge-

braic problem. Moreover, the fact that the algebraic problems are not solved exactly (and the
Galerkin orthogonality does not hold when uh is replaced by u

(n)
h ) should be in an adequate

way taken into account in the derivation of (29). The last point is of principal importance.
Formulas derived under restrictive assumptions should, in general, only be used when the
assumptions are satisfied. Here the situation is somewhat analogous to the algebraic error es-
timation in the CG method [73], where for a long time formulas were practically used without
being justified by a proper rounding error analysis.
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An instructive work on adaptive error control in the FEM combined with the multigrid
method for solving the discretized problems was published in 1995 by Becker, Johnson, and
Rannacher [22], which we already quoted several times above. The authors consider the Pois-
son problem on a polygonal domain Ω and prove a posteriori error estimates in the H1(Ω)-
and L2(Ω)-norms that incorporate algebraic errors and design of the adaptive algorithm, and
they suggest stopping criteria for the multigrid computations. Although the paper does not
explicitly consider quadrature and rounding errors, its approach can be generalized to cover
those as well. The only assumption, standard in multigrid computations, which might require
further substantial analysis in extension to difficult problems, is that the algebraic problem on
the coarsest grid is solved exactly. The authors also point out that the adaptive error control
for the multigrid computations is different from the one for CG computations. An extension
of the approach from [22] to the Stokes problem was given by Becker in [21]; see also [27].

An interesting framework for construction of a posteriori error estimates of the total error
which allows for local estimates and adaptive refinement follows from the first-order system
least-squares formulation (FOSLS); see, e.g. [29]. This methodology is now applied for solv-
ing a large variety of problems.

Guaranteed upper bounds for the total error based on the so-called Repin majorant and not
assuming Galerkin orthogonality are thoroughly described by Repin in [113]; see also the nice
survey [128]. This approach naturally includes all sources of error (including the discretiza-
tion and the algebraic error); for another example with this property (though somewhat hidden
in the text) we refer to the recent work of Ainsworth and Vejchodský [4]. On the other hand,
the general character of the results not taking into account the specifics of the error origin
does not allow to distinguish, analyze, and compare parts of the error corresponding to differ-
ent sources. In particular, these approaches do not consider constructing stopping criteria for
algebraic iterative solvers. Results considering balancing the discretization and the algebraic
error will be recalled below.

4.1 Results for boundary value problems

For a general variational boundary value problem of the form (1) based on a symmetric and
coercive bilinear form a(·, ·), the squared energy norm of the total error is the sum of the
squared energy norm of the discretization error and the squared energy norm of the algebraic
error; see (13). The second term in (13) is equal to the squared A-norm of the error of the
linear algebraic system (11), i.e.

|||uh − u
(n)
h |||2 = ∥uh − u

(n)
h ∥2A ≡ (uh − u

(n)
h )TA(uh − u

(n)
h ). (30)

It is well known that A-norm of the error is minimized over a Krylov subspace when the CG
method is applied to (11); see [73]. This fact makes CG a natural choice for solving (symmet-
ric positive definite) linear algebraic systems in the finite element context; see [56, Chapters 1
and 2] and [87, Chapter 5]. However, due to the presence of the exact Galerkin solution uh

in the first term on the right hand side of (13), this splitting can not be directly used for prac-
tical error evaluation. It also does not allow a local comparison of the different parts of the
total error (that would require a knowledge of the spatial distribution of the discretization and
algebraic parts of the error). This goal can be achieved, to a certain extent, by the following
approaches.
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The DWR method for boundary value problems: This approach, developed by Rannacher,
Becker and their collaborators, does not require the bilinear form a(·, ·) being symmetric
and coercive, and it has been successfully applied to many problems. Based on theoretically
supported heuristics, it allows to compare the estimators for the discretization error and the
algebraic error, and to construct adequate stopping criteria for algebraic iterative solvers. In
order to outline the main ideas we consider the variational boundary value problem (1). Let
the error be controlled by some linear (goal) functional J(·) defined on V representing the
quantity of interest. The DWR method considers the associated dual problem:

Find z ∈ V such that a(v, z) = J(v) for all v ∈ V.

Since J(·) is linear,

J(u− u
(n)
h ) = J(u− uh) + J(uh − u

(n)
h ). (31)

For any vh ∈ Vh ⊂ V we can write, using the Galerkin orthogonality property,

J(u− uh) = a(u− uh, z) = a(u− uh, z − vh) = ℓ(z − vh)− a(uh, z − vh)

≡ ρ(uh)(z − vh). (32)

The function
ρ(uh)(·) ≡ ℓ(·)− a(uh, ·)

is called the residual functional corresponding to the problem (1). Similarly,

J(u− u
(n)
h ) = a(u− u

(n)
h , z) = a(u− u

(n)
h , z − vh) + a(u− u

(n)
h , vh)

= ℓ(z − vh)− a(u
(n)
h , z − vh) + ℓ(vh)− a(u

(n)
h , vh)

≡ ρ(u
(n)
h )(z − vh) + ρ(u

(n)
h )(vh) . (33)

Here the first term is analogous to (32) with replacing the Galerkin solution uh by the com-
puted approximation u

(n)
h , and the second term can be considered as accounting for the devi-

ation from the Galerkin orthogonality. Taking for vh the computed approximation to the dual
solution, i.e. vh = z

(n)
h , and replacing the unknown exact dual solution z by its approximation

obtained using the higher-order interpolation I
(2)
2h applied to z

(n)
h , i.e.

z − z
(n)
h ≈ I

(2)
2h z

(n)
h − z

(n)
h , (34)

we get

J(u− u
(n)
h ) ≈ ρ(u

(n)
h )(I

(2)
2h z

(n)
h − z

(n)
h ) + ρ(u

(n)
h )(z

(n)
h ). (35)

The two terms on the right hand side account for the discretization and the algebraic error,
respectively. The criterion balancing the discretization and the algebraic part of the error
is then based on the requirement that the second term is significantly smaller than the first
one. The practical implementations depend on the particular applications and the numerical
methods used for discretization and algebraic computation; see [107], the later works [17, 28,
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75, 76, 92, 101, 108, 109], and the recent instructive exposition in [110]. The DWR method
should be given credit not only for its pioneering coupling of the discretization error and the
algebraic error estimators, but also for its practical applications to solving linear as well as
nonlinear problems, and for opening doors for further developments.

Stopping criteria for Krylov subspace methods inspired by estimating the H−1(Ω) norm
of the residual: Krylov subspace methods, in combination with their acceleration techniques
(commonly, but inaccurately, called preconditioning), belong to the very efficient tools for
solving large-scale linear algebraic problems arising from the discretization of PDEs. As
mentioned above, in case of a(·, ·) symmetric and coercive and thus A symmetric positive
definite, the CG method minimizes the A-norm of the algebraic error over the Krylov sub-
spaces generated by the powers of A with respect to the initial residual.

Up to now, the majority of stopping criteria used in practical CG computations are based on
the (relative) Euclidean norm of the algebraic residual r(n) = b−Au

(n)
h (here u

(n)
h denotes

the approximation of uh computed at the nth CG iteration). Even without the mathematical
modeling and numerical PDE context, this situation is most alarming. Already Hestenes and
Stiefel warned in [73] against using the Euclidean residual norm as a base for CG stopping
criteria, and they gave a hint on how the estimator for the energy norm of the error, i.e.

∥uh − u
(n)
h ∥A = ∥r(n)∥A−1 ,

can be constructed using the computed quantities. Their recommendation was, however, over-
looked for almost five decades.

A revived interest in estimating the (energy) norm of the error in CG and other iterative
methods is due to Golub and his collaborators. Golub suggested (independently of [73])
to use for that purpose the family of (appropriately modified) Gauss-Christoffel quadrature
approximations of the related quadratic formulas; see, e.g. [63, 64]. In [66] it was argued that
since CG is based on short recurrences, any such estimate must take into account effects of
rounding errors in CG computations. A few years later the story turned back to the original
work of Hestenes and Stiefel [73]. The paper [124] highlighted the overlooked formulas
presented by Hestenes and Stiefel and derived the estimator for ∥r(n)∥A−1 using only the
local orthogonality among the successive CG residuals and direction vectors. Since this local
orthogonality is close to machine precision, the resulting estimate is numerically stable; for
the proof see [124]. It should be pointed out, however, that while this holds for the lower
bound on ∥r(n)∥A−1 , which can be evaluated at almost no additional cost, a reliable upper
bound can not be obtained without substantial a priori assumptions and/or an additional cost
which may be significant. Details can be found in the survey paper [94], in the books [65,
Chapter 12], [87, Chapter 5, in particular Sections 5.6 and 5.9], and in the original references
presented there.

The energy norm of the Galerkin FEM discretization error in solving elliptic selfadjoint
PDEs was coupled with the energy norm of the error in the corresponding algebraic compu-
tations in the so-called cascadic CG method by Deuflhard [52] published in 1994; see also,
e.g. [119]. The algorithmic realisations of the cascadic CG do not take into account rounding
errors and they could not use the results of estimating the algebraic energy norm of the error
in CG published later. Therefore the idea is worth revisiting and further investigation.

A fundamental step in incorporating the state-of-the-art techniques of algebraic error es-
timation in CG (as well as other Krylov subspace methods) into the numerical PDE context
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is due to Arioli and his coworkers. They emphasized in [9] that the algebraic residual r(n)

should be considered as the discrete counterpart of the functional residual which belongs to
the dual of the space containing the solution; see (3) and the related discussion above. There-
fore the algebraic stopping criteria should be based on the analogy of the dual norm of the
functional residual. For the Poisson model problem (1)–(2) this reduces to the algebraic en-
ergy norm of the error discussed above. The stopping criterion suggested in [5] then combines
some a priori knowledge about the problem with the a posteriori error estimates; see also [65,
Sections 12.3 and 12.7]. This approach has been extended to non-selfadjoint problems [7, 8]
and it has motivated further ongoing investigations.

BPX preconditioning and the residual a posteriori estimator without Galerkin orthogonal-
ity: Harbrecht and Schneider [72] combined the idea of the standard residual a posteriori error
estimator (see (25)–(26) above) with the multilevel Bramble, Pasciak and Xu preconditioning
scheme (BPX) [33]. The infinite BPX scheme provides a frame for bounding the residual
norm in the dual space H−1(Ω). In practice the BPX scheme is truncated at a certain level.
Neglecting the data oscillations, the resulting hierarchical estimator is composed of the dis-
crete part BPX(r(n))2, which can be evaluated using the BPX hierarchical scheme, and the
standard residual a posteriori error estimator, giving

ηn ≡

(
BPX(r(n))2+

∑
τ∈Th

h2
τ∥∆u

(n)
h + f∥2L2(τ) +

∑
ε∈Eh

hε∥ [∇u
(n)
h · nε] ∥2L2(ε)

)1/2

.

(36)

The recent paper [72] recalls the earlier literature on the subject and investigates a rigorous
background for this estimator.

Estimators based on the equilibrated flux reconstruction: Using a locally conservative cell-
centered finite volume discretization, the a posteriori estimators of Vohralík mentioned above
(cf. the end of Section 3) were in [77] extended in order to take into account the algebraic
error. The resulting a posteriori error estimator is given as a sum of three quantities,

ηn ≡ ηNC + ηO + ηAE . (37)

Here ηNC , ηO and ηAE are called nonconformity estimator, oscillation estimator and al-
gebraic error estimator, respectively; see [77, Theorem 5.2]. The nonconformity estimator
indicates the departure of the approximate solution from the space H1(Ω); it depends on the
approximation u

(n)
h of the solution uh (and not only on the discretization error). The algebraic

error estimator accounts for the error arising from the inexact solution of the algebraic system
(11); its value is determined using the algebraic residual vector r(n). Finally, the oscillation
estimator measures the interpolation error in the right-hand side of the PDE (this value is sig-
nificant only on coarse grids and for PDEs with highly varying coefficients). It is also shown
in [77, Theorems 6.2 and 6.3] that the estimator (37) is locally and globally efficient (see
Section 3) and therefore it is suitable for adaptive mesh refinement which takes into account
the inaccurate algebraic computations. The results were successfully used for construction
of stopping criteria in CG computations. Further work of Vohralík and his collaborators is
outlined in [131]; the paper [58] extends the results from [77] to more general settings.
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Global convergence: The standard a priori convergence theory for the FEM requires that
h → 0, i.e. that the mesh is refined everywhere, so that for each value of h the approximation
error is of the required order of accuracy. This obviously does not hold in the context of the
AFEM, where the main point is to avoid refining the mesh everywhere. Here the goal is to
show that the method is a contraction (for some appropriate norm of the error and/or error
estimator) between two consecutive loops . Under the assumption of the exact solution of
the algebraic finite dimensional problem, such a proof is given, e.g., in the paper of Morin,
Nochetto, and Siebert [97]; see also the earlier work of Babuška and Vogelius [16] and of
Dörfler [54]. In [97, p. 631] the authors conclude that “[a]ny prescribed error tolerance is
thus achieved in a finite number of steps”, which is certainly true under the assumptions
in their Theorems 3.1 and 3.11, and, in particular, under the assumption of exact algebraic
computations; see also [26, 46, 83, 93, 98].

The fact that in practice we cannot compute the exact algebraic solution is addressed by
Binev, Dahmen, and DeVore in [30]. They modify the method of [97] and prove that for
the Poisson problem in two dimensions with piecewise linear finite elements their adaptive
method has an optimal convergence rate with respect to the energy norm (and hence also
the H1-norm). One of the building blocks of their method is the application of precondi-
tioned CG to the discretized problem. Their convergence proof of the AFEM requires that the
(BPX-preconditioned) CG method gives an algebraic error norm below a given tolerance that
depends on several parameters; see [30, Sections 3 and 8] for details.

Whether such tolerance can be met in practice depends, in general, on the maximal attain-
able accuracy of the iterative solver; see, e.g. [87, Section 5.9.3] and the references given
there. This accuracy, in turn, depends on the properties of the problem, and also on the nu-
merical stability of the solver itself. As an example we refer, e.g., to Example 6 in the book
on iterative methods by Axelsson [10, Appendix A, pp. 608–609] and to the numerical ex-
periments in [97]. This issue requires a complete rounding error analysis of the adaptive
algorithms, a work that is still to be done. The existing approaches consider an inexact so-
lution of algebraic problems in the sense of prematurely stopping the iterative computation
(using an appropriate stopping criterion). Whether a maximal attainable accuracy has been
reached is not considered an issue that affects the adaptive computations.

A highly recommendable paper by Stevenson [122] considers the Poisson model problem
in two dimensions with piecewise linear finite elements. It presents a nice review of previ-
ous relevant work and it extends the approach in [97] by allowing an inexact solution of the
discretized algebraic system. Its main result, presented in Theorem 6.3, holds under the as-
sumption that the algebraic solver deviates from an ideal exact computation in a sufficiently
small way. This assumption is mathematically specified, and it refers to a paper by Wu and
Chen [137] on uniform convergence of multigrid V-cycle algorithms. The last paper assumes
exact arithmetic and, in particular, it assumes that the operator on the coarsest grid is exactly
invertible. Hence, as mentioned above, there still remains some work in order to account for
all aspects of practical computations.

Assuming that a maximal attainable accuracy has not been approached, a result analogous
to [46] has been proved in [6]. In that paper the algebraic problem is solved using the CG
method and the energy norm of the finite dimensional error is estimated by the techniques
described above. In particular, the global convergence result in [6] is based on the use of a
well justified (although not strictly formally proved) upper bound for the energy norm of the
algebraic error using the technique proposed in [88] for estimating an accurate lower bound
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of the smallest eigenvalue of the matrix A in (11). A different approach which includes an
adaptive stopping criterion for iterative solution of the algebraic problem has been used in [23,
24] for investigating the so-called quasi-optimal complexity of the AFEM; see also [25].

Finally, we want to mention that among the approaches to a posteriori error analysis
which do not assume the exact solution of the discretized algebraic problem are the works
of Wohlmuth and Hoppe [135], Rüde [114, 115, 116], Burstede and Kunoth [37, 38], Ma-
day and Patera [89], and Patera and Rönquist [103]. Indefinite and non-selfadjoint problems
have been extensively addressed by Elman, Kay, Silvester, Simoncini, Wathen, and Wu; see,
e.g. [56, 79, 120, 134, 136]. Lacking in space we can not describe their approaches and refer
an interested reader to the original literature.

4.2 Results for eigenvalue problems

Minimizing the total errors (18)–(19) for eigenvalue problems is more complicated than min-
imizing (12) for boundary value problems where the CG method naturally minimizes the al-
gebraic energy norm of the error. Even the definition of an appropriate (in the physical sense)
norm to measure the error for the eigenvalue problem is not an easy task. We will briefly
outline several recently investigated approaches.

The concept of a functional backward error and condition number introduced in [9] for
boundary value problems were used in [95] for selfadjoint eigenvalue problems in order to
analyze the continuous dependence of the inexact solution on the data, in particular to analyze
the approximation error and the backward stability of the algebraic eigenvalue problem. This
resulted in a combined residual a posteriori error estimator and a balanced AFEM algorithm,
where the stopping criteria are based on the variant of the shift-invert Lanczos method intro-
duced by Hetmaniuk and Lehoucq in [74]. A similar direction was considered by Gratton,
Mouffe, and Toint [68] in the context of bound-constrained optimization; the ideas introduced
there can be applied to the minimization of the Rayleigh-quotient in the case of eigenvalue
computations.

Carstensen and Gedicke [43] combined an adaptive finite element scheme with an iterative
algebraic eigenvalue solver and obtained a method of quasi-optimal computational complex-
ity. Under the assumption that the iteration error |||uh−u

(n)
h |||2+|λh−λ

(n)
h | for two consecutive

AFEM steps is small in comparison with the size of the residual a posteriori error estimate,
they showed the contraction property for the quasi-error up to higher-order terms. Checking
the condition on the size of the iteration error is based on some heuristic arguments. A similar
analysis of convergence and a quasi-optimality of the inexact inverse iteration coupled with
adaptive finite element methods was presented by Zeiser [138].

The results above have been derived in the context of eigenvalue problems that usually are
of the form (14) with a(·, ·) symmetric and coercive. To deal with non-selfadjoint problems,
one can follow Rannacher and Becker [28] and their DWR approach. Here duality techniques
are used to estimate the error in the target quantities in terms of the weighted primal and dual
residuals,

ρ(uh, λh)(v) ≡ a(uh, v)− λh(uh, v), (38)

ρ∗(u∗
h, λ

∗
h)(v) ≡ a(v, u∗

h)− λ∗
h(v, u

∗
h), (39)
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respectively. The resulting estimates can be written as

λ− λ
(n)
h ≈ 1

1− σn

(
ηn + η∗n + η(it)n

)
, (40)

where the primal and the dual eigenvalue residual estimators are given by

ηn ≡ 1

2
ρ(u

(n)
h , λ

(n)
h )(I

(2)
2h u

∗(n+1)
h − u

∗(n)
h ), (41)

η∗n ≡ 1

2
ρ∗(u

∗(n)
h , λ

∗(n)
h )(I

(2)
2h u

(n+1)
h − u

(n)
h ), (42)

the term

η(it)n = ρ(u
(n)
h , λ

(n)
h )(u

∗(n)
h ) (43)

represents an indicator for the iteration error, and the reminder term σn is assumed to be
sufficiently small. The derivation is based on a perturbation argument and the application
requires a careful monitoring of the computed quantities. For more details we refer to [111].
In practice the DWR method can be used in both boundary value and eigenvalue parts of
various problems. An application to the stationary Navier-Stokes equations is given in [109],
the studies in the context of the hydrodynamic stability analysis can be found in [76].

Finally, an algorithm based on a homotopy method which allows adaptivity in space, in
the homotopy stepsize as well as in the stopping criteria for the iterative algebraic eigenvalue
solvers is described in [44]; see also [61, 96].

5 Concluding remarks

This text gives a very brief introduction to the issues related to adaptive numerical solving of
linear elliptic PDEs. Obviously, the work in the outlined directions has been extended to more
general as well as to nonlinear problems. Many researchers are attracted by the fundamental
character of the related applications, the difficulty of the mathematical problems, as well as the
discretization and computational challenges (for an early account of the difficulties associated
with the error control in the particularly intriguing area of computational fluid dynamics we
refer to, e.g., [78]). We believe that this effort, with combination of expertise from fields such
as mathematical modeling, mathematical and numerical PDE analysis and discretization, and
matrix computations including numerical stability analysis, will lead to further remarkable
results. Rigorous theoretical analysis complemented with soundly justified heuristics will
bring adaptivity into the center of numerical computations.
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