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Abstract: For evolutionary planar flows of shear-thickening fluids in a bounded domain we prove the
existence of a solution with the Hölder continuous velocity gradients and pressure. The problem is equipped
with perfect slip boundary conditions. We also show Lq theory result for Stokes system under perfect slip
boundary conditions.
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1 Introduction

We investigate systems describing motions of incompressible shear-thickening fluids, which in evolutionary case
are governed by following initial value problem:

∂tu− divS(Du) + (u · ∇)u+∇π = f, div u = 0 in Q,

u(0, ·) = u0 in Ω,
(1.1)

where u is the velocity, π represents the pressure, f stands for the density of volume forces and S(Du) denotes
the extra stress tensor. Du is the symmetric part of the velocity gradient, i.e. Du = 1

2 [∇u + (∇u)>], Ω ⊂ R2

is a bounded domain, I = (0, T ) denotes a finite time interval and Q = I × Ω. We are interested in the case,
when (1.1) is equipped with the perfect slip boundary conditions

u · ν = 0, [S(Du)ν] · τ = 0 on I × ∂Ω, (1.2)

where τ is the tangent vector and ν is the outward normal to ∂Ω. The constitutive relation for S(Du) is given
via the generalized viscosity µ and is of the form

S(Du) := µ(|Du|)Du.

The extra stress tensor S(Du) is assumed to possess p−potential structure with p ≥ 2. More precisely, we can
construct scalar potential Φ : [0,∞) 7→ [0,∞) to the stress tensor S , i.e.

S(A) = ∂AΦ(|A|) = Φ′(|A|) A
|A|

∀A ∈ R2×2
sym,

such that Φ ∈ C1,1((0,∞)) ∩ C1([0,∞)), Φ(0) = 0 and there exist p ∈ [2,∞) and 0 < C1 ≤ C2 such that for all
A,B ∈ R2×2

sym

C1(1 + |A|2)
p−2
2 |B|2 ≤ ∂2

AΦ(|A|) : B ⊗B ≤ C2(1 + |A|2)
p−2
2 |B|2. (1.3)

This paper closely follows [10], where P. Kaplický shows Hölder continuity of velocity gradients and pressure
for (1.1) with p ∈ [2, 4) under no slip boundary conditions. Based on the same structure of the proof and using
the results from [14] we extend the result for perfect slip boundary conditions in the case p ∈ [2,∞).

The idea of the proof goes back to [17], where the authors show that every weak solution u of ∂tu −
div(S(∇u)) = 0 in Q has locally Hölder continuous gradient in case that Ω ⊂ R2 and p = 2. This results was
extended in [9] to the case p ∈ (1, 2). Regularity of ∂tu is shown first and after moving ∂tu to the right hand
side the stationary Lq theory is applied.

In the case of generalized Newtonian fluids this method was modified in [13], where the authors consider the
shear-thinning fluid model with periodic boundary conditions. In contrary to [17] the regularity of ∂tu and ∇u
had to be obtained at once. The authors showed that velocity gradients are Hölder continuous for p ∈ (4/3, 2].
These results were extended to electro-rheological fluids and non-zero initial condition in [7].
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Among many works concerning regularity theory for generalized Newtonian fluids we would like to mention
two papers dealing with the stationary case. In [12] the stationary version of (1.1) under homogeneous Dirichlet
boundary conditions are considered. The same authors later in [11] studied the problem equipped with non-
homogeneous Dirichlet boundary conditions with two types of restriction on boundary data and perfect slip
boundary conditions.

Let E be a Banach space and α ∈ (0, 1), q ∈ (1,∞), s ∈ R. In this paper we use standard notation1

for Lebesgue spaces Lq(Ω), Sobolev-Slobodeckĭı spaces W s,q(Ω), Bochner spaces Lq(I, E) and Wα,q(I, E).
By Hs

q (Ω) we mean Bessel potential spaces and Bsp,q(Ω) are Besov spaces. We set Bsq(Ω) := Bsq,q(Ω) and
Bsq,σ(Ω) = {u ∈ Bsq(Ω); div u = 0}. By BUC we mean bounded and uniformly continuous functions.

Let C∞0,σ(Ω) = {u ∈ C∞0 (Ω), div u = 0 in Ω} and Lqσ(Ω) resp. W 1,q
σ (Ω) denote the closure of C∞0,σ(Ω) in Lq

norm resp. W 1,q norm. Since the domain Ω is in our case at least C2,1, Lqσ(Ω), resp. W 1,q
σ (Ω) is characterized

as

Lqσ(Ω) = {ϕ ∈ Lq(Ω), divϕ = 0 in Ω, ϕ · ν = 0 on ∂Ω}, resp.

W 1,q
σ (Ω) = {ϕ ∈W 1,q(Ω), divϕ = 0, in Ω, ϕ · ν = 0 on ∂Ω}.

The duality between Banach space E and its dual E′ is denoted by 〈·, ·〉. Set W−1,p′

σ (Ω) := (W 1,p
σ (Ω))′.

We begin with the definition of the weak solution to the problem (1.1) with (1.2).

Definition 1.1. Let f ∈ Lp′(I,W−1,p′

σ (Ω)), p ∈ [2,∞) and u0 ∈ L2(Ω). We say that the function u : Q 7→ R2 is
a weak solution to the problem ( 1.1) with ( 1.2), if u ∈ L∞(I, L2(Ω))∩Lp(I,W 1,p

σ (Ω)), ∂tu ∈ Lp
′
(I,W−1,p′

σ (Ω)),
u(0, ·) = u0 in L2(Ω) and weak formulation∫

I

〈∂tu, ϕ〉dt+

∫
Q

S(Du) :Dϕdxdt+

∫
Q

(u · ∇)uϕdxdt =

∫
I

〈f, ϕ〉dt

holds for all ϕ ∈ Lp(I,W 1,p
σ (Ω)).

If we considered also the case p ∈ (1, 2), we would have to consider only test functions from the space of
smooth functions. It is well known that the weak solution exists and is unique. It could be easily proven using
the monotone operator theory. See for example [15, Chapter 5] for periodic boundary conditions.

Now we formulate the main results of this paper.

Theorem 1.2. Let Ω ⊂ R2 be a bounded C3 domain and (1.3) holds for some p ∈ [2,∞). Let u0 ∈W 2+β,2(Ω)

for β ∈ (0, 1/4), f ∈ L∞(I, Lq0(Ω)) and ∂tf ∈ Lq0(I,W
−1,q′0
σ (Ω)) for some q0 > 2. Then there exists the unique

solution (u, π) of (1.1) with (1.2), such that for some α > 0

∇u, π ∈ C0,α(Q).

In Section 3 we gather Lq theory results for the classical Stokes system. Further we extend these results to
generalized Stokes system where the Laplace operator is replaced by a general elliptic operator in divergence
form with bounded measurable coefficients.

Section 4 is devoted to the proof of the main theorem in the case of quadratic growth, i.e. p = 2. In Section 5
we introduce the quadratic approximation of the stress tensor S(Du) which is done by the truncation of the
generalized viscosity from above, i.e. µε(|Duε|) := min{µ(|Du|), 1/ε} for ε ∈ (0, 1). We prove the main result
for the approximated problem and pass from the approximated problem to the original one at the end.

2 Preliminary general material

2.1 Function spaces

Let E,F , be reflexive Banach spaces. Although it is not necessary to have reflexive spaces in all definitions, for
convenience we assume it. By L(E,F ) we mean the Banach space of all bounded linear operators from E to F
and L(E) := L(E,E). If E is a linear subspace of F and the natural injection i : x 7→ x belongs to L(E,F ), we

write E ↪→ F . In the case E is also dense in F , it will be denoted by E
d
↪→ F . Furthermore, Lis(E,F ) consists

of all topological linear isomorphisms from E onto F . We also write E
.
= F if E ↪→ F and F ↪→ E, i.e. E equals

F with equivalent norms.
A Banach space E is said to be of class HT , if the Hilbert transform is bounded on Lp(R, E) for some

(and then for all) p ∈ (1,∞). Here the Hilbert transform H of a function f ∈ S(R, E), the Schwartz space of
rapidly decreasing E−valued functions, is defined by Hf := 1

πPV ( 1
t ) ∗ f . These spaces are often also called

UMD Banach spaces, where the UMD stands for the property of unconditional martingale differences. It is
well known theorem that the set of Banach spaces of class HT coincides with the class of UMD spaces. Note
that all closed subspaces of Lq(Ω) are UMD spaces.

1We won’t use different notation for scalar, vector-valued or tensor valued functions.
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2.2 Semigroups and interpolation-extrapolation scales

For a linear operator A on E0 we denote the domain of A by D(A). A ∈ H(E1, E0) means that A is the negative
infinitesimal generator of a bounded analytic semigroup on E0 and E1

.
= D(A). It holds

H(E1, E0) =
⋃

κ≥1, ω>0

H(E1, E0, κ, ω),

where A ∈ H(E1, E0, κ, ω) if ω +A ∈ Lis(E1, E0) and

κ−1 ≤ ‖(A− λ)−1x‖E0

|λ|‖x‖E0
+ ‖x‖E1

≤ κ, Re(λ) ≤ ω, x ∈ E1.

By σ(A) we mean the spectrum of A and %(A) denotes the resolvent set. A linear operator A in E is
said to be of positive type if it belongs to P(E) :=

⋃
K>1 PK(E). A ∈ PK(E) if it is closed, densely defined,

R+ ⊂ %(−A) and (1 + s)‖(s+A)−1‖L(E) ≤ K for s ∈ R+, where K ≥ 1.
We say that a linear operator A in E is of type (E,K, ϑ), denoted by A ∈ P(E,K, ϑ), if it is densely defined

and if
Σϑ := {| arg z| ≤ ϑ} ∪ {0} ⊂ %(−A) and 1 + |λ|‖(λ+A)−1‖L(E) ≤ K, λ ∈ Σϑ.

Put P(E, ϑ) :=
⋃
K>1 P(E,K, ϑ).

A linear operator A on E is said to have bounded imaginary powers, in symbols,

A ∈ BIP(E) :=
⋃

K≥1, θ≥0

BIP(E,K, θ),

provided A ∈ P(E) and there exist θ ≥ 0 and K ≥ 1 such that Ais ∈ L(E) and ‖Ais‖L(E) ≤ Keθ|s| for s ∈ R.
We introduce an interpolation-extrapolation scale which is essential in the proof of Theorem 3.5. Let p, q ∈

(1,∞), θ ∈ (0, 1) and [·, ·]θ denotes the complex and (·, ·)θ,q the real interpolation functor. Let A ∈ H(E1, E0).
Then we denote by [(Eα, Aα);α ∈ R] the interpolation-extrapolation scale generated by (E,A) and [·, ·]θ or
(·, ·)θ,q, where we set Ek := D(Ak) for k ∈ N with k ≥ 2. Also set E] := E′ and A] := A′, where A′ is the dual

of A in E in the sense of unbounded linear operators. Finally let E]k := D((A])k) for k ∈ N. Then we define

E−k for k ∈ N by E−k := (E]k)′. We put Ek+θ := [Ek, Ek+1]θ (and similarly for the real interpolation functor).
If α ≥ 0 we denote by Aα the maximal restriction of A to Eα whose domain equals {u ∈ Eα ∩ E1; Au ∈ Eα}.
If α < 0 then Aα is the closure of A in Eα.

For the dual interpolation functor (·, ·)]θ (which is equal to [·, ·]θ for the complex interpolation and (·, ·)θ,q′
for real interpolation) we abbreviate the interpolation-extrapolation scale generated by (E], A]) and (·, ·)]θ, by
[(E]α, A

]
α);α ∈ R] and call it interpolation-extrapolation scale dual to [(Eα, Aα);α ∈ R]. It holds (E−α)′

.
= E]α

and (A−α)′ = A]α. For more details see [2, Section V.2].

2.3 Description of the boundary

In order to discuss boundary regularity, we will need a suitable description of the boundary ∂Ω. Let us denote
x = (x1, x2). We suppose that Ω ∈ C3, therefore there exists c0 > 0 such that for all a0 > 0 there exists n0

points P ∈ ∂Ω, r > 0 and open smooth set Ω0 ⊂⊂ Ω that we have

Ω ⊂ Ω0 ∪
⋃
P

Br(P )

and for each point P ∈ ∂Ω there exists local system of coordinates for which P = 0 and the boundary ∂Ω is
locally described by C3 mapping aP that for x1 ∈ (−3r, 3r) fulfils

x ∈ ∂Ω⇔ x2 = aP (x1), B3r(P ) ∩ Ω = {x ∈ Br(P ) andx2 > aP (x1)} =: ΩP3r,

∂1aP (0) = 0, |∂1aP (x1)| ≤ a0, |∂2
1aP (x1)|+ |∂3

1aP (x1)| ≤ c0.

Points P can be divided into k groups such that in each group ΩP3r are disjoint and k depends only on dimension
n. Let the cut-off function ξP (x) ∈ C∞(B3r(P )) and reaches values

ξP (x)

 = 1 x ∈ Br(P ),
∈ (0, 1) x ∈ B2r(P ) \Br(P ),
= 0 ∈ R2 \B2r(P ).

Next, we assume that we work in the coordinate system corresponding to P . Particularly, P = 0. Let us fix P
and drop for simplicity the index P . The tangent vector and the outer normal vector to ∂Ω are defined as

τ =
(
1, ∂1a(x1)

)
, ν =

(
∂1a(x1),−1

)
,

tangent and normal derivatives as

∂τ = ∂1 + ∂1a(x1)∂2, ∂ν = −∂2 + ∂1a(x1)∂1.
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3 Lq theory for Stokes system

In this section we collect facts about Lq theory for the Stokes system

∂tu−∆u+∇π = f, div u = 0 inQ,

u(0, ·) = u0 on Ω,
(3.1)

equipped with the perfect slip boundary conditions

u · ν = 0, [(Du)ν] · τ = 0 on I × ∂Ω. (3.2)

Let P denote the projection operator from Lq(Ω) to Lqσ(Ω) := {ϕ ∈ Lq(Ω), divϕ = 0 in Ω, ϕ · ν = 0 on ∂Ω}
associated with the Helmholtz decomposition. Denoting Bu := [(Du)ν]τ in the sense of traces and using the
projection P we shall define the Stokes operator A by Au = −P∆u for u ∈ D(A), where

D(A) = Lqσ(Ω) ∩H2
q,B(Ω), H2

q,B(Ω) := {u ∈ H2
q (Ω), Bu = 0, on ∂Ω}.

Applying the Helmholz projection P to (3.1) with (3.2), we eliminate the pressure from equations and with
the help of the newly established notation the Stokes system reduces to

∂tu+Au = Pf, div u = 0 inQ,

u(0, ·) = u0 on Ω, Bu = 0 on I × ∂Ω.
(3.3)

At first we mention some basic properties of the Stokes operator A. From [19] we know that A ∈ H(Lqσ(Ω)∩
H2
q,B(Ω), Lqσ(Ω)). This also tells us that A ∈ P(ω) for ω ∈ [0, π/2) (see [8, Theorem II.4.6]). R. Shimada later

showed in [18] the Lq−maximal regularity for A. From [1, Theorem 1] we know

Proposition 3.1. Let Ω ⊂ Rn, n ≥ 2, be a bounded C1,1 domain and ϑ ∈ (0, π). Then for every ω ∈ R and
ϑ′ ∈ (0, ϑ) such that ω + Σϑ′ ⊂ %(−A) the shifted Stokes operator ω +A admits a bounded H∞−calculus.

For the definition and properties of a bounded H∞−calculus we refer for example to [6, Section 2, Subsection
2.4]. For us it is important to know that the class of operators with a bounded H∞−calculus is a subclass of
the operators which have BIP, therefore these operators admit all important properties which has operators
with bounded imaginary powers. From the work of R. Shimada and Proposition 3.1 follows that A ∈ BIP.

For the Stokes operator A we have realizations Aα on Eα for some α (see Subsection 2.2 for details).
Concretely, from [20, Section 2.2] we know that Aα ∈ H(Eα+1, Eα) for α ≥ −1. Set sα := {−2 + 1/q,−1 +
1/q, 1/q, 1 + 1/q}. Steiger in [20, Corollary 2.6] shows that Eα

.
= H2α

q,B,σ(Ω) for 2α ∈ [−2, 2] \ sα and complex
interpolation functor, where

Hs
q,B,σ(Ω) :=


{u ∈ Hs

q (Ω), div u = 0, Bu = 0 on ∂Ω}, s ∈ (1 + 1/q, 2],
{u ∈ Hs

q (Ω), div u = 0, u · ν = 0 on ∂Ω}, s ∈ (1/q, 1 + 1/q),
{u ∈ Hs

q (Ω), div u = 0}, s ∈ [0, 1/q),(
H−sq′,B,σ(Ω)

)′
, s ∈ [−2, 0) \ {−2 + 1/q,−1 + 1/q},

(3.4)

This gives us
Aα ∈ H(H2α+2

q,B,σ(Ω), H2α
q,B,σ(Ω)), 2α ∈ [−2, 2] \ sα.

We will use the fact, that the property of bounded imaginary powers can be carried over the interpolation-
extrapolation scales:

Proposition 3.2. [2, Proposition V.1.5.5] Let A ∈ P(E) and let [(Eα, Aα);α ∈ (−n,∞)] be the interpolation-
extrapolation scale generated by (E,A) and an exact functor. If A ∈ BIP(E,M, σ) then Aα ∈ BIP(Eα,M, σ).

Let us define the maximal Lq-regularity for the operator A (compare [2, Section III.1, Subsection 1.5 and
Section III.4, Remark 4.10.9.c])

Definition 3.3. Let A ∈ H(E1, E0) and q ∈ (1,∞). We say that
(
Lq(I, E0), Lq(I, E1) ∩ W 1,q(I, E0)

)
is a

pair of maximal regularity for A (or A has maximal regularity), if for u0 ∈ E1−1/q,q := (E0, E1)1−1/q,q and
f ∈ Lq(I, E0) there exists the unique solution u ∈ Lq(I, E1) ∩W 1,q(I, E0) of (3.3), and

‖∂tu‖Lq(I,E0) + ‖u‖Lq(I,E0) + ‖Au‖Lq(I,E0) ≤ C
(
‖f‖Lq(I,E0) + ‖u0‖E1−1/q,q

)
.

Further we mention the relation between maximal regularity and negative infinitesimal generators of a
bounded analytic semigroup.
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Proposition 3.4. [2, Theorem III.4.10.8] Suppose that E0 is a UMD space and κ,N ≥ 1, ω > 0, ϑ ∈ [0, π/2)
and A ∈ H(E1, E0, κ, ω) satisfies ω +A ∈ BIP(E0, N, ϑ). Then A has maximal regularity.

The main result of this section is the following

Theorem 3.5. Let Ω ⊂ Rn be a C1,1 domain, q ∈ (1,∞), f ∈ Lq(I,W−1,q′

σ (Ω)), u0 ∈ B1−2/q
q,σ (Ω) then there

exists a constant C > 0 and the unique weak solution of (3.3) satisfying

‖∇u‖Lq(Q) + ‖u‖
BUC(I,B

1−2/q
q,σ (Ω))

≤ C
(
‖f‖

Lq(I,W−1,q′
σ (Ω))

+ ‖u0‖B1−2/q
q,σ (Ω)

)
.

The constant C is independent of T, u, f and u0.

Proof. We consider the system (3.3) instead of (3.1) with (3.2). Since for UMD space E, E′ is one as well and
for an interpolation couple of UMD spaces the interpolation spaces are also UMD (see [2, Theorem III.4.5.2]),
E−1/2 is a UMD space. Proposition 3.2 gives us A−1/2 has BIP. Therefore we can use Proposition 3.4 for
α = −1/2 and obtain

‖∂tu‖Lq(I,E−1/2) + ‖u‖Lq(I,E−1/2) + ‖A−1/2u‖Lq(I,E−1/2) ≤ C
(
‖f‖Lq(I,E−1/2) + ‖u0‖(E−1/2,E1/2)1−1/q,q

)
. (3.5)

In order to determine the correct spaces in (3.5) we use interpolation-extrapolation scales defined in [20,
Section 2.2].

u0 ∈ (E−1/2, E1/2)1−1/q,q = (H−1
q,B,σ(Ω), H1

q,B,σ(Ω))1−1/q,q = B1−2/q
q,σ (Ω),

where we used [20, Corollary 2.6], (3.4), the theorem about the interpolation of Bessel potential spaces on
domains ([21, Subsection 4.3.1, Theorem 1]) together with the theorem about interpolation of closed subspaces
(in our case of solenoidal functions see [3, Lemma 3.2]). From the embedding [2, Theorem V.4.10.2]

Lq(I, E1) ∩W 1,q(I, E0) ↪→ BUC(I, (E0, E1)1−1/q,q),

we obtain u ∈ BUC(I,B
1−2/q
q,σ (Ω)). Due to ‖A−1/2u‖E−1/2

= ‖u‖E1/2
and E1/2 = W 1,q

σ (Ω) we obtain bounded-
ness of ∇u in Lq(Q). It remains to find the space for f . From (3.4) we can see that

f ∈ Lq(I,W−1,q′

σ (Ω)),

since Hs
q (Ω)

.
= W s,q(Ω) for s ∈ Z.

Without loss of generality we may assume that there exists a symmetric tensor G ∈ Lq(Q), such that the
weak formulation of the right hand side of (3.1) can be written in the form∫

Q

G : Dϕdxdt =

∫
I

〈f, ϕ〉dt ∀ϕ ∈ Lq(I,W 1,q
σ (Ω)). (3.6)

To prove it, we proceed in the same way like in [13, Proof of Proposition 2.1, Step 1] where the authors are
dealing with periodic boundary conditions. Consider the Stokes system which can be formulated in the weak
form for a. a. t as follows ∫

Ω

Dw(t) : Dϕdx = 〈f(t), ϕ〉 ∀ϕ ∈W 1,q
σ (Ω). (3.7)

As f ∈ Lq(I,W−1,q
σ (Ω)), there exists a solution w(t) ∈W 1,q

σ (Ω) of (3.7) enjoying the estimate

‖w(t)‖W 1,q(Ω) ≤ C‖f‖W−1,q
σ (Ω)

with the constant C independent of t. Consequently, w ∈ Lq(I,W 1,q
σ (Ω)) and

‖w‖Lq(I,W 1,q(Ω)) ≤ C‖f‖Lq(I,W−1,q
σ (Ω)).

Defining G = Dw we conclude (3.6) from (3.7) by density arguments. Therefore for all f ∈ Lq(I,W−1,q
σ (Ω))

there exists G ∈ Lq(Q) such that (3.6) and following estimate

‖G‖Lq(Q) ≤ C‖f‖Lq(I,W−1,q
σ (Ω))
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holds. We would like to point out that the perfect slip boundary conditions are hidden in the weak formulation.
If G is smooth enough then it holds∫

I

〈f, ϕ〉dt = −
∫
Q

divG · ϕdx dt+

∫
I

∫
∂Ω

(Gν)τ(ϕ · τ) dσ dt ∀ϕ ∈ Lq(I,W 1,q
σ (Ω)).

The Stokes system (3.1) with (3.2) can be formulated in the weak form as follows∫
I

〈∂tu, ϕ〉dt+

∫
Q

Du : Dϕdxdt =

∫
Q

G : Dϕdx dt ∀ϕ ∈ Lq(I,W 1,q
σ (Ω)). (3.8)

Introducing the solution operator S : (G, u0) 7→ Du, we conclude first from the existence theory, that S
is continuous from L2(Q) × L2

σ(Ω) to L2(Q) with the norm less or equal to 1. By Lemma 3.5 we know that

S is continuous from Lq1(Q) × B
1−2/q1
q1,σ (Ω) to Lq1(Q) with norm estimated by Cq > 1. Since S(G, u0) =

S(G, 0) + S(0, u0), Riesz-Thorin theorem and the real interpolation method implies following assertion, see for
example [5, Theorem 5.2.1 and Theorem 6.4.5].

Lemma 3.6. Let Ω be bounded C2,1 domain and q1 > 2. There exist constant C > 0 and K := C
q1/(q1−2)
q1 such

that for every q ∈ (2, q1), arbitrary G ∈ Lq(I, Lqσ(Ω)), u0 ∈ B1−2/q)
q,σ (Ω) there exists the unique solution u of

(3.8) satisfying

‖Du‖Lq(Q) ≤ K1− 2
q

(
‖G‖Lq(Q) + C‖u0‖B1−2/q

q (Ω)

)
.

For q > 2 small enough Lemma 3.6 allows us to prove the Lq theory for generalized Stokes system, where the
Laplace operator is replaced by a general elliptic operator with bounded measurable coefficients. More precisely,
let 0 < γ1 ≤ γ2 and suppose that the coefficient matrix A ∈ L∞(Q) is symmetric in the sense Aklij = Aijkl = Ajikl
for i, j, k, l = 1, 2 and fulfills for all B ∈ R2×2, x ∈ Ω and t ∈ I

γ1|B|2 ≤ A(t, x) : B ⊗B ≤ γ2|B|2.

We consider the following system∫
I

〈∂tu, ϕ〉dt+

∫
Q

A : Du⊗Dϕdxdt =

∫
Q

G : Dϕdx dt ∀ϕ ∈ Lq(I,W 1,q
σ (Ω)). (3.9)

Following lemma states the Lq theory result.

Lemma 3.7. Let Ω be bounded C2,1 domain and q > 2. There exist constant K,L > 0 such that if q ∈
[2, 2+Lγ1γ2 ), G ∈ Lq(Q) and u0 ∈ B1−2/q

q,σ (Ω) then the unique weak solution u ∈ Lq(I,W 1,q
σ (Ω)) of (3.9) satisfies

‖Du‖Lq(Q) + γ
− 1
q

2 ‖u‖
BUC(I,B

1−2/q
q,σ (Ω))

≤ K

γ1

(
‖G‖Lq(Q) + γ

1− 1
q

2 ‖u0‖B1−2/q
q,q (Ω)

)
.

Proof. We omit the proof. It can be found in [12, Proposition 2.1] for periodic boundary conditions or in [10,
Proposition 2.1] for homogeneous Dirichlet boundary conditions. The only generalization consists of includ-
ing perfect slip boundary conditions. Lq theory result for classical Stokes system with perfect slip boundary
conditions is needed, but it is shown in Lemma 3.6.

We also use the Lq theory for stationary variant of the system (3.9). For symmetric coefficient matrix
A ∈ L∞(Ω) fulfilling for all B ∈ R2×2 and x ∈ Ω γ1|B|2 ≤ A(x) : B ⊗ B ≤ γ2|B|2, 0 < γ1 ≤ γ2 we investigate
the problem ∫

Ω

A : Du⊗Dϕdx =

∫
Ω

G : Dϕdx ∀ϕ ∈W 1,q
σ (Ω). (3.10)

It holds

Lemma 3.8. Let Ω be a bounded C2,1 domain. Then there are constants K,L > 0 such that if q ∈ [2, 2 + Lγ1γ2 )

and G ∈ Lq(Ω), then the unique weak solution of (3.10) satisfies

‖Du‖Lq(Ω) ≤
K

γ1
‖G‖Lq(Ω).

Proof. See [12, Lemma 2.6] for no slip boundary conditions. For perfect slip boundary conditions we would
proceed analogically.
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4 Proof of the main results for the quadratic potential

In this section we prove Theorem 1.2 for p = 2.

Step 1. recalls apriori estimates from the existence theory.

For f ∈ W 1,2(I,W−1,2
σ (Ω)) with f(0) ∈ L2(Ω) and u0 ∈ W 2,2(Ω) ∩W 1,2

σ (Ω) we know the existence of a
unique weak solution of (1.1) with (1.2) fulfilling

u ∈ L∞(I, L2(Ω)) ∩ L2(I,W 1,2
σ (Ω)), ∂tu ∈ L∞(I, L2(Ω)) ∩ L2(I,W 1,2

σ (Ω)), π ∈ L∞(I, L2(Ω)).

It can be shown using Galerkin approximation. See for example [15, Section 5.3], where the computation is
done for periodic boundary conditions. Since ∂tu, divS(Du), div(u⊗ u) and f lie in L2(I,W−1,2

σ (Ω)), we can
reconstruct the pressure π at almost every time level via De Rham’s theorem and Nečas’ theorem on negative
norms and obtain π ∈ L2(Ω) for almost every t ∈ I.

Step 2. improves the regularity in space.

If we additionally assume f ∈ L∞(I, L2(Ω)) we are able to show that

u ∈ L∞(I,W 2,2(Ω)), π ∈ L∞(I,W 1,2(Ω)).

From Step 1 we know that ∂tu is regular enough in order to move it to the right hand side of (1.1)1. At
almost every time level t ∈ I we can use the stationary theory. Boundary regularity in tangent direction is
based on the difference quotient technique. In normal direction near the boundary the main tools are the
operator curl and Nečas’ theorem on negative norms. See for example [16, Section 3] for homogeneous Dirichlet
boundary conditions. The information about the pressure comes from the fact that the right hand side of
∇π = f +divS(Du)−div(u⊗u) is in L2(Ω). Adding the assumption

∫
Ω
π dx = 0 we get by Poincaré inequality

the existence of π ∈W 1,2(Ω) at almost every time level t ∈ I together with a bound independent of t.

Step 3. improves the regularity in time using Lp theory for Stokes system.

If we moreover suppose that f ∈ Lq1(I,W
−1,q′1
σ (Ω)) for some q1 > 2 and u0 ∈W 2+β,2 for β ∈ (0, 1/4) we are

able to prove the existence of q2 > 2 such that unique weak solution satisfies for all q ∈ (2, q2) and s ∈ (0, 1
2 )

∂tu ∈ Lq(I,W 1,q
σ (Ω)) ∩W s,q(I, Lq(Ω)). (4.1)

Denoting w := ∂tu and τ := ∂tπ in the sense of distributions, we observe from (1.1) that (w, τ) solves∫
I

〈∂tw,ϕ〉dt+

∫
Q

∂2
DuΦ(|Du|) : Dw ⊗Dϕdxdt =

∫
I

〈∂t(f − (u · ∇)u), ϕ〉dt, ∀ϕ ∈ Lq(I,W 1,q
σ (Ω)). (4.2)

It is easy to see that ∂t(u · ∇u) ∈ Ls(W−1,s
σ (Ω)) for all s ∈ [1, 4].

In order to obtain (4.1) as a result of application of Lemma 3.7 for the system (4.2) we need to ensure that
‖∂tu(0)‖

B
1−2/q
q,q (Ω)

is bounded. Let P be the projection onto the solenoidal functions. Let β ∈ (0, 1/4) and

ϕ ∈W−β,2(Ω) with ‖ϕ‖W−β,2(Ω) ≤ 1 be arbitrary. Thus

|〈∂tu(0), ϕ〉| = |〈∂tu(0), Pϕ〉| ≤ |〈divS(Du0) + (u0 · ∇)u0 − f(0), Pϕ〉| ≤
≤ C(‖u0‖W 2+β,2(Ω) + ‖u0‖2W 2,2(Ω) + ‖f(0)‖Wβ,2(Ω)) ≤ C,

(4.3)

where we used the continuity of the projection P (see [7, Chapter 4, Section 4] for periodic boundary conditions).

Since W β,2(Ω) ↪→ B
1−2/q
q,q (Ω) if q is close enough to 2 we obtain ‖∂tu(0)‖

B
1−2/q
q,q (Ω)

≤ C for all q ∈ (2, q2) where

q2 is sufficiently close to 2.

Step 4. gives u ∈ L∞(I,W 2,q(Ω)) due to the stationary theory.

Previous step shows us that ∂tu ∈ L∞(I, Lq(Ω)) for some q > 2. Therefore we are able to move ∂tu to the
right hand side of (1.1)1 and apply the result [11, Theorem 3] for p = 2 which tells us that there exists a positive
ε, such that u ∈W 2,2+ε and π ∈W 1,2+ε for (1.1) with perfect slip boundary conditions.

Step 5. improves the regularity of π in time.

There exists a q > 2 such that for all s ∈ (0, 1
2 )

π ∈W s,q(I, Lq(Ω)).

See [10, Lemma 3.4] for the proof. The idea is based on subtracting the equation (1.1)1 in the time t′ from the
same equation in time t and constructing special test function via the Bogovskĭı Lemma.
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Step 6. summarizes the result of this section and uses imbedding theorems to complete the proof.

Up to now we have shown

u ∈ L∞(I,W 2,q(Ω)) ∩W 1,q(I, Lq(Ω)), π ∈ L∞(I,W 1,q(Ω)) ∩W s,q(I, Lq(Ω)).

As we are in two dimensions, q > 2, s ∈ ( 1
q ,

1
2 ), following imbeddings holds

L∞(I,W 1,q(Ω)) ↪→ L∞(I, C0,1− 2
q (Ω)), (4.4)

W 1,q(I, Lq(Ω)) ↪→ C1− 1
q (I, Lq(Ω)), (4.5)

W s,q(I, Lq(Ω)) ↪→ Cs−
1
q (I, Lq(Ω)). (4.6)

Now we are ready to apply

Lemma 4.1. [10, Lemma 2.6] Let Ω ⊂ R2 be a bounded C2 domain. Let f ∈ L∞(I, C0,α(Ω)) and f ∈
C0,β(I, Ls(Ω)) for some α, β ∈ (0, 1) and s > 1. Then f ∈ C0,γ(Q) with γ = min{α, αβs

αs+2}.

Using (4.4) and (4.5) together with Lemma 4.1 we obtain ∇u ∈ C0,α for certain α > 0. (4.4), (4.6) with
Lemma 4.1 gives us π ∈ C0,α for some α > 0, which concludes proof of main results for p = 2.

5 Proof of the main results for the super-quadratic potential

In this section we prove Theorem 1.2 for p > 2. The proof consists of several steps.

Step 1. introduces quadratic approximations.

In a similar way like in [14] we are concerned with the regularized problem

∂tu
ε − divSε(Duε) + (uε · ∇)uε +∇πε = f, div uε = 0 in Q,

uε(0, ·) = u0 in Ω,
(5.1)

where we consider quadratic approximation Sε of S defined for ε ∈ (0, 1) by the truncation of the viscosity
µ from above:

µε(|Duε|) := min
{
µ(|Du|), 1

ε

}
, Sε(Duε) := µε(|Duε|)Duε. (5.2)

Scalar potential Φε to Sε(Duε) can be constructed in the following way

Φε(s) :=

∫ s

0

µε(t)tdt

and satisfies growth conditions (1.3) for p = 2, i.e. there exists C1 > 0 and C(ε) such that for all A,B ∈ R2×2
sym

C1|B|2 ≤ ∂2
AΦε(|A|) : B ⊗B ≤ C(ε)|B|2. (5.3)

The approximation (5.2) guarantees that for a fixed ε ∈ (0, 1) the results of the previous section holds for
uε and πε solving (5.1) equipped with the perfect slip boundary conditions.

Step 2. gives growth conditions dependent on ε.

Due to the results of the previous section we are able to use techniques which enable us to gain uniform
estimates with respect to ε. At first we need a growth estimates of Φε with precise dependence on ε. In other
words, the constant C(ε) in the estimate (5.3) needs to be specified. To this purpose we define the function

ϑε by ϑε(s) := min{(1 + s2)
1
2 , 1

ε}. Now, there exist constants 0 < C3 ≤ C4 such that for all ε ∈ (0, 1) an
A,B ∈ R2×2

sym

C3ϑε(|A|)p−2|B|2 ≤ ∂2
AΦε(|A|) : B ⊗B ≤ C4ϑε(|A|)p−2|B|2. (5.4)

As a corollary of (5.4) following estimates can be derived (see [16, Lemma 2.22] for the proof.)

Cϑε(|A|)p−2|A|2 ≤ Sε(A) : A, (5.5)

C|Sε(A)| ≤ ϑε(|A|)p−2|A|. (5.6)

The lower estimate in (5.5) can be done independent of ε, since (5.3) holds:

C5|A|2 ≤ Sε(A) : A. (5.7)

At this point we would like to emphasize that from now all constants in following steps are independent of ε.
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Step 3. provides L∞(I, L2(Ω)) ∩ L2(I,W 1,2(Ω)) estimates of uε and ∂tu
ε.

We recall estimates from the previous section which hold also for the approximated problem since the lower
bound in (5.7) is independent on ε.

‖uε‖L∞(I,L2(Ω)) + ‖∇uε‖L2(Q) ≤ C, (5.8)

‖∂tuε‖2L∞(I,L2(Ω)) + ‖∇∂tuε‖L2(Q) ≤ C. (5.9)

The relation (5.8) is apriori estimate obtained by taking solution as a test function (at the level of Galerkin
approximation). Roughly speaking, the estimate (5.9) is performed by taking time derivative of the equation
(5.1) and testing by time derivative of uε. More precisely, it is done not directly to the equation (5.1), but still
to the Galerkin system. In order to estimate the time derivative of the Galerkin approximation of uε at the
time t = 0 we proceed in the same way like in (4.3).

Note that (5.8) and (5.9) gives us uε ∈ L∞(I,W 1,2(Ω)):

‖∇uε(s, ·)‖22 − ‖∇uε(0, ·)‖22 =

∫
Ω

∫ s

0

∂t|∇uε(t, ·)|2 dtdx ≤ 2‖∇uε‖L2(Q)‖∂t∇uε‖L2(Q) ≤ C.

Step 4. gives uε ∈ L∞(I,W 2,2(Ω)) uniformly in ε ∈ (0, 1).

From Step 3 we obtained that ∂tu
ε ∈ L∞(I, L2(Ω)), therefore we can fix t ∈ I, move ∂tu

ε to the right hand
side of (5.1) and at almost every time level consider the stationary problem

−divSε(Duε) + (uε · ∇)uε +∇πε = h, div uε = 0 in Ω,

uε · ν = 0, [Sε(Duε)ν] · τ = 0 at ∂Ω,
(5.10)

where h := f − ∂tuε ∈ L2(Ω). Previous section provides uε ∈W 2,2(Ω), Sε(Duε) ∈W 1,2(Ω) and πε ∈W 1,2(Ω).
Thus we can multiply (5.10) by a suitable test function which is at least in L2(Ω) and integrate over Ω. We
focus only on the boundary regularity and work in the local system of coordinates. Following [14, Lemma 4.2,
Remark 4.9] we choose as a test function ϕ = (ϕ1, ϕ2)

ϕ = (∂2[Θ− ∂τ (uε · ν)ξ2], ∂1[−Θ + ∂τ (uε · ν)ξ2]), Θ := ∂ν(uε · τ)ξ2 − uε · (∂ντ + ∂τν)ξ2.

This test function is constructed in order to get rid of the pressure πε and to obtain optimal information from
the elliptic term. These most difficult estimates, in which we extract from −

∫
Ω

divSε(Duε) ·ϕdx boundedness
of the term

∫
Ω
µε(|Duε|)|∇2uε|2 dx, are done in [14, Proof of Theorem 1.7], therefore we omit the calculations.

It remains to estimate the convective term and the right hand side of (5.10). After long, but elementary
calculations we are able to show

|
∫

Ω

(uε · ∇)uε · ϕdx| ≤ C
∫

Ω

(|uε||∇uε|2 + |uε|2|∇uε|) dx, (5.11)

where we used the divergence-free constraint and the properties of the test function ϕ. Using Hölder and Young
inequalities, ‖ · ‖24 ≤ C‖ · ‖1,2‖ · ‖2 and the information uε ∈ L∞(I,W 1,2(Ω)) we continue estimating (5.11):

C(‖uε‖2‖∇uε‖24 + ‖uε‖24‖∇uε‖2) ≤ ε‖∇2uε‖22 + C‖u‖21,2 + C‖∇uε‖22‖uε‖22.

The last estimate is easy.∣∣∣ ∫
Ω

h · ϕdx
∣∣∣ ≤ ∫

Ω

|h|(|∇2uε|+ |∇uε|+ |uε|) dx ≤ C‖h‖22 + ε‖∇2uε‖22 + C‖u‖21,2.

Since µε(|Duε|) > 1 and ε > 0 can be chosen arbitrarily small, we obtain

‖∇2uε‖22 ≤
∫

Ω

µε(|Duε|)|∇2uε|2 dx ≤ C, (5.12)

where C doesn’t depend on ε and t ∈ I, therefore we have

uε ∈ L∞(I,W 2,2(Ω)). (5.13)

Step 5. improves information about ∂tu
ε.
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In the same spirit as in Step 3 from the previous section we denote w := ∂tu and τ := ∂tπ in the sense of
distributions, which solves (4.2) where Φ is replaced by Φε. The right hand side of (4.2) is bounded uniformly

with respect to ε ∈ (0, 1) in Lq0(I,W
−1,q′0
σ (Ω)) for some q0 > 2, since from (5.8), (5.9) and (5.13) (resp. [4,

Theorem 1.2]) we have ∂t[(u
ε · ∇)uε] ∈ Ls(I,W−1,s

σ (Ω)) for all s ∈ [1, 4].
Set Vε := supQ |ϑε(|Duε|)|. From (5.4) we have for all t ∈ I, x ∈ Ω, for all ε ∈ (0, 1) and A,B ∈ R2×2

sym

c|B|2 ≤ ∂2
AΦε(|A|) : B ⊗B ≤ CV p−2

ε (|A|)|B|2.

From Lemma 3.7 we have the existence of positive constants K and L such that for all q ∈ (2, q2], where
q2 := 2 + L/V p−2

ε holds

‖∇w‖Lq(Q) + V
2−p
q

ε ‖w‖
BUC(I,B

1−2/q
q (Ω))

≤ K
(
‖f‖Lq(I,W−1,q′ (Ω)) + V (p−2)(1−1/q)

ε ‖∂tu0‖B1−2/q
q (Ω)

)
. (5.14)

Without loss of generality we may assume that q2 < q0. Thus, after estimating last norm on the right hand
side of (5.14) in the same way like in Step 3 in Section 3 we have

‖∂tuε‖BUC(I,B
1−2/q2
q2

(Ω))
≤ C

(
V
p−2
q2

ε + V p−2
ε

)
≤ CV p−2

ε . (5.15)

Step 6. improves information about ∇2uε.

In this step we obtain better space regularity. Up to now we have ϑε ∈ L∞(I,W 1,2(Ω)). We are going to
show that ϑε ∈ L∞(I,W 1,q(Ω)) for some q > 2.

We omit estimates of ∇2uε in the interior of Ω and we focus on estimates near the boundary. We start with
the tangential direction. Localizing the problem, we work in ΩP3r, where the boundary is locally described by
the C3 mapping ap (see Subsection 2.3). For simplicity we drop the index P .

We multiply (5.10) by −∂τϕξ, integrate over Ω3r and after similar steps as in [14, Lemma 4.6] we derive the
identity

∫
Ω3r

∂τSε(Duε) : Dϕξ dx = −
∫

Ω3r

h · ∂τ (ϕξ) dx+

∫
Ω

(uε · ∇)uε∂τϕξ dx+

+

∫
Ω3r

Sε(Duε) :
[
∂τϕ⊗∇ξ −∇ϕ∂τξ + (∂2

1a, 0)⊗ ∂2ϕξ +∇
(
ϕ · ∂τν

ν

|ν|2
ξ
)]

dx+

+

∫
Ω3r

divSε(Duε) · [(ϕ · ∂τν)
ν

|ν|2
ξ − ϕ∂τξ] dx+

∫
Ω3r

∂2
1a[h2 + (divSε(Duε))2 − (uε · ∇uε)2]ϕ1ξ dx+

+

∫
Ω3r

[h1 + ∂1ah2 + divSε(Duε)1 + ∂1a divSε(Duε)2 + (uε · ∇uε)1 + ∂1a(uε · ∇uε)2]ϕ∇ξ dx

(5.16)

for all ϕ ∈ W 1,q′

σ (Ω), suppϕ ⊂ Ω3r. Terms on the right hand side of (5.16) comes at first from the fact that
we add subtract some lower order terms in order to let the boundary term vanish while integrating by parts.
Second, tangent derivative doesn’t commute with the gradient and we use ∇∂τϕ = ∂τ∇ϕ + (∂2

1a, 0) ⊗ ∂2ϕ.
Third, we use the equation (5.10) and replace ∂2π

ε by h2 + [divSε(Duε)]2 + (uε · ∇uε)2 and similarly for ∂τπ
ε.

We denote w := ∂τu
εξ − (0, ∂2

1au
ε
1)ξ + z, where z is the solution of

div z = −∂τuε · ∇ξ − ∂2
1au

ε
1∂2ξ in Ω3r, (5.17)

z = 0 on ∂Ω3r. (5.18)

The right hand side of (5.17) was obtained from div(−∂τuεξ + (0, ∂2
1au

ε
1)ξ) using the fact that div uε = 0. The

role of z is to ensure that divw = 0. On ∂Ω it holds w · ν = 0 since

w · ν = [∂τu
ε · ν + ∂2

1au
ε
1]ξ + z · ν = ∂τ (uε · ν)ξ = 0.

Thus the compatibility condition holds∫
∂Ω

z · ν dσ =

∫
Ω

div z dx =

∫
Ω

div(−∂τuεξ + (0, ∂2
1au

ε
1)ξ) dx = −

∫
∂Ω

∂τ (uε · ν)ξ dσ = 0

and z solving (5.17) and (5.18) exists by Bogovskĭı’s Lemma and enjoys the estimate ‖z‖1,q ≤ C‖∇uε‖q for
some C > 0.

Using the definition of w we get from (5.16)∫
Ω

∂DuεSε(Duε) : Dw ⊗Dϕdx = 〈g, ϕ〉 ∀ϕ ∈W 1,q′

σ (Ω),
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with

〈g, ϕ〉 = RHS of (5.16) +

∫
Ω

∂DuεSε(Duε) : [Dz + ∂τu
ε ⊗∇ξ + (∂2

1a, 0)⊗S ∂2u
εξ −D

(
(0, ∂2

1a, 0)ξ
)
]Dϕdx.

Due to the assumption on f and results from Step 4 we have ‖g‖−1,q′2
≤ CV p−2

ε and after application of
Lemma 3.8 we obtain

‖∇∂τuεξ‖Lq(Ω) ≤ CV p−2
ε . (5.19)

We recall that q depends on ε by the relation q ∈ (2, 2 + L/V p−2
ε ]. In order to control whole ∇2uε we need

an estimate of type (5.19) in the normal direction which is locally x2. Since ∂2
2u

ε
2 can be expressed from the

condition div uε = 0, we focus on ∂2
2u

ε
1. Following [12, Theorem 3.19] we can extract the desired estimate from

the equation (5.10) after employment of the operator curl. Let us shorten Sε(Duε) to Sε and ϑε(|Duε|) to ϑε.
Denoting G := ∂2Sε12 we have due to (5.6) and (5.4)

‖ξG‖−1,q ≤ ‖Sε12‖q ≤ ‖ϑε
p−2Duε‖q,

‖∂1(ξG)‖−1,q ≤ C‖ϑεp−2Duε‖q + C ′‖ϑεp−2∂1∇uε‖q.

From the equation (5.10) after application of curl we have

‖∂2(ξG)‖−1,q ≤ C(‖∂1(Sε21 + Sε22 − Sε11)‖q + ‖f‖q + ‖uε · ∇uε‖q + ‖∂tuε‖q) ≤
≤ C

{
‖ϑεp−2Duε‖q + ‖ϑεp−2∂1∇uε‖q + V p−2

ε + 1
}

:= H.

Nečas’ theorem on negative norms gives us

‖ξG‖q ≤ C(‖ξG‖−1,q + ‖∇(ξG)‖−1,q) ≤ H.

From definition of G and symmetry of Du we obtain

∂12Sε12∂2Du
ε
12 =

G

2
− 1

2
∂11Sε12∂2Du

ε
11 −

1

2
∂22Sε12∂2Du

ε
22.

Using ∂12Sε12 ≥ Cϑε
p−2 and the condition div uε = 0 we get that ‖ξϑεp−2∂2

2u
ε
1‖q ≤ H. Thus,

‖ξϑp−2
ε ∇2uε‖q ≤ C‖ξG‖q + ‖ξϑp−2

ε ∇∂τuε‖q + C̃ sup
x1∈(−3r,3r)

|∂1a|‖ξϑp−2
ε ∇2uε‖q, (5.20)

where C̃ is absolute constant. Since we can choose r sufficiently small in order to C̃ maxP∈∂Ω supx1∈(−3r,3r) |∂1a| ≤
1/2, the last term (5.20) can be absorbed into the left hand side. We have

‖ξϑp−2
ε ∇2uε‖q2 ≤ CV p−2

ε V p−2
ε . (5.21)

From (5.12) the boundedness of the term
∫

Ω
µε(|Duε|)|∇2uε|2 dx is obtained, in other words ‖ϑ

p−2
2

ε ∇2uε‖2 ≤ C.
Interpolation of this result with (5.21) gives us for q ∈ (2, q2)

‖ϑ
p−2
2

ε ∇2uε‖q ≤ CV β2(p−2)
ε , (5.22)

where 1/q = β/q2 + (1− β)/2. Since it holds ‖ϑp/2ε ‖1,q ≤ ‖ϑp/2ε ‖q + ‖ϑ
p−2
2

ε ∇2uε‖q, we want to use the following

lemma for f = ϑ
p/2
ε .

Lemma 5.1. Let Ω ⊂ R2 be a bounded C2 domain and f ∈W 1,q(Ω) for some q > 2. Then f ∈ C(Ω) and there
is C > 0 independent of q such that

sup
Ω
|f | ≤ C

(q − 1

q − 2

)1−1/q

‖f‖1,q. (5.23)

Proof. Follows from the proof of [22, Theorem 2.4.1]. The result holds also for Ω ⊂ Rn, with q > n and q − n
instead of q − 2 in the denominator of (5.23).

Because q−1
q−2 ≤ CV

p−2, we obtain

V
p
2
ε ≤ CV (p−2)(1− 1

q )V β2(p−2)
ε . (5.24)

Note that (p− 2)(1− 1/q)→ p/2− 1 as q → 2 and the exponent containing the interpolation parameter β can
be made arbitrarily small, therefore we can rewrite (5.24) as Vε ≤ Ĉ. This together with (5.22) gives us

sup
t∈I
‖∇2uε‖q ≤ C.
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Step 7. passes from the regularized problem to the original one.

In the previous step we showed Vε ≤ Ĉ, where Vε = supQ |ϑε(|Duε|)|. Since ϑε(s) = min{(1 + s2)
1
2 , 1

ε} ≤
1
ε ,

it is sufficient to choose ε in order to have Ĉ ≤ 1
ε . Thus, uε = u is the solution of the original problem (1.1)

and it holds that supQ(1 + |Du|2)1/2 ≤ C which leads to supt∈I ‖∇2u‖q ≤ C.
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Basel, 1995.

[3] Amann, H.:On the Strong Solvability of the Navier-Stokes Equations, J. Math. Fluid Mech. 2 (2000),
16–98.
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[11] Kaplický, P., Málek, J. and Stará, J.: On Global existence of smooth two-dimensional steady flows
for a class of non-Newtonian fluids under various boundary conditions, Applied Nonlinear Analysis, New
York, Kluwer/Plenum, 1999, 213–229.
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[14] Kaplický, P., Tichý, J.: Boundary Regularity of Flows under Perfect Slip Boundary Conditions, ac-
cepted to CEJM.
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