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Abstract The conjugate gradient method (CG) for solving linear systems of
algebraic equations represents a highly nonlinear finite process. Since the origi-
nal paper of Hestenes and Stiefel published in 1952, it has been linked with the
Gauss-Christoffel quadrature approximation of Riemann-Stieltjes distribution
functions determined by the data, i.e., with a simplified form of the Stieltjes
moment problem. This link, developed further by Vorobyev, Brezinski, Golub,
Meurant and others, indicates that a general description of the CG rate of
convergence using an asymptotic convergence factor has principal limitations.
Moreover, CG is computationally based on short recurrences. In finite precision
arithmetic its behaviour is therefore affected by a possible loss of orthogonality
among the computed direction vectors. Consequently, any consideration con-
cerning the CG rate of convergence relevant to practical computations must
include analysis of effects of rounding errors.

Through the example of composite convergence bounds based on Cheby-
shev polynomials, this paper argues that the facts mentioned above should
become a part of common considerations on the CG rate of convergence. It
also explains that the spectrum composed of small number of well separated
tight clusters of eigenvalues does not necessarily imply a fast convergence of
CG or other Krylov subspace methods.
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1 Introduction

In this paper we consider the method of conjugate gradients (CG) [33] for
solving linear algebraic systems Az = b, where A € CV*V is Hermitian and
positive definite (HPD) matrix which is typically large and sparse. Given an
initial guess xg and rog = b — Axg, the CG approximations xj are uniquely
determined by the relations

g € xo+ Kip(A,r), 1 L Ki(A,r0), k=1,2,...,
where r, = b — Axy, is the k-th residual and
Kr(A, o) = span{rg, Arg, ..., Akilro}

is the k-th Krylov subspace associated with the matrix A and the vector rg.
Apart from simple examples, CG can not be applied without precondition-
ing. Throughout this paper we assume that Ax = b represents the precon-
ditioned system. CG can be introduced in more general infinite dimensional
Hilbert space settings; see, e.g. [61, Chapter III, Sections 2 and 4], [19,62], and
also the recent descriptions using the Riesz map in, e.g., [38,30]. Throughout
this paper, the finite dimensional linear algebraic formulation will be sufficient.
If A and b results from preconditioning of discretized operator equation (as
in numerical solution of partial differential equations), then the precondition-
ing is often motivated by the operator context; see, e.g. [59,22,5,34,7,52,38].
In practical computations, preconditioning is incorporated into the algorithm
and the preconditioned system Ax = b is not formed. For an analytic investi-
gation of the rate of convergence assuming exact arithmetic this difference is
not important. In finite precision arithmetic, convergence is delayed due to the
loss of orthogonality among the computed direction (residual) vectors. This
can be conveniently demonstrated using the preconditioned system Az = b
without going into further details on the particular preconditioning technique.
An example of a detailed rounding error analysis can be found, e.g., in [56].

1.1 CG, Gauss-Christoffel quadrature and the Stieltjes moment problem

Throughout the paper we assume that A € CN*¥ is HPD with the spectral
decomposition

A =Udiag(\y,..., \y)U*, U'U =UU* =1 (1)

where for simplicity of notation 0 < Ay < ... < Ay and U = [uq,...,un].
Using this spectral decomposition, v1 = ro/||rol| and w; = [(vi,u;)|?, j =



1,..., N, the moments of the distribution function w(\) determined by the

nodes A1, ..., Ay and the weights wq,...,wn are given by
N
> owiN =vidku, k=0,1,2,.... (2)
j=1

The n-node Gauss-Christoffel quadrature of the monomials then determines
the n nodes Gl(n) and weights wl(n), [ =1,...,n, of the distribution function
w(™(\) such that the first 2n moments of the distribution function w(\) are

matched, i.e.,

ngn){GEn)}k — v{Akm, k=0,1,2,...,2n. (3)
=1

Here the sums on the left hand sides of (2) and (3) can be expressed via the
Riemann-Stieltjes integrals for the monomials with respect to the distribution
functions w(\) and w(™(\) respectively.

As explained in [37, Section 3.5] with references to many earlier pub-
lications, CG applied to Ax = b with the initial residual ry can be un-
derstood as a process generating the sequence of the distribution functions
w™(X\), n = 1,..., N approximating the original distribution function w(\)
in the sense of the Gauss-Christoffel quadrature. Equivalently, CG (implicitly)
solves the (simplified) Stieltjes moment problem (2)—(3). The energy norm of
the CG error is then given by

N n
lz = zal% =lroll? [ Y widyt = > w™ {6y (4)
j=1 =1
2
B
=[Irol ZH T Ty | Wi (5)
j=11=1 )‘j 91

see [37, Section 5.6.1, Corollary 5.6.2 and Theorem 5.6.3]. The nodes Hl(n) and
the weights wl(") are the eigenvalues and the squared first components of the
associated normalized eigenvectors of the Jacobi matrix 7, generated in the
first n steps of the Lanczos process applied to the matrix A with the initial
vector v1. The matrix T}, represents the operator A : CV — CV restricted
and orthogonally projected onto the n-th Krylov subspace K, (4, 1), which
reveals the degree of nonlinearity with respect to A; see, e.g., [61,12,37]!.
Recalling the previous facts prior to starting a discussion of a-priori bounds
or estimates for the CG rate of convergence (based on some simplified informa-
tion extracted from A and b) makes a good sense for the following reason. Any
such bound or estimate has to deal with the tremendous nonlinear complexity
of the expressions (4) and (5). Further details can be found, e.g., in [37,24,41].

1 The nonlinearity with respect to b has recently been studied in [26].



1.2 Comments on the a-priori analysis of the CG rate of convergence

A-priori analysis of the rate of convergence of CG (as well as of other Krylov
subspace methods) focuses on certain relatively simple characteristics of the
problem which can conveniently be linked (if applicable) with the underlying
system of infinite dimensional operator equations, its preconditioning and dis-
cretisation. A condition number of the preconditioned discretized operator in
combination with some information on large or small eigenvalues may serve
as the most typical example of such characteristics. Following the functional
analysis-based investigation in [45] as well as experimental observations, it is
assumed that the rate of convergence follows the following three consecutive
phases (see [45, Section 1.3]):

“in the early sweeps the convergence is very rapid but then slows down,
this is the sublinear behavior. The convergence then settles down to a
roughly constant linear rate. ... Towards the end new speed may be
picked up again, corresponding to the superlinear behavior.”

Heuristic arguments on CG based on the spectrum of A are used to support this
assumption (see also [6, Section 1]). It should be taken into account, however,
that this assumption and the supporting heuristics are based on experience
with some spectral distributions. It can not be generalized to all practical prob-
lems. This is made clear in [45] by the sentence almost immediately following
the quoted one given above:

“In practice all phases need not be identifiable, nor they appear only
once and in this order.”

The sublinear, linear and superlinear phases are analysed in literature using
various tools; see, e.g., [45,62,6] or the survey in [7, Sections 2—4]. Section 3.2
of [6] gives a nice example on how the reasoning about an initial sublinear
phase can be applied in practice; see also [4].

Applications of the results associated with particular phases to practi-
cal computations or to analysis of a particular problem requires verification
whether the assumptions used in derivations are met in the given problems.
Here the asymptotic reasoning requires a special attention. As stated in [22,
p. 113]:

“Methods with similar asymptotic work estimates may behave quite dif-
ferently in practice”.

Krylov subspace methods are mathematically finite. Therefore, strictly speak-
ing, in Krylov subspace methods there is no asymptotic present at all.

In relation to the last point it is sometimes argued in literature that due to
rounding errors Krylov subspace methods do not terminate in a finite number
of steps and therefore they are considered iterative methods which also jus-
tifies use of asymptotic bounds. In our opinion this point is not valid. First,
effects of rounding errors depend on whether methods are implemented via
short or long recurrences; see [37, Sections 5.9 and 5.10]. Second, the standard



CG implementation is based (for a good reason; see, e.g., the surveys in [41]
and [31]) on coupled two-term recurrences. In finite precision arithmetic the
orthogonality of the computed residuals (or direction vectors) can not be, in
general, preserved, which results in a delay of convergence. The mechanism of
this delay is well understood, and its consequences should not be interpreted
as making the iteration process infinite.

This is immediately clear from the other effect of rounding errors, called
maximal attainable accuracy. The accuracy of the computed approximate so-
lution can not be improved below some level of the error determined by the
implementation, computer arithmetic and the input data,; see, e.g., [28, Section
7.3], [41, Section 5.4], [37, Section 5.9.3] and the references given there. CG
as well as other Krylov subspace methods are considered iterative because the
iteration can be stopped whenever the user-specified accuracy is reached; see,
e.g. [32, Section 2.4.2] and [3, p. 450]. The stopping criteria must be based on
a-posteriori error analysis; see, e.g. [1, in particular Section 4.1] for a recent
survey of the context in adaptive numerical solution of elliptic partial differ-
ential equations, as well as [20] and [3, Appendix A] for some early examples.

Throughout this paper we assume that the iteration is stopped before the
maximal attainable accuracy is reached. Such assumption can not be taken in
practical computations for granted. It must be justified by a proper numerical
stability analysis (a simple a-posteriori check can be based on comparison of
the iteratively and directly computed residuals). A detailed exposition of the
related issues is out of the scope of this paper and we refer the interested
reader to the literature given above.

In summary, a-priori analysis of the CG rate of convergence must take into
account a possible delay of convergence due to rounding errors. Since in CG
computations keeping short recurrences is essential, which inevitably results in
a loss of orthogonality, developing bounds or estimates which are to be applied
to practical computations can not assume exact arithmetic.

1.3 Analysis based on Chebyshev polynomials

In this paper we focus on the most common a-priori analysis of the CG con-
vergence rate based on Chebyshev polynomials. The rate of convergence of
CG is associated with linear convergence bounds derived using scaled and
shifted Chebyshev polynomials in hundreds of papers and essentially in every
textbook covering the CG method. As argued in Section 1.1 above, the CG
method and therefore also its convergence rate are, however, nonlinear and
its convergence often tends to accelerate, with more or less pronounced varia-
tions, during the iteration process. Axelsson [2] and Jennings [35] suggested
in this context composite polynomial bounds based on explicit annihilation of
the outlying eigenvalues. Such bounds seemed to offer an illustrative expla-
nation especially in case when large outlying eigenvalues were present in the



spectrum.? These composite polynomial bounds assumed exact arithmetic. As
rounding errors may substantially delay convergence of the CG method, it is
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Fig. 1 Rounding errors can cause a substantial delay of convergence in finite precision CG
computations (solid line) in comparison to their exact precision counterpart (dash-dotted
line). A composite polynomial bound (dashed line) fails to describe the finite precision CG
behaviour quantitatively (the slope given by the bound is not descriptive) and qualitatively
(the staircase-like shape of the convergence curve).

not clear whether the composite polynomial bounds and the conclusions based
on them apply to finite precision CG computations. A motivating example is
presented in Figure 1. It indeed shows that a composite polynomial bound can
fail to describe CG convergence quantitatively and even qualitatively. The dif-
ficulty has been to some extent noticed already by Jennings in the paper [35],
and also by van der Sluis and van der Vorst [58] who therefore restrict them-
selves to the case of small outlying eigenvalues, where the difficulty caused by
finite precision arithmetic is not strongly pronounced. In the rest of the paper
we deal with the composite polynomial bounds with large outlying eigenvalues.
They are used for quantitative evaluation of CG convergence and conclusions
based on them are published in recent literature.

The paper is organized as follows. In Section 2 we briefly clarify the rela-
tionship between the CG method, the CSI method and the well known linear
convergence bound derived using Chebyshev polynomials. Section 3 describes
the construction of the composite polynomial bounds and comments on their
properties. In Section 4 we use results of the backward-like analysis by Green-
baum and compare ezact CG computations where matrices have well separated
individual eigenvalues, with exact CG computations where matrices have cor-
responding well separated clusters of eigenvalues. We conclude that a “bird’s
eye view” of the spectrum can be misleading in Krylov subspace methods.

2 It should be understood, however, that the spectral upper bounds do not necessarily de-
scribe the actual CG convergence behaviour for particular right hand sides (initial residuals);
see, e.g., [37, Sections 5.6.1-5.6.3] and [9-11,43,44].



Based on that we examine validity of the composite polynomial bounds for
finite precision CG computations. We conclude and numerically demonstrate
that in the presence of large outlying eigenvalues such bounds have, apart
from simple exceptions, little in common with the finite precision behaviour
of the CG method. Section 5 presents numerical experiments which illustrate
in detail shortcomings of the composite polynomial bounds. Concluding re-
marks summarize the presented clarifications and formulate recommendations
for evaluation of the CG rate of convergence.

Writing this paper is motivated by persisting misunderstandings reappear-
ing in literature. This is not meant as a criticism or a negative statement. Our
point is that the whole matter is very complex and this should be taken into
account whenever any simplification is made. The presented formulas are not
new, but, except for the Chapter 5 of the monograph [37], they have not been,
to our knowledge, presented in a comprehensive way in a single publication.
Most of the points are presented in [37], but their placement is subordinate
to the organization of the whole monograph, which addresses many related
as well as many distant topics. Therefore we consider useful to publish this
focused presentation, which in some parts (in particular Section 4 and Sec-
tion 5) complements the presentation in [37] by some new observations. In
comparison to a monograph covering much larger area, presentation in the
paper allows to focus on interpretation of the formulas. We believe that here
the interpretation is more important than the formulas themselves. A need for
the correct interpretation can be underlined by the following quote presented
(in a somewhat related context) in the instructive paper by Faber, Manteuffel
and Parter [22, p. 113]:

“There is no flaw in the analysis, only a flaw in the conclusions drawn
from the analysis.”

2 Chebyshev semi-iterative method, conjugate gradient method
and their convergence bounds

The idea of the Chebyshev semi-iterative (CSI) method can be linked, with
the works of Flanders and Shortley [23], Lanczos [36] and Young [63]. The
CSI method requires a knowledge or estimation of the extreme eigenvalues
A1 < Ay of A and it can be implemented using the three-term recurrence
relation for the Chebyshev polynomials; see, e.g., [60, Chapter 5].

The CSI method can be viewed as a polynomial acceleration of the sta-
tionary Richardson iterations [50] where the k-th error can be written as

z—xp = o (A)(z — 20), (6)

and the iteration polynomial

R 22 \*
¢k(>\)—(1—m)



belongs to the set of polynomials of degree k with the constant term equal
to one (i.e. having the value one at zero). As has been already observed by
Richardson in [50], replacing the k-multiple root of the iteration polynomial
qka”()\) by k distinct roots may lead to faster convergence. The CSI method is
motivated by the following reasoning. Let

r —xp, = ¢r(A) (T — 20),

where ¢ (A), ¢ (0) = 1, represents the polynomial of degree at most k. Then
the A-norm of the error

N|=

[ = zll4 = {(z = z)" Az — 21)}

is given by
2 — 2kl 4 = [ox(A) (@ — 20)[| o (7)

and using the spectral decomposition (1) of A the relative A-norm of the error
satisfies

2 — k4

—2 < ||o(A)|| = max |or(A;)]. 8

o S IOl = s jo ) ®)
The right hand side in (8) is independent of the right hand side b and thus
it represents the worst case upper bound. Maximizing over the whole interval
[A1, An] instead of the discrete set of eigenvalues Aj, ..., Ax gives the bound

& — k4
m M.
|z — xoll 4, — Ae[/\?,}iw] 94l ©)

Setting the roots of the iteration polynomial ¢y () as the roots of the shifted
Chebyshev polynomial

9\ — _
coS (k: arccos (%)) for A € [A1, An],
Xk(>‘) — N 1

cosh [ k arccosh A S for A ¢ [A1, An],
AN — A1

(10)

is motivated by the fact that

Px(A) = xx(A)/xx(0) (11)

represents the unique solution of the minimization problem

i A 12
Jin Aer[gi%]ld )| (12)
deg(¢)<k

originally solved by Markov [39]. In words, the k-th shifted and scaled Cheby-
shev polynomial has the minimal maximum norm on the interval [Al,)\N]
among the set of all polynomials of degree at most k£ having the value one at
Z€ro.



Substituting (11) into (9) and using |xx(A)| < 1 for X € [A;, An] results in
the bound for the relative A-norm of the error

[ =kl a

< |Xk(0)|_17 k:071a27"'; (13)
lz = zoll 4

see [63, Section 2]. The alternative definition of the Chebyshev polynomials

Xk(v)=%((7+(v2—1)%>k+(v+(72—1)%>k) (14)

(see, e.g., [51, Section 1.1]) gives with the shift v = (2A —Ax — A1)/(An — A1)
used in (10) after a simple manipulation

RS Ve RS A N VA R AN I VAU RSN
e Jr(A) — 1 S +1) | T2\ e -1
(15)

2
where k(A) = Ay /A1 is the condition number of A. This gives the convergence
bound for the CSI method, which was published in this form by Rutishauser
21, T1.23] in 1959,

k
e — il W(A) — 1
<2 . k=0,1,2,.... 16
7 — o]l 5 A 11 (16)

The CG approximations xj minimize the A-norm of the error over the
manifolds xg + K (A, 70); cf. [33, Theorem 4.1]. Equivalently,

[z —aklla = min [lo(A)(z — 20l 4 (17)
©(0)=1
deg(p)<k
v 1/2
. 2 2
= min A7 N7 (s , 18
oy Z|§]| 50 (Aj) (18)

deg(p)<k (=1

where |{;| represents the size of the component of the initial error z — z in
the direction of the eigenvector u; corresponding to A;, i.e.,

N
T —To = Zgjuj (19)
j=1
and, similarly to (18),
N 1/2
2
lz —zoll o = D I&G1P N ¢ (20)

j=1
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The formula (17) leads, using the spectral decomposition (1) of A, to the
bound for the relative A-norm of the error

[ =kl

min  max )G 921
HI - $0||A = p(0)=1 j=1,..,.N |90( ])| ( )
deg(p)<k

cf. (8). This bound is independent on the right-hand side b and thus it repre-
sents the worst case upper bound for the CG method. Since

. -1 -1
Juin - max [p(A)] < PO max b ()] < (O], (22)
deg(¢)<k

we can apply (15) and conclude that the bound (16) must also hold for the
CG method.

Now we come to the point which is fundamental but still very rarely men-
tioned in literature. It should be acknowledged that (16) represents the bound
for the CSI method; see the very clear description given by Rutishauser in [21].
This bound holds for the CG method because the optimal polynomial giving
the minimum in (21) can be bounded using (22). The behaviour of ||z — x| 4
for some given initial error (residual) is, however, given by (18), which can
be substantially different than suggested by (21) and therefore certainly sub-
stantially different than suggested by the CSI error bound (16). The different
nature of the CG and CSI methods is clear also from the comparison of the
minimization problems (12) and (18). Whereas the CSI norm of the error
can be tightly bounded by the minimization problem over the whole interval
[A1, An], the CG norm of the error is determined by the discrete minimization
problem.

We have presented the (known) derivation in detail in order to avoid further
misinterpretations of the relationship between the CSI and CG methods and
of the relationship of the bound (16) to the CG rate of convergence. In short,
as described in Section 1.1, CG solves the simplified Stieltjes moment prob-
lem. Therefore the CG iteration polynomials ¢x (), k =0,1,..., N defined by
(17) are orthogonal with respect to the (discrete) inner product determined
by the Riemann-Stieltjes integral with the distribution function w(\). The
Chebyshev polynomials xx(\), k=0, 1,... are orthogonal with respect to the
certain continuous and discrete inner products which contain apart from the
extremal eigenvalues A\; and Ay no further information about the data A, b
and ro (or & — zp); see, e.g. [51, Section 1.5] and [16, Theorem 4.5.20]. Poly-
nomials orthogonal with different inner products can indeed be very different.
Therefore it is beyond any doubt that, except for very special situations, the
bound (16) relevant for the CSI method has a very little in common with the
rate of convergence of the CG method. Further details and extensive historical
comments can be found in [37, Section 5.6.2].

The upper bound (16) implies that, in exact arithmetic,

ke = B In (%) K(A)W (23)
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iterations ensure the decrease of the relative energy norm of the CSI (and
therefore also CG) error below the given level of accuracy ¢ > 0 (here [-]
denotes rounding up to the nearest integer). As justified in [27,29], using results
of a thorough analysis, the presented results hold, with a small correction, also
for finite precision arithmetic CG computations. When k(A4) = Ay/A =~ 1,
the linear system is easily solvable. Using the bound (16) and the iteration
count (23) for CG computations then does not cause any harm. But in such
cases one should also ask whether the CG method is really needed for solving
such problems. Simpler methods might be fast enough. If k(A) > 1, then,
depending on the distribution of the spectrum inside the interval [\, An], the
CG method and the CSI method can naturally perform very differently. In
such cases an application of the bound (16) to the CG method should always
be accompanied with an appropriate justification.

3 Composite polynomial bounds and superlinear convergence
assuming exact arithmetic

As mentioned above, the superlinear convergence behaviour of the CG method
in exact arithmetic was explained by Axelsson [2] and Jennings [35] using
composite polynomial bounds. For any given polynomial ¢, () of degree m <
k satisfying ¢,,(0) = 1 we obtain

i )< mi ey 24
Jmin - max JeQy)l < min - max o lam(A)e()]s (24)
deg(¢) <k deg(ip) <k—m

where the minimax problem on the right hand side considers the composite
polynomial g, (A)¢(A). In order to describe the superlinear convergence in
case of large outlying eigenvalues, Axelsson and Jennings propose in [2,35] the
following natural choice

am(N) = jzj\f[m“ (1 - %) (25)

Since the polynomial g,,(\) given by (25) has by construction its roots at the
m largest eigenvalues, the relative A-norm of the error is bounded, using (21)
and (24), as

2 — x4

< min max |gm(A\j)@(A; 26

|z — zoll, o(0)=1 j=1’___7N| m(Aj)e(A5)] (26)
deg(p)<k—m

< o lem(9)l - min o maxe(A)]- o (27)

deg(p)<k—m

The polynomial ¢(\) is evaluated only at the eigenvalues A1, ..., Ay . There-
fore the use of the composite polynomial

Qm()‘)kam(A)/kam(O)a (28)
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where xg—m(A\) denotes the Chebyshev polynomial of degree k — m shifted
to the interval [Ai, An_pm], results using |, (A;)] < 1for j =1,...,N —m,
analogously to Section 2, in the bound

|z = 2rlla o of VEm(4) 1
[z —olly =\ \/km(4) +1

where K., (A) = An—m/A1 is the so-called effective condition number. This
quantity is typically substantially smaller than the condition number x(A)
which indicates possibly faster convergence after m initial iterations. Illustra-

k—m
) , k=mm+1,..., (29)

N

A,=0.1 A

N8 Mg=0 Ay=15

Fig. 2 Illustration of the composite polynomial (28) with k = 8 and m = 2. The polynomial
has roots at two large outlying eigenvalues and on the rest of the spectrum is small due to the
minimax property of the Chebyshev polynomials. Here the underlying matrix of dimension
N would have two largest eigenvalues Ay = 15,Ay_1 = 9 and the remaining eigenvalues
would be arbitrarily distributed in the interval [0.1, 6].

tion of the composite polynomial (28) is for £ = 8, m = 2, and the eigenvalues
A1 = 0.1, Ayv_2 = 6,A\y_1 = 9 and Ay = 15 given in Figure 2. As we can
immediately observe, the composite polynomial has even for small N, k£ and
small k(A) and k,,(A) very large gradients close to the outlying eigenvalues
An_1 and Ay. This observation will be important below.

Using an idea analogous to [58], CG computations with the initial error
x — xo are compared in [37, Theorem 5.6.9] to CG computations with the
initial error x — Ty obtained from x — zg by neglecting the components &; in
the direction of the m eigenvectors corresponding to the m largest eigenvalues,

1/2
N—m
- 2
lz —Zolla =4 D I&G1P N ¢ (30)
j=1
This comparison gives the following formula
2 = Zkllg <l —2pll4 < llz = Tpmlly, kF=mm+1,... (31)

The right inequality in (31) shows that CG computation for Az = b with
the initial error & — xo (the initial residual ro = b — Axp) is from its m-th
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iteration at least as fast as CG computations for Ax = b with the initial
error  — Zo from the start. Dividing this inequality by ||z — ]| , and using
|z — Zoll 4, < |lz — 20l 4 we get the upper bound (29) based on the idea of
composite polynomial, indeed

k—m
|x—mk||A<||x—xk—m||A§2< K/TVL(A)_1> , k=m,m+1,....

[z —zolls = llz—Zoll4 VEm(A) +1
(32)

This upper bound can be interpreted as if the first m CG iterations “annihi-
late” the m large outlying eigenvalues with the subsequent convergence rate
bounded linearly by (32). It should be noted, however, that this is nothing
but an interpretation. CG computations do not work that way; see also [37,
Section 5.6.4].

Analogously to (23) in Section 2 we get from the upper bound (32) that
after

ke = m + B In <§> nm(A)—‘ (33)

iterations, the relative A-norm of the error drops below the given tolerance ¢;
see [2, p. 132], [35, relation (5.9)] as well as the recent application of this
formula in [53, Theorem 2.5].

It should be emphasized, however, that all this is true only in exact arith-
metic. The rest of the paper explains that, in general, this approach must fail in
finite precision arithmetic. The failure of the composite polynomial bounds in
finite precision CG computations can be explained by the fact that the closely
related Lanczos method computes in finite precision arithmetic repeated ap-
proximations of large outlying eigenvalues. This was observed by many authors
and it led to results explaining finite precision behaviour of the Lanczos and
CG methods; see, in particular, [49,27,40] and the survey [41] referring to
extensive further literature. Despite the theoretical and experimental coun-
terarguments, the composite polynomial bounds and the related asymptotic
convergence factor ideas with neglecting eigenvalues away from the rest of the
spectrum as insignificant are tempting to be used for justification of cost in
CG computations; see e.g. [38, Remark 2.1], [57, Section 20.4] and [53, Theo-
rem 2.5]. In the rest of the paper we restrict ourselves to investigation of the
bound (32) and the formula (33). Other approaches not based on Chebyshev
polynomials should be in the presence of large outlying eigenvalues examined
analogously.

4 Analysis of the composite polynomial bounds in finite precision
arithmetic

The CG method determines in exact arithmetic an orthogonal basis of the
Krylov subspace K (A, 70) given by the residuals r;, 7 =0,1,...,k — 1. How-
ever, in finite precision CG computations the orthogonality of the computed
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residual vectors is (usually quickly) lost and they often become even (numeri-
cally) linearly dependent. Consequently, the computed residual vectors may at
the step k span a subspace of dimension smaller than k. This rank-deficiency
of computed Krylov subspace bases thus determines delay of convergence of
finite precision computations, which can be defined as the difference between
the number of iterations required to attain a prescribed accuracy in finite pre-
cision computations and the number of iterations required to attain the same
accuracy assuming exact arithmetic.

The bound (29) and the number of iterations (33) were derived assum-
ing exact arithmetic and therefore they do not reflect possible delay of con-
vergence. In finite precision CG computations they suffer from a fundamen-
tal difficulty outlined in Figure 1 and illustrated in more detail in Figure 3.
Here the dashed lines plot the sequence of the composite polynomial bounds
(29) with increasing number of the large eigenvalues of A considered as out-
liers (m = 0,3,6,...). The bold solid line represents the convergence curve

relative A-norm of the error

0 50 100 150 200 250 300
iteration number

Fig. 3 The sequence of the composite polynomial bounds (29) (dashed lines) for increasing
number of deflated large eigenvalues (m =0, 3,6,...) is compared with the results of finite
precision CG computations (bold solid line) and exact CG computations (dash-dotted line).

of the finite precision CG and the dash-dotted line the CG behaviour as-
suming exact arithmetic®. Computations were performed using a symmetric
positive definite diagonal matrix A of the size N = 50 with the eigenvalues
0 <A\ <X < ...<Av—1 < Ay, where \; = 0.1, Ay = 10%, the inner
eigenvalues were given by the formula
1—1
N -1

i = A1+ ANy =)V i=2,...,N—1 (34)

and p = 0.8; see [54,29,40]. The parameter p € (0,1] determines the non-
uniformity of the spectrum. For p < 1 the eigenvalues tend to cumulate near

3 CG behaviour assuming exact arithmetic is simulated throughout the paper by double
reorthogonalization of the residual vectors; see [29,48].
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A1 and for p = 1 the spectrum is distributed uniformly. In our experiments
we use the vector b of all ones, i.e., b= [1,...,1]T. We observe that the linear
convergence bounds determine (a close) envelope for the exact arithmetic CG
convergence curve. This is in correspondence with the intuitive explanation of
the superlinear convergence behaviour of CG in exact arithmetic presented in
literature. The data in this example do not represent a purely academic case.
Spectra with large outlying eigenvalues do appear in practice; see e.g., [8] for
an early study on this related to preconditioning techniques.

The point is that none of the straight lines describes the finite precision
convergence behaviour, as can be seen by comparing the dashed lines with the
bold solid line. Evidently, the composite polynomial bounds (29) can not be
used, in general, as upper bounds.

The finite precision behaviour of the Lanczos and CG methods was ana-
lyzed, in particular, by Paige and Greenbaum; see [27,48,49]. Shortly speaking,
Greenbaum has proved that

the finite precision Lanczos computation for a matrix A and a given
starting vector v produces in steps 1 through k the same eigenvalue
approximations (the same Jacobi matrix T}) as the exact Lanczos com-
putation for some particular larger matrix E(k) and some particular
starting vector 0(k) while the eigenvalues of A(k) all lie within tiny in-
tervals around the eigenvalues of A. The size as well as (all) individual
entries of A(k) and 9(k) depend on the rounding errors in the steps 1
through k.

It should be emphasized that E(k) s not giwven by a slight perturbation of A, as
sometimes stated in literature; E(k) is typically much larger than A. This is il-
lustrated on Figure 4. An analogous statement is valid, with a small inaccuracy
specified in [27], also for the behaviour of finite precision CG computations.
This explains why (29) and (33) must fail, in general, in finite precision arith-
metic, where m CG steps are not enough to annihilate the influence of the m
large outlying eigenvalues. One may suggest to resolve the matter by adding
several penalty steps which account for the effects of rounding errors. The
number of such additional steps, however, depends on current iteration k and
it can not be determined a-priori. The difficulty is illustrated in Figure 1 above
where the “penalty” is given by the horizontal differences between the dashed
line (the bound) and the solid line (computed results).

As stated above, the matrix A(k) and the vector 9(k) depend on the itera-
tion step k. The reasoning about the delay in finite precision CG computations
suggests (it was experimentally confirmed in [29]) that the particular matrix
A\(kz) constructed for the k steps of the given finite precision CG computation
can be replaced (with an acceptable inaccuracy) by a matrix A having suf-
ficiently many eigenvalues in tight clusters around each eigenvalue of A; see
also the detailed argumentation in [41] and, in particular, in [37, Section 5.9].
The appropriate starting vector associated with A can be constructed from A
and b independently of k. As an example, the matrix A used in our experi-
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A(k), EXACT Lanczos — Ty

(CN

A, FP Lanczos — Ty
the first k steps

Fig. 4 For any k = 1,2, ... the first k steps of the finite precision Lanczos computation for
A € CVXN can be analyzed as the first k steps of the exact Lanczos for the (possibly much

larger) matrix ﬁ(k) € CN (k)X N (k) depending on k which generates the same k x k Jacobi
matrix T}.

ments below has [ eigenvalues ’):JJ < ’)\\%2 <...< Xj,l uniformly distributed
in tiny intervals [A; — A, \; + A] around each original eigenvalue \; of A,
Jj=1,2,...,N, where [ is sufficiently large in correspondence to the maximal
number of the performed iterations steps. The associated right hand side b is
obtained from b by splitting each individual entry 3; of b into [ equal parts
Bjis---, 0 such that Zi=1 Bi.=03, 7=1,2,...,N; see [29].

As an immediate consequence of the results from [27,29] we get that con-
vergence behaviour of exact CG applied to a matrix with the spectrum having
well separated clusters of eigenvalues is both qualitatively and quantitatively
different from the convergence behaviour of exact CG applied to a matrix
with a spectrum where each cluster is replaced by a single eigenvalue. We can
conclude that even for the CG method, the HPD matrix and assuming exact
arithmetic,

a spectrum composed of a small number of tight clusters can not be
associated, in general, with fast convergence.

Indeed, the associated Stieltjes moment problems from Section 1.1 can be for
different distribution of eigenvalues very different. This is true, in particular,
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when clusters of eigenvalues are replaced by single (representing) eigenvalues
of the same weights; see [47]. This point contradicts the common belief which
seems widespread.

We will now explain how this fact is reflected in the composite polynomial
convergence bounds (29). Using the relationship with the exact CG compu-
tations applied to A\, the corresponding minimization problem which bounds
the CG convergence behaviour in finite precision arithmetic is not

i VI 35
Jmin - max le(A5)] (35)
deg(p)<k
where A1,..., Ay are the eigenvalues of A; see (21). Instead, one must use
min - max [p(A)], (36)
©(0)=1 xeg(A)
deg(p) <k

where the spectrum of the matrix A consists of the union of the individual

clusters around the original eigenvalues A\;, j =1,..., N, i.e., in our case
o= U {F Al (37)
j=1,..,N

Consequently, in order to be valid for finite precision CG computations, the
upper bound based on the composite polynomial (28) from Section 3 must use
instead of

maxJan )X O]/ [t (0)] (38)
which considers the values of the composite polynomial at the eigenvalues
A1, ..., Ay of A, the modification

max |gm (A)Xk—m(A)]/ [Xk—m (0], (39)
Aeo(A)

which considers the values of the composite polynomial at the eigenvalues of
the matrix A. As a consequence of the minimality property of the Chebyshev
polynomial yi_.,(\) over the interval [A\1, A\y_.,], its values outside this in-
terval become even for small k very large. More specifically, the Chebyshev
polynomial is outside the minimality interval the fastest growing polynomial of
the given degree; see, e.g., [51, Section 2.7, rel. (2.37)] and [16, Section 3.2.3].
The composite polynomial has, by construction, large values of its gradient at
the large outlying eigenvalues of A; see the illustration in Figure 2 above. The
values of the composite polynomial at the points located in the tight clusters
around such large outlying eigenvalues can therefore be huge even for small k,
and the upper bound based on the expression (39) becomes after several iter-
ations in practical computations meaningless; see the illustration in Figure 5.
The left part shows finite precision CG convergence behaviour (bold solid line)
corresponding to the right hand side b of ones and the matrix A of dimension
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Fig. 5 Left: Whereas the exact CG convergence behaviour corresponding to A,/I; (solid line)
is both quantitatively and qualitatively different from the exact CG convergence behaviour
corresponding to A, b (dash-dotted line), it nicely matches the finite precision CG computa-
tion (bold solid line) using A, b. The composite polynomial bound (29) (bold dashed line) is
irrelevant and the bound (39) (dashed line) becomes after several iterations meaningless due
to huge values of the composite polynomial in the neighborhood of the outlying eigenvalues
of A. Right: Using the logarithmic vertical scale we plot a detail of the absolute values of
the composite polynomial (with restriction to the values in the interval [10~#, 10'3]) corre-
sponding to the k-th iteration with k = 2,3 and 4. The values of the composite polynomial
at the eigenvalues Ay s, s = 1,...,[ clustered around the largest eigenvalue Ay blow up
even for the smallest degrees of the corresponding shifted Chebyshev polynomial X, (\)
(k—m =1 and 2). Here the width of the cluster around Ay is 4e || A[| ~ 107°.

N = 40 with m = 2 large outlying eigenvalues Ay_; = 10*, Ay = 10° and
with the eigenvalues A1,..., Any_o determined using

A :A1+N17nil(AN_m—A1)pf¥l_”L_’ i=2.. N—m—1 (40)
with p;, = 0.9, Ay = 0.1 and Ay_o = 1. We compare it with exact CG con-
vergence behaviour (solid line) corresponding to the associated vector b and
matrix A with A = 2¢||A| and [ = 15, where & = 2752 is machine roundoff
unit; cf. [29, p. 126]. In agreement with [29] we observe quantitative and quali-
tative similarity of both convergence curves. The composite polynomial bound
(29) (bold dashed line) with m = 2 (i.e. considering 2 largest eigenvalues of
the matrix A as outliers) is for the finite precision computations irrelevant and
the associated bound (39) (dashed line) practically immediately blows up. The
latter is a consequence of the evaluation of the composite polynomial at the
eigenvalues of A clustered around the outlying eigenvalues of A as visualized
in the right part of the figure.

The spectral upper bound applicable to finite precision CG computations
based on the minimization problem (36) was investigated, following [27,29], by
Notay in [46]. He considered the composite polynomial where the part dealing
with the outlying eigenvalues has possibly many roots in the neighborhood of
the large outlying eigenvalues. The paper presents an estimate of the number
of iterations needed to deal with the outlying eigenvalues as the number of
iterations increases. This requires estimating the frequency of forming multi-
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ple copies of the large outlying eigenvalues, which unavoidably uses partially
empirical arguments and requires knowledge of all large outlying eigenvalues.
The paper [46] instructively demonstrates that a-priori investigation of the CG
rate of convergence, which aims at realistic results including effects of round-
ing errors, is inevitably rather technical. Consequently, a practical application
of a realistic a-priori analysis which is not specialized to some particular cases
is limited.

5 Other shortcomings of composite polynomial bounds

In this section we will comment and numerically demonstrate several other
drawbacks of the composite polynomial bound (29). Our observations can be
summarized in the following points.

a) The composite polynomial bound (29) by construction does not depend on
distribution of the eigenvalues within the interval [A1, Axy_y,]. In contrast
to that, a finite precision CG behaviour can significantly depend on this
distribution.

b) Unlike the bound (29), finite precision CG computations depend on the
position of the large outlying eigenvalues.

¢) The failure of the composite polynomial bound (29) in finite precision CG
computations can occur even for a small size and/or conditioning of the
problem.

In the numerical illustrations below we used diagonal matrices A and the right
hand side b of all ones.

relative A-norm of the error

0 50 100 150 200 250 300
iteration number

Fig. 6 Unlike the composite polynomial bound (dashed line), both exact (dash-dotted lines)
and finite precision (bold solid lines) CG convergence behaviour are sensitive to the change of
distribution of the eigenvalues in the interval [A1, AN _,,]. In finite precision computations
the difference between the uniform distribution with p;, = 1 and the distribution with
pin = 0.95 is significant.
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Point a) In Figure 6 we compare CG computations applied to two prob-
lems with the same outlying eigenvalues, the same effective condition number
Em(A) = AN—m /A1 but with different distribution of the eigenvalues within
the interval [A1, AN_p,]. Computations were performed using diagonal matri-
ces of dimension N = 80 with m = 7 large outlying eigenvalues Ay _g, ..., AN
and the eigenvalue A\x_7 determined using (34) with \; = 0.1, Ay = 10° and
P = pout = 0.3. The eigenvalues Ao, ..., A\y_g are distributed in the interval
[A1, An_7] either uniformly or using (40) with p;, = 0.95.

The composite polynomial bound (29) with m = 7 (dashed line) is the same
for both computations, as it does not reflect the distribution of the eigenvalues
within the interval [A1, Ax_m]. On the contrary, the convergence of the CG
method depends in exact arithmetic slightly (dash-dotted lines) and in finite
precision arithmetic very significantly (bold solid lines) on the distribution of
all eigenvalues, including those in the interval [A1, Ay —m]-

Point b) As mentioned in the previous paragraph, the convergence behaviour
of the CG method depends on distribution of all eigenvalues. Thus the position
of the outlying eigenvalues is of importance. In Figure 7 we plot the finite

relative A-norm of the error

0 5 10 15 20 25 30 35 40 45
iteration number

Fig. 7 Finite precision CG computations (bold solid lines) are, in contrast to the exact
CG convergence behaviour (dash-dotted lines), sensitive to the position of the single large
outlying eigenvalue Apn. The frequency of forming multiple approximations of the largest
eigenvalue is seriously affected by its position. The bounds based on the composite polyno-
mial (28) (dashed line) can fail also in the presence of only a single large outlier.

precision CG convergence curves (bold solid lines) and CG behaviour assuming
exact arithmetic (dash-dotted lines) using the diagonal matrices of dimension
N = 50 whose largest eigenvalue Ay = 10 respectively Ay = 108 is considered
as the only outlier and the eigenvalues \1,..., Ay_1 are distributed uniformly
within the interval [A;, Ay—1], A1 = 0.1, Ay_1 =0.3.

The exact CG convergence behaviour is in both cases nearly identical. The
delay of convergence in the finite precision CG computation with the outly-
ing eigenvalue Ay = 108 is naturally more significant than with the outlying
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eigenvalue Ay = 10. This happens due to more frequent occurrence of the mul-
tiple approximations of the largest eigenvalue. Thus the information about the
number of eigenvalues lying above some given number X (as used, e.g., in [53,
Corollary 2.2] or [38, p. 4]) is without further analysis of the problem not
sufficient for estimating the actual convergence rate of finite precision CG
computations. A single large outlying eigenvalue can affect the “asymptotic”
rate of convergence. The composite polynomial bound (29) can fail even in
this case.

Point ¢) Depending on the distribution of eigenvalues, the composite conver-
gence bound can fail even for small and well-conditioned problems. We will use
diagonal matrices with spectrum determined in the following way. We consider
4 different problems with N = 30 or 100 and Ay = 10 or 10°. The m = 8 large
outlying eigenvalues Ay _7,..., Ay and the eigenvalue A\y_g are given by (34)
with Ay = 0.1, pout = 0.6 for N = 30, poyt = 0.2 for N = 100. The rest of the
eigenvalues is distributed in the interval [\, Ay _s] using (40) with p;, = 0.8.
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Fig. 8 The failure of the composite polynomial bound (bold dashed line) in finite precision
CG computations (bold solid line) for well-conditioned (left) resp. ill-conditioned (right)
smaller (top) and larger (bottom) problems. The exact CG convergence behaviour corre-
sponding to A (solid line) matches the finite precision CG computations performed using A
and it differs both qualitatively and quantitatively from the exact CG convergence behaviour
corresponding to A (dash-dotted line). The upper bound (39) (dashed line) which evaluates
the composite polynomial in the neighborhood of outliers gives no relevant information.
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Each of the subplots in Figure 8 shows that the composite polynomial bound
(bold dashed line) and the finite precision CG convergence behaviour (bold
solid line) have a little in common. We also plot the exact CG convergence be-
haviour (solid line) corresponding to the matrix A which is determined using
A =¢||Al] and [ = 15. Similarly as in Section 4 we observe that it qualitatively
matches the finite precision CG computations. The associated upper bound
(39) (dashed line) becomes after several iterations meaningless.

6 Concluding remarks

This paper demonstrates that the composite polynomial bound (29) based on
a Chebyshev polynomial and a fixed part having roots at large outlying eigen-
values of A has, in general, a little in common with actual finite precision CG
computations. Related to that, CG method applied to a problem Ax = b with
a spectrum of the matrix A consisting of ¢ tiny clusters does not necessarily
produce a good approximation to the solution z within ¢ steps. Many more
steps may be needed, depending on the position of the individual clusters (this
holds in exact arithmetic as well as in finite precision arithmetic). Our experi-
mental illustration use small examples with diagonal matrices. In our opinion
this makes the message appealing also for computations with real data.

Although this paper concentrates on bounds based on Chebyshev polyno-
mials, the main point that the large outlying eigenvalues can challenge the
relevance of a-priori CG convergence rate analysis when applied to practical
computations is valid in general. Any a-priori CG convergence rate analysis is
based on a substantial simplification of the very complex phenomena. We must
admit this fact and verify any conclusion drawn from such analysis by justi-
fication of the assumptions incorporated in the whole development. A-priori
convergence bounds are often used in connection with evaluation of precondi-
tioning strategies and their optimality. Here the validity of the bounds in the
presence of rounding errors and the tightness of the bounds should be taken
as a strict requirement, otherwise the conclusions are not mathematically jus-
tified. There is an obvious exception, when preconditioning ensures very fast
convergence, so that the tightness of the bounds does not matter. In such cases
rounding errors have no chance to spoil significantly the computation.

In order to limit the effects of rounding errors, it would be useful to avoid
pro-actively presence of large outlying eigenvalues in the spectrum of the pre-
conditioned matrix; cf. [8]. Reorthogonalization procedures known from the
Lanczos method for computing several dominating eigenvalues are in the CG
context not generally applicable for efficiency reasons. They might be worth
investigating, however, together with combined arithmetic techniques, in par-
allel implementations.

Finally, actual error in CG computations should be estimated and ana-
lyzed a-posteriori. This field has been thoroughly investigated by Golub and
his collaborators, with early works [17,18]; see also [13—-15]. As pointed out
in [55], important steps in this direction can be found already in the original
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paper by Hestenes and Stiefel [33]. As in the a-priori analysis, the a-posteriori
estimates and bounds can not be reliably applied to practical computations
unless they are accompanied by a thorough rounding error analysis; see the
arguments and examples given in [25,55,42]. For a survey we refer, e.g., to
[41, Sections 3.3 and 5.3], [24, Chapter 12]. In the context of numerical solu-
tion of partial differential equations, the a-posteriori analysis of the algebraic
iterations should be incorporated into the a-posteriori analysis of the whole
solution process; see, e.g. the recent survey [1] and some possible challenges
related to applications of CG formulated in [37, Chapter 5].

As in numerical solution of partial differential equations, a-priori and a-
posteriori analysis has its place also in the iterative algebraic computations.
In both fields reliability is the key requirement.

Acknowledgments. The authors are grateful to Jorg Liesen, Jan Papez and
anonymous referee for useful comments.
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