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Abstract

Viscoelastic rate-type fluid models involving the stress and its observer-invariant time
derivatives of higher order are used to describe the behaviour of materials with complex
microstructure, for example geomaterials like asphalt, biomaterials such as vitreous in
the eye, synthetic rubbers such as SBR (styrene butadiene rubber). A standard model
that belongs to the category of viscoelastic rate-type fluid models of the second order is
the model due to Burgers, which can be viewed as a mixture of two Oldroyd–B models of
the first order. This viewpoint allows one to develop the whole hierarchy of generalized
models of a Burgers type. We study one such generalization. Carrying on the study
by Masmoudi [1], where he made a sketch of the proof of weak sequential stability of
(hypothetical) weak solutions to the so called Giesekus model, we prove long time and
large data existence of weak solutions to a Burgers-type model that can be written as a
mixture of two Giesekus models in two spatial dimensions.

1. Introduction

Viscoelastic rate-type fluid models involving the stress and its observer-invariant time
derivatives of higher order are used to describe the behaviour of materials with complex
microstructure. This is due to the fact that higher order viscoelastic rate-type fluid
models are capable of capturing several different relaxation mechanisms (as well as other5

non-Newtonian phenomena). Geomaterials such as asphalt, biomaterials such as vitreous
in the eye, synthetic rubbers such as SBR (styrene butadiene rubber), can serve as
examples, see Monismith, Secor [2], Narayan et al. [3], Málek, Rajagopal, Tůma [4],
Sharif-Kashani et al. [5], Řehoř et al. [6] for experimental data and for corroboration this
data using higher order viscoelastic rate type fluid models. A standard model belonging10

to the category of viscoelastic rate type fluids of the second order is the model due
to Burgers. Burgers [7] developed a one dimensional model; its d-dimensional variant,
d ≥ 2, can be written (see e.g. [8]) as the following system of equations satisfied in
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QT := (0, T )× Ω, where T > 0 is a fixed number and Ω ⊂ Rd is a domain:

div v = 0, (1.1)

ρ (∂tv + div(v ⊗ v)) = divT+ ρf , (1.2)

T = −pI+ 2νD+ S, (1.3)
∇∇

S+ α1

∇

S+ α0S = β1
∇

D+ β0D. (1.4)

Here, ∂t denotes the partial time derivative, ∇ = (∂x1
, ..., ∂xd

) denotes the gradient with
respect to the space variables, the operator div denotes the divergence with respect to
the space variables, i.e.

divu =

d∑

j=1

∂xj
uj

for any vector function u = (u1, ..., ud). Next, v is the velocity, D := 1
2

(
∇v + (∇v)T

)
is

the symmetric part of the velocity gradient, T is the Cauchy stress tensor, I is the identity
tensor and p (often called the pressure) is a scalar quantity associated with the fact that
the fluid is incompressible, i.e. with the constraint (1.1). The given vector function f

represents the external forces acting on the body, the parameter ρ > 0 stands for the
density, 2ν, α0, α1, β0, β1 are positive material coefficients. Finally, for any tensor A,
the nonlinear differential operator

∇

A stands for

∇

A := ∂tA+

d∑

j=1

vj∂xj
A−∇vA− A(∇v)T ,

where (∇v)T denotes the transpose of ∇v, and
∇∇

A :=

∇
∇

A. This article concerns a robust15

PDE analysis of equations describing the mechanical behaviour of viscoelastic rate-type
fluid models of a Burgers type (of models that come from simmilar thermodynamical
principles as (1.1)–(1.4)). By a robust PDE analysis we mean the development of math-
ematical results for any regular data (domain, time interval, boundary and initial data,
external forces, material coefficients). Obviously, the system (1.1) – (1.4) is much more20

complicated than the incompressible Navier-Stokes equations. Due to the structure of
the nonlinear equation (1.4), for example it does not contain any diffusion term (second
order spatial differential operator), it is nontrivial to achieve apriori estimates for the
unknowns v and S controlled by data of the problem. Also, due to the presence of the
second order time derivative of S, one should assign not only initial data for S, but also25

for ∂tS, which again seems uneasy task (from the point of view of physical interpreta-
tion, see [9]). There are additional more general questions (such as how to appropriately
extend this model to compressible setting or how to appropriately include thermal ef-
fects) that call for a detailed understanding of physical underpinings of the governing
equations. Before going towards this direction, it is worth mentioning that – for detailed30

computations see Málek, Rajagopal and Tůma [4] – the setting (1.1)–(1.4) follows from
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the following setting satisfied in QT = (0, T )× Ω:

div v = 0, (1.5)

ρ (∂tv + div(v ⊗ v))− divT− ρf = 0, ρ > 0, (1.6)
∇

Bi +
1

τi
(Bi − I) = O, τi > 0, i = 1, 2, (1.7)

−pI+ 2νD+

2∑

i=1

Gi(Bi − I) = T, 2ν,G1, G2 > 0 (1.8)

provided that we set

S :=

2∑

i=1

Gi(Bi − I)

and

α1 :=
τ1 + τ2

τ1τ2
, α0 :=

1

τ1τ2
, β1 :=

2

G1 +G2
, β0 := 2

(
G1

τ1
+
G2

τ2

)
.

The setting (1.5) – (1.8) describes a mixture of two Oldroyd-B models of the first order,
see [10].

Carrying on the thermodynamical approach developed by Rajagopal and Srinivasa [11]35

(see also Rajagopal and Srinivasa [12] for a general description of their approach) and
strengthened,morerecently,byMálek, Rajagopaland Tůma [13]andMálekandPrůša [14],
Málek, Rajagopal and Tůma [8], using also the ideas from Karra and Rajagopal [15],
developed an hierarchy of Burgers-type models that stems from four main concepts:

1. There is an underlying natural configuration that evolves together with the current40

configuration and that splits the total deformation in a multiplicative way into the
part that is elastic (reversible) and the part that takes into account all irreversible
changes.

2. There are more than one natural configurations associated with the current con-
figuration and these natural configurations coexist in the sense of the theory of45

interacting continua, see Truesdell [16], Samohýl [17] or Rajagopal and Tao [18].
3. The basic governing equations stem from the balance equations (for mass, mo-

menta, energy) and from the formulation of the second law of thermodynamics at a
continuum level. The resulting system is not closed and, besides the state variables
such as the density, the velocity, the temperature, contains other quantities, such50

as the Cauchy stress, entropy and entropy fluxes. In order to close the system, the
equations relating these quantities to the state variables and their derivatives must
be formulated. These additional equations are called constitutive equations.

4. The constitutive equations can be fully specified provided that we know the con-
stitutive relations for two scalars: the Helmholtz free energy (or other thermody-55

namical potential such as the Gibbs potential, internal energy or enthalpy, or the
entropy itself) and the rate of entropy production. These two scalar constitutive
relations, characterizing how the fluid (material) stores the energy and how the
energy is dissipated, suffice to determine the constitutive equations for the Cauchy
stress etc.60
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Using the above mentioned concepts and ideas, Málek, Rajagopal and Tůma [8] developed
the hierarchy of viscoelastic rate-type fluid models capturing two different relaxation
mechanisms, satisfying the following system of equations in QT :

div v = 0, (1.9)

ρ (∂tv + div(v ⊗ v))− divT− ρf = 0, ρ > 0, (1.10)
∇

Bκi
+

1

τi
(B2−λi

κi
− B

1−λi
κi

) = O, τi =
Gi

νi
> 0, λi ∈ R, i = 1, 2, (1.11)

−pI+ 2νD+
2∑

i=1

Gi(Bκi
− I) = T, 2ν,G1, G2 > 0 (1.12)

supposed that Bκi
can be written as

Bκi
= Fκi

F
T
κi
, Fκi

∈ R
d×d, detFκi

> 0 in QT , i = 1, 2. (1.13)

Let us note that Fκi
represent the deformation tensors between the natural configurations

κi and the current configuration κt, the deformation between κi and κt takes into account65

the instantaneous elastic response of the i-th component of the body upon the unloading.
Notice that (1.9)–(1.12) coincides with (1.5)–(1.8) if we set λ1 = λ2 = 1.

To achieve (1.9)–(1.13), Málek, Rajagopal and Tůma [8] started with the following
assumption: the Helmholtz free energy is considered to be of the form

Ψ(ρ,Bκ1
,Bκ2

) = Ψ̃(ρ) +

2∑

i=1

Gi

2ρ
(trBκi

− d− ln detBκi
) (1.14)

and the rate of the entropy production ζ takes the form

ζ(|D|,Fκ1
,Fκ2

,Bκ1
,Bκ2

) =
1

θ

(
2ν|D|2 +

2∑

i=1

2νi

∣∣∣Dκi
(FT

κi
Fκi

)
λi
2

∣∣∣
2
)
, (1.15)

where
Dκi

:= −1

2
F
−1
κi

∇

Bκi
F
−T
κi

and θ > 0 is the temperature, in this article assumed to be constant. We find advanta-
geous that the approach based on the constitutive equations (1.14) and (1.15) provides
the a-priori estimates. This is due to the fact that in the considered setting the reduced
thermodynamical identity holds, it has the form

T : D− ρ(∂tΨ+∇Ψ · v) = θζ. (1.16)

The identity (1.16) can be derived (see e.g. [8]) from the balance of internal energy e

ρ (∂te +∇e · v) = T : D, (1.17)

from the balance of entropy η

ρ (∂tη +∇η · v) = ζ (1.18)

and from the definition of the Helmholtz free energy Ψ

Ψ := e − θη. (1.19)
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Since we consider θ to be constant, subtracting (1.18) multiplied by θ from (1.17) yields

ρ∂t(e− θη) + ρ∇(e− θη) · v = T : D− θζ. (1.20)

Putting (1.19) into (1.20), we arrive at (1.16). Now, since the presence of the body
force f does not involve the idea of achieving the a-priori estimates, let us suppose for
simplicity that f ≡ 0 in QT . Multiplying the equation (1.10) scalarly by v, integrating
it over Ω, using the integration by parts, the constraint (1.9), the boundary condition
(1.24) and the symmetry of T, we obtain

1

2

d

dt

ˆ

Ω

ρ|v|2 +
ˆ

Ω

T : D = 0. (1.21)

Integrating (1.16) over Ω, using the integration by parts, (1.9) and (1.24), we obtain

d

dt

ˆ

Ω

ρΨ+

ˆ

Ω

(−T : D+ θζ) = 0. (1.22)

Summing (1.21) together with (1.22), where Ψ is expressed by (1.14) and ζ is expressed
by (1.15) and integrating the result over (0, t) leads to

1

2

ˆ

Ω

ρ|v(t)|2 +
2∑

i=1

ˆ

Ω

ρ
Gi

2
(trBκi

(t)− d− ln detBκi
(t))

+

ˆ t

0

ˆ

Ω

(
2ν|D|2 +

2∑

i=1

2νi|Dκi
(FT

κi
Fκi

)
λi
2 |2
)

=
1

2

ˆ

Ω

ρ|v(0)|2 +
2∑

i=1

ˆ

Ω

ρ
Gi

2
(trBκi

(0)− d− ln detBκi
(0)). (1.23)

The general aim for PDE analysis is to establish for a given number T > 0 and
domain Ω ⊂ Rd long time and large data existence of weak solutions to the unsteady
internal flows governed by the equations (1.9)–(1.13) in QT := (0, T )×Ω completed with
the boundary condition

v = 0 on ΣT := (0, T )× ∂Ω (1.24)

and with the initial conditions

v(0, ·) = v0, Bκi
(0, ·) = Bi0 in Ω, i = 1, 2, (1.25)

where v0 and Bi0 are given functions satisfying suitable compatibility assumptions. The70

reason for the choice of weak solution as a suitable concept of solution is twofold: First,
it is the concept that might be well defined for v and Bκi

, i = 1, 2, fulfilling (1.23)
(or (1.23), where instead of equality the inequality "≤" holds true), and second, several
numerical methods are based on this concept of solution.

Let us note that even in the case when Bκ2
≡ O, there are only few studies regarding

the long-time and large-data existence theory. Lions and Masmoudi [19] analyzed the

system (1.9)–(1.12) with λ1 = 1, Bκ2
≡ O, but instead of

∇

Bκ1
they considered the term

(Bκ := Bκ1
)

∂tBκ +

d∑

j=1

vj∂xj
Bκ −WBκ − BκW

T ,



6

where W := 1
2 (∇v − ∇vT ). This type of observer-invariant time derivative simplifies75

the analysis, but it does not come out naturally from the thermodynamical approach
described above. Later on, Masmoudi [1], carrying on some ideas developed in Hu and
Lelièvre [20] that are close to the thermodynamical set-up described above, presented the
theorem regarding the long time and large data existence of weak solutions to the system
(1.9)–(1.12) with Bκ2

≡ O and λ := λ1 = 0, Bκ := Bκ1
= FκF

T
κ . This leads to the model80

due to Giesekus [21]. Masmoudi reduced his proof to a sketch of the proof of the weak
sequential stability of hypothetical weak solutions in function spaces coming from apriori
estimates. Despite bringing original ideas, Masmoudi did not give the right mathematical
sense to most of the statements, which is due to the presence of highly nonlinear terms a
nontrivial task and requires additional work. Masmoudi also did not introduce suitable85

approximations to the considered problem and consequently did not show their existence
and convergence to the solution of problem in interest. He also provided a proof of the
property detFκ > 0 (the requirement (1.13)), but it contains mistakes at some crucial
points. We are not aware of any other results for viscoelastic rate-type fluid models
fulfilling even the equations (1.9)–(1.12) with Bκ2

≡ O. In particular, the case of the90

Oldroyd-B model (λ1 = 1) is open.
Our goal is to develop a robust mathematical theory for (1.9)–(1.13) for large class

of λ1, λ2.
However, the only apriori estimate (1.23) may not suffice to obtain even physically

acceptable regularity properties of hypothetical weak solutions to (1.9)–(1.12), at least95

the integrability of the solutions over time and space, the integrability of their time
derivatives over time, nor to obtain the weak sequential stability of these (hypothetical)
weak solutions. Let us show that the system (1.9)–(1.12) (even with Bκ2

≡ O, Bκ := Bκ1
)

directly provides the apriori estimates even of
´

Ω
trBκ(t) for all t ∈ (0, T ) by the initial

data only if λ := λ1 ≤ 1 and the apriori estimate of
´

Ω
|∂t(trBκ)| by the initial data only100

if λ ≤ 0. For simplicity let us set all material constants to be equal to one and f ≡ 0.
Let λ ≤ 1. Summing (1.10) multiplied scalarly by 2v with (1.11) multiplied scalarly

by I, integrating over (0, t)× Ω, using the integration by parts, the constraint (1.9), the
definition (1.12), the boundary condition (1.24), the symmetry of D and of Bκ = FκF

T
κ ,

we get105

ˆ

Ω

(
|v(t)|2+trBκ(t)

)
+

ˆ t

0

ˆ

Ω

(
2|D|2+trB2−λ

κ

)

=

ˆ t

0

ˆ

Ω

trB1−λ
κ +

ˆ

Ω

(
|v(0)|2+trBκ(0)

)
. (1.26)

The matrix Bκ = FκF
T
κ is symmetric and positive semidefinite, hence it is a diagonalizable

matrix and the corresponding diagonal matrix Jκ has nonnegative diagonal terms. If
λ < 1, then 2−λ

1−λ
> 1. The Hölder inequality with the exponents p := 2−λ

1−λ
and p

p−1 ,
combined with the Young inequality of the form (K ∈ (0,∞) depends on p)

(a
1
p + b

1
p ) ≤ K(a+ b)

1
p ∀a.b ≥ 0

then implies

ˆ t

0

ˆ

Ω

trB1−λ
κ =

ˆ t

0

ˆ

Ω

trJ1−λ
κ ≤ C

(
ˆ t

0

ˆ

Ω

trJ2−λ
κ

) 1−λ
2−λ

= C

(
ˆ t

0

ˆ

Ω

trB2−λ
κ

) 1−λ
2−λ

, (1.27)
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where
C = C(T,Ω, λ) ∈ (0,∞).

If λ = 1, (1.27) holds trivially. If
´ t

0

´

Ω
trB2−λ

κ >1, we divide (1.26) by
(
´ t

0

´

Ω
trB2−λ

κ

) 1−λ
2−λ

,

where in the case λ ≤ 1 it holds 1−λ
2−λ

∈ [0, 1), use the nonnegativity of all terms on both
handsides of (1.26) (which follows from the positive semidefinitness of Bκ), the estimate
(1.27) and Korn’s inequality to conclude

ˆ

Ω

(
|v(t)|2 + trBκ(t)

)
+

ˆ t

0

ˆ

Ω

(
|∇v|2 + trB2−λ

κ

)
≤ C̃(T,Ω, λ,v(0), trBκ(0)). (1.28)

If
´ t

0

´

Ω
trB2−λ

κ ∈ [0, 1], we conclude the estimate (1.28) from (1.26) and (1.27) directly.
Hence whenever λ ≤ 1, the estimate (1.28) holds true. On the other hand, the inequality
1−λ
2−λ

∈ [0, 1), which was crucial for deriving (1.28), would not be satisfied if we considered
λ > 1.

Let now λ ≤ 0. If λ < 0, then from Hölder’s inequality with the exponents p := 2−λ
2

and p
p−1 (let us note that p > 1), from the inequality (K ∈ (0,∞) depends on p)

(a
1
p + b

1
p ) ≤ K(a+ b)

1
p ∀a, b ≥ 0

and from the symmetry of Bκ it follows (Ĉ ∈ (0,∞) depends on T , Ω, λ)

ˆ

QT

|Bκ|2 =

ˆ

QT

trB2
κ =

ˆ

QT

trJ2κ ≤ Ĉ

(
ˆ

QT

trJ2−λ
κ

) 2
2−λ

= Ĉ

(
ˆ

QT

trB2−λ
κ

) 2
2−λ

. (1.29)

If λ = 0, then (1.29) follows from the symmetry of Bκ directly. Integrating (1.11)
multiplied scalarly by I over QT , using the integration by parts, the relations (1.9),
(1.24), (1.27), (1.28), (1.29) and the Hölder inequality, we get (C ∈ (0,∞) coincides with
C in (1.27))

ˆ

QT

|∂t(trBκ)| ≤
(
ˆ

QT

|∇v|2
) 1

2
(
ˆ

QT

|Bκ|2
) 1

2

+(1+C)

ˆ

QT

trB2−λ
κ ≤ C(T,Ω, λ,v(0), trB(0)).

Let us note that the inequality 2−λ
2 ≥ 1, which was crucial for deriving the last apriori110

estimate, would not be satisfied if we considered λ > 0.

In this article, as the starting point, we show the long time and large data existence
of weak solutions to the Burgers-type model (1.9)–(1.13) with λi = 0, i = 1, 2, in two
spatial dimensions, carrying on some ideas developed by Masmoudi [1]. Moreover, we115

show that the solutions are strongly continuous with respect to time with values in
(multidimensional) Lebesgue spaces.

The structure of the paper is the following. In Section 2 we fix notations and formulate
the main result. In Section 3 we introduce some general mathematical tools used in the
existence proof. In Sections 4–7 we treat the system considering Bκ2

≡ O. In Section 8120

we conclude the existence result without the restriction Bκ2
≡ O.



8

2. Notation and Formulation of the problem

In order to define weak solutions to the considered problem and formulate the main
result we need to fix notations. The operator ” · ” denotes the scalar product of two
vectors, the operator ":" denotes the scalar product of two tensors. The operator ” ⊗ ”

denotes the tensor product of two vectors. For a matrix A = {Aij}di,j=1 and a vector

b = (b1, ..., bd) we define the third order tensor A⊗ b = {(A⊗ b)ijk}di,j,k=1 as

(A⊗ b)ijk := Aijbk.

The Euclidean norm of a vector, the Frobenius norm of a tensor, or the Lebesgue measure
of the given measurable subset of Rd, d ∈ N, is denoted as | · |. Next we define for a
matrix function A = (Aij)

d
i,j=1 and a vector function b = (b1, ..., bd) the operator Div

acting on the third order tensor A⊗ b as

Div(A⊗ b) :=

d∑

j=1

∂xj
(bjA).

Let Ω ⊂ Rd be a domain of class C0,1, let ∂Ω be its boundary. Let T > 0 be a fixed
number, according to the Introduction let us denote QT := (0, T )× Ω, ΣT := (0, T )×∂Ω.125

For q ∈ [1,∞] the symbol ‖ · ‖q stands for the norm in the usual Lebesgue space Lq(Ω)

(or in its multidimensional variant (Lq(Ω))d, (Lq(Ω))d×d, etc.), while the symbol ‖ · ‖1,q
stands for the norm in the usual Sobolev spaceW 1,q(Ω) (or in its multidimensional variant
(W 1,q(Ω))d, (W 1,q(Ω))d×d, etc.). The symbol M(QT ) stands for the space of the Radon
measures defined on the closure of QT . If X is a Banach space, then X∗ denotes its dual130

space. The dualities between Banach spaces and their duals are denoted as 〈·, ·〉. Being
X a Banach space, Lq(0, T ;X) for q ∈ [1,∞] is the relevant Bochner space, C([0, T ];X)

is the space of functions continuous in [0, T ] with values in X , Cweak([0, T ];X) is the
space of functions weakly continuous in [0, T ] with values in X . For an open set O ⊂ Rd,
C∞

c (O) is the space of smooth functions compactly supported in O, Lq
loc(O) is the space135

of functions, whose q-power is locally integrable over O. For any q ∈ [1,∞) we introduce
the function spaces

W
1,q
0 (Ω) := {u ∈ W 1,q(Ω);u = 0 on ∂Ω},
W

1,q
0,div := {u ∈ (W 1,q(Ω))d;u = 0 on ∂Ω; divu = 0 in Ω},

L
q
n,div := {u ∈ (C∞

c (Ω))d; divu = 0 in Ω}‖·‖q

,

‖u‖W 1,q
0

(Ω) := ‖∇u‖q, ‖u‖W 1,2

0,div
:= ‖∇u‖q, ‖u‖Lq

n,div
:= ‖u‖q.

If it does not cause any misunderstanding, we write the integrals over time and space
without the symbols dt, dx, for example, if g = g(t,x) is a given function defined in QT ,
we write

´

QT
g instead of

´

QT
g dtdx. We denote the positive constants of uniform140

bounds, whose exact values are not essential for our aims, as K, C, C̃, Ĉ, C, C∗, their
values can change troughout the text.
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2.1. Formulation of the main result

Starting from here, we write Fi instead of Fκi
, i = 1, 2. Let us recall that D denotes the145

symmetric part of ∇v, i.e. D := 1
2

(
∇v + (∇v)T

)
.

Definition 2.1 (Generalized Burgers model). In the rest of this paper by the Generalized
Burgers model we understand the following system of equations satisfied in QT with
unknown quantities v, p, F1, F2, B1, B2:

div v = 0, (2.1)

ρ (∂tv+div(v ⊗ v))+∇p−2ν divD−
2∑

i=1

Gi divBi − ρf = 0, ρ, 2ν,G1,G2>0, (2.2)

∂tBi+Div (Bi ⊗ v)−(∇v)Bi−Bi(∇v)T+
1

τi

(
B
2
i − Bi

)
= O, τi>0, i=1, 2, (2.3)

Bi = FiF
T
i , i = 1, 2, (2.4)

where
detFi > 0 if Bi 6≡ O, i = 1, 2. (2.5)

The system is completed with the boundary condition

v = 0 on ΣT (2.6)

and with the initial conditions

v(0, ·) = v0, Fi(0, ·) = Fi0 , Bi(0, ·) = Bi0 := Fi0F
T
i0

in Ω, i = 1, 2. (2.7)

150

Before introducing the weak formulation of the system (2.1) – (2.7) let us set for
simplicity the positive constants ρ, 2ν, τ1, τ2 to be equal to one and the external forces
f to be identically equal to zero. As one may check, if we took ρ, 2ν, τ1, τ2 > 0

and f ∈ L2(0, T ; (W 1,2
0,div)

∗) arbitrary, the proof of the existence of weak solutions to
the system (2.1)–(2.7) would be made essentially in the same way as the proof that we155

present, there would only be more technicalities, distracting, in our opinion, the reader
from the main ideas of the proof. We do not set G1, G2 to be equal to one since we study
the system with two different relaxation mechanisms with different weights.

Definition 2.2 (Generalized Burgers – weak formulation). Let us assume v0 ∈ L2
n,div,160

Fi0 ∈ (L2(Ω))d×d, Bi0 := Fi0F
T
i0

, detFi0 > 0 a.e. in Ω, ln detFi0 ∈ L1(Ω) and Gi > 0,
i = 1, 2. By a weak solution to the Generalized Burgers problem we call a quintuple
[v,F1,F2,B1,B2] fulfilling for i = 1, 2

v ∈ C
(
[0, T ];L2

n,div

)
∩ L2

(
0, T ;W 1,2

0,div

)
,

∂tv ∈ L2
(
0, T ; (W 1,2

0,div)
∗
)
,

Fi ∈ C
(
[0, T ]; (L2(Ω))d×d

)
∩ (L4(QT ))

d×d,

∂tFi ∈ L
4
3

(
0, T ; ((W 1,2(Ω))d×d)∗

)
,

Bi ∈ C
(
[0, T ]; (L1(Ω))d×d

)
∩ (L2(QT ))

d×d,

∂tBi ∈ L1
(
0, T ; ((W 1,4(Ω))d×d)∗

)
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and satisfying for all w ∈W
1,2
0,div, A ∈ (W 1,4(Ω))d×d and a.a. t ∈ (0, T )

〈∂tv,w〉 −
ˆ

Ω

(v ⊗ v) :∇w +

ˆ

Ω

D :∇w +

2∑

i=1

ˆ

Ω

GiBi :∇w = 0, (2.8)

〈∂tBi,A〉 −
ˆ

Ω

(Bi ⊗ v) :∇A −
ˆ

Ω

(∇v Bi) :A−
ˆ

Ω

(Bi(∇v)T ) :A+

ˆ

Ω

(B2
i − Bi) :A = 0, (2.9)

where165

Bi = FiF
T
i , detFi > 0 a.e. in QT if Bi 6≡ O, (2.10)

with the initial conditions v0, Fi0 , Bi0 fulfilled in the sense

lim
t→0+

‖v(t)− v0‖2 = 0, (2.11)

lim
t→0+

‖Fi(t)− Fi0‖2 = 0, (2.12)

lim
t→0+

‖Bi(t)− Bi0‖1 = 0. (2.13)
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The aim of this paper is to prove the following theorem.

Theorem 2.3. Let d = 2. Let v0 ∈L2
n,div, Fi0 ∈ (L2(Ω))2×2, Bi0 := Fi0F

T
i0

, detFi0 > 0

a.e. in Ω, ln detFi0 ∈L1(Ω) and Gi > 0, i = 1, 2. Then there exists a weak solution to

the Generalized Burgers problem in the sense of Definition 2.2.170

The proof of Theorem 2.3 is split into Sections 4–8. In the following Section 3 we
introduce mathematical tools, which will be employed in the own proof of the theorem.
In Sections 4–7 we make the proof of Theorem 2.3 restricting ourselves to G1 = 1,
B2 ≡ O. In the last Section 8 we conclude the result for G1, G2 > 0 arbitrary, without
the restriction B2 ≡ O.175

3. Mathematical tools

In this section we present two lemmata useful for the proof of Theorem 2.3. The first
lemma is the Friedrichs lemma on commutators, see e.g. [22]. The second lemma concerns
the monotonicity of one special matrix function.180

Lemma 3.1 (Friedrichs lemma on commutators, [22]). Let O ⊂ Rd be a domain, d ∈ N,

p, q, r ∈ R, 1
r
= 1

p
+ 1

q
≤ 1. Let f ∈ Lp(O), g ∈ (W 1,q(O))d. For any x ∈ Rd and

h ∈ L1
loc(R

d) let us denote

hδ(x) :=

ˆ

Rd

ωδ(x− y)h(y) dy,

where ωδ is the standard mollifying kernel. Then

‖ div(fδg) − div(fg)δ‖Lr
loc

(O) ≤ C‖f‖Lp(O)‖g‖(W 1,q(O))d .

Moreover, if r <∞, then

div(fδg)− div (fg)δ → 0 strongly in Lr
loc(O).

Lemma 3.2 (Monotonicity). Let d ∈ N. The function S : Rd×d → Rd×d given by

S(X) := XX
T
X

is monotone, i.e.

(S(X)− S(Y)) : (X− Y) ≥ 0 ∀X,Y ∈ R
d×d. (3.1)

Proof. In the whole proof the symbol δij , where i, j ∈ {1, ..., d}, stands for the Kronecker
symbol, i.e.

δij :=

{
1, if i = j

0, if i 6= j
.

The i, j component of any matrix X ∈ Rd×d is denoted either as Xij , either as (X)ij .
For brevity in the computations the Einstein summation convention is used, i.e. all sum
indices are omitted.
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For all matrices X,Y ∈ Rd×d it holds

S(X)− S(Y) =

ˆ 1

0

d

ds
(S (Y+ s(X− Y))) ds (3.2)

and
d

ds
(S (Y+ s(X− Y))) =

∂S (K(s))

∂ (K(s))ab
Lab, (3.3)

where K(s) := Y+ s(X− Y), L := X− Y. Collecting (3.2) and (3.3), one concludes

(S(X)− S(Y)) : (X− Y) =

ˆ 1

0

∂ (S (K(s)))ij
∂ (K(s))ab

LabLij ds,

thus in order to prove (3.1) it suffices to show

∂ (S(K))ij
∂Kab

LabLij ≥ 0 ∀K,L ∈ R
d×d. (3.4)

We write185

∂ (S(K))ij
∂Kab

=
∂

∂Kab

(KimKkmKkj)

= δiaδmbKkmKkj + δakδmbKimKkj + δakδbjKimKkm

= δiaKkbKkj + δakKibKkj + δbjKimKam,

and finally

∂ (S(K))ij
∂Kab

LabLij = (δiaKkbKkj + δakKibKkj + δbjKimKam)LabLij

= KkbKkjLibLij +KibKkjLkbLij +KimKamLajLij

= (KL
T ) : (KL

T ) + (KL
T ) : (KT

L) + (KT
L) : (KT

L)

≥ 1

2

(
|KL

T |2 + |KT
L|2
)
≥ 0,

where the first inequality follows from Young’s inequality. The lemma is proved.

4. System with evolutionary equation for the tensor F

As introduced above, first we prove Theorem 2.3 with restrictions G1 = 1, B2 ≡ O,190

we denote B := B1. Carrying on the ideas developed by Masmoudi [1], we start with
the setting containing the evolutionary equation for the tensor F := F1 instead of the
evolutionary equation for B = FFT . More specifically, we start with the following setting
supposed to be satisfied in QT :

div v = 0, (4.1)

∂tv + div(v ⊗ v) +∇p− divD− div FFT = 0, (4.2)

∂tF+ Div(F⊗ v)− (∇v)F+
1

2
(FFT

F− F) = O, (4.3)

detF > 0 (4.4)
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completed with the boundary condition

v = 0 on ΣT (4.5)

and the initial conditions195

v(0, ·) = v0 in Ω, (4.6)

F(0, ·) = F0 in Ω. (4.7)

Formally, multiplying (4.3) by FT from right, multiplying the transpose of (4.3) by F

from left and summing, we obtain the equation

∂t(FF
T ) + Div

(
(FFT )⊗ v

)
−∇v(FFT )− (FFT )(∇v)T + (FFT )2 − FF

T = O. (4.8)

Setting B := FFT , G1 = 1, B2 ≡ O, the equation (4.8) is equivalent to (2.3) and hence
the system (4.1), (4.2), (4.4)–(4.8) is equivalent to the system (2.1)–(2.7) with G1 = 1,
B := B1, B2 ≡ O.

We find two advantages of this approach. First, as one may expect, the tensor F has
better regularity properties than B = FFT . Formally, multiplying (4.2) scalarly by v,
multiplying (4.3) scalarly by F, integrating over QT , summing, using (4.1), (4.5) and
standard analytical tools (for deducing the details see the rigorous computations in next
two sections), we get for all t ∈ (0, T ) the apriori estimate

‖v(t)‖22 + ‖F(t)‖22 +
ˆ t

0

(
‖∇v‖22 + ‖F‖44

)
≤ C(T, ‖v0‖2, ‖F0‖2).

Better regularity properties of (hypothetical) weak solutions to the system extend the set
of admissible test functions in the corresponding equations, which increases the chance200

to obtain, for example, weak sequential stability of these solutions, or to make a short
proof of the property detF > 0 (the condition (2.5)). Second, after a rigorous proceeding
from (4.3) to (4.8) we immediately obtain B of the form B = FFT (the condition (2.4)),
satisfying (2.3).

205

Definition 4.1 (System with equation for F - weak formulation). Let v0 ∈ L2
n,div,

F0 ∈ (L2(Ω))2×2, detF0 > 0 a.e. in Ω and ln detF0 ∈ L1(Ω). By a weak solution to the
system (4.1)–(4.7) we understand a couple [v,F] fulfilling

v ∈ C([0, T ];L2
n,div) ∩ L2(0, T ;W 1,2

0,div),

∂tv ∈ L2(0, T ; (W 1,2
0,div)

∗),

F ∈ C([0, T ]; (L2(Ω))2×2) ∩ (L4(QT ))
2×2,

∂tF ∈ L
4
3

(
0, T ; ((W 1,2(Ω))2×2)∗

)
,

detF > 0 a.e. in QT

and satisfying for all w ∈W
1,2
0,div, A ∈ (W 1,2(Ω))2×2 and a.a. t ∈ (0, T )

〈∂tv,w〉 −
ˆ

Ω

(v ⊗ v) : ∇w +

ˆ

Ω

D : ∇w +

ˆ

Ω

(FFT ) : ∇w = 0, (4.9)

〈∂tF,A〉 −
ˆ

Ω

(F⊗ v) : ∇A−
ˆ

Ω

((∇v)F) : A+
1

2

ˆ

Ω

(FFT
F− F) : A = 0 (4.10)
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with the initial conditions v0, F0 fulfilled in the sense210

lim
t→0+

‖v(t)− v0‖2 = 0, (4.11)

lim
t→0+

‖F(t)− F0‖2 = 0. (4.12)

Theorem 4.2. Let v0∈L2
n,div, F0∈ (L2(Ω))2×2, detF0>0 a.e. in Ω, ln detF0∈L1(Ω).

Then there exists a weak solution to the system (4.1)–(4.7) in the sense of Definition 4.1.

The following two sections are devoted to the proof of Theorem 4.2.
215

5. Approximations

We start with the system approximating (4.1)–(4.7), where on the right handside of
the equation (4.3) the term representing small stress diffusion is added. The system,
where all the equations are supposed to be satisfied in QT , reads as follows:

div v = 0, (5.1)

∂tv + div(v ⊗ v) +∇p− divD− divFFT = 0, (5.2)

∂tF+ Div (F⊗ v)− (∇v)F+
1

2

(
FF

T
F− F

)
= ε∆F. (5.3)

The system is completed with the boundary condition

v = 0 on ΣT (5.4)

and with the initial conditions220

v(0, ·) = v0 in Ω, (5.5)

F(0, ·) = F0 in Ω. (5.6)

Let us note that the functions v0, F0 introduced in (5.5) and (5.6) coincide with the
functions v0, F0 introduced in Sections 2 and 4.

The reason for our choice of approximations is twofold. First, as we will show, the
presence of the term ε∆F provides the uniform estimate

ε‖∇Fn‖22,QT
≤ C(T, ‖v0‖2, ‖F0‖2), (5.7)

where {Fn}n∈N is a sequence of Galerkin’s approximations to F (their existence is proved225

in the following subsection). The estimate (5.7) (together with the uniform bounds
of Fn and ∂tFn in appropriate norms proved bellow and the Aubin-Lions compactness
lemma) leads to the compactness of {Fn}n∈N in (L2(QT ))

2×2, which makes the proof of
the existence of weak solutions to (5.1)–(5.6) relatively simple (the system (5.1)–(5.3) is
close to an advection-diffusion equation, see e.g. [23]). Second, considering the sequence230
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{vε}, {Fε} of weak solutions to (5.1)–(5.6) and taking the limit ε → 0+, the stress
diffusion terms, in a weak formulation written for a.a. t ∈ (0, T ) as ε

´

Ω∇Fε :∇A, where
A ∈ (W 1,2(Ω))2×2 is arbitrary, converge to zero due to the uniform estimate (5.7) and the
Hölder inequality (

√
ε∇Fε is uniformly bounded in (L2(QT ))

2×2×2 and
√
ε∇A converges

to zero strongly in (L2(QT ))
2×2×2). Hence we can deduce that the (hypothetical) weak235

limits of the sequences {vε}, {Fε} are weak solutions to the system (4.1)–(4.7) if the
sequence {Fε} is compact in (L2(QT ))

2×2. The proof of the compactness of {Fε} in
(L2(QT ))

2×2 is the most complicated part of the proof of Theorem 4.2. However, with
the introduced approximations, it is not much more complicated than the proof of weak
sequential stability of (hypothetical) weak solutions to (4.1)–(4.7). The only difference is240

that without the presence of the supplementary stress diffusion term ε∆Fε (it is present
in (5.3), but not in (4.3)) the relation (6.62) would hold true with equality. However, the
achieved inequality does not complicate further computations.

Proposition 5.1. Let ε > 0, v0 ∈ L2
n,div, F0 ∈ (L2(Ω))2×2. Then there exists a weak245

solution to the system (5.1)–(5.6), i.e. there exists a couple [v,F] fulfilling

v ∈ C([0, T ];L2
n,div) ∩ L2(0, T ;W 1,2

0,div),

∂tv ∈ L2(0, T ; (W 1,2
0,div)

∗),

F ∈ Cweak([0, T ]; (L
2(Ω))2×2) ∩ L2(0, T ; (W 1,2(Ω))2×2),

∂tF ∈ L
4
3

(
0, T ; ((W 1,2(Ω))2×2)∗

)

and satisfying for all w ∈ W
1,2
0,div, A ∈ (W 1,2(Ω))2×2 and a.a. t ∈ (0, T )

〈∂tv,w〉 −
ˆ

Ω

(v ⊗ v) :∇w +

ˆ

Ω

D :∇w +

ˆ

Ω

(FFT ) :∇w = 0, (5.8)

〈∂tF,A〉 −
ˆ

Ω

(F⊗ v) :∇A −
ˆ

Ω

((∇v)F) :A+
1

2

ˆ

Ω

(FFT
F−F) :A+ε

ˆ

Ω

∇F :∇A = 0 (5.9)

with the initial conditions v0, F0 fulfilled in the sense

lim
t→0+

‖v(t)− v0‖2 = 0, (5.10)

lim
t→0+

‖F(t)− F0‖2 = 0. (5.11)

We split the proof of Proposition 5.1 into five subsections.
250

5.1. Galerkin’s approximations

Let {wj}j∈N be a basis of W 1,2
0,div composed of eigenfunctions of the Stokes operator

subject to the boundary condition w = 0 on ∂Ω, orthogonal in W
1,2
0,div, orthonormal

in L2
n,div. Let {Aj}j∈N be a basis of (W 1,2(Ω))2×2 composed of eigenfunctions of the

Laplace operator subject to the boundary condition ∇A · n := {∇Akl · n}2k,l=1 = O

on ∂Ω, orthogonal in (W 1,2(Ω))2×2, orthonormal in (L2(Ω))2×2. Let us denote Wn :=

span{w1, ...,wn}, Xn := span{A1, ...,An}. Let us denote the orthogonal projection from
W

1,2
0,div to Wn as Pn and the orthogonal projection from (W 1,2(Ω))2×2 to Xn as Qn.
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The projection Pn is continuous in L2
n,div and in W 1,2

0,div, the projection Qn is continuous
in (L2(Ω))2×2 and in (W 1,2(Ω))2×2. From the Carathéodory theory for ordinary differ-
ential equations it follows that there exist time dependent coefficients αn

1 (t), ..., α
n
n(t),

βn
1 (t), ..., β

n
n(t) (but we will write only α1, ..., αn, β1, ..., βn) such that

vn =

n∑

j=1

αjwj and Fn =

n∑

j=1

βjAj (5.12)

fulfill for all j ∈ {1, ..., n}, for all t ∈ (0, t̃), where t̃ is certain positive number, the
following system of equations (we denote Dn := 1

2

(
∇vn + (∇vn)

T
)
):

∂t

(
ˆ

Ω

vn ·wj

)
−
ˆ

Ω

(vn ⊗ vn) : ∇wj +

ˆ

Ω

Dn : ∇wj +

ˆ

Ω

(FnF
T
n ) : ∇wj = 0, (5.13)

∂t

(
ˆ

Ω

Fn :Aj

)
−
ˆ

Ω

(Fn ⊗ vn) : ∇Aj −
ˆ

Ω

(∇vnFn) : Aj +
1

2

ˆ

Ω

(FnF
T
nFn) : Aj

−1

2

ˆ

Ω

Fn : Aj + ε

ˆ

Ω

∇Fn : ∇Aj = 0. (5.14)

The functions vn are absolutely continuous in [0, t̃) with values in Wn, the functions Fn

are absolutely continuous in [0, t̃) with values in Xn, they satisfy the initial conditions

vn(0, ·) = Pn(v0) in Ω, (5.15)

Fn(0, ·) = Qn(F0) in Ω. (5.16)

The fact that t̃ = T is an easy consequence of the uniform estimates that follow.255

5.2. Uniform estimates

Multiplying (5.13) by αj , (5.14) by βj and taking the sum over j = 1, ..., n, we obtain
(use also the symmetry of FnF

T
n )

∂t‖vn‖22
2

−
ˆ

Ω

(vn ⊗ vn) : ∇vn +

ˆ

Ω

Dn : ∇vn +

ˆ

Ω

(FnF
T
n ) : ∇vn = 0,

∂t‖Fn‖22
2

−
ˆ

Ω

(Fn ⊗ vn) : ∇Fn −
ˆ

Ω

(∇vnFn) :Fn +
‖FnF

T
n‖22 − ‖Fn‖22

2
+ ε‖∇Fn‖22 = 0.

Integrating both equations over (0, t), where t ∈ (0, T ) is arbitrary, and employing the260

integration by parts and the properties div vn = 0 in QT , vn = 0 on ΣT yields

‖vn(t)‖22
2

+

ˆ t

0

ˆ

Ω

Dn : ∇vn +

ˆ t

0

ˆ

Ω

(FnF
T
n ) : ∇vn =

‖vn(0)‖22
2

,

‖Fn(t)‖22
2

−
ˆ t

0

ˆ

Ω

(∇vnFn) : Fn +

ˆ t

0

‖FnF
T
n‖22 − ‖Fn‖22

2
+ε

ˆ t

0

‖∇Fn‖22 =
‖Fn(0)‖22

2
.
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By the symmetry of Dn it holds Dn : ∇vn = |Dn|2 and by the symmetry of FnF
T
n it holds

(FnF
T
n ) :∇vn = (∇vnFn) :Fn, thus by summing the last two equations (both multiplied

by 2), we get for all t ∈ (0, T )265

‖vn(t)‖22 + ‖Fn(t)‖22 +
ˆ t

0

(
2‖Dn‖22 + ‖FnF

T
n‖22 + 2ε‖∇Fn‖22

)

≤ ‖vn(0)‖22 + ‖Fn(0)‖22 +
ˆ t

0

‖Fn‖22

≤ ‖vn(0)‖22 + ‖Fn(0)‖22 +
ˆ t

0

(
‖vn‖22 + ‖Fn‖22

)
. (5.17)

Since ‖vn(t)‖22 + ‖Fn(t)‖22 is estimated by the right handside of (5.17), the Gronwall
lemma applied on (5.17) (the functions ‖vn(·)‖2 and ‖Fn(·)‖2 are continuous in [0, T ))
together with the conditions (5.15), (5.16) and the continuity of Pn in L2

n,div and of Qn

in (L2(Ω))2×2 implies

‖vn(t)‖22 + ‖Fn(t)‖22 ≤ et
(
‖vn(0)‖22 + ‖Fn(0)‖22

)
≤ et

(
‖v0‖22 + ‖F0‖22

)
. (5.18)

Let us note that the inequality (5.18) will be useful in the proof of attainment of the
initial conditions (5.5) and (5.6). The inequality (5.17) together with (5.18) yields for all
t ∈ (0, T )

‖vn(t)‖22 + ‖Fn(t)‖22 +
ˆ t

0

(
‖Dn‖22 + ‖FnF

T
n‖22 + ε‖∇Fn‖22

)
≤ C(T, ‖v0‖2, ‖F0‖2). (5.19)

The matrix FnF
T
n acting in (5.19) is symmetric and positive semidefinite, hence it is a

diagonalizable matrix and the corresponding diagonal matrix Jn has nonnegative diagonal
terms. Thus the Young inequality gives in QT

|Fn|4 =
(
tr(FnF

T
n )
)2

= (tr Jn)
2 ≤ 2 tr(J2n) = 2 tr((FnF

T
n )

2) = 2 |FnF
T
n |2, (5.20)

hence for all t ∈ (0, T ) it holds

‖Fn‖44 ≤ 2‖FnF
T
n‖22. (5.21)

Taking supremum over t ∈ (0, T ) at each term of (5.19) and using Korn’s inequality and
(5.21) leads to

sup
t∈(0,T )

‖vn(t)‖22 + sup
t∈(0,T )

‖Fn(t)‖22 + ‖∇vn‖22,QT
+ ‖Fn‖44,QT

+ε‖∇Fn‖22,QT
≤ C̃(T, ‖v0‖2, ‖F0‖2). (5.22)

It remains to estimate the time derivatives of vn and Fn. Obviously, we can replace
in (5.13) the base functions wj by any function belonging to Wn and in (5.14) the base
functions Aj by any function belonging to Xn. Let w ∈W

1,2
0,div, by (5.13) it holds for all

t ∈ (0, T )
ˆ

Ω

(∂tvn ·Pn(w)) =

ˆ

Ω

(
(vn ⊗ vn)−Dn−FnF

T
n

)
:∇Pn(w). (5.23)
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Thanks to the orthogonality and the continuity of Pn in L2
n,div and in W 1,2

0,div, employing
the Cauchy-Schwartz and the Hölder inequality, we derive from (5.23) for all w ∈W

1,2
0,div

and for all t ∈ (0, T )270

|〈∂tvn,w〉| =

∣∣∣∣
ˆ

Ω

(∂tvn ·w)

∣∣∣∣ =
∣∣∣∣
ˆ

Ω

(∂tvn ·Pn(w))

∣∣∣∣

≤
ˆ

Ω

∣∣(vn ⊗ vn)−Dn−FnF
T
n

∣∣ |∇Pn(w)|

≤
(
‖vn‖24 + ‖∇vn‖2 + ‖Fn‖24

)
‖∇w‖2. (5.24)

By the Ladyzenskaya inequality and (5.22) it holds

‖vn‖44,QT
=

ˆ T

0

‖vn‖44 ≤
ˆ T

0

‖vn‖22‖∇vn‖22 ≤ Ĉ (T, ‖v0‖2, ‖F0‖2) . (5.25)

Integrating the second power of (5.24) over (0, T ), using (5.22), (5.25) and the Minkowski
inequality, we can write

‖∂tvn‖2L2(0,T ;(W 1,2

0,div
)∗) ≤

ˆ T

0

(
‖vn‖44+‖∇vn‖22+‖Fn‖44

)
≤ C (T, ‖v0‖2, ‖F0‖2) . (5.26)

Analogously we estimate ‖∂tFn‖
L

4
3 (0,T ;((W 1,2(Ω))2×2)∗)

. Let A ∈ (W 1,2(Ω))2×2, by (5.14)

it holds for all t ∈ (0, T )

ˆ

Ω

(∂tFn :Qn(A)) =

ˆ

Ω

(Fn ⊗ vn) :∇Qn(A) +

ˆ

Ω

(
∇vnFn−FnF

T
nFn+Fn

)
:Qn(A)

− ε

ˆ

Ω

∇Fn :∇Qn(A). (5.27)

Employing the orthogonality and the continuity ofQn in (L2(Ω))2×2 and in (W 1,2(Ω))2×2,275

the Cauchy-Schwartz and the Hölder inequality and the embedding W 1,2(Ω) →֒ L4(Ω)

(it holds ‖a‖4 ≤ Ĉ‖a‖1,2 for every a ∈W 1,2(Ω), where Ĉ = Ĉ(Ω)), we obtain from (5.27)
for all A ∈ (W 1,2(Ω))2×2 and t ∈ (0, T )

|〈∂tFn,A〉| =
∣∣∣∣
ˆ

Ω

(∂tFn :A)

∣∣∣∣ =
∣∣∣∣
ˆ

Ω

(∂tFn :Qn(A))

∣∣∣∣
≤ (‖Fn‖4‖vn‖4+ε‖∇Fn‖2) ‖∇A‖2 + ‖Fn‖2‖A‖2

+
(
‖∇vn‖2‖Fn‖4+‖Fn‖34

)
‖Qn(A)‖4

≤ (‖Fn‖4‖vn‖4+ε‖∇Fn‖2+‖Fn‖2) ‖A‖1,2
+ Ĉ

(
‖∇vn‖2‖Fn‖4+‖Fn‖34

)
‖Qn(A)‖1,2

≤
(
‖Fn‖4‖vn‖4+ε‖∇Fn‖2+‖Fn‖2+Ĉ(‖∇vn‖2‖Fn‖4+‖Fn‖34)

)
‖A‖1,2.

Integrating the 4
3 -power of the last chain over (0, T ), using (5.22), (5.25) and Hölder’s

and Minkowski’s inequalities, we conclude

‖∂tFn‖
4
3

L
4
3 (0,T ;((W 1,2(Ω))2×2)∗)

≤ C (ε, T,Ω, ‖v0‖2, ‖F0‖2) . (5.28)



19

Moreover, since due to (5.22) we have for ε ≤ 1 (here C = C(Ω))
ˆ T

0

(ε‖∇Fn‖2)
4
3 ≤ ε

1
3C

ˆ T

0

ε‖∇Fn‖22 ≤ C̃(T,Ω, ‖v0‖2, ‖F0‖2),

we can omit from (5.28) the dependence on ε and write

‖∂tFn‖
4
3

L
4
3 (0,T ;((W 1,2(Ω))2×2)∗)

≤ C (T,Ω, ‖v0‖2, ‖F0‖2) . (5.29)

280

5.3. Limit n→ ∞
The uniform estimates (5.22), (5.26) and (5.28) imply the existence of v, F satisfying

the following convergence relations (the relations hold true for suitable subsequences of
{vn}, {Fn}, which we do not relable):

vn ⇀∗ v weakly-* in L∞(0, T ;L2
n,div), (5.30)

vn ⇀ v weakly in L2(0, T ;W 1,2
0,div) ∩ (L4(QT ))

2, (5.31)

∂tvn ⇀ ∂tv weakly in L2
(
0, T ; (W 1,2

0,div)
∗
)
, (5.32)

Fn ⇀∗ F weakly-* in L∞
(
0, T ; (L2(Ω))2×2

)
, (5.33)

Fn ⇀ F weakly in L2
(
0, T ; (W 1,2(Ω))2×2

)
∩ (L4(QT ))

2×2, (5.34)

∂tFn ⇀ ∂tF weakly in L
4
3

(
0, T ; ((W 1,2(Ω))2×2)∗

)
. (5.35)

Let us note that thanks to the properties v ∈ L2(0, T ;W 1,2
0,div), ∂tv ∈ L2

(
0, T ; (W 1,2

0,div)
∗
)
,285

F ∈ L∞
(
0, T ; (L2(Ω))2×2

)
and ∂tF ∈ L

4
3 (0, T ; ((W 1,2(Ω))2×2)∗) together with the den-

sity of (W 1,2(Ω))2×2 in (L2(Ω))2×2, the functions v, F after a possible change in a
zero-measure subset of (0, T ) enjoy

v ∈ C([0, T ];L2
n,div), (5.36)

F ∈ Cweak

(
[0, T ]; (L2(Ω))2×2

)
, (5.37)

and thus (use also the weak lower semicontinuity of L2(Ω) norm)

sup
t∈(t0,t1)

‖v(t)‖22 = esssupt∈(t0,t1)‖v(t)‖
2
2, 0≤ t0<t1≤T, (5.38)

sup
t∈(t0,t1)

‖F(t)‖22 ≤ esssupt∈(t0,t1)‖F(t)‖
2
2, 0≤ t0<t1≤T. (5.39)

Employing (5.31), (5.32), (5.34), (5.35) and the Aubin-Lions compactness lemma, we get290

vn → v strongly in (Lq(QT ))
2 for all q ∈ [1, 4), (5.40)

Fn → F strongly in (Lq(QT ))
2×2 for all q ∈ [1, 4). (5.41)

From (5.31), (5.34), (5.40) and (5.41) we obtain also the following relations:

vn ⊗ vn ⇀ v ⊗ v weakly in (L2(QT ))
2×2, (5.42)

Fn ⊗ vn ⇀ F⊗ v weakly in (L2(QT ))
2×2×2, (5.43)

∇vnFn ⇀ ∇vF weakly in (L
4
3 (QT ))

2×2, (5.44)

FnF
T
n ⇀ FF

T weakly in (L2(QT ))
2×2, (5.45)

FnF
T
nFn ⇀ FF

T
F weakly in (L

4
3 (QT ))

2×2. (5.46)
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The convergence results above suffice to conclude from (5.13) and (5.14) for all n ∈ N,
w ∈Wn, A ∈ Xn and φ ∈ C∞

c (0, T )

ˆ T

0

〈∂tv, φw〉 −
ˆ

QT

(v ⊗ v) :φ∇w +

ˆ

QT

D :φ∇w +

ˆ

QT

(FFT ) :φ∇w = 0,

ˆ T

0

〈∂tF, φA〉 −
ˆ

QT

(F⊗ v) : (φ∇A) −
ˆ

QT

(∇vF) :φA +
1

2

ˆ

QT

(FFT
F− F) :φA

+ε

ˆ

QT

∇F : (φ∇A) = 0.

Since
⋃

n∈N
Wn is dense in W

1,2
0,div,

⋃
n∈N

Xn is dense in (W 1,2(Ω))2×2, by using the Du
Bois–Reymond lemma we obtain for all w ∈W

1,2
0,div, A ∈ (W 1,2(Ω))2×2 and a.a. t ∈ (0, T )

the equations (5.8) and (5.9), i.e.295

〈∂tv,w〉 −
ˆ

Ω

(v ⊗ v) :w +

ˆ

Ω

D :∇w +

ˆ

Ω

(FFT ) :∇w = 0, (5.47)

〈∂tF,A〉 −
ˆ

Ω

(F⊗ v) :∇A−
ˆ

Ω

((∇v)F) :A+
1

2

ˆ

Ω

(FFT
F−F) :A+ε

ˆ

Ω

∇F :∇A = 0. (5.48)

5.4. Attainment of the initial data

Multiplying (5.13) by any φ ∈ C∞
c (−∞, T ), φ(0) 6= 0, integrating over (0, T ) and

employing the orthogonality of Pn in L2
n,div (together with the condition (5.15)) yields

for every j ≤ n, wj ∈Wj

−
ˆ

Ω

v0 ·φ(0)wj −
ˆ

QT

vn ·(∂tφ)wj +

ˆ

QT

(
−(vn ⊗ vn)+Dn+FnF

T
n

)
: (φ∇wj) = 0. (5.49)

Multiplying (5.47) by φ ∈ C∞
c (−∞, T ), φ(0) 6= 0, and integrating over (0, T ) yields for

every w ∈W
1,2
0,div

−
ˆ

Ω

v(0)·φ(0)w −
ˆ

QT

v ·(∂tφ)w +

ˆ

QT

(
−(v ⊗ v)+D+FF

T
)
: (φ∇w) = 0. (5.50)

Subtracting (5.49) from (5.50), applying (5.31), (5.42), (5.45), the density of
⋃

n∈N
Wn

in L2
n,div and in W 1,2

0,div, passing n→ ∞, j → ∞ and dividing the result by φ(0) leads to
ˆ

Ω

v(0)·w =

ˆ

Ω

v0 ·w ∀w ∈ L2
n,div. (5.51)

Multiplying (5.14) by φ ∈ C∞
c (−∞, T ), φ(0) 6= 0, integrating over (0, T ) and employ-

ing the orthogonality of Qn in (L2(Ω))2×2 (together with the condition (5.16)) yields for300

every j ≤ n, Aj ∈ Xj

−
ˆ

Ω

F0 :φ(0)Aj −
ˆ

QT

Fn : (∂tφ)Aj −
ˆ

QT

(Fn ⊗ vn) : (φ∇Aj)

+

ˆ

QT

(
−∇vnFn+

FnF
T
nFn−Fn

2

)
: (φAj) + ε

ˆ

QT

∇Fn : (φ∇Aj) = 0. (5.52)
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Multiplying (5.48) by φ ∈ C∞
c (−∞, T ), φ(0) 6= 0, and integrating the result over (0, T )

yields for every A ∈ (W 1,2(Ω))2×2

−
ˆ

Ω

F(0) :φ(0)A−
ˆ

QT

F : (∂tφ)A−
ˆ

QT

(F⊗ v) : (φ∇A) +

ˆ

QT

(
−∇vF+

FFTF−F

2

)
: (φA)

+ε

ˆ

QT

∇F : (φ∇A) = 0.

Subtracting (5.52) from the last equation, applying (5.34), (5.43), (5.44) and (5.46) and
the density of

⋃
n∈N

Xn in (L2(Ω))2×2 and in (W 1,2(Ω))2×2, passing n→ ∞, j → ∞ and
dividing the result by φ(0) leads to

ˆ

Ω

F(0) :A =

ˆ

Ω

F0 :A ∀A ∈ (L2(Ω))2×2. (5.53)

In order to prove the attainment of the initial conditions in the sense of (5.10) and
(5.11) we take the limit n → ∞ in (5.18). From (5.30) and (5.33) we deduce that
vn(t)⇀ v(t) weakly in L2

n,div and Fn(t)⇀ F(t) weakly in (L2(Ω))2×2 for a.a. t ∈ (0, T ),
hence by the weak lower semicontinuity of L2(Ω) norm we have

‖v(t)‖22 + ‖F(t)‖22 ≤ et
(
‖v0‖22 + ‖F0‖22

)
for a.a. t ∈ (0, T ). (5.54)

Let δ ∈ (0, T ) be arbitrary. From (5.38), (5.39) and (5.54) it follows

sup
t∈(0,δ)

(
‖v(t)‖22+‖F(t)‖22

)
≤ esssupt∈(0,δ)

(
‖v(t)‖22+‖F(t)‖22

)
≤ eδ

(
‖v0‖22+‖F0‖22

)
, (5.55)

which yields
lim sup
t→0+

(
‖v(t)‖22+‖F(t)‖22

)
≤ ‖v0‖22+‖F0‖22. (5.56)

Collecting (5.51) with w := v0, (5.53) with A := F0 and (5.56), we conclude

lim sup
t→0+

(
‖v(t)− v0‖22 + ‖F(t)− F0‖22

)
≤ 0, (5.57)

which immediately implies fulfilling of (5.10) and (5.11).
305

6. Proof of Theorem 4.2

From Section 5, Proposition 5.1, we have for each ε > 0 a couple [vε,Fε] fulfilling

vε ∈ C([0, T ];L2
n,div) ∩ L2(0, T ;W 1,2

0,div), (6.1)

∂tvε ∈ L2(0, T ; (W 1,2
0,div)

∗), (6.2)

Fε ∈ Cweak([0, T ]; (L
2(Ω))2×2) ∩ L2(0, T ; (W 1,2(Ω))2×2), (6.3)

∂tFε ∈ L
4
3

(
0, T ; ((W 1,2(Ω))2×2)∗

)
(6.4)

and satisfying for all w ∈ W
1,2
0,div, A ∈ (W 1,2(Ω))2×2 and a.a. t ∈ (0, T ) (we denote

Dε :=
1
2

(
∇vε + (∇vε)

T
)
)

〈∂tvε,w〉 −
ˆ

Ω

(vε ⊗ vε) :∇w +

ˆ

Ω

Dε :∇w +

ˆ

Ω

(FεF
T
ε ) :∇w = 0, (6.5)
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〈∂tFε,A〉 −
ˆ

Ω

(Fε ⊗ vε) :∇A −
ˆ

Ω

((∇vε)Fε) :A+
1

2

ˆ

Ω

(FεF
T
ε Fε−Fε) :A

+ε

ˆ

Ω

∇Fε :∇A = 0 (6.6)

with the initial conditions v0, F0 fulfilled in the sense310

lim
t→0+

‖vε(t)− v0‖2 = 0, (6.7)

lim
t→0+

‖Fε(t)− F0‖2 = 0. (6.8)

6.1. Limit in approximations

First, let us mention that whenever we use the results from Section 5, the functions
v, F established in Section 5 correspond for a fixed ε > 0 to the functions vε, Fε estab-
lished in (6.1)–(6.8).315

Employing the convergences (5.30), (5.33), we get (for suitable subsequences of {vn},
{Fn}, which we do not relabel)

vn(t) ⇀ vε(t) weakly in L2
n,div for a.a. t ∈ (0, T ), (6.9)

Fn(t) ⇀ Fε(t) weakly in (L2(Ω))2×2 for a.a. t ∈ (0, T ). (6.10)

The convergences (5.31), (5.34), (6.9), (6.10) and the estimate (5.22) together with (5.38),
(5.39) and weak lower semicontinuity of all norms acting in (5.22) lead to the following
uniform estimate for {vε}, {Fε}:320

sup
t∈(0,T )

‖vε‖22 + sup
t∈(0,T )

‖Fε‖22 + ‖∇vε‖22,QT
+ ‖Fε‖44,QT

+ε‖∇Fε‖22,QT
≤ C̃(T, ‖v0‖2, ‖F0‖2). (6.11)

In order to derive the uniform estimates for ∂tvε in L2(0, T ; (W 1,2
0,div)

∗) and for ∂tFε

in L
4
3 (0, T ; ((W 1,2(Ω))2×2)∗) from (6.5), (6.6) and (6.11), we proceed simmilarly as in

Section 5, where we derived from (5.13), (5.14) and (5.22) the estimates for ∂tvn and ∂tFn

in the same norms, see the passage (5.23)–(5.29) (here it is more simple since w acting in
(6.5) belongs to W 1,2

0,div, not only to Wn, and A acting in (6.6) belongs to (W 1,2(Ω))2×2,
not only to Xn). The estimates read as

‖∂tvε‖L2(0,T ;(W 1,2

0,div
)∗) + ‖∂tFε‖

L
4
3 (0,T ;((W 1,2(Ω))2×2)∗)

≤ C(T,Ω, ‖v0‖2, ‖F0‖2). (6.12)

The uniform estimates (6.11) and (6.12) imply the existence of v, F fulfilling the following
convergence relations (for suitable subsequences of {vε}, {Fε}, which we do not relable):

vε ⇀∗ v weakly-* in L∞(0, T ;L2
n,div), (6.13)

vε ⇀ v weakly in L2(0, T ;W 1,2
0,div) ∩ (L4(QT ))

2, (6.14)

∂tvε ⇀ ∂tv weakly in L2
(
0, T ; (W 1,2

0,div)
∗
)
, (6.15)
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Fε ⇀∗ F weakly-* in L∞
(
0, T ; (L2(Ω))2×2

)
, (6.16)

Fε ⇀ F weakly in (L4(QT ))
2×2, (6.17)

ε∇Fε → O strongly in (L2(QT ))
2×2×2, (6.18)

∂tFε ⇀ ∂tF weakly in L
4
3

(
0, T ; ((W 1,2(Ω))2×2)∗

)
. (6.19)

Let us note that thanks to the properties v ∈ L2(0, T ;W 1,2
0,div), ∂tv ∈ L2

(
0, T ; (W 1,2

0,div)
∗
)
,

F ∈ L∞
(
0, T ; (L2(Ω))2×2

)
and ∂tF ∈ L

4
3 (0, T ; ((W 1,2(Ω))2×2)∗) together with the den-325

sity of (W 1,2(Ω))2×2 in (L2(Ω))2×2, the functions v, F after a possible change on a
zero-measure subset of (0, T ) enjoy

v ∈ C([0, T ];L2
n,div), (6.20)

F ∈ Cweak

(
[0, T ]; (L2(Ω))2×2

)
, (6.21)

and thus (use also the weak lower semicontinuity of L2(Ω) norm)

sup
t∈(t0,t1)

‖v(t)‖22 = esssupt∈(t0,t1)‖v(t)‖22, 0≤ t0<t1≤T, (6.22)

sup
t∈(t0,t1)

‖F(t)‖22 ≤ esssupt∈(t0,t1)‖F(t)‖22, 0≤ t0<t1≤T. (6.23)

Employing (6.14), (6.15) and the Aubin-Lions compactness lemma, we get

vε → v strongly in (Lq(QT ))
2 for all q ∈ [1, 4). (6.24)

The weak convergences (6.14), (6.17) together with the strong convergence (6.24) yield330

vε ⊗ vε ⇀ v ⊗ v weakly in (L2(QT ))
2×2, (6.25)

Fε ⊗ vε ⇀ F⊗ v weakly in (L2(QT ))
2×2×2. (6.26)

Next, for a weakly or weakly-* convergent subsequence of {aε} let us denote the corre-
sponding limit by a. It holds

∇vεFε ⇀ (∇v)F weakly in (L
4
3 (QT ))

2×2, (6.27)

FεF
T
ε ⇀ FFT weakly in (L2(QT ))

2×2, (6.28)

|Fε|2 ⇀ |F|2 weakly in L2(QT ), (6.29)

FεF
T
ε Fε ⇀ FFTF weakly in (L

4
3 (QT ))

2×2, (6.30)

|FεF
T
ε |2 ⇀∗ |FFT |2 weakly-* in M(QT ), (6.31)

∇vεFεF
T
ε ⇀∗ ∇vFFT weakly-* in (M(QT ))

2×2, (6.32)

|Dε|2 ⇀∗ |D|2 weakly-* in M(QT ), (6.33)

as the sequences in (6.27) – (6.30) are uniformly bounded in the corresponding spaces, the
sequences |FεF

T
ε |2, |Dε|2 are uniformly bounded in L1(QT ) and the sequence ∇vεFεF

T
ε

is uniformly bounded in (L1(QT ))
2×2 (it follows from the estimate (6.11) and Hölder’s335

inequality).
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The convergence results above applied on (6.5) and (6.6) suffice to conclude for all
w ∈W

1,2
0,div, A ∈ (W 1,2(Ω))2×2 and a.a. t ∈ (0, T )

〈∂tv,w〉 −
ˆ

Ω

(v ⊗ v) :∇w +

ˆ

Ω

D :∇w +

ˆ

Ω

FFT :∇w = 0, (6.34)

〈∂tF,A〉 −
ˆ

Ω

(F⊗ v) :∇A −
ˆ

Ω

(∇v)F :A+
1

2

ˆ

Ω

(FFTF− F) :A = 0. (6.35)

340

In order to prove the attainment of the initial conditions (4.11), (4.12), we follow step
by step the proof of the corresponding conditions for vε and Fε (the conditions (5.10),
(5.11) with vε in the role of v, Fε in the role of F) presented in Subsection 5.4. Let
us briefly mention what is different. In the equality corresponding to (5.49) here we
consider w ∈W

1,2
0,div, not only in Wn, in the equality corresponding to (5.52) we consider

A ∈ (W 1,2(Ω))2×2, not only in Xn. In order to obtain the equality

lim
t→0+

ˆ

Ω

v(t) ·w =

ˆ

Ω

v0 ·w ∀w ∈ L2
n,div, (6.36)

instead of the density of
⋃

n∈N
Wn in L2

n,div and in W 1,2
0,div, here we use only the density

of W 1,2
0,div in L2

n,div, in order to obtain the equality

lim
t→0+

ˆ

Ω

F(t) : A =

ˆ

Ω

F0 : A ∀A ∈ (L2(Ω))2×2, (6.37)

instead of the density of
⋃

n∈N
Xn in (L2(Ω))2×2 and in (W 1,2(Ω))2×2, here we use only

the density of (W 1,2(Ω))2×2 in (L2(Ω))2×2. In order to obtain the inequality

lim sup
t→0+

(
‖v(t)− v0‖22 + ‖F(t)− F0‖22

)
≤ 0, (6.38)

we employ the estimate (5.55) with vε in the role of v and Fε in the role of F, the con-
vergences vε(t) ⇀ v weakly in L2

n,div, Fε ⇀ F weakly in (L2(Ω))2×2 for a.a. t ∈ (0, T )

following from (6.13) and (6.16), the relations (6.22), (6.23) and the weak lower semicon-
tinuity of all norms acting in (5.55). Employing (6.36) with w := v0, (6.37) with A := F0

and (6.38), we arrive at (4.11) and (4.12).345

6.2. Global in time continuity

Let us recall that

v ∈ C([0, T ];L2
n,div) ∩ L2(0, T ;W 1,2

0,div) ∩ (L4(QT ))
2, (6.39)

F ∈ Cweak([0, T ]; (L
2(Ω))2×2) ∩ (L4(QT ))

2×2. (6.40)

Our aim is to prove that even

F ∈ C([0, T ]; (L2(Ω))2×2). (6.41)

Let t0, t1 ∈ [0, T ], t0 < t1. In (6.34) set w := 2v, use the integration by parts and (6.39),
integrate the result over (t0, t1) to obtain

‖v(t1)‖22 − ‖v(t0)‖22 + 2

ˆ t1

t0

‖D‖22 + 2

ˆ t1

t0

ˆ

Ω

FFT :∇v = 0. (6.42)
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Now extend v and F by zero outside of Ω. Let δ > 0 be arbitrary. Test (6.35) by
(ωδ(x− ·) A(x)), where x ∈ Ω is a fixed point, ωδ is the standard space mollifying kernel,
hδ(x) :=

´

R2 ωδ(x−·)h(·) for every h ∈ L1
loc(R

2), A ∈ (C∞(Ω))2×2 is arbitrary. After the
multiplication by an arbitrary φ ∈ C∞

c ((0, T )), integration over QT , using (6.39), (6.40),
standard properties of mollifying kernels and the Du Bois-Reymod lemma, we obtain

∂tFδ ∈ L
4
3 (0, T ; (C∞(Ω))2×2)

and
∂tFδ = −Div(F⊗ v)δ + (∇vF)δ − (FFTF)δ + Fδ a.e. in QT . (6.43)

Multiplying (6.43) scalarly by 2Fδ and integrating the result over (t0, t1)× Ω leads to

‖Fδ(t1)‖22 − ‖Fδ(t0)‖22 + 2

ˆ t1

t0

ˆ

Ω

(
Div(Fδ ⊗ v)−(∇vF)δ

)
:Fδ

+

ˆ t1

t0

ˆ

Ω

(
(FFTF)δ−Fδ

)
:Fδ = 2

ˆ t1

t0

ˆ

Ω

Eδ :Fδ, (6.44)

where
Eδ := Div(Fδ ⊗ v)−Div(F⊗ v)δ.

In (6.44) pass δ → 0+. Employing (6.39) and (6.40), Lemma 3.1 implies

Eδ → O strongly in (L
4
3 (Ω))2×2 for a.a. t ∈ (0, T ) (6.45)

and
‖Eδ‖ 4

3
≤ ‖F‖4‖v‖1,2 for a.a. t ∈ (0, T ).

Applying Lebesgue’s convergence theorem on (6.45) with majorant ‖F‖
4
3

4 ‖v‖
4
3

1,2 integrable
over (0, T ) (the integrability over (0, T ) follows from (6.39), (6.40) and Hölder’s inequal-
ity) then leads to

Eδ → O strongly in (L
4
3 (QT ))

2×2. (6.46)

Using the integration by parts, (6.39), (6.40), (6.46) and standard properties of mollifying
kernels, it follows from (6.44) by passing δ → 0+

‖F(t1)‖22 − ‖F(t0)‖22 −2

ˆ t1

t0

ˆ

Ω

(∇vF) :F+

ˆ t1

t0

ˆ

Ω

FFTF : F =

ˆ t1

t0

‖F‖22. (6.47)

By (6.39) and (6.40) the terms ‖D‖22 and ‖F‖22 are integrable over (0, T ), the terms
(∇v)F :F, FFT :∇v and FFTF :F are integrable over QT , hence we have for all t0 ∈ (0, T )

(if t0 = 0, resp. t0 = T , then the following limit holds as t1 → t0+, resp. as t1 → t0−)

lim
t1→t0

ˆ t1

t0

(
2‖D‖22 − ‖F‖22

)
+

ˆ t1

t0

ˆ

Ω

(
2FFT :∇v − 2(∇v)F :F+ FFTF :F

)
= 0. (6.48)

Summing (6.42) and (6.47), using the property v ∈ C([0, T ];L2
n,div) and (6.48), we350

conclude the following formulae equivalent to (6.41):

lim
t1→t0

‖F(t1)‖22 = ‖F(t0)‖22 ∀t0 ∈ (0, T ),

lim
t1→0+

‖F(t1)‖22 = ‖F(0)‖22, lim
t1→T−

‖F(t1)‖22 = ‖F(T )‖22.
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To complete the proof of Theorem 4.2, except the property detF > 0 a.e. in QT , it
remains to show FFT = FFT , ∇vF = ∇vF and FFTF = FFTF in (6.34) and (6.35). As
we already know that ∇vε ⇀ ∇v weakly in (L2(QT ))

2×2 by (6.14) and Fε ⇀ F weakly
in (L4(QT ))

2×2 by (6.17), it suffices to prove the compactness of {Fε} in (L2(QT ))
2×2.355

6.3. Compactness of {Fε} in (L2(QT ))
2×2

Let us start with the observation

lim
ε→0+

‖Fε − F‖22,QT
= lim

ε→0+

ˆ

QT

(
|Fε|2 − 2Fε : F+ |F|2

)
=

ˆ

QT

(
|F|2 − |F|2

)
,

where the last equality follows from (6.17) and (6.29). This observation reduces the proof
of the compactness of {Fε} in (L2(QT ))

2×2 to proving

|F|2 = |F|2 a.e. in QT . (6.49)

Here we follow the concept by Masmoudi [1] and work with the difference between (5.3)
(with Fε in the role of F) formally multiplied scalarly by Fε and (4.3) formally multiplied
scalarly by F. Let us note that Masmoudi does not consider the term ε∆Fε in (5.3) as
he deals only with the weak sequential stability of hypothetical weak solutions to the
system (4.1)–(4.7). After the integration over (0, T ) and passing ε → 0+, we arrive at
the inequality formally written as

∂t(|F|2−|F|2) + div
(
(|F|2−|F|2) v

)
≤ L

(
|F|2−|F|2

)
, (6.50)

where L is a sufficiently regular function. The inequality (6.50) may seem to be prepared
(after the integration over time and space) for applying Gronwall’s lemma and concluding
|F|2 = |F|2 a.e. in QT (the condition (6.49)). However, this conclusion is not straight-360

forward unless L∈L∞(QT ),
´

Ω(|F|2−|F|2) belongs to C([0, T ]) and |F|2(0, ·)= |F|2(0, ·)
a.e. in Ω, about which we have no information (we do not even know whether |F|2 is
weakly continuous with respect to time), hence some additional work is required. More-
over, deriving the inequality (6.50) by employing the concept described above, is also
not a trivial task and requires some new techniques, for example, in order to avoid the365

obstacles connected with the presence of highly nonlinear terms |FFT |2 comming from
(5.3) (with Fε in the role of F) formally multiplied scalarly by Fε and limited as ε→ 0+,
and FFTF : F comming from (4.3) formally multiplied scalarly by F, we show that the
difference |FFT |2 − FFTF : F is nonnegative in M(QT ) using the monotonicity of the
matrix function S(X) = XXTX for all X ∈ R2×2, introduced in Lemma 3.2. Last but not370

least, in order to obtain a version of the inequality (6.50), from which we will be capable
of concluding the result (6.49), at certain point we need to use the balances of linear mo-
menta (evolutionary equations for vε and v) tested by functions that are not divergence
free. This requires to reconstruct the pressures pε, p and show the convergence of pε to
p in a suitable sense. As this is a kind of a more general tool, which might have further375

applications (as one may check, we can replace FεF
T
ε and FFT acting in Proposition 6.1

by any Hε converging weakly to H in L2(0, T ; (L2
loc(Ω))

2×2)), we introduce the result on
the reconstruction of the pressures and their convergence before the own proof of the
compactness.

380
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6.3.1. Reconstruction of the pressures and their convergence

We reconstruct the pressures by virtue of Wolf [24], then we show their convergence.
For any Ω̃ ∈ C0,1, Ω̃ ⊂ Ω̃ ⊂ Ω, let us define the spaces

W
1,2
0 (Ω̃) := {u ∈W 1,2(Ω̃), u = 0 on ∂Ω̃},
W̃

1,2
0,div := {u ∈ (W 1,2

0 (Ω̃))2, divu = 0 in Ω̃}.

The resulting proposition reads as follows:

Proposition 6.1. Let Ω̃ ⊂ Ω̃ ⊂ Ω, Ω̃ ∈ C∞. Then for every ε > 0 there exists pε of the385

form pε = p1,ε + p2,ε, where

p1,ε ∈ L2(0, T ;W 2,2(Ω̃)), (6.51)

p2,ε ∈ L2((0, T )× Ω̃), (6.52)

∂t (vε+∇p1,ε) ∈ L2
(
0, T ; ((W 1,2

0 (Ω̃))2)∗
)

(6.53)

and for all w ∈ (W 1,2
0 (Ω̃))2 and a.a. t ∈ (0, T ) it holds

〈∂t(vε +∇p1,ε),w〉 =
ˆ

Ω̃

(Gε :∇w)+

ˆ

Ω̃

p2,ε divw, Gε :=(vε⊗vε)−Dε−FεF
T
ε . (6.54)

Next, there exists p of the form p = p1 + p2, where

p1 ∈ L2(0, T ;W 2,2(Ω̃)), (6.55)

p2 ∈ L2((0, T )× Ω̃), (6.56)

∂t (v +∇p1) ∈ L2
(
0, T ; ((W 1,2

0 (Ω̃))2)∗
)

(6.57)

and for all w ∈ (W 1,2
0 (Ω̃))2 and a.a. t ∈ (0, T ) it holds

〈∂t(v +∇p1),w〉 =
ˆ

Ω̃

(G :∇w) +

ˆ

Ω̃

p2 divw, G := (v ⊗ v)− D− FFT . (6.58)

Moreover,

p1,ε → p1 strongly in L2(0, T ;W 2,2
loc (Ω̃)), (6.59)

p2,ε ⇀ p2 weakly in L2((0, T )× Ω̃). (6.60)

The functions ∇p1,ε and ∇p1 belong to C([0, T ]; (L2(Ω̃))2) and

∇p1,ε(0, ·) = ∇p1(0, ·) a.e. in Ω̃. (6.61)

Proof. Since the proof is very long and technical, we decided to move it to the Appendix.
390
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6.3.2. Own proof of the compactness of {Fε} in (L2(QT ))
2×2

The own proof of the compactness of {Fε} in (L2(QT ))
2×2 consists of three steps.

Step 1: Deriving suitable forms of (5.3) (with Fε in the role of F) multiplied scalarly395

by Fε and limited as ε → 0+ and of (4.3) multiplied scalarly by F. More precisely, we
show for all ϕ ∈ C∞

c ((−∞, T )× Ω), ϕ ≥ 0

−
ˆ

QT

|F|2 ∂tϕ−
ˆ

Ω

|F0|2ϕ(0)−
ˆ

QT

(
|F|2v

)
·∇ϕ− 2

〈
∇v : (FFT ), ϕ

〉
{M(QT ),C(QT )}

+
〈
|FFT |2, ϕ

〉
{M(QT ),C(QT )}

−
ˆ

QT

|F|2ϕ ≤ 0 (6.62)

and

−
ˆ

QT

|F|2 ∂tϕ−
ˆ

Ω

|F0|2ϕ(0)−
ˆ

QT

(
|F|2v

)
·∇ϕ− 2

ˆ

QT

∇vF : (ϕF)

+

ˆ

QT

(
FFTF :F− |F|2

)
ϕ = 0. (6.63)

Let us note that in (6.62) and (6.63) all differential operators act on the test functions ϕ.
In further computations it enables us to extend all functions acting in (6.62) and (6.63)400

by zero in (−∞, 0)×(R2\Ω) and mollify the equations over time and space such that the
terms

´

Ω(|F|2(t, ·)−|F|2(t, ·))δ tend to zero as the mollification parameter δ tends to zero
and t approaches zero from bellow. As we will see, this approach eliminates the obstacles
connected with the lack of information on the time continuity of |F|2. Moreover, in (6.62)
there is no more the term containing ε∆Fε : Fε, and as a consequence, (6.62) does not405

hold true with equality, but only with inequality. However, the achieved inequality does
not complicate further computations.

Step 2: Deriving the following form of (6.50):

−
ˆ

QT

(
|F|2− |F|2

)
∂tϕ−

ˆ

QT

(
|F|2− |F|2

)
v · ∇ϕ ≤

ˆ

QT

L
(
|F|2− |F|2

)
ϕ, (6.64)

where ϕ ∈ C∞
c ((−∞, T )× Ω), ϕ ≥ 0, is arbitrary, and L is an L2(QT ) function.

410

Step 3: Renormalisations of (6.64), passage to the test functions ϕ ≥ 0 of the form
ϕ = ϕ(t,x) = Ψ(t)η(x), where Ψ ∈ C∞

c (−∞, T ) and η ∈ C∞(Ω), then by a suitable
choice of the renormalisation function and of the test function concluding the result
|F|2 = |F|2 a.e. in QT , which is, as introduced above, equivalent to the compactness of
{Fε} in (L2(QT ))

2×2.415

Performing of Step 1. Let us extend Fε continuously with respect to (W 1,2(R2))2×2

norm and vε by zero outside of Ω. Let δ0 > 0, Ωδ0 := {x ∈ Ω; dist(x, ∂Ω) ≥ δ0},
let δ ∈ (0, δ0) be arbitrary. Let ωδ denote the standard space mollifying kernel and
hδ(x) :=

´

R2 ωδ(x − ·)h(·) for any fixed point x ∈ Ω and h ∈ L1
loc(R

2). Let us note420

that ∂tFεδ ∈ L
4
3 (0, T ; (C∞(Ω))2×2) due to (6.6) tested by (ωδ(x − ·) Ã(x)), where
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Ã ∈ (C∞
c (Ωδ0))

2×2 is arbitrary, multiplied by an arbitrary φ ∈ C∞
c ((0, T )) and inte-

grated overQT , and due to the facts Fε ∈ (L4(QT ))
2×2, vε ∈ L2(0, T ;W 1,2

0,div). In (6.6) set
A := 2(ωδ(x− ·) ϕ(x) Fεδ (x)), where x is a fixed point in Ω and ϕ ∈ C∞

c ((−∞, T )×Ωδ0),
ϕ ≥ 0, is arbitrary, to obtain a.e. in QT425

2 (∂tFεδ : (ϕFεδ ) + Div (Fεδ ⊗ vε) : (ϕFεδ )− (∇vεFε)δ : (ϕFεδ ))

+
(
FεF

T
ε Fε−Fε

)
δ
: (ϕFεδ )− 2ε∆Fεδ : (ϕFεδ ) = 2Eεδ : (ϕFεδ )

with
Eεδ := Div(Fεδ ⊗ vε)− Div(Fε ⊗ vε)δ.

Integrating over QT , using the integration by parts and the property div vε = 0, yields
(let us note that Fεδ ∈ C([0, T ]; (L2(Ω))2×2) since Fεδ ∈ L4(0, T ; (C∞(Ω))2×2) and as
mentioned above, ∂tFεδ ∈ L

4
3 (0, T ; (C∞(Ω))2×2)

−
ˆ

QT

|Fεδ |2(∂tϕ)−
ˆ

Ω

|Fεδ (0)|2ϕ(0)−
ˆ

QT

(|Fεδ |2vε)·∇ϕ−2

ˆ

QT

(∇vεFε)δ : (ϕFεδ )

+

ˆ

QT

(
FεF

T
ε Fε − Fε

)
δ
: (ϕFεδ ) + 2ε

(
ˆ

QT

|∇Fεδ |2ϕ+

ˆ

QT

∇Fεδ : (Fεδ ⊗∇ϕ)
)

= 2

ˆ

QT

Eεδ : (ϕFεδ ). (6.65)

First let us pass δ → 0+. Since Fε ∈ (L4(QT ))
2×2, vε ∈ L2(0, T ;W 1,2

0,div), Lemma 3.1
implies

ϕEεδ → O strongly in (L
4
3 (Ω))2×2 for a.a. t ∈ (0, T ) (6.66)

and
‖ϕEεδ‖ 4

3
≤ C‖Fε‖4‖vε‖1,2 for a.a. t ∈ (0, T ). (6.67)

By Lebesgue’s convergence theorem with majorant ‖Fε‖
4
3

4 ‖vε‖
4
3

1,2 integrable over (0, T )

(the integrability over (0, T ) holds true as F ∈ (L4(QT ))
2×2, vε ∈ L2(0, T ;W 1,2

0,div), using
the Hölder inequality), we obtain from (6.66) and (6.67) that ϕEεδ → O strongly in
(L

4
3 (QT ))

2×2, and since Fε ∈ (L4(QT ))
2×2, we arrive at

lim
δ→0+

ˆ

QT

Eεδ : (ϕFεδ ) = 0. (6.68)

Employing (6.68), the fact Fε(0) = F0 a.e. in Ω, which follows from (5.53), using also
standard properties of mollifying kernels and nonnegativity of the term ε

´

QT
|∇Fεδ |2ϕ,430

taking lim supδ→0+ in (6.65) leads to

−
ˆ

QT

|Fε|2(∂tϕ)−
ˆ

Ω

|F0|2ϕ(0)−
ˆ

QT

(|Fε|2vε)·∇ϕ−2

ˆ

QT

∇vε : (ϕFεF
T
ε )

+

ˆ

QT

(
|FεF

T
ε |2−|Fε|2

)
ϕ+ 2ε

ˆ

QT

∇Fε : (Fε ⊗∇ϕ) ≤ 0. (6.69)

Now we pass ε → 0+. The term ε
´

QT
∇Fε : (Fε ⊗ ∇ϕ) converges to zero by (6.17) and

(6.18). Taking into account the convergences (6.24), (6.29), (6.31), (6.32) and the fact
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that δ0 > 0 (connected with ϕ) is arbitrary, passing ε→ 0+ in (6.69) implies the resulting
inequality (6.62).435

We proceed analogously in order to prove (6.63) (in fact it is more simple). Let us
extend F and v by zero outside of Ω. Let δ > 0. In (6.35) set A := 2(ωδ(x−·) ϕ(x) Fδ(x)),
where x is a fixed point in Ω, ωδ is same as above, ϕ ∈ C∞

c ((−∞, T )× Ω) is arbitrary.
Integrating the result over QT , using the integration by parts and the property div v = 0

in QT (let us note that Fδ ∈ C([0, T ]; (L2(Ω))2×2) as F ∈ C([0, T ]; (L2(Ω))2×2) and440

Fδ(0) = (F0)δ a.e. in Ω by (6.37)), we arrive at

−
ˆ

QT

|Fδ|2(∂tϕ)−
ˆ

Ω

|(F0)δ|2ϕ(0)−
ˆ

QT

(|Fδ|2v)·∇ϕ− 2

ˆ

QT

(
∇vF

)
δ
: (ϕFδ)

+

ˆ

QT

(
(FFTF− F)δ :Fδ

)
ϕ = 2

ˆ

QT

Eδ : (ϕFδ) (6.70)

with
Eδ := Div(Fδ ⊗ v)− Div(F⊗ v)δ.

Using Lemma 3.1, Lebesgue’s convergence theorem, the properties F ∈ (L4(QT ))
2×2,

v ∈ L2(0, T ;W 1,2
0,div) and standard properties of molllifying kernels, passing δ → 0+ in

(6.70) gives the result (6.63).
445

Performing of Step 2. We derive the inequality (6.64) from (6.62) and (6.63) attained
in Step 1 by showing the following inequalities for all ϕ ∈ C∞

c ((−∞, T )×Ω), ϕ ≥ 0, and
some L̃ ∈ L2(QT ):

〈
|FFT |2 − FFTF : F, ϕ

〉

{M(QT ),C(QT )}
≥ 0, (6.71)

〈
∇v :FFT −∇vF :F, ϕ

〉

{M(QT ),C(QT )}
≤
ˆ

QT

L̃(|F|2 − |F|2)ϕ. (6.72)

450

For the proof of the inequality (6.71) we employ the monotonicity of the matrix
function S(X) := XXTX for all X ∈ R2×2, see Lemma 3.2. The convergences (6.17),
(6.30) and (6.31) imply that the left handside of (6.71) is equal to

lim
ε→0+

ˆ

QT

(
|FεF

T
ε |2 − (FεF

T
ε Fε) :F− (FFT

F) : (Fε − F)
)
ϕ

= lim
ε→0+

ˆ

QT

(
(FεF

T
ε Fε − FF

T
F) : (Fε − F)

)
ϕ ≥ 0,

where the inequality follows from Lemma 3.2.
455

The proof of (6.72) requires to express its left handside as the sum
∑3

j=1 Ij , where

I1 :=
〈
∇v : (FFT )−∇v :FFT , ϕ

〉

{M(QT ),C(QT )}
(6.73)

I2 :=

ˆ

QT

(
∇v :FFT −∇v : (FFT )

)
ϕ, (6.74)

I3 :=

ˆ

QT

(
∇v : (FFT )−∇vF :F

)
ϕ. (6.75)
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The term I1 is treated by the following lemma.

Lemma 6.2. For all ϕ ∈ C∞
c ((−∞, T )× Ω), ϕ ≥ 0, it holds

I1 =
〈
|D|2−|D|2, ϕ

〉

{M(QT ),C(QT )}
≤ 0. (6.76)

Proof. The inequality in the relation (6.76) is obvious due to the weak convergence
Dε ⇀ D in (L2(QT ))

2×2 (see (6.14)) and the weak lower semicontinuity of L2(QT ) norm.
Let us show that

I1 =
〈
|D|2−|D|2, ϕ

〉

{M(QT ),C(QT )}
by employing Lemma 6.1 on the reconstruction of the pressures pε, p and their con-
vergence and the convergence results from Subsection 6.1. Let ϕ ∈ C∞

c ((−∞, T ) × Ω),
ϕ ≥ 0, be arbitrary, let us recall that we assume Ω to be Lipschitz, hence for every δ > 0

there exists a smooth set Ω̃ ⊂ Ω̃ ⊂ Ω such that |Ω\ Ω̃| < δ. For a fixed t ∈ (0, T ) subtract
(6.58) tested by (v+∇p1)ϕ from (6.54) tested by (vε+∇p1,ε)ϕ, integrate the result over
(0, T ), use (6.33) and pass ε→ 0+ to obtain

lim
ε→0+

ˆ

QT

(
−∇vε : (FεF

T
ε ) +∇v : (FεF

T
ε )
)
ϕ = lim

ε→0+

9∑

j=1

Jj,ε,

where

J1,ε :=

ˆ T

0

〈∂t(vε +∇p1,ε), ϕ(vε +∇p1,ε)〉 −
ˆ T

0

〈∂t(v +∇p1), ϕ(v +∇p1)〉,

J2,ε := −
ˆ

QT

(vε ⊗ vε) : (ϕ∇vε) +

ˆ

QT

(v ⊗ v) : (ϕ∇v),

J3,ε := −
ˆ

QT

(vε ⊗ vε) : (vε ⊗∇ϕ) +
ˆ

QT

(v ⊗ v) : (v ⊗∇ϕ),

J4,ε := −
ˆ

QT

(vε ⊗ vε) : (∇p1,ε⊗∇ϕ+ϕ∇2p1,ε) +

ˆ

QT

(v ⊗ v) : (∇p1⊗∇ϕ+ϕ∇2p1),

J5,ε :=

ˆ

QT

(
|Dε|2−|D|2

)
ϕ,

J6,ε :=

ˆ

QT

Dε :
(
(vε+∇p1,ε)⊗∇ϕ+ ϕ∇2p1,ε

)
−
ˆ

QT

D :
(
(v+∇p1)⊗∇ϕ+ ϕ∇2p1

)
,

J7,ε := −
ˆ

QT

p2,ε ((vε +∇p1,ε)·∇ϕ+ ϕ∆p1,ε) +

ˆ

QT

p2 ((v +∇p1)·∇ϕ+ ϕ∆p1),

J8,ε := −
ˆ

QT

(FεF
T
ε ) : ((vε+∇p1,ε)⊗∇ϕ) +

ˆ

QT

(FεF
T
ε ) : ((v+∇p1)⊗∇ϕ),

J9,ε := −
ˆ

QT

(FεF
T
ε ) : (ϕ∇2p1,ε) +

ˆ

QT

(FεF
T
ε ) : (ϕ∇2p1).

Our aim is to show that all terms Jj,ε, j = 1, ..., 9, except J5,ε, converge to zero. The
convergence of J3,ε, J4,ε and Jj,ε for j = 6, ..., 9 follows from (6.14), (6.24), (6.25), (6.28),
(6.59) and (6.60). In order to treat J1,ε, we use the integration by parts, i.e.
ˆ T

0

〈∂t(vε+∇p1,ε), ϕ(vε+∇p1,ε)〉 =−
ˆ

Ω

|vε(0)+∇p1,ε(0)|2
2

ϕ(0)−
ˆ

QT

|vε+∇p1,ε|2
2

∂tϕ
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and
ˆ T

0

〈−∂t(v+∇p1), ϕ(v+∇p1)〉 =
ˆ

Ω

|v(0)+∇p1(0)|2
2

ϕ(0) +

ˆ

QT

|v+∇p1|2
2

∂tϕ.

Since vε, v belong to C([0, T ];L2
n,div), ∇p1,ε, ∇p1 belong to C([0, T ]; (L2(Ω̃))2) for every

smooth Ω̃ ⊂ Ω̃ ⊂ Ω and for each ε > 0 it holds vε(0) = v0 = v(0) a.e. in Ω, ∇p1,ε(0) =
∇p1(0) a.e. in Ω̃, we have

−
ˆ

Ω

|vε(0)+∇p1,ε(0)|2
2

ϕ(0) +

ˆ

Ω

|v(0)+∇p1(0)|2
2

ϕ(0) = 0,

from (6.24) and (6.59) it follows

lim
ε→0+

−
ˆ

QT

|vε+∇p1,ε|2
2

∂tϕ+

ˆ

QT

|v+∇p1|2
2

∂tϕ = 0,

hence J1,ε → 0 as ε → 0+. It remains to prove that J2,ε → 0 as ε → 0+. Using the
integration by parts and the property div vε = div v = 0 in QT , it holds

J2,ε = −1

2

ˆ

QT

(vε ⊗ vε) : (vε ⊗∇ϕ) + 1

2

ˆ

QT

(v ⊗ v) : (v ⊗∇ϕ),

which converges to zero by (6.24) and (6.25). Finally, as J5,ε → I1 by (6.33), the lemma
is proved.460

The term I2 (see (6.74)) is estimated, using (6.17), (6.28), (6.29), the Cauchy-Schwartz
inequality (together with the inequality |XY| ≤ |X||Y| for all X, Y ∈ R2×2) as follows:

I2 = lim
ε→0+

ˆ

QT

∇v :
(
(Fε − F)(Fε − F)T

)
ϕ ≤ lim

ε→0+

ˆ

QT

|∇v||Fε − F|2ϕ

=

ˆ

QT

|∇v|
(
|F|2 − |F|2

)
ϕ. (6.77)

The term I3 (see (6.75)) is estimated, employing (6.14), (6.17), (6.29), (6.33), the Cauchy-465

Schwartz inequality (together with the inequality |XY| ≤ |X||Y| for all X,Y ∈ R2×2) and
employing Korn’s and Yong’s inequalities, as follows:

I3 = lim
ε→0+

ˆ

QT

((∇vε −∇v)(F− Fε)) : (ϕF)

= lim
ε→0+

ˆ

QT

|∇vε −∇v| |Fε − F| |F|ϕ

≤ lim
ε→0+

ˆ

QT

(
ε̃|∇vε −∇v|2 + C̃|Fε − F|2|F|2

)
ϕ

≤ lim
ε→0+

ˆ

QT

(
ε̂|Dε − D|2 + C̃|Fε − F|2|F|2

)
ϕ

= ε̂
〈
|D|2 − |D|2, ϕ

〉
+ C̃

ˆ

QT

(
|F|2−|F|2

)
(|F|2ϕ), (6.78)
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where ε̃ ∈ (0, 1] is such small that we could set ε̂ ≤ 1 in the last inequality.
Summing (6.76), (6.77) and (6.78) and employing the definitions (6.73) (6.74), (6.75), we
obtain for all ϕ ∈ C∞

c ((−∞, T )× Ω), ϕ ≥ 0

〈
∇v :FFT −∇vF :F, ϕ

〉

{M(QT ),C(QT )}
=

3∑

j=1

Ij ≤
ˆ

QT

L̃(|F|2 − |F|2)ϕ

with
L̃ := (|∇v|+ C̃|F|2) ∈ L2(QT ),

which is the inequality (6.72) completing Step 2, where in (6.64) we can set L := 2L̃+1.
470

Performing of Step 3. As introduced above, the last Step 3 consists of renormalizing
the inequality (6.64) achieved in Step 2, proving that the renormalized inequality is valid
even for nonnegative smooth test functions ϕ supported up to the boundary of Ω and
concluding by a suitable choice of such ϕ and of the renormalisation function the result
|F|2 = |F|2 a.e. in QT . The following Lemma 6.3 concerns renormalisations, in the next475

Lemma 6.4 the passage to the smooth test functions supported up to the boundary is
treated.

Lemma 6.3. Let f := |F|2− |F|2, B ∈ C1([0,∞)), 0 ≤ B′(s) ≤ K for all s ∈ [0,∞) and

some K ∈ (0,∞). Then it holds for all ϕ ∈ C∞
c ((−∞, T )× Ω), ϕ ≥ 0

−
ˆ

QT

B(f)∂tϕ−
ˆ

Ω

B(0)ϕ(0)−
ˆ

QT

B(f)v ·∇ϕ ≤
ˆ

QT

LfB′(f)ϕ (6.79)

with L := 1 + 2
(
|∇v|+ C̃|F|2

)
.

Proof. First we need to show f ≥ 0 a.e. in QT , so that the formulation of the lemma
has sense. The relations (6.17) and (6.29) yield for all ϕ ∈ C∞

c ((−∞, T )× Ω), ϕ ≥ 0
ˆ

QT

(
|F|2−|F|2

)
ϕ = lim

ε→0+

ˆ

QT

|Fε − F|2ϕ. (6.80)

Since Fε,F definitely belong to L2(0, T ; (L2
loc(Ω))

2×2), we get from (6.80)

f := |F|2 − |F|2 ≥ 0 a.e. in QT . (6.81)

Now it follows the own proof of the lemma. As we proved in Step 2, it holds for all
φ ∈ C∞

c ((−∞, T )× Ω), φ ≥ 0

−
ˆ

QT

f∂tφ−
ˆ

QT

fv · ∇φ ≤
ˆ

QT

Lfφ. (6.82)

Let us extend v and F by zero outside of QT , set φ := ωδ(t − ·,x − ·), where [t,x] is a
fixed point from (−∞, T )×Ω, δ > 0 is arbitrary, ωδ is the standard time-space mollifying480

kernel and hδ(t,x) =
´

R×R2 ωδ(t− ·,x− ·)h(·, ·) for any h ∈ L1
loc(R× R2), and multiply

the result by (B′(fδ)(t,x) ϕ(t,x)), where ϕ ∈ C∞
c ((−∞, T )×Ω), ϕ ≥ 0 is arbitrary. We

obtain

∂tfδB
′(fδ)ϕ + div(fv)δB

′(fδ)ϕ ≤ (Lf)δB
′(fδ)ϕ a.e. in (−∞, T )× Ω,
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which can be rewritten into the form (use the property div v = 0 in (−∞, T )× Ω)

∂tB(fδ)ϕ+div (B(fδ)v)ϕ ≤ (Lf)δB
′(fδ)ϕ+ sδB

′(fδ)ϕ a.e. in (−∞, T )×Ω, (6.83)

where
sδ := div(fδv)− div(fv)δ.

Let us note that supp fδ ⊂ (−δ̃, T + δ̃)× R2 and especially fδ(−δ̃) = 0 whenever δ̃ ≥ δ.
Integrate (6.83) over (−∞, T )× Ω, use the integration by parts to obtain485

ˆ T

−δ̃

ˆ

Ω

(−B(fδ)∂tϕ−B(fδ)v · ∇ϕ)−
ˆ

Ω

B(0)ϕ(−δ̃)

≤
ˆ T

−δ̃

ˆ

Ω

((Lf)δB
′(fδ)ϕ+ sδB

′(fδ)ϕ) . (6.84)

First we pass δ → 0+. Since f ∈L2((−∞, T ) × Ω), v ∈L2(−∞, T ;W 1,2
0,div), Lemma 3.1

implies that sδ → 0 strongly in L1
loc((−∞, T )× Ω). Since B′ is bounded, it holds

lim
δ→0+

ˆ T

−δ̃

ˆ

Ω

sδB
′(fδ)ϕ = 0. (6.85)

Now let us treat the first term on the right handside of (6.84). As L ∈ L2((−∞, T )×Ω),
f ∈ L2((−∞, T )×Ω), it holds (Lf)δ → Lf strongly in L1

loc((−∞, T )×Ω). For a suitable
subsequence then (Lf)δ → Lf a.e. in (−∞, T ) × Ω, fδ → f a.e. in (−∞, T ) × Ω, and
since B ∈ C1([0,∞)), it holds

(Lf)δB
′(fδ)− LfB′(f) → 0 a.e. in (−∞, T )× Ω. (6.86)

Next, B′ is bounded (0 ≤ B′ ≤ K), from the standard properties of mollifying kernels
it follows ‖(Lf)δ‖L1((−∞,T )×Ω) ≤ ‖Lf‖L1((−∞,T )×Ω), hence the Lebesgue convergence
theorem with the integrable majorant 2KLf applied on (6.86) implies

lim
δ→0+

ˆ T

−δ̃

ˆ

Ω

(Lf)δB
′(fδ)ϕ =

ˆ T

−δ̃

ˆ

Ω

LfB′(f)ϕ. (6.87)

Now the terms on the left handside of (6.84) will be treated. It holds fδ → f strongly in
L2
loc((−∞, T )× Ω) and B is Lipschitz (B ∈ C1([0,∞)) and the derivative is bounded),

thus
B(fδ) → B(f) strongly in L2

loc((−∞, T )× Ω),

which together with the property v ∈ (L2((−∞, T )× Ω))2 implies

lim
δ→0+

ˆ T

−δ̃

ˆ

Ω

(−B(fδ)∂tϕ−B(fδ)v · ∇ϕ) =
ˆ T

−δ̃

ˆ

Ω

(−B(f)∂tϕ−B(f)v · ∇ϕ).

Taking the limit δ → 0+ in (6.84) and then δ̃ → 0+, employing the last limit and the
limits (6.85), (6.87), we conclude

−
ˆ

QT

B(f)∂tϕ−
ˆ

Ω

B(0)ϕ(0)−
ˆ

QT

B(f)v · ∇ϕ ≤
ˆ

QT

LfB′(f)ϕ.
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Lemma 6.4. Let f := |F|2− |F|2, B ∈ C1([0,∞)), 0 ≤ B′(s) ≤ K for all s ∈ [0,∞) and

some K ∈ (0,∞). Then it holds

−
ˆ

QT

B(f)∂tϕ−
ˆ

Ω

B(0)ϕ(0)−
ˆ

QT

B(f)v · ∇ϕ ≤
ˆ

QT

|LfB′(f)ϕ| (6.88)

with L := 1 + 2
(
|∇v|+ C̃|F|2

)
for all ϕ ≥ 0 of the form

ϕ(t,x) = ψ(t)η(x), ψ ∈ C∞
c ((−∞, T )), η ∈ C∞(Ω).

Proof. Let us define
ξm(x) := χm(dist(x, ∂Ω)),

where

χm(s) = χ(ms), χ ∈ C∞([0,∞)), χ(s) ∈ [0, 1], χ(s) =

{
0 if s ≤ 1

2

1 if s ≥ 1
.

From the definition of ξm one observes

ξm(x) ∈ [0, 1], ξm(x) =

{
0 if dist(x, ∂Ω) ≤ 1

2m

1 if dist(x, ∂Ω) ≥ 1
m

. (6.89)

Since Ω is a bounded Lipschitz domain, the function dist(x, ∂Ω) is Lipschitz, and as a
consequence

|∇ξm| ≤ Cm in Ω. (6.90)

Notice that 1 − ξm is not supported outside of the set Am :=
{
x ∈ Ω; dist(x, ∂Ω) ≤ 1

m

}

and ∇ξm is not supported outside of the set Ãm :=
{
x ∈ Ω; 1

2m ≤ dist(x, ∂Ω) ≤ 1
m

}
.

Since Ω is a bounded Lipschitz domain, it holds |Am| → 0, |Ãm| → 0 as m→ ∞.490

Let ψ ∈ C∞
c ((−∞, T )), η ∈ C∞(Ω), ψη ≥ 0, be arbitrary. Our goal is to prove

−
ˆ

QT

B(f)(∂tψ)η −
ˆ

Ω

B(0)ψ(0)η −
ˆ

QT

B(f) (v · ψ∇η) ≤
ˆ

QT

|LfB′(f)ψη|. (6.91)

We write

−
ˆ

QT

B(f)(∂tψ)η −
ˆ

Ω

B(0)ψ(0)η −
ˆ

QT

B(f) (v · ψ∇η)

= −
ˆ

QT

B(f) ∂t(ψηξm)−
ˆ

Ω

B(0) (ψηξm)(0)−
ˆ

QT

B(f) (v · ∇(ψηξm))

−
ˆ

QT

B(f)∂tψ η(1− ξm)−
ˆ

Ω

B(0)ψ(0) η(1 − ξm)

−
ˆ

QT

B(f) (v · ψ(1− ξm)∇η) +
ˆ

QT

B(f) (v · ψη∇ξm) (6.92)
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For the first line of the right handside it holds

lim
m→∞

(
−
ˆ

QT

B(f) ∂t(ψηξm)−
ˆ

Ω

B(0) (ψηξm)(0)−
ˆ

QT

B(f) (v · ∇(ψηξm))

)

≤ lim
m→∞

ˆ

QT

LfB′(f)ψηξm ≤
ˆ

QT

|LfB′(f)ψη| . (6.93)

The first inequality follows from Lemma 6.3 and the second one from the fact |ξm| ≤ 1.
For the first term of the second line of the right handside of (6.92) we have (use that B495

is Lipschitz, f is (quadratically) integrable over QT and limm→∞ |Am| = 0)

lim
m→∞

∣∣∣∣
ˆ

QT

B(f)∂tψ η(1− ξm)

∣∣∣∣ ≤ C lim
m→∞

ˆ T

0

ˆ

Am

|B(f)|

≤ C̃ lim
m→∞

‖f +B(0)‖L1((0,T )×Am) = 0.

The second term of the second line and the first term of the third line of the right handside
of (6.92) are treated analogously, they converge to zero as m→ ∞. For the last term of
(6.92) we have

lim
m→∞

∣∣∣∣
ˆ

QT

B(f) (v · ψη∇ξm)

∣∣∣∣ ≤ C̃ lim
m→∞

ˆ T

0

ˆ

Ãm

|B(f) mv|

≤ C̃ lim
m→∞

ˆ T

0

ˆ

Ãm

∣∣∣∣B(f)
v

dist(·, ∂Ω)

∣∣∣∣

≤ Ĉ lim
m→∞

‖f +B(0)‖L2((0,T )×Ãm) ‖∇v‖L2(QT )

= 0,

where in the last inequality we employed Hardy’s inequality for v and at the end we used500

that f ∈ L2(QT ), ∇v ∈ (L2(QT ))
2×2 and limm→∞ |Ãm| = 0. Since the second and the

third line of the right handside of (6.92) converge to zero (as we have just proved), the
equality (6.92) together with the relation (6.93) yield (6.91), which ends the proof of the
lemma.

505

Now we are prepared to conclude f := |F|2 − |F|2 = 0 a.e. in QT . Let us employ
Lemma 6.4 with B(f) = ln (f + ε̃), where ε̃ > 0 is a small number. Setting in (6.88)
ϕ(t,x) = ψ(t)η(x) with ∂tψ ≤ 0, ψ 6≡ 0 in (0, T ), η ≡ 1 in Ω leads to

−
ˆ

QT

ln(f + ε̃) ∂tψ −
ˆ

Ω

ln ε̃ ψ(0) ≤
ˆ

QT

∣∣∣∣
Lf

f + ε̃
ψ

∣∣∣∣ ,

where the left handside can be written as

−
ˆ

QT

ln(f + ε̃) ∂tψ +

ˆ

QT

ln ε̃ ∂tψ = −
ˆ

QT

ln

(
1 +

f

ε̃

)
∂tψ.

Hence it holds

−
ˆ

QT

ln

(
1 +

f

ε̃

)
∂tψ ≤

ˆ

QT

∣∣∣∣
Lf

f + ε̃
ψ

∣∣∣∣ ≤ C(T,Ω) (6.94)
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since L ∈ L2(QT ). If it did not hold f = 0 a.e. in QT , then the left handside of (6.94)
would blow up to +∞ as ε̃ → 0+ since f ≥ 0 a.e. in QT , ∂tψ ≤ 0 and ψ 6≡ 0, which
would be a contradiction with the uniform bound of the right handside of (6.94).

Hence
f = |F|2 − |F|2 = 0 a.e. in QT , (6.95)

which is, as introduced above, equivalent to the compactness of {Fε} in (L2(QT ))
2×2.

510

6.4. Positivity of detF

The aim of this subsection is to prove detF > 0 a.e. in QT by showing the uniform
estimate

sup
ε̃>0

ˆ

Ω

Sε̃(detF(t)) > −∞ for a.a. t ∈ (0, T ), (6.96)

where Sε̃(·) are truncations of the function ln(·) (specified later).
The evolutionary equation for the tensor F is formally written (see (4.3)) as

∂tF+ Div(F⊗ v)−∇vF+
1

2
(FFT

F− F) = O. (6.97)

Formally, multiplying (6.97) scalarly by (detF−ε̃)+F
−T

detF (with convention (detF−ε̃)+F
−T

det F =O

if detF = 0), using ∂ detF = detF tr(F−1∂F), where ∂ represents either the partial time
derivative ∂t, either the partial space derivative ∂xi

, i = 1, 2 (see e.g. [8]), we obtain

∂tSε̃(detF) + div(Sε̃(detF)v) +
1

2

(detF− ε̃)+

detF
tr
(
FF

T − I
)
= 0, (6.98)

where Sε̃(a) is a primitive function to (a−ε̃)+

a2 , i.e.

Sε̃(a) :=

{
ln a+ ε̃

a
if a > ε̃,

ln ε̃+ 1 if a ≤ ε̃.

Rigorously, extend v and F by zero outside of Ω. In (6.35) set

A := 2ωδ(x− ·)
(detFδ(x)− ε̃)+

detFδ(x)
F
−T
δ (x),

where x is a fixed point in Ω, ωδ denotes the standard space mollifying kernel and
hδ(x) :=

´

R2 ωδ(x− ·)h(·) for any function h ∈ L1
loc(R

2), to obtain a.e. in QT

∂tSε̃(detFδ) + div (Sε̃(detFδ)v) +
2(detFδ − ε̃)+

detFδ

(∇vF)δ : F−T
δ

+
(detFδ − ε̃)+

detFδ

(
(FFT

F)δ : F
−T
δ − 2

)
=

2(detFδ − ε̃)+

detFδ

Eδ : F−T
δ ,

where
Eδ := Div(Fδ ⊗ v)− Div(F⊗ v)δ.

Let t ∈ (0, T ). Integrating the last equation over (0, t) × Ω, using the integration by515

parts, the properties div v = 0 in QT , v = 0 on ΣT and Sε̃(detFδ) ∈ C([0, T ];L1(Ω)),
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Sε̃(detFδ(0)) = Sε̃(det(F0)δ) (we know that Fδ ∈ C([0, T ]; (L2(Ω))2×2), Fδ(0) = (F0)δ
a.e. in Ω, see e.g. Subsection 6.3, Step 1, and Sε̃(·) is Lipschitz continuous), we obtain

ˆ

Ω

Sε̃(detFδ(t))−
ˆ

Ω

Sε̃(det(F0)δ) + 2

ˆ t

0

ˆ

Ω

(detFδ − ε̃)+

detFδ

(∇vF)δ : F−T
δ

+

ˆ t

0

ˆ

Ω

(detFδ − ε̃)+

detFδ

(
(FFT

F)δ : F
−T
δ − 2

)
= 2

ˆ t

0

ˆ

Ω

(detFδ − ε̃)+

detFδ

Eδ : F−T
δ . (6.99)

The right handside of (6.99) converges to zero, it follows from Lemma 3.1 and Lebesgue’s
convergence theorem (proceeding analogously as in Subsection 6.3, Step 1). Next, let us

note that any nonsingular matrix A satisfy A−1 =
adj A

detA , thus in two spatial dimensions
(detA−ε̃)+

detA A−1 has the same regularity as A, and since F ∈ (L4((0, T )×R2))2×2 (thus for
a subsequence also Fδ → F a.e. in QT ), we can state for a subsequence

(detFδ − ε̃)+

detFδ

F
−1
δ → (detF− ε̃)+

detF
F
−1 a.e. in QT , weakly in (L4(QT ))

2×2. (6.100)

Employing (6.99) with the right handside converging to zero, the property div v = 0, the
convergence (6.100) and standard properties of mollifying kernels, we get520

ˆ

Ω

Sε̃(detF(t))−
ˆ

Ω

Sε̃(detF0) +

ˆ t

0

ˆ

Ω

(
(detF− ε̃)+

detF
|F|2 − 2

)
= 0. (6.101)

Since detF0 > 0, ln detF0 ∈ L1(Ω), Sε̃(detF0) ≥ ln detF0 and F ∈ (L2(QT ))
2×2, the

relation (6.101) implies

sup
ε̃>0

ˆ

Ω

Sε̃(detF(t)) > −∞ for a.a. t ∈ (0, T ), (6.102)

which leads to the result
detF > 0 a. e. in QT .

7. Proof of Theorem 2.3 with G1 = 1, B2 ≡ O

To complete the proof of Theorem 2.3 with restrictions G1 = 1, B := B1, B2 ≡ O,
except proving (2.13) and the continuity of B in time, it remains to proceed rigorously525

from (4.3) to (4.8). More precisely, it remains to derive from (4.10) the relations (2.9) and
(2.10) with G1 = 1, B := B1, B2 ≡ O. Let us extend F and v by zero outside of Ω. Test
(4.10) by (ωδ(x− ·) A(x) Fδ(x)), where x is a fixed point in Ω, ωδ is the standard space
mollifying kernel, hδ(x) :=

´

R2 ωδ(x− ·)h(·) for every h ∈ L1
loc(R

2) and A ∈ (C∞(Ω))2×2

is arbitrary. Then test transposed (4.10) by (ωδ(x − ·) FT
δ (x) A(x)). Summing both530

acquired equations, multiplying by an arbitrary φ ∈ C∞
c ((0, T )), integrating over QT ,

using the integration by parts and the properties div v = 0 in QT , v = 0 on ΣT , we
obtain

−
ˆ

QT

(
FδF

T
δ

)
: (∂tφ)A−

ˆ

QT

(
(FδF

T
δ )⊗ v

)
:φ∇A−

ˆ

QT

(
(∇vF)δF

T
δ + Fδ(F

T (∇v)T )δ
)
: φA

+
1

2

ˆ

QT

(
(FFT

F)δF
T
δ + Fδ(F

T
FF

T )δ
)
: φA−

ˆ

QT

(FδF
T
δ ) :φA =

ˆ

QT

(
EδF

T
δ + FδEδ

T
)
: φA,



39

where
Eδ := Div(Fδ ⊗ v)− Div(F⊗ v)δ.

Employing F∈ (L4((0, T )× R2))2×2, v∈L2(0, T ; (W 1,2(R2))2) and Lemma 3.1 together
with Lebesgue’s convergence theorem, we obtain Eδ → O strongly in (L

4
3 (QT ))

2×2 and535

due to standard properties of mollifying kernels then

−
ˆ

QT

(
FF

T
)
: (∂tφ)A−

ˆ

QT

(
(FFT )⊗ v

)
:φ∇A +

ˆ

QT

(
−∇v(FFT )− (FFT )∇vT

)
:φA

+

ˆ

QT

(
(FFT )2−FF

T
)
:φA = 0. (7.1)

Setting B := FFT , we get B ∈ (L2(QT ))
2×2, and as also v ∈ L2(0, T ;W 1,2

0,div)∩(L4(QT ))
2,

C∞(Ω) is dense in W 1,4(Ω) and W 1,4(Ω) →֒ L∞(Ω), from (7.1) it follows

∂tB ∈ L1(0, T ; ((W 1,4(Ω))2×2)∗)

and, using also the Du Bois-Reymond lemma, from (7.1) we conclude (2.9) with B := B1

of the form (2.10).
It remains to show

B ∈ C([0, T ]; (L1(Ω))2×2)

and the attainment of the initial condition (2.13). We write for all t0, t1 ∈ [0, T ] (the
second inequality follows from the Hölder inequality)540

ˆ

Ω

∣∣F(t1)F(t1)T − F(t0)F(t0)
T
∣∣ =
ˆ

Ω

∣∣F(t1)(F(t1)− F(t0))
T + (F(t1)− F(t0))F(t0)

T
∣∣ ,

≤
ˆ

Ω

|F(t1)| |F(t1)− F(t0)|+ |F(t1)− F(t0)| |F(t0)|

≤ ‖F(t1)‖2‖F(t1)− F(t0)‖2 + ‖F(t1)− F(t0)‖2‖F(t0)‖2,

which converges to zero as t1 → t0 if t0 ∈ (0, T ), as t1 → t0+ if t0 = 0, as t1 → t0−
if t0 = T , since F ∈ C([0, T ]; (L2(Ω))2×2). Hence B = FFT ∈ C([0, T ]; (L1(Ω))2×2) and
the property F(0, ·) = F0 a.e. in Ω (which follows from (6.37)) then implies fulfilling of
the condition(2.13).

545

8. Proof of Theorem 2.3 with G1, G2 > 0 arbitrary

Let us follow step by step the proof of Theorem 2.3 with G1 = 1, B2 ≡ O.

8.1. System with equations for F1, F2

The system with evolutionary equations for v, p, F1, F2 in QT reads550

div v = 0, (8.1)

∂tv + div(v ⊗ v) +∇p− divD− div
(
G1(F1F

T
1 ) +G2(F2F

T
2 )
)

= 0, G1, G2 > 0 (8.2)

∂tFi + Div(Fi ⊗ v)− (∇v)Fi +
1

2
(FiF

T
i Fi − Fi) = O, i = 1, 2 (8.3)

detFi > 0, i = 1, 2 (8.4)
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completed with the boundary condition

v = 0 on ΣT (8.5)

and with the initial conditions

v(0, ·) = v0 in Ω, (8.6)

Fi(0, ·) = Fi0 in Ω, i = 1, 2. (8.7)

We prove the existence of weak solutions to (8.1)–(8.7), i.e. the existence of v, F1, F2

fulfilling for i = 1, 2

v ∈ C([0, T ];L2
n,div) ∩ L2(0, T ;W 1,2

0,div),

∂tv ∈ L2(0, T ; (W 1,2
0,div)

∗),

Fi ∈ C([0, T ]; (L2(Ω))2×2) ∩ (L4(QT ))
2×2,

∂tFi ∈ L
4
3

(
0, T ; ((W 1,2(Ω))2×2)∗

)
,

detFi > 0 a.e. in QT

and satisfying for all w ∈W
1,2
0,div, A ∈ (W 1,2(Ω))2×2 and a.a. t ∈ (0, T )

〈∂tv,w〉 −
ˆ

Ω

(v ⊗ v) : ∇w +

ˆ

Ω

D : ∇w +

2∑

i=1

ˆ

Ω

Gi(FiF
T
i ) : ∇w = 0, (8.8)

〈∂tFi,A〉 −
ˆ

Ω

(Fi ⊗ v) : ∇A−
ˆ

Ω

((∇v)Fi) : A+
1

2

ˆ

Ω

(FiF
T
i Fi − Fi) : A = 0 (8.9)

with initial conditions v0, Fi0 fulfilled in the sense555

lim
t→0+

‖v(t)− v0‖2 = 0, (8.10)

lim
t→0+

‖Fi(t)− Fi0‖2 = 0. (8.11)

8.1.1. Approximations and their existence

We start with approximations, where on the left handside of (8.9) the term represent-
ing the stress diffusion is added, the term reads ε

´

Ω
∇Fi :∇A. The local in time existence

of Galerkin’s approximations to the corresponding system follows from the Carathéodory
theory for ordinary differential equations, simmilarly as in Subsection 5.1. Properly writ-
ten, let {wj}j∈N form a basis of W 1,2

0,div composed of eigenfunctions of the Stokes opera-
tor subject to the boundary condition w = 0 on ∂Ω, orthogonal in W

1,2
0,div, orthonormal

in L2
n,div, let {Aj}j∈N form a basis of (W 1,2(Ω))2×2 composed of eigenfunctions of the

Laplace operator subject to the boundary condition ∇A · n := {∇Akl · n}2k,l=1 = O

on ∂Ω, orthogonal in (W 1,2(Ω))2×2, orthonormal in (L2(Ω))2×2, then for every n ∈ N

there exist α1,n(t), ..., αn,n(t), βi,1,n(t), ..., βi,n,n(t) (but we write only α1, ..., αn, βi,1,...,
βi,n), i = 1, 2, such that

vn =

n∑

j=1

αjwj and Fi,n =

n∑

j=1

βi,jAj (8.12)
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solves for all j ∈ {1, ..., n}, for all t ∈ (0, t̃), where t̃ is certain positive number, the
following system:

∂t

(
ˆ

Ω

vn ·wj

)
−
ˆ

Ω

(vn ⊗ vn) : ∇wj +

ˆ

Ω

Dn : ∇wj +

2∑

i=1

ˆ

Ω

Gi(Fi,nF
T
i,n) : ∇wj = 0,

(8.13)

∂t

(
ˆ

Ω

Fi,n :Aj

)
−
ˆ

Ω

(Fi,n ⊗ vn) :∇Aj −
ˆ

Ω

(∇vnFi,n) :Aj

+
1

2

ˆ

Ω

(
Fi,nF

T
i,nFi,n − Fi,n

)
:Aj + ε

ˆ

Ω

∇Fi,n :∇Aj = 0. (8.14)

Let Pn denote the orthogonal projection from W
1,2
0,div to Wn := span{w1, ...,wn} and let

Qn denote the orthogonal projection from (W 1,2(Ω))2×2 to Xn := span{A1, ...,An}. Let
us note that Pn is continuous in L2

n,div and in W
1,2
0,div, Qn is continuous in (L2(Ω))2×2

and in (W 1,2(Ω))2×2. The functions vn are absolutely continuous in [0, t̃) with values
in Wn, the functions Fi,n are absolutely continuous in [0, t̃) with values in Xn and they
satisfy the initial conditions

vn(0, ·) = Pn(v0), Fi,n(0, ·) = Qn(Fi0) in Ω. (8.15)

The fact that t̃ = T is an easy consequence of the uniform estimates that follow.
560

In order to obtain the uniform estimates for vn, F1,n and F2,n, let us multiply (8.13)
by αj , (8.14) by β1,j , resp. by β2,j , and take the sum over j = 1, ..., n to obtain for
i = 1, 2 and for all t ∈ (0, T ) (use also the symmetry of Dn, the symmetry of Fi,nF

T
i,n

and the equality ∇vnFi,n : Fi,n = (Fi,nF
T
i,n) : ∇vn)

‖vn(t)‖22
2

+

ˆ t

0

‖Dn‖22 +
2∑

i=1

ˆ t

0

ˆ

Ω

Gi(Fi,nF
T
i,n) : ∇vn =

‖vn(0)‖22
2

, (8.16)

‖Fi,n(t)‖22
2

−
ˆ t

0

ˆ

Ω

(Fi,nF
T
i,n) : ∇vn +

1

2

ˆ t

0

(
‖Fi,nF

T
i,n‖22 − ‖Fi,n‖22

)

+ε

ˆ t

0

‖∇Fi,n‖22 =
‖Fi,n(0)‖22

2
. (8.17)

Summing (8.16), (8.17) for i = 1 multiplied by G1 and (8.17) for i = 2 multiplied by G2,
multiplying the result by 2, we get for all t ∈ (0, T )

‖vn(t)‖22 +
2∑

i=1

Gi‖Fi,n(t)‖22 +
ˆ t

0

(
2‖Dn‖22 +

2∑

i=1

Gi(‖Fi,nF
T
i,n‖22 + 2ε‖∇Fi,n‖2)

)

≤ ‖vn(0)‖22 +
2∑

i=1

Gi‖Fi,n(0)‖22 +
ˆ t

0

2∑

i=1

Gi‖Fi,n‖22. (8.18)

Since ‖vn(t)‖22 +
∑2

i=1Gi‖Fi,n(t)‖22 is estimated by the right handside of (8.18), the
Gronwall lemma applied on (8.18) (the functions ‖vn(·)‖2 and ‖Fi,n(·)‖2 are continuous
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in [0, T )) together with the continuity of Pn in L2
n,div, of Qn in (L2(Ω))2×2, and with the

conditions (8.15) implies for all t ∈ (0, T ) the inequality

‖vn(t)‖22 +
2∑

i=1

Gi‖Fi,n(t)‖22 ≤ et

(
‖v0‖22 +

2∑

i=1

Gi‖Fi0‖22

)
. (8.19)

Recall that G1, G2 > 0, employ the fact ‖Fi,n‖44 ≤ 2‖Fi,nF
T
i,n‖22 in (0, T ) (see the argu-

mentation in Subsection 5.2, here we only replace Fn by Fi,n). Then from (8.18), (8.19)565

and the Korn inequality it follows

sup
t∈(0,T )

‖vn(t)‖22 +
2∑

i=1

(
sup

t∈(0,T )

‖Fi,n(t)‖22

)
+ ‖∇vn‖22,QT

+

2∑

i=1

‖Fi,n‖44,QT

+ε

2∑

i=1

‖∇Fi,n‖22,QT
≤ C(T, ‖v0‖2, ‖F10‖2, ‖F20‖2). (8.20)

In (8.13) we can, obviously, replace the base functions wj by any function of the form
Pn(w), where w ∈ W

1,2
0,div is arbitrary, and in (8.14) we can replace Aj by any function

of the form Qn(A), where A ∈ (W 1,2(Ω))2×2 is arbitrary. Repeating the procedure from
Subsection 5.2, employing (8.20), the orthogonality and the continuity of Pn in L2

n,div and570

in W 1,2
0,div, the orthogonality and the continuity of Qn in (L2(Ω))2×2 and in (W 1,2(Ω))2×2,

we achieve the estimates for the time derivatives of vn and Fi,n that read

‖∂tvn‖L2(0,T ;(W 1,2

0,div
)∗) +

2∑

i=1

‖∂tFi,n‖
L

4
3 (0,T ;((W 1,2(Ω))2×2)∗)

≤ C̃(T,Ω, ‖v0‖2, ‖F10‖2, ‖F20‖2). (8.21)

The estimates (8.20) and (8.21) suffice to acquire the existence of v, F1, F2 such that for
i = 1, 2 it holds

vn ⇀∗ v weakly-* in L∞(0, T ;L2
n,div), (8.22)

vn ⇀ v weakly in L2(0, T ;W 1,2
0,div) ∩ (L4(QT ))

2, (8.23)

∂tvn ⇀ ∂tv weakly in L2
(
0, T ; (W 1,2

0,div)
∗
)
, (8.24)

Fi,n ⇀∗ Fi weakly-* in L∞
(
0, T ; (L2(Ω))2×2

)
, (8.25)

Fi,n ⇀ Fi weakly in L2
(
0, T ; (W 1,2(Ω))2×2

)
∩ (L4(QT ))

2×2, (8.26)

∂tFi,n ⇀ ∂tFi weakly in L
4
3

(
0, T ; ((W 1,2(Ω))2×2)∗

)
, (8.27)

by the Aubin-Lions compactness lemma also575

vn → v strongly in (Lq(QT ))
2 for all q ∈ [1, 4), (8.28)

Fi,n → Fi,n strongly in (Lq(QT ))
2×2 for all q ∈ [1, 4). (8.29)

Let us note that thanks to the properties v ∈ L2(0, T ;W 1,2
0,div), ∂tv ∈ L2

(
0, T ; (W 1,2

0,div)
∗
)
,

Fi ∈ L∞
(
0, T ; (L2(Ω))2×2

)
and ∂tFi ∈ L

4
3 (0, T ; ((W 1,2(Ω))2×2)∗), i = 1, 2, together with
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the density of (W 1,2(Ω))2×2 in (L2(Ω))2×2, the functions v, Fi after a possible change
on a zero-measure subset of (0, T ) enjoy

v ∈ C([0, T ];L2
n,div), (8.30)

Fi ∈ Cweak

(
[0, T ]; (L2(Ω))2×2

)
, i = 1, 2, (8.31)

and thus (use also the weak lower semicontinuity of L2(Ω) norm)580

sup
t∈(t0,t1)

‖v(t)‖22 = esssupt∈(t0,t1)‖v(t)‖
2
2, 0≤ t0<t1≤T, (8.32)

sup
t∈(t0,t1)

‖Fi(t)‖22 ≤ esssupt∈(t0,t1)‖Fi(t)‖22, 0≤ t0<t1≤T, i = 1, 2. (8.33)

Due to (8.13), (8.14), both multiplied by any φ ∈ C∞
c ((0, T )), due to (8.22)–(8.29) and

the density of
⋃

n∈N
Wn in W

1,2
0,div, of

⋃
n∈N

Xn in (W 1,2(Ω))2×2, the functions v, Fi,
i = 1, 2, satisfy for all w ∈W

1,2
0,div, for all A ∈ (W 1,2(Ω))2×2 and a.a. t ∈ (0, T )

〈∂tv,w〉 −
ˆ

Ω

(v ⊗ v) : ∇w +

ˆ

Ω

D : ∇w +
2∑

i=1

ˆ

Ω

Gi(FiF
T
i ) : ∇w = 0, (8.34)

〈∂tFi,A〉 −
ˆ

Ω

(Fi ⊗ v) : ∇A−
ˆ

Ω

((∇v)Fi) : A+
1

2

ˆ

Ω

(FiF
T
i Fi − Fi) : A

+ε

ˆ

Ω

∇Fi :∇A = 0. (8.35)

The attainment of the initial conditions (8.10), (8.11), where v, Fi, i = 1, 2 is a solution
to (8.34)–(8.35), is proved following step by step the procedure from Subsection 5.4: We585

derive (5.51) and (5.53) with F replaced by Fi and F0 replaced by Fi0 , i.e.

lim
t→0+

ˆ

Ω

v(t) : w =

ˆ

Ω

v0 : w ∀w ∈ L2
n,div, (8.36)

lim
t→0+

ˆ

Ω

Fi(t) : A =

ˆ

Ω

Fi0 : A ∀A ∈ (L2(Ω))2×2, i = 1, 2. (8.37)

Then, working with
∑2

i=1GiFi instead of F, we derive the inequality

lim sup
t→0+

(
‖v(t)‖22 +

2∑

i=1

Gi‖Fi(t)‖22

)
≤ ‖v0‖22 +

2∑

i=1

Gi‖Fi0‖22,

which together with (8.36), where w := v0, (8.37), where A := F10 if i = 1, A := F20

if i = 2 implies

lim sup
t→0+

(
‖v(t)− v0‖22 +

2∑

i=1

Gi‖Fi(t)− Fi0‖22

)
≤ 0, (8.38)

which due to the positivity of G1, G2 implies fulfilling of (8.10) and (8.11).
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8.1.2. Limit in approximations

Let us consider the sequence {vε}, {Fi,ε}, i = 1, 2, of solutions to (8.34), (8.35).590

Employing (8.20), the convergences (8.22), (8.23), (8.25), (8.26), the properties (8.32),
(8.33) and weak lower semicontinuity of all norms acting in (8.20), we deduce that in
(8.20) we can replace vn by vε and Fi,n by Fi,ε, i = 1, 2. And as one can check, using
the same argumentation as in Subsection 6.1, we gain (8.21) with ∂tvε instead of ∂tvn

and ∂tFi,ε instead of ∂tFi,n. Hence there exist v, Fi, i = 1, 2, satisfying the convergence595

relations (8.22)–(8.25), (8.27), (8.28) with vn replaced by vε and Fi,n replaced by Fi,ε,
instead of (8.26) we have the convergences

Fi,ε ⇀ Fi weakly in (L4(QT ))
2×2, (8.39)

ε∇Fi,ε → O strongly in (L2(QT ))
2×2×2. (8.40)

Taking the limit ε → 0+ in (8.34) with v := vε and in (8.35) with Fi := Fi,ε, i = 1, 2

then leads for all w ∈W
1,2
0,div, A ∈ (W 1,2(Ω))2×2 and a.a. t ∈ (0, T ) to

〈∂tv,w〉 −
ˆ

Ω

(v ⊗ v) :∇w +

ˆ

Ω

D :∇w +

2∑

i=1

ˆ

Ω

GiFiF
T
i :∇w = 0, (8.41)

〈∂tFi,A〉 −
ˆ

Ω

(Fi ⊗ v) :∇A −
ˆ

Ω

(∇v)Fi :A+
1

2

ˆ

Ω

(FiF
T
i Fi − Fi) :A = 0, (8.42)

where the notation a stands for the weak limit of a weakly convergent subsequence of600

{aε}. Since v ∈ L2(0, T ;W 1,2
0,div), ∂tv ∈ L2(0, T ; (W 1,2

0,div)
∗), Fi ∈ L∞(0, T ; (L2(Ω))2×2),

∂tFi ∈ L
4
3 (0, T ; (W 1,2(Ω))2×2)∗), i = 1, 2, and (W 1,2(Ω))2×2 is dense in (L2(Ω))2×2, the

functions v, Fi after a possible change on a zero-measure subset of (0, T ) satisfy

v ∈ C([0, T ];L2
n,div), (8.43)

Fi ∈ Cweak

(
[0, T ]; (L2(Ω))2×2

)
, i = 1, 2, (8.44)

and thus (use also the weak lower semicontinuity of L2(Ω) norm)

sup
t∈(t0,t1)

‖v(t)‖22 = esssupt∈(t0,t1)‖v(t)‖22, 0≤ t0<t1≤T, (8.45)

sup
t∈(t0,t1)

‖Fi(t)‖22 ≤ esssupt∈(t0,t1)‖Fi(t)‖22, 0≤ t0<t1≤T, i = 1, 2. (8.46)

In order to obtain the attainment of the initial conditions (8.10) and (8.11), where605

v, Fi, i = 1, 2 is a solution to (8.41)–(8.42), we follow the procedure from the end of
Subsection 6.1: For v, Fi, i = 1, 2 solving (8.41)–(8.42) we derive (8.36) and (8.37).
Then we take the limit in (8.38) with v := vε, Fi := Fi,ε, i = 1, 2 solving (8.34)–(8.35),
employing (8.22) with vn replaced by vε, (8.25) with Fi,n replaced by Fi,ε, (8.45), (8.46)
and weak lower semicontinuity of L2(Ω) norm, we obtain (8.38) for v, Fi, i = 1, 2 solving610

(8.41)–(8.42). Setting w := v0 in (8.36), A := F0 in (8.37) and employing (8.38), we
arrive at (8.10) and (8.11).

In order to obtain the property

Fi ∈ C([0, T ]; (L2(Ω))2×2), i = 1, 2, (8.47)
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we repeat the procedure from Subsection 6.2, only instead of (6.34) and (6.35) we work
with (8.41) and (8.42), setting i = 1 in order to prove (8.47) with i = 1, setting i = 2 for
the proof of (8.47) with i = 2.615

As Fi,ε ⇀ Fi, i = 1, 2 weakly in (L4(QT ))
2×2 and vε ⇀ v weakly in L2(0, T ;W 1,2

0,div),
in order to conclude (8.8)–(8.9) from (8.41)–(8.42) it suffices to prove the compactness
of {Fi,ε} in (L2(QT ))

2×2.

8.1.3. Compactness of F1,ε,F2,ε in (L2(QT ))
2×2

620

As Fi,ε ⇀ Fi weakly in (L4(QT ))
2×2, i = 1, 2, the compactness of Fi,ε in (L2(QT ))

2×2

is equivalent to the condition

fi := |Fi|2 − |Fi|2 = 0 a.e. in QT , i = 1, 2. (8.48)

Proceeding exactly in the same way as in Subsection 6.3, Step 1, we prove (6.62) and
(6.63) with Fi,ε in the role of Fε and Fi in the role of F (i = 1, 2). Next, following the
computations from Subsection 6.3, Step 2, we derive from the difference between (6.62)
and (6.63) (with Fi,ε in the role of Fε and Fi in the role of F) multiplied by Gi and
summed over i = 1, 2, for all ϕ ∈ C∞

c ((−∞, T )× Ω), ϕ ≥ 0, the inequality

−
ˆ

QT

2∑

i=1

(Gifi)∂tϕ−
ˆ

QT

2∑

i=1

(Gifi)v · ∇ϕ ≤
ˆ

QT

L

2∑

i=1

(Gifi)ϕ (8.49)

with L := maxi∈{1,2}

(
1 + 2(|∇v|+ Ĉ|Fi|2)

)
. The only difference from the computations

in Step 2 in Subsection 6.3 is that instead of F we work with the sum
∑2

i=1GiFi. After
that, following the argumentation in Step 3 in Subsection 6.3, we show

fi ≥ 0 a.e. in QT , i = 1, 2, (8.50)

and then, working with
∑2

i=1Gifi instead of f , we conclude

2∑

i=1

Gifi = 0 a.e. in QT . (8.51)

Since Gi > 0, i = 1, 2, the relations (8.50) and (8.51) imply fulfilling of (8.48), which is
equivalent to the compactness of {Fi,ε}, i = 1, 2, in (L2(QT ))

2×2.

8.2. Concluding the result

To complete the proof of Theorem 2.3, it suffices to conclude (2.9), (2.10) and the
initial condition (2.13). However, in order to conclude (2.10), we repeat the procedure625

from Subsection 6.4 with Fi (i = 1, 2) in the role of F, and in order to conclude (2.9) and
(2.13), we repeat the procedure from Section 7 with Fi in the role of F and Bi in the role
of B, i = 1, 2.

630
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9. Appendix

Proof of Proposition 6.1

Before making the proof of Proposition 6.1 let us quote from [25] the following lemma
concerning stationary Stokes problems.

Lemma 9.1. Let d ≥ 2, m ≥ −1, q ∈ (1,∞), Ω̃ ⊂ Rd, Ω̃∈Cmax{m+2,2}, g∈(Wm,q(Ω̃))d,635

w∗ ∈ (Wm+2− 1
q
,q(∂Ω̃))d,

´

∂Ω̃w∗ · n = 0. Then there exists unique weak solution [w, p̃],
´

Ω̃
p̃ = 0, to the Stokes problem

−∆w +∇p̃ = g in Ω̃,

divw = 0 in Ω̃,

w = w∗ on ∂Ω̃,

more specifically there exists unique couple [w, p̃] fulfilling

w ∈ (Wm+2,q(Ω̃))d, w−w∗∈(W 1,q
0 (Ω̃))d, p̃ ∈ Wm+1,q(Ω̃),

ˆ

Ω̃

p̃ = 0

and
ˆ

Ω̃

∇w :∇Φ−
ˆ

Ω̃

p̃ divΦ = 〈g,Φ〉 for all Φ ∈ (W 1,q′

0 (Ω̃))d,

ˆ

Ω̃

divw φ = 0 for all φ ∈ Lq′(Ω̃),

which is equivalent to the existence of unique

w ∈ (Wm+2,q(Ω̃))d, w −w∗ ∈ (W 1,q
0 (Ω̃))d, divw = 0 in Ω̃

fulfilling
ˆ

Ω̃

∇w :∇Φ = 〈g,Φ〉 for all Φ ∈ W̃
1,q′

0,div.

Moreover, the solution satisfies the estimate

‖w‖(Wm+2,q(Ω̃))d + ‖p̃‖Wm+1,q(Ω̃) ≤ ‖f‖(Wm,q(Ω̃))d + ‖w∗‖
(W

m+2− 1
q
,q
(∂Ω̃))d

with the convention W−1,q(Ω̃) = (W 1,q
0 (Ω̃))∗, W 0,q(Ω̃) = Lq(Ω̃).

640

For lucidity let us repeat the formulation of Proposition 6.1.

Proposition 9.2. Let Ω̃ ⊂ Ω̃ ⊂ Ω, Ω̃ ∈ C∞. Then for every ε > 0 there exists pε of the

form pε = p1,ε + p2,ε, where

p1,ε ∈ L2(0, T ;W 2,2(Ω̃)), (9.1)

p2,ε ∈ L2((0, T )× Ω̃), (9.2)

∂t (vε+∇p1,ε) ∈ L2
(
0, T ; ((W 1,2

0 (Ω̃))2)∗
)

(9.3)
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and for all w ∈ (W 1,2
0 (Ω̃))2 and a.a. t ∈ (0, T ) it holds

〈∂t(vε +∇p1,ε),w〉 =
ˆ

Ω̃

(Gε :∇w)+

ˆ

Ω̃

p2,ε divw, Gε :=(vε⊗vε)−Dε−FεF
T
ε . (9.4)

Next, there exists p of the form p = p1 + p2, where645

p1 ∈ L2(0, T ;W 2,2(Ω̃)), (9.5)

p2 ∈ L2((0, T )× Ω̃), (9.6)

∂t (v +∇p1) ∈ L2
(
0, T ; ((W 1,2

0 (Ω̃))2)∗
)

(9.7)

and for all w ∈ (W 1,2
0 (Ω̃))2 and a.a. t ∈ (0, T ) it holds

〈∂t(v +∇p1),w〉 =
ˆ

Ω

(G :∇w) +

ˆ

Ω

p2 divw, G := (v ⊗ v)− D− FFT . (9.8)

Moreover,

p1,ε → p1 strongly in L2(0, T ;W 2,2
loc (Ω̃)), (9.9)

p2,ε ⇀ p2 weakly in L2((0, T )× Ω̃). (9.10)

The functions ∇p1,ε and ∇p1 belong to C([0, T ]; (L2(Ω̃))2) and

∇p1,ε(0, ·) = ∇p1(0, ·) a.e. in Ω̃. (9.11)

Proof. Let Ω̃ be an arbitrary smooth domain fulfilling Ω̃ ⊂ Ω̃ ⊂ Ω. For every time
t ∈ [0, T ] let us introduce the Stokes problems

−∆w1,ε +∇p1,ε = vε in Ω̃, (9.12)

divw1,ε = 0 in Ω̃, (9.13)

w1,ε = 0 on ∂Ω̃, (9.14)

−∆w2,ε +∇p2,ε = divGε in Ω̃, (9.15)

divw2,ε = 0 in Ω̃, (9.16)

w2,ε = 0 on ∂Ω̃. (9.17)

Since vε ∈ L2(0, T ;W 1,2
0,div) ∩ C([0, T ];L2

n,div), Lemma 9.1 implies for all t ∈ [0, T ] the
existence of unique weak solution [w1,ε, p1,ε],

´

Ω̃ p1,ε = 0, to the system (9.12)–(9.14),650

more precisely [w1,ε, p1,ε] satisfy for all Φ ∈ (W 1,2
0 (Ω̃))2, φ ∈ L2(Ω̃) and all t ∈ [0, T ]

ˆ

Ω̃

∇w1,ε : ∇Φ−
ˆ

Ω̃

p1,ε divΦ =

ˆ

Ω̃

vε ·Φ, (9.18)
ˆ

Ω̃

divw1,ε φ = 0 (9.19)

and the estimate

‖w1,ε‖(Wm+2,2(Ω̃))2 + ‖p1,ε‖Wm+1,2(Ω̃) ≤ ‖vε‖(Wm,2(Ω))2 , m ∈ {−1, 0, 1}. (9.20)
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Let us note that (9.19) and (9.20) imply the condition

divw1,ε = 0 a.e. in Ω̃. (9.21)

Next, Gε := (vε⊗vε−Dε−FεF
T
ε ) ∈ (L2(QT ))

2×2, hence divGε ∈ L2(0, T ; ((W 1,2
0 (Ω̃))2)∗),

and by Lemma 9.1 there exists for a.a. t ∈ (0, T ) unique weak solution [w2,ε, p2,ε],
´

Ω̃ p2,ε = 0, to the Stokes problem (9.15)–(9.17), more precisely, [w2,ε, p2,ε] satisfy for all
Φ ∈ (W 1,2

0 (Ω̃))2, φ ∈ L2(Ω̃) and a.a. t ∈ (0, T )655

ˆ

Ω̃

∇w2,ε : ∇Φ−
ˆ

Ω̃

p2,ε divΦ = −
ˆ

Ω̃

Gε : ∇Φ, (9.22)
ˆ

Ω̃

divw2,ε φ = 0 (9.23)

and the estimate

‖w2,ε‖(W 1,2(Ω̃))2 + ‖p2,ε‖L2(Ω̃) ≤ ‖ divGε‖((W 1,2
0

(Ω̃))2)∗ . (9.24)

Let us note that (9.23) and (9.24) imply the condition

divw2,ε = 0 a.e. in Ω̃. (9.25)

Let θ ∈ C∞
c ((0, T )), Φ0 ∈ W̃

1,2
0,div be arbitrary. In (9.18) set Φ := Φ0, multiply the result

by ∂tθ and integrate over (0, T ) to obtain (use also the estimate (9.20))
ˆ T

0

ˆ

Ω̃

(vε ·Φ0) ∂tθ = −
ˆ T

0

ˆ

Ω̃

(∆w1,ε ·Φ0) ∂tθ. (9.26)

Since ∂tvε∈L2(0, T ; (W 1,2
0,div)

∗), from (9.26) it follows ∂t∆w1,ε∈L2(0, T ; (W̃ 1,2
0,div)

∗) and

〈∂tvε,Φ0〉 = −〈∂t∆w1,ε,Φ0〉 =
ˆ

Ω

(∂t∇w1,ε :∇Φ0) a.e. in (0, T ). (9.27)

Next, setting in (9.22) Φ := Φ0 yields
ˆ

Ω̃

Gε : ∇Φ0 = −
ˆ

Ω̃

∇w2,ε : ∇Φ0 a.e. in (0, T ). (9.28)

Summing (9.27) with (9.28) leads to

0 = 〈∂tvε,Φ0〉 −
ˆ

Ω̃

Gε : ∇Φ0 =

ˆ

Ω̃

∇(∂tw1,ε +w2,ε) : ∇Φ0 a.e. in (0, T ), (9.29)

where the first equality follows from (6.5). Since Φ0 ∈ W̃
1,2
0,div is arbitrary, the rela-

tions (9.19), (9.23) and (9.29) implies that wε := ∂tw1,ε +w2,ε ∈ W̃
1,2
0,div solves for a.a.

t ∈ (0, T ) the Stokes problem
ˆ

Ω̃

∇wε : ∇Φ0 = 0 ∀Φ0 ∈ W̃
1,2
0,div. (9.30)

Lemma 9.1 guarantees the existence of unique solution wε ∈ W̃
1,2
0,div to the Stokes problem

(9.30), hence
∂tw1,ε +w2,ε ∈ L2(0, T ; W̃ 1,2

0,div) (9.31)



49

and
∂tw1,ε +w2,ε = 0 a.e. in (0, T )× Ω̃. (9.32)

Now we can write for all Φ ∈ (C∞
c (Ω̃))2 and θ ∈ C∞

c ((0, T )) (in the first equality we use
(9.18) and (9.22), the second and the third equality is just the integration by parts, the660

last equality follows from (9.32))
ˆ T

0

ˆ

Ω̃

−(vε +∇p1,ε) · (∂tθ)Φ−
ˆ T

0

ˆ

Ω

(Gε :∇Φ)θ −
ˆ T

0

ˆ

Ω̃

(p2,ε divΦ)θ

=

ˆ T

0

ˆ

Ω̃

∆w1,ε · (∂tθ)Φ+

ˆ T

0

ˆ

Ω̃

(∇w2,ε :∇Φ)θ

=

ˆ T

0

ˆ

Ω̃

w1,ε · (∂tθ)∆Φ −
ˆ T

0

ˆ

Ω̃

(w2,ε ·∆Φ)θ

=

ˆ T

0

ˆ

Ω̃

− (∂tw1,ε+w2,ε) · (θ∆Φ) = 0.

Since Gε∈(L2(QT ))
2×2 and p2,ε ∈ L2((0, T )× Ω̃) (which follows from the estimate (9.24)

and the fact that Gε is quadratically integrable over time), the last chain yields

∂t(vε +∇p1,ε) ∈ L2(0, T ; ((W 1,2
0 (Ω̃))2)∗),

which is (9.3), and (recall that C∞
c (Ω̃) is dense in W 1,2

0 (Ω̃)) for all Φ ∈ (W 1,2
0 (Ω̃))2 and

a.a. t ∈ (0, T ) it holds

〈∂t(vε + p1,ε),Φ〉 =
ˆ

Ω̃

Gε : ∇Φ+

ˆ

Ω̃

p2,ε divΦ,

which is the relation (9.4) that we wanted to prove.
Next, let us prove (9.7) and (9.8). Since vε is uniformly bounded in L2(0, T ;W 1,2

0,div),
the estimate (9.20) implies that w1,ε is uniformly bounded in L2(0, T ; (W 3,2(Ω̃))2),
p1,ε is uniformly bounded in L2(0, T ;W 2,2(Ω̃)), and since w1,ε ∈ L2(0, T ; W̃ 1,2

0,div) and665

´

Ω̃
p1,ε = 0 for every ε > 0, there exists w1 ∈ L2(0, T ; (W 3,2(Ω̃))2 ∩ W̃

1,2
0,div) and

p1 ∈ L2(0, T ;W 2,2(Ω̃)),
´

Ω̃
p1 = 0, such that (for suitable subsequences of {w1,ε}, {p1,ε},

which we do not relabel)

w1,ε ⇀ w1 weakly in L2(0, T ; (W 3,2(Ω̃))2 ∩ W̃ 1,2
0,div), (9.33)

p1,ε ⇀ p1 weakly in L2(0, T ;W 2,2(Ω̃)). (9.34)

Let t ∈ (0, T ) be fixed. As vε → v strongly in (L2(QT ))
2 (see (6.24)), taking the limit

ε → 0+ in (9.18) and (9.19), employing the convergences (9.33) and (9.34), we observe670

that [w1, p1] satisfy for all Φ ∈ (W 1,2
0 (Ω̃))2, φ ∈ L2(Ω̃)

ˆ

Ω̃

∇w1 : ∇Φ−
ˆ

Ω̃

p1 divΦ =

ˆ

Ω̃

v ·Φ, (9.35)
ˆ

Ω̃

divw1 φ = 0. (9.36)

Next, from the estimate (9.24) and the facts that Gε is uniformly bounded in (L2(QT ))
2×2,

w2,ε ∈ L2(0, T ; W̃ 1,2
0,div) and

´

Ω̃ p2,ε = 0 for every ε > 0, there exist w2 ∈ L2(0, T ; W̃ 1,2
0,div),
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p2 ∈ L2((0, T )× Ω̃),
´

Ω̃
p2 = 0, such that (for suitable subsequences)

w2,ε ⇀ w2 weakly in L2(0, T ; W̃ 1,2
0,div), (9.37)

p2,ε ⇀ p2 weakly in L2((0, T )× Ω̃), (9.38)

Gε ⇀ G weakly in (L2(QT ))
2×2, (9.39)

where G := v ⊗ v − D− FFT . Taking the limit ε→ 0+ in (9.22) and (9.23), we observe675

that w2, p2 satisfy for all Φ ∈ (W 1,2
0 (Ω̃))2, φ ∈ L2(Ω̃)

ˆ

Ω̃

∇w2 : ∇Φ−
ˆ

Ω̃

p2 divΦ = −
ˆ

Ω̃

G : ∇Φ, (9.40)
ˆ

Ω̃

divw2 φ = 0. (9.41)

Lemma 9.1 guarantees the uniqueness of the solution to problems (9.35)–(9.36) and
(9.40)–(9.41) and the estimates

‖w1‖(Wm+2,2(Ω̃))2 + ‖p1‖Wm+1,2(Ω̃) ≤ ‖v‖(Wm,2(Ω))2 , m ∈ {−1, 0, 1},
‖w2‖(W 1,2(Ω̃))2 + ‖p2‖L2(Ω̃) ≤ ‖ divG‖((W 1,2

0
(Ω))2)∗ .

Now proceeding in the same way as on the approximate level, we conclude

∂t(v +∇p1) ∈ L2(0, T ; ((W 1,2
0 (Ω̃))2)∗),

which is (9.7), and for all Φ ∈ (W 1,2
0 (Ω̃))2 and a.a. t ∈ (0, T )

〈∂t(v + p1),Φ〉 =
ˆ

Ω̃

G : ∇Φ+

ˆ

Ω̃

p2 divΦ,

which is the relation (9.8) that we wanted to prove.
Concerning the convergence results – the weak convergence (9.10) follows immediately

from (9.38). Let us show the strong convergence (9.9). By subtracting (9.35) from (9.18)
and (9.36) from (9.19) it is obvious that w1,ε −w1, p1,ε − p1 solve the Stokes problem
with the right handside vε − v. By Lemma 9.1 the solution is unique and satisfies the
estimate

‖w1,ε −w1‖(Wm+2,2(Ω̃))2 + ‖p1,ε − p1‖Wm+1,2(Ω̃) ≤ ‖vε − v‖(Wm,2(Ω))2 m ∈ {−1, 0, 1}.
(9.42)

From (9.42) with m = 0 it follows

lim
ε→0+

ˆ T

0

‖p1,ε − p1‖2W 1,2(Ω̃)
≤ lim

ε→0+

ˆ T

0

‖vε − v‖2(L2(Ω))2 = 0, (9.43)

where the second equality is achieved by the strong convergence (6.24). The relation
(9.43) yields

p1,ε → p1 strongly in L2(0, T ;W 1,2(Ω̃)). (9.44)

We need to show that also

∇2p1,ε → ∇2p1 strongly in L2(0, T ; (L2
loc(Ω̃))

2×2). (9.45)
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Let us denote
p̃ε := p1,ε − p1.

To prove (9.45) we will use the property

∆p̃ε = 0 a.e. in (0, T )× Ω̃, (9.46)

which follows from the equality

−∆(w1,ε −w1) +∇p̃ε = vε − v a.e. in (0, T )× Ω̃

(w1,ε −w1, p̃ε is the solution to the Stokes problem with the right handside vε − v and
∆(w1,ε − w1), ∇p̃ε are integrable over QT ) and from the fact div vε = div v = 0 =

divw1,ε = divw1 a.e. in (0, T )× Ω̃. The equation (9.46) implies
ˆ

Ω̃

∇p̃ε · ∇ϕ = 0 ∀ ϕ ∈ W
1,2
0 (Ω̃). (9.47)

Take ϕ := φξ2, where φ ∈W 1,2(Ω̃), ξ ∈ C∞
c (Ω̃). We can rewrite (9.47) into the form

ˆ

Ω̃

∇(p̃εξ) · ∇(φξ) = −
ˆ

Ω̃

div(p̃ε∇ξ) φξ −
ˆ

Ω̃

(∇p̃ε · ∇ξ) φξ. (9.48)

Denote ψ := φξ, gε := − div(p̃ε∇ξ)−(∇p̃ε ·∇ξ). Since every ψ ∈ W
1,2
0 (Ω̃) can be written

in the form φξ, where the functions φ, ξ have the properties described above, (9.48) gives
ˆ

Ω̃

∇(p̃εξ) · ∇ψ =

ˆ

Ω̃

gεψ ∀ψ ∈W
1,2
0 (Ω̃). (9.49)

Employing the local regularity of weak solutions to elliptic problems, we have

‖p̃εξ‖W 2,2(Ω̃) ≤ ‖gε‖L2(Ω̃). (9.50)

Since ξ ∈ C∞
c (Ω̃) is arbitrary, the inequality (9.50) together with the definitions of p̃ε

and gε implies for every ˜̃Ω ⊂ ˜̃Ω ⊂ Ω̃

ˆ T

0

‖∇2p1,ε −∇2p1‖(L2( ˜̃Ω))2×2
≤ C

ˆ T

0

‖p1,ε − p1‖W 1,2(Ω̃), (9.51)

and since the right handside of (9.51) converges to zero by (9.44), we obtain (9.45), which680

together with (9.44) yields the strong convergence (9.9).
To finish the proof of the lemma, it remains to show the continuity of p1,ε, p1 with

respect to time and the convergence of the initial conditions p1,ε(0), p1(0). Let t1 and t2
from [0, T ] be arbitrary. The functions w1,ε(t1) −w1,ε(t2), p1,ε(t1) − p1,ε(t2) solve the
Stokes problem with the right handside vε(t1) − vε(t2). By Lemma 9.1 this solution is
unique and it satisfies the estimate

‖w1,ε(t1)−w1,ε(t2)‖(W 2,2(Ω̃))2 + ‖p1,ε(t1)− p1,ε(t2)‖W 1,2(Ω̃) ≤ ‖vε(t1)− vε(t2)‖(L2(Ω))2 .

Since the right handside converges to zero as t2 → t1 if t1 ∈ (0, T ), as t2 → t1+ if t1 = 0,
as t2 → t1− if t1 = T (since vε ∈ C([0, T ];L2

n,div)), we conclude that ∇p1,ε belongs to
C([0, T ]; (L2(Ω̃))2). The fact ∇p1 ∈ C([0, T ]; (L2(Ω̃))2) is proved in the same way.
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Finally, from the relation (9.42) we know that

‖∇p1,ε(t)−∇p1(t)‖(L2(Ω̃))2 ≤ ‖vε(t)− v(t)‖(L2(Ω))2 (9.52)

for all t ∈ [0, T ] (recall that vε,v belong to C([0, T ]; (L2(Ω))2) and ∇p1,ε,∇p1 belong to685

C([0, T ]; (L2(Ω̃))2)). And since vε(0)=v(0)=v0 a.e. in Ω, we conclude ∇p1,ε(0)=∇p1(0)
a.e. in Ω̃, which is the relation (9.11) completing the proof of the proposition.
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