Necas Center for Mathematical Modeling

Numerical stmulation of vibrations of
an airfoil with three degrees of freedom
induced by turbulent flow

M. Feistauer, J. Hordacek and P. Svdcek

Preprint no. 2013-008

http://ncmm.karlin.mff.cuni.cz/



Numerical simulation of vibrations of an airfoil with three degee
of freedom induced by turbulent flow

Miloslav Feistauey®, Jaronir HoraCel€, Petr Sacek!

8Charles University Prague, Faculty of Mathematics and Rtgys
Sokolovsé 83, 186 75 Praha 8, Czech Republic
bnstitute of Thermomechanics, Academy of Sciences of #h@epublic,
Dolejskova 5, 182 00 Praha 8, Czech Republic
¢Czech Technical University Prague, Faculty of MechaniaagiBeering,
Karlovo nam. 13, 121 35 Praha 2, Czech Republic

Abstract

The subject of the paper is the numerical simulation of theraction of two-dimensional in-
compressible viscous flow and a vibrating airfoil with la@yaplitudes. The airfoil with three
degrees of freedom performs rotation around an elasti¢ asisllations in the vertical direc-
tion and rotation of a flap. The numerical simulation corsigtthe finite element solution of the
Reynolds averaged Navier-Stokes equations combined witla&gAllmaras ok —w turbulence
models, coupled with a system of nonlinear ordinary difféigd equations describing the airfoil
motion with consideration of large amplitudes. The tim@el®dent computational domain and
approximation on a moving grid are treated by the Arbitraagtangian-Eulerian formulation
of the flow equations. Due to large values of the involved R&gaumbers an application of
a suitable stabilization of the finite element discret@atis employed. The developed method
is used for the computation of flow-induced oscillationsha airfoil near the flutter instability,
when the displacements of the airfoil are large, ug-40 degrees in rotation. The paper contains
the comparison of the numerical results obtained by bothutance models.
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1. Introduction

The interaction of flowing fluids and vibrating structurethis main subject of aero-elasticity,
which studies the influence of aerodynamic forces on anielasucture. The flow-induced
vibrations may affect negatively the operation and stibdf aircrafts, blade machines, bridges,
and many other structures in mechanical or civil engingeriithe main goal of aero-elasticity is
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the prediction of the bounds of the structure stability,ucecthe aero-elastic instabilities leading
to flutter or divergence and to analyze postcritical reginTdss discipline is highly developed,
particularly from engineering point of view (see, e.g., thenographs [10] and [34])).

From the point of view of mathematical theory, there are notrmany works dealing with
such problems, due to a high mathematical complexity of ttoblpm, caused by the time-
dependence of the domain occupied by the fluid and couplintheokystem of equations de-
scribing flow and elastic structure. The mathematical st of fluid and structure interaction
requires to consider viscous, usually turbulent flow, clesnaf the flow domain in time, nonlin-
ear behaviour of the elastic structure and to solve simetiasly the evolution systems for the
fluid flow and for the oscillating structure. Considering theyRads averaged Navier-Stokes
equations and a vibrating structure with large displacesehe change of the fluid domain
cannot be neglected. The methods with moving meshes ([23]) fnust be employed and the
application of efficient and robust methods for the numésodution is required.

The subject of our attention is the numerical analysis ofititeraction of viscous turbulent
flow with a vibrating airfoil. Recent studies on numerical rathithg of the postflutter behaviour
of airoils in laminar two-dimensional (2D) incompressifi®v were overwieved by the authors
in the previous study (Feistauer et al. [14]), where the webtdlowing the solution of large am-
plitude flow-induced vibrations of an airfoil with 3 degreafsfreedom (3-DOF) was developed
and tested. However, none of the studies mentioned in tpisrmieals with turbulent flow, which
is necessary to take into account for high Reynolds numhérs-{ 108).

For an extensive treatment of turbulent flows, one can begéfe.g. to [27], [40], [42], [46].
Turbulent flow has a three-dimensional character, but inrabar of cases, two-dimensional
models are applied to the numerical simulation of turbufeaw. Similar situation appears in
theory, as can be found in [15]. In a turbulent flow simulati@chniques based on the Reynolds
averaged Navier-Stokes (RANS) equations are often appliesia result, the system called
Reynolds equations (see [40], Chapter 4) is obtained. It owthe so-called Reynolds stresses,
evaluated with the aid of a turbulent viscosity model. It barcomputed from algebraic relations
or it can be obtained with the aid of the solution of additieguations for turbulence quantities,
such as: andw (see, e.g. [40], Chapter 10).

The effect of turbulence in aeroelastic computations idistliin civil engineering as well
as in turbomachine, nuclear and aerospace engineeringaippis. For example, Baxevanou et
al. [2] modeled the aeroelastic stability of a wind turbinade section. The Reynolds averaged
Navier-Stokes equations for 2D incompressible flow wereesbihnumerically using the finite
volume method on structured, curvilinear grids using twsias of thek — w high Reynolds
number model of Wilcox with wall functions and wall treatmtieThe stability of a flexible,
cylindrical rod subjected to turbulent annular leakage fleas studied by Langthjem et al [24].
A cylindrical rod in a narrow annulus is a common componerudwer-generation engineering.
It can also serve as a model of a high-speed train in a tunnel.

The response of suspension bridges to wind excitation wiasest by Salvatori and Spinelli
[41] by numerical simulations with a specifically develogaute element program implement-
ing structural nonlinearities. The response under turtitdend was evaluated through a Monte
Carlo approach. The unsteady flow field around a 2D rectanduidge section was studied
by Mannini et al. [31], [32] using unsteady Reynolds-avedhjavier-Stokes (URANS) equa-
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tions at Reynolds numbers from6 - 10 to 1.8 - 10°. The flow was simulated by the finite-
volume unstructured solver and the results obtained wigh and two-equation turbulence mod-
els (Spalart-Allmaras, Wilcok — w, Menter-SST, linearized explicit algebraic) were comgare
A novel numerical algorithm for the study of the effects ohditurbulence on bridge flutter was
proposed by Caracoglia [5]. The coupled-mode flutter thrigstoo bending-torsional modes of
a long-span bridge is estimated in the time domain by stdichesculus techniques.

Subcritical flutter characteristics were examined by Maza&uand Torii [33] using a bending-
torsion wing model subjected to flow turbulence with a viewapplications for flutter bound-
ary prediction. The wing response due to random inputs waresented by the autoregressive
moving-average model. The effect of atmospheric turbwdesrcthe flutter and post-flutter dy-
namics of a structurally nonlinear 2D airfoil in incomprigés turbulent flow was investigated
numerically by Poirel and Price [36], [38] using a Monte Caxfiproach. A general overview of
random flutter in aeroelasticity given by the random natdir@ structure excitation in turbulent
flow was published by Poirel and Price in the paper [37] cotra¢ing on a numerical flutter
investigation of 2D linear airfoil in turbulent flow.

Srinivasan et al. [45] used the finite difference methodtierdolution of 2D RANS equations
modelling the turbulent flow around the oscillating airfdiACA0015 in rotation. By testing five
models of turbulence the authors found that one-equatiothetagrovide significant improve-
ment over the algebraic and half-equation models but haaie dkvn limitation. A dynamically
shaped rigid airfoil utilizing a moving flap has been studogdLian et al. [26] at a Reynolds
number of about 80 000, when the movement of the solid streetias prescribed. The RANS
equations for incompressible fluids and two different \arsiof thek — ¢ turbulence model have
been employed. A pressure-based numerical procedure \sad ba the finite volume method
using the moving grid. The algebraic model of turbulence agdied to the numerical simula-
tion of turbulent flow-induced vibrations of an airfoil witiwo degrees of freedom (2-DOF) by
Dubcova et al. [11] and [12]. The 2-DOF airfoil with freeplagnlinearity in pitch was inves-
tigated numerically by Zhao et al. [53], [54] for low, inteedliate and high level of turbulence.
Poirel et al. [39] studied the low amplitude self-sustaipi&dh airfoil oscillations in incompress-
ible flow by 2D numerical simulations in the Reynolds numbegefrom5.0 - 10* to 1.5 - 10°.
Both laminar and URANS calculations using the SSF w model with a low-Reynolds-number
correction have been performed and found to produce reboaecurate limit cycle pitching
oscillations (LCO). It was shown that turbulence tends taessgpthe pitching oscillations.

A 2-DOF airfoil moving in both pitching and plunging was sied numerically for transonic
flow by Geissler [16] based on a 2D Navier-Stokes equatiolesand the Spalart-Allmaras tur-
bulence model. A numerical investigation of the 2-DOF bagforsion flutter characteristics of
an airfoil in 2D transonic flow was carried out by Weber et &ll][using a time-domain method.
The Reynolds averaged Navier-Stokes (RANS) equations wectarsd the turbulence model-
ing was based either on algebraic Baldwin-Lomax or one-égudaldwin-Barth or Spalart-
Allmaras turbulence models. The paper by Wang and Zha [5@firgates the NLR7301 airfoil
limit cycle oscillation (LCO) in transonic flow caused by thefinelinearity of the fluid-structure
interaction using detached eddy simulation (DES) of tuebaé.

Everywhere, small amplitudes of structural vibrationsenesnsidered and no effects of large
rotation amplitudes resulting in a nonlinear mass matrix3(@®OF airfoil were taken into ac-
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Figure 1: Model scheme - airfoil with 3 degrees of freedonhwitgap.

count as in previous authors study Feistauer et al. [14]dorimar flow. In the present paper
we are concerned with a numerical simulation of 2D viscoasmmpressible turbulent flow past
a moving airfoil, which is considered as a solid flexibly sagpd body with three degrees of
freedom, allowing its vertical and torsional oscillaticared the rotation of a flap. The turbulence
is modelled by two models, namely by the one equation SpAlartaras model ([44]) and also
by thek — w model ([44], [23]).

The numerical simulation consists of the finite elementtsmhuof the RANS equations and
the equations for the evaluation of the turbulent viscositiiis is coupled with the system of
nonlinear ordinary differential equations describing #ndoil vibration with large amplitudes.
The time dependent computational domain and a moving gddaken into account with the
aid of the arbitrary Lagrangian-Eulerian (ALE) formulatioln order to avoid spurious numer-
ical oscillations, the SUPG and div-div stabilization ispa@d. The solution of the ordinary
differential equations is carried out by the Runge-Kuttalradt Special attention is paid to the
construction of the ALE mapping of a reference domain on tireputational domain at individ-
ual time instants. The resulting nonlinear discrete algel®ystems are solved by the Oseen-like
iterative processes. All components of the realizatiomefdolution are assembled together by a
coupling procedure. The algorithms of weak and strong éngif flow and structure problems
are formulated. The method was tested on a flutter problemvtiarh the stability boundary was
computed by NASTRAN program code ([28], [29]).

2. Description of the incompressible turbulent flow

We shall consider two-dimensional nonstationary flow ofsceus, incompressible fluid in
a domainS2; depending on time € [0, 7], whereT > 0. By Q, anddf2; we shall denote the
closure and the boundary, respectively, of the dontgin The boundanps?, is the union of



mutually disjoint partd'p, I'o al'y,, i.e. 92, = I'p U T'p U I'y,, where different boundary
conditions are prescribed. The pdry represents the inlet and fixed, impermeable walls,
denotes the outlet. We assume thigtandl', are independent of time in contrastltg,, which

is the moving airfoil boundary at time The moving airfoil surfacé’y; consists of two parts,
the profile surfacé’, and the flap surfacg;, i.e. 'y, = P, U F;. We consider the flap separated
from the main body of the airfoil by a narrow gap of a widthSee Figure 1.

2.1. Governing equations

Viscous incompressible flow is described by the veloeity= w(x,t) and the kinematic
pressure = p(x,t) depending o € Q, andt € [0, T]. The density of the fluigh is assumed
to be constant. The character of the flow depends on the noagndf the Reynolds number
Re = Uc/v, wherev is the kinematic viscosity/,, denotes the far field velocity ands the
length of the airfoil chord. For a sufficiently small Reynolusmber the flow is laminar. With
the increasing value of the Reynolds number the flow beconnbslant.

The turbulent flow is characterized by the fact that the fl@bbeity field varies significantly
and irregularly both in position and in time. The turbuleimca complicated motion, which re-
sults from the nonlinear advection that creates interastlzetween different scales of motion,
which are the principal current (or the large eddies) ancettaying, random and reverse fluctu-
ations. There are several strategies for the modellingrbitant flow. For main concepts see,
e.g., the monographs [40], [46], [52].

One possibility is to use the Reynolds decomposition of the ¥ielocity « and the kinematic
pressure in the form

u= u+u,

p= D+V0,
wherew is the mean part of the velocity vectgris the mean part of the kinematic pressure, and
u' andp’ are their turbulent fluctuations. As a result we get the Reysaveraged Navier-Stokes
(RANS) equations ([40], [52])

(2.1)

8_u+(u Viu+Vp—V- (2 V—i—VTB) 0

ot in €, (2.2)
V-u=0

where the components of the tenbare given by

_ 1 (0w 0w
Dy =35 (691;]- + 83:1-) ; (2.3)

and the turbulent eddy viscosity coefficient = v (z, t) requires further modelling.

2.2. Reynolds averaged Navier-Stokes equations

In what follows, we shall work with the averaged velocity gmessure. Because of the
simplification of notation, we shall omit the symbol "bar’casimply writew instead ofu andp



instead ofp. This means that the above system will be written in the form

%—?+(u-V)u+Vp—V- (v + vr)(Vu+ V'u)) = 0. (2.4)
V-u=0,

System (2.4) is equipped with the initial condition
u(z,0) =uy, =z €, (2.5)
and the boundary conditions

a)u‘FD = Up, b) U‘FWt = wp, (26)

2
ou;  du, .
C)_(p_pref)ni+(”+VT)Z(aZWLa?) nj=0 onlp, i=1,2.
J 7

j=1

Heren = (ni,n9) is the unit outer normal to the boundad¥?, of the domainQ),;, up is a
prescribed velocity on the palt,. Condition (2.6) b) represents the assumption that the fluid
adheres to the airfoil moving with the velocity,. By p,.; we denote a prescribed reference
(far field) pressure.
In numerical experiments carried out in Section 6, theahdnd boundary data are specified
as
Up = Uy = (U0070)7 (27)

wherelU,, denotes the magnitude of the far-field velocity. The veatoictionw , denotes the
velocity of the motion of the airfoil, which is a part of thelgght solution.

In the above system (2.4), the averaged veloaifyaveraged pressugeand the turbulent
viscosityrr are unknown functions. This system has to be completed bgbalance model for
vr. Here we shall use the Spalart-Allmaras @&nd w models.

2.3. Spalart-Allmaras one-equation turbulence model

This section is concerned with the description of the Sp#limaras one-equation model
([44]) for the determination of the turbulent viscosity.

We introduce an auxiliary functionl = 7(z,t),z € Q;, t € [0,T], which is defined as a
solution of the following initial-boundary value probleff&ind v such that it satisfies the equation

% +(u-V)r=V-(e(v)Vv) + g%(Vﬁ)? + cb1§(D)D — s(0)?, (2.8)
in Q, t € (0,7), the initial condition
v(z,0) = °(z) for z € Qo, (2.9)
and the boundary conditions
- - ~ v
V’FD = UVp, V’FWt = O, 8_71 ro =0. (210)
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The functions:(7), S(7), s(7) are defined in such way that we successively set

1 (Ou; Ou, =
i T A - — ) .7':1a27 S: 2 '2'7
Wi 2 (817] 83:1) b i;w”

@) =30 +7). xF) =",

R/ RN )
e R e TN ) @4
50)= (5+ mahl®) 0= 5=

9() = (D) + cuy (O (B) — (D)), <~>—(”—) ,

cfjjs
1+ 56

wherey = y(z) denotes the distance of a point (2, from the nearest wall (e.g. airfoil surface,
channel walls, etc.) The empirical constants appearinggmbove formulas are taken from [52]:

2
cp, = 0.1355, ¢, =0.622, B = 3’ cy, = 1.1, (2.12)
Cw, = 0.3, ¢y, =2.0, k=041,

and

Cbl 1 + Cb2
Cwl = ? + ﬁ . (213)
Assuming that’ is known, the turbulent viscosity used in (2.4) is defined by the relation
vr = Uf, (7). (2.14)

2.4. k — w turbulence model

Another possibility is the application of two-equationsbwlence models. Herke — w tur-
bulence model ([23], [52]) will be used. In this case the tlebt viscosityv is defined by the
relation

vp = —, (2.15)

Ld
W

where the functiong = k(z,t) andw = w(x,t) defined forz € Q,, t € [0, 7] are refered to
as the turbulent kinetic energy and the specific turbulesgipation rate, respectively. They are
obtained as solutions of the equations

ok

n +(u-V)k = PB,—pwk+V-((v+orvr)VEk) (2.16)
%—b: +(u-Vw = P,—puw*+V-((v+o,vr)Vw) + Cp, (2.17)



equipped with the initial conditions

(
w(@0) = wolz), for z € Qy, (2.18)
and the boundary conditions
a) k(z,t) = 0, w(z,t) = wear, forx ey, te(0,T),
b) k(z,t) = kp(x), w(z,t) = wp(x), forxelp, te(0,T), (2.19)
c) Z(z,t) = 0, L(z,t) = 0, forz € o, t € (0,7).

Z D}, P,=a, Z D%, (2.20)

’L]l 3,j=1

(The expression®);; are defined in a similar way as in (2.3).) The closure coefiisig, 3*, oy,
0., Oy, are chosen by [23]:
2
g =0.075 [*=0.09, o0,=05 o= 3 K= 0.41, op=0.5, (2.22)
s K

(67%) ﬁ _UW—/@*I/Q'

2.5. Specification of the initial and boundary conditiongurbulence models
In the Spalart-Allmaras model we choose

vp =00 =p, (2.22)
wherer is chosen so that (cf. 2.14)
vfp (D)) =v/10 (2.23)
As for thek — w model, we set
Wo=v, kK= w=10s"", (2.24)
6v

kp=15-107*02, ,wp=105"", Wy = (2.25)

B
wherey;, is the distance of the barycenter of the mesh element adjawehe boundary used
in the finite element method (see Section 4). This meansdhat depends on the mesh. The
definition of w,,; is motivated by the asymptotic behaviour of the specificipason ratew
close to the surface - see [52], Chapter 4.



2.6. Arbitrary Lagrangian-Eulerian method

In order to simulate flow in a moving domain;, we employ the arbitrary Lagrangian-
Eulerian (ALE) method (cf. [35]), based on a regular one#te ALE mapping

At : ﬁo — ﬁt? Y € ﬁo — $(Y,t> = At(Y) S ﬁta te [O,T} (226)

A, is the identity in the part of the boundaf?;, where there is no interaction with the body
and also there is no deformation of the boundary. The reéerdomain, is identical with the
domain occupied by the fluid at the initial timte= 0. The coordinates of points € €2, are
called the spatial coordinates, the coordinates of pdints (), are called the ALE coordinates
or the reference coordinates.

Now we define the domain velocity

DA(Y) _ dx(Y.1)

w (Y, t) = : 2.27
WY, 1) = = = (2:27)

This velocity can be expressed in the spatial coordinates as
w(z,t) = w (A (), 1). (2.28)

Further, for any functiorf = f(x,t),z € Q;,t € [0,T] we setf(Y,t) = f(A,(Y),t) and define
its ALE derivative by

DA of 5
The application of the chain rule gives
DA of
Ef = E +w - Vf (2.30)

2.7. Governing equations in the ALE form

Using relation (2.30), the Reynolds averaged Navier-Stakpgtions and the turbulence
models can be rewritten in the ALE form. First, the Reynoldsraged Navier-Stokes system
reads

DA
Ttu +(u—w) - V)u+Vp—V-((v+vr)(Vu+Vu')) =0, (2.31)
V-u=0. (2.32)
Further, the Spalart-Allmaras equation (2.8) has the ALinfo
D'AD/ ~ ~ ~ 3 ~\2 T S~ ~ ~\ ~2
Dt +((u—w)-V)r=V-(e(v)Vrv) + §cb2(VV) + e, S(V)v — s(v)v7, (2.33)
and thek — w turbulence model has the ALE form

DAk \

D +(u—w) -V)k = P,—B'wk+V-((v+orr)VE) (2.34)

DA4w 9

i + (v —w)-Vw = P,—pw*+V-((v+ o,vr)Vw) + Ch. (2.35)



3. Nonlinear equations of the airfoil motion

The deformation of the computational domain depends on thigom of the airfoil, which
is described by the rotation angle= «(t) of the whole airfoil around an elastic axigA, the
rotation angles = f(t) of the flap around an elastic axisF' and the vertical displacement
h = h(t) of the whole airfoil, see Figure 1. The function&), 3(t) andh(t) form a solution of
the following system of nonlinear ordinary differentialiegions (see [20]):

mh + [(Sa — S3) cosa + Sg cos(a + B)] & + Ssf3 cos(a + B) (3.1)
—(Sa — Sp)a?sina — Sg(a + B)%sin(a + B) + Dpnh + knph = L,
[(So — S3) cosa + Sgcos(a+ )] b+ [(In — 2dppSs) + 2dppSs cos ] é
+[Is + dppSscos B] f — dppSsf? sin 8 — 2dppSsafsin f + Daade + koot = Ma,
Sgcos(a+ B)h + [Ig + dppSpcos 8] & + I + dppSsc sin f + Dgal3 + kspff = M.

HereL is the vertical component of the aerodynamical force aaimghe whole airfoil M., is
the torsional moment of the aerodynamical force acting enithole airfoil with respect to the
axisEA, Mg is the torsional moment of the aerodynamical force actintherflap of the airfoil
with respect to the flap axi8'F', Dy, D.., Dgs are the coefficients of a structural damping,
Sa, I, andm denote the static moment of the whole airfoil around thetielasxis F' A, the
moment of inertia of the whole airfoil around the elasticsakiA and the mass of the whole
profile, respectively, the coefficiest; is the static moment of the flap of the airfoil around the
flap axisE'F' and Iz is the moment of inertia of the flap of the airfoil around theféxis £ F.
The constantsy,, k.., ks denote the spring stiffness of the flexible support of théoaiand
dpr is the distance between the elastic akid and the flap axig’F.

System (3.1) is equipped with the initial conditions

a(0) = ag, @(0) = ax,
B(0) = Bo, B(0) = B, (3.2)
h(0) = ho,  h(0) = .

The interaction between the flow and the airfoil is given by tlon-stationary force compo-
nent and the momentad1, and M defined by

2
L=-l / > 7ym;dS, (3.3)

PUF, J=1
2
My =—1 / > i (=1 (w148, — 2175,) dS, (3.4)
PUF, bI=1
2
Mg =1 / > 7 (=1 (w14s, — 21L5,) dS, (3.5)

F i,j=1
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wherel is the depth of the segment of the airfail,= (n;, ns) is the outer unit normal t6$2, on
I'w, = P, U F,, the symbob,; is the Kronecker symbol defined by, = 1 for i = j andd,;; = 0
fori # j, z; andz, are the coordinates of points oy, 274, i = 1,2, are the coordinates of

the current location of the elastic axidA andz*, i = 1,2, are the coordinates of the current
location of the flap elastic axiB F'. The stress tensor components are given by the relation

T, =0 |—pdij + (v +vr) <ax' + 8;)} . (3.6)
] K3

The interaction of the fluid and the airfoil is formed by théusimn of the turbulent flow prob-
lem consisting of equations (2.31), (2.32) equipped withditoons (2.5), (2.6) and completed
by the turbulence model (2.33), (2.9), (2.10) or (2.34)3%2. (2.18), (2.19), which are coupled
with the structural model (3.1), (3.2) via (3.3) — (3.6). Iat follows, we shall be concerned
with the discretization of the flow problem and describe tige@athm for the numerical solution
of the complete fluid-structure interaction problem.

4. Discretization of the flow problem

4.1. Time discretization

In order to discretize the flow problem in time, we construtieguidistant partition of the
time interval[0, 7] is constructed formed by time instams= ¢, < t; < --- < T, t, =n71, n =
0,1,..., with a time stepr > 0. We use the approximations(t,) ~ u", p(t,) ~ p" and
w(t,) ~ w™ at timet,, for the velocity, the pressure and the domain velocity, eetpely. The
ALE derivative will be approximated by the second-orderlveard difference formula (known
as BDF2). For a given poirt’ € ), from the reference configuration on a given time leyel
we can write

Atn_l(Y) =Xp_1 € Qtn—17 Atn(Y) =X, € Qtn, Atn+1 (Y) =Tpy1 € Qtn+1- (41)

Using definition (2.29), where we s¢t:= u, we shall approximate the ALE derivative of the
velocity at timet,, . ; and pointz,,,; by the formula

D4u 3" HH(Y)) —4a™(Y) + a4 H(Y

S et ~ S ) @ ) @2)
_ 3u (2, 11) — du™(x,) + w2, )
N 2T '

Taking into account thatt,, ,, (A, '(z;)) € ,,,, we introduce the functiond’ = u’ o A,, o
At‘nil, i =n,n — 1, obtained by the transformation ef* andu"~' to the domairf2 := Q...
Now the implicit scheme for the unknown functions= u"*! : Q — IR? andp := p"*! : Q

IR read

_ 4An ~n—1
3u u +u (4.3)
2T
H((u— ™) - Vyu+ Vp = V- (v + vr) (Vu + V) =0,
V-u=0, (4.4)

considered iff2. We assume thai andp satisfy the boundary conditions (2.6).
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Remark 1. In what follows, if we have a sequenge: ;, — IR,i = 0,1, ..., and fix an index
n, then we sef’ = f' o A, o A, , which are functions defined iny, .

4.2. Finite element space discretization of the RANS system

Let us assume that the approximation of the turbulent viscosg is known at time,, ;. The
starting point for the space discretization of system (48)) by the finite element method is
the weak formulation. For simplicity we st = Q; .., I'v = Twy,,,, u = u"™, p = p"™.
We define the velocity and pressure function spaces

W= [H'(Q], X={veW; vlrur, =0}, Q=L%Q), (4.5)

whereL?(1) is the Lebesgue space of square integrable functions oeelcimain and /()
is the Sobolev space of functions square integrable togethk their first order derivatives.
Further, ifo C IR?, then by(-,-), we denote the scalar productii(o): (¢,1), = [ ¢t dz.
Moreover, byl| - ||, we shall denote the norm defined|gs|, = max,|¢|.

The weak formulation is obtained in a standard way. Equa#oB) is multiplied by a test
functionwv € X and equation (4.4) is multiplied by a test functigre @, integrated over the
domain(2, Green’s theorem is applied, the boundary condition (2)6) used and the resulting
integral identities are summed. In this way we get the forms

3
CLNs(VT, U*, U, V) = Z(’U,, U)Q + ((V + I/T>(VU + VT’U/), V’U)Q
+(((u* —w") - V) u, v),
1 ~n ~n—
fns(V) = 5 (4" — @ L v), — /pmfv -nd9,
o

where we use the notatidh = (u, p), U* = (u*,p*), V = (v, q).

We define aveak solutioras a couplé/ = (u,p) € W x @ such that satifies the boundary
conditions (2.6), a)-b), and the identity

ans(vp, U, U V) = fns(V) VYV =(v,q) € X x Q. 4.7)

In order to apply the finite element method to the numerichitem, we assume that the
domain(2, is a polygonal approximation of the computational domaitma¢¢,, ;. By I'pa and
'y a we shall denote the parts 62, approximatingl’, andI'yy,, respectively. Further, bya
we denote a triangulation 6f, formed by a finite number of closed triangles. The param&ter
denotes the maximal size of elemenfsc 7o. We assume that any two different triangles are
either disjoint or intersect each other in a common face araommon vertex (cf., e.g. [6]). We
use the Taylor-Hood?/ P! elements ([48]). This means that

Qa = {¢€C(Qa)iqlx € P(K)VK € Ta},
Wa = {ve[CQa))%v|k € [PHK)?VK € Tal}, (4.8)
XA = {’U € WA;,U|FDAUFWA = O}
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Here the symboP*(K) denotes the space of all polynomials Anof degree< k. The couple
(Xa, Qa) satisfies the Ballika-Brezzi condition (see, e.g. [3], [4], [49]), which is iortant for
the stability of the finite element scheme. The domain ve)kzwiHl at tlmetnﬂ is approximated
by a functionw, = w’X"!, we use the approximations ~ w', i = n,n — 1. Further, the
formsayg and fygs will be mOdIerd so that in (4.6) we shall writea instead of(2.

Now theapproximate solution of the flow probleimdefined as a coupléx = (ua,pa) €
Wa x Qa such that

ans(vr, Ua, Ua, Va) = fns(Va), VVa = (va,qa) € Xa X Qa, (4.9)

andu, satisfies approximately the Dirichlet boundary conditi¢h$), a), b). This means that
these conditions are satisfied at thedesi.e., the vertices and midpoints of sides of elements
lying on the approximationsp, andl'y A of I'p andl'yy,, respectively.

By the symbolRe = U,.c/v we denote the Reynolds number. Hétg denotes the magni-
tude of the far-field velocity andis the length of the airfoil chord. For high Reynolds numbers
approximate solutions can contain nonphysical spuriogslasons. In order to avoid them, we
shall apply the streamline-diffusion (also called the SURBeamline upwind Petrov-Galerkin)
stabilization and the div-div stabilization. For a velgcitectoru* we introduce the transport
velocityw* = w*(u*) = u* — w™" and define the forms

6N5<VT,U*,U,V Z 5]{( ((V+VT)<V’U,+VT )) )
KeTa K
+ Y ok (@ V)u+ Vp, (W-V)v),

KeTa (4.10)

FNS Z 51{( 417,”—/\” 1), (EV)’U) 5
KeTa K

Pys(UV) = Y 7x(V-u,V-v)x.
KeTa
Here

U= (u,p) U'=(u"p V=(v,9q),
andég, 7 > 0 are parameters defined on the basis of results from [17] djcf& our numer-
ical experiments and tests. We put

5y = ‘52||ﬁ*|| (R, (4.12)

where||w*||x = maxg|w*|, hi is the size ofK” measured in the direction @f* and

. S . w*
R = Ml oy i <—§RK , 1) . (4.12)
2v 6
The parametersy are defined by
TK :T*hKHm*HK, T* € (0, 1] (413)
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In practical computations we use the valdés= 0.025 and7* = 1.
The solution of the stabilized discrete problem is such @, = (ua,pa) € Wa X Qa
thatu, satisfies the boundary conditions (2.6), a), b) at the nodeg bnI'pA U 'y and

ans(vr, Ua, Un, VA) + Uns(vr, Un, Ua, Va) + Pys(Ua, Va) (4.14)
= fns(Va) + Fys(Va), VVa = (va,qa) € Xa X Qa.

The couple(ua, pa) represents the approximate solution on the time leyel defined in the
approximation of the domaift; ;.

Remark 2. The above procedure can also be used for the numerical ealofilaminar flow. We
simply setvr = 0 and solve problem (4.14). To this end, the following Oseeatitee process
can be used. Starting from an initial approximatibﬁ+ ! at timeth and assuming that the
iteration Ugt; has already been computed, we deﬁfﬂé’m+1 (UA mt1,PAm+1) € Wa X Qa
satisfying (2 6), a), b) at the nodes b, U I'yy A and

ans(0,UREY UR 1 Va) + Ens(0, U URY 1 Va) + Prs(URT 1, Va)

= fNS(VA) + FNS(VA), VVA = ('UA,QA) € Xa X Qa. (415)

We obtain a sequendé:’’, m = 0,1, ..., and assume that it converges to the solufight" of
equation (4.14) withv; = 0. We sel/ , = (u),p) and for each time level,,,, n > 1, we set
Ugfol — (2u —ax ', pk). The numerical realization of the Oseen iterations is diéstt e.g.
in [14].

4.3. Discretization of the Spalart-Allmaras turbulenceiation

Equation (2.33) is discretized in time similarly as the RANStem (2.31) - (2.32) by the
second-order backward difference formula. At every tigeve approximateé(t,) ~ v*. Let us
assume that we have already obtained the approximadibredz™. Then, as in Remark 1, we
set

~n—1

= o~ =n ~ _
7 = oAy, o AL T =T oAy 0 A

tnt1? tnt1?

(4.16)

which is the transformation of the function&=!, 7" from the domain$2;,_, 2, to Q... For
simplicity we shall use the notatian for the functiony(™+1).

Because of computing the numerical solution of equatior3j2aBtimet,,,; we shall use the
following linearization of nonlinear terms:

W)V =~ )V,
(Vo)? =~ Vi -V,

s ~ s@) |0 )2 +2w (b —7) (4.17)
= s =),
Sy ~ S@ .
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Then we obtain the following linearized scheme for the cotagon of the function):

~n ~n—1
S — 45"+
SAL + (u—w) - V¢
— div(=(G")Vy) + g%v%” Ve (4.18)

AN AN ~n

4o, ST —s@)2 v — (@)%, n=0,1,...,
which is equipped with the boundary conditions (2.10), r#am now for the function):

. 0
U=, Ylny =0, So| =0 (4.19)
n 1To
The space discretization of problem (4.18) - (4.19) is edrdut by the finite element method
over the triangulatiorya of the domairt2,, which is a polygonal approximation of the domain

... We define the spaces

Va = {9 € CQa)ylx € PI(K)VK € Ta}, (4.20)
Vg = {QO € VA;QO =0on FDA U FWA},
(4.21)
and the forms
3 -~n
B (u,1,9) = 5 (U, 9)as + 0)V, Vela, (4.22)
3 ~n ~n an
H(w=w) Vo )a, — (5057 - Vo - 267 00p)
Qa
1 ~n ~n—1

L*p) =550 -V v)a, (4.23)

Hen ST + 50 )(T)% 9)as.

Assuming that is known, the approximate solution of problem (4.18), (3.i$Xefined as
a functiony)p € Va satisfying the Dirichlet boundary conditions (4.19) at teetices lying on
I'pa UT'ywa such that

B*(u,a, pa) = L**(pa), Vea € VR. (4.24)

In the case of large Reynolds numbers, we apply the SUPG ig&tlmh, combined with
discontinuity capturing (DC) introducing an additional glgation in the crosswind direction.
(See, e.g. [22]), [7] and [21].) To this end, we define the segalued function

b=bu)=u—wi'— g%vﬁ". (4.25)
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By ¢* we denote an auxiliary variable (approximationj/gfand introduce the forms

Biypa(u, v, ¢) (4.26)
KZ; I (mt +b- Vi — div(e() Vi) + 25( )7 9, b- w)K,
Ly pa(u, ) (4.27)
~n—1
4 —v ~ ~n_an ~n_ ~n
= > 0 (%ﬂ‘bls( wo+sv)(v )Q,b-w> :
KeTa K
Bo(uw, "0, 0) = Y ax(@*)(Ve, Vo) (4.28)
KeTa
# 3 ((maxtan(v) - e, 0) - ailw) oy T, V)
KeTa 1611% K
Here »
— (4 2(|b
6K—< 0 e 2Pl ), ) , (.29
b2, bib
b b= ( 61(1927 232 ) (4.30)
and N
e = Ok [|b[%- (4.31)

The norm||b||% is defined by
16]lc = maxc (|b1] 4 [b2]) - (4.32)

Similarly we define the norm|$s(y | and||s ( )HK
Further, we define the local element residuals

-~n ~n—1
resc(y) = U 22; G (4.33)
~div(e(@ V) = s(@ )T )2 — e, ST ) +25(0 )0 v,
andset ! Jresc(v)]
. rese(v*)|l g . N
k() = { AW g IVl 70, (4.38)
0 elsewhere

where hy is the characteristics length of the elemént(we use the size of the elemeht
measured in the direction &), Ay is given by

. _2(0)
Ak (") = max (0, 0.7 Hfh(iﬂ*)HKhK) (4.35)
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with

resc(¢”)
a(P*) = ———= . 4.36
W) = 9 (4:36)
Now let us define the complete stabilized Spalart-Allmauvalsilence model forms
By (uw, v, ¢, ) (4.37)
= Bsa<u7 1/% (70) + Bg’%PG(Uﬂ ¢7 QD) + BSDaC(uv ¢*a ¢7 90),
Lv(ua, o) = L*(¢) + Ly pe(u, ). (4.38)

Then (provided the finite element approximation of the flow velocity at timet,,,; is
given), the stabilized discrete problem foiis formulated in the following way: Find, € Va
satisfying the Dirichlet boundary conditions (4.19) at eetices lying o’ pa U 'y A such that

B%%\J(u7wA7wA7(pA) = L%QM(U7()0A)) V()DA € Vg (439)

4.3.1. The solution of the complete Spalart-Allmaras tigbuflow problem

Summarizing (4.10), (2.14) and (4.39), we can formulatesttteeme for the computation of
turbulent flow at the time instarnf, ; in the polygonal approximatiofi, of the domairty, ,:
FindUx = ('U,A,pA), VA, UA, Z8N such that

a) Ua = (ua,pa) € Wa X Qa, (4.40)
u, satisfies (2.6), a), b) at the nodes lyingloga andl'y a,
ans(vra,Ua,Ua,Va) + ns(vra, Ua, Ua, Va) + Pns(Ua, Va)

= fns(Va) + Fns(Va) VVa € Xa X Qa,

b) A € Va,

B (ua, ¥a, ¥a, pa) = Ly (ua, oa)  Voa € VR,

C) VA =,

d) vra= 77Afv1(77A)-

If we obtain the solution of this problem, théa’x™ pi™) = (ua, pa), D(A"“) = Ua = 15 and

yi(przrl) = vpa represent the approximate solution of the Spalart-Allmavabulence model at
timet,. ;. The solution of problem (4.40) is carried out with the uséheffollowing Oseen-like

iterative process.

4.3.2. Algorithm for the solution of the discrete Spalaltrfaras turbulent flow problem at time
tn—i—l
(0) In the begining of the time marching processiset 0, Uy' = U = (u®, pyef), Z(A’l) =
ﬁg)) = va, Wherev, is chosen so thata f,, (va) = v/10 (see the conditions specified in
(2.7) and Section 2.5). Then fingd, € Va satisfying the Dirichlet boundary conditions
(4.19) at the vertices lying onp, U 'y A and
B**(u’, YA, pa) + Bsypa(u’, ¥a, pa) = L (u’, 0a) Yoa € Vi (4.41)

(In this way we get the initial value af’ .)

17



~n—1 ~n

(1) Lete > 0 be given. Letthe approximatidn of the domair2, ,, andwx™), ux ', WX, Vx ,Vn,
vra (quantities transformed to the approximation of the donfaip, ., by Remark 1) have
already been determined. Set

]/Z = l//\%Aa 77Z}*A = DAa UZ = (327]52) (442)

(2) FindUx = (ua,pa) € Wa x Qa such thatu, satisfies the boundary conditions (2.6) at the
nodes orl'pa U I'yya and
aNS(V;AaUZ7UA7VA)+€NS(V;:A,UZ;UA7VA) (443)
+Pns(Un,Va) = fns(Va) + Fns(Va) VVa € Xa X Qa.

(3) Findya € VA such that it satisfies the Dirichlet conditions (4.19) atvbgives onl'p U
I'va and

Bt (ua, VA, va, oa) = Lty (ua, a) Vs € VR. (4.44)
(4) SetﬁA = 77DA, Urpa = ;Afm (gA)
(5) If
lvia —vrall <e and  ||UX — Uil <e, (4.45)
then set
UrtY = Uy, 00 = ga, Y = upa, (4.46)
else
I/;:A = VTA; UZ = UA, w*A = wA7 (447)

and go to (2).

Remark 3. In order to increase the stability of this algorithm, it isitable to apply a few inner
iterations in (4.44) of the following form: Sét, o := ¢4 and fori = 0,...,1 (Il = 1 or 2) find
¥ai+1 € Va such that it satisfies the Dirichlet conditions (4.19) at eetices froml'pa Uy a
and

By (wa, ¥ai, ain, oa) = Ly (ua, o) Yoa € VR, (4.48)

Then putpa = a1

4.4. Discretization of thé — w turbulence model

The discretization of thé — w system (2.34), (2.35) is carried out in a similar way as in the
previous section. The time derivative is approximated leyshcond-order backward difference
formula, use suitable test functions and ¢, for the obtained approximations fér and w,
respectively, use the notation introduced in Remark 1 armddaoce the following linearized
approximations:

B*wk(tpsr) ~ 280" K" — B k", (4.49)
Bw(tni1) & 2@ " — (@),

Pk(tn+1) ~ Pk(tn)y Pw<tn+1> ~ Pw(tn)
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Further, we use the notation

ex =V + o)V}, €, =V + o}Ur, (4.50)
A= (kw), &= (prp,), w=w(u)=u-— 'w’Krl.

Then we get the following forms:
kw 3k ~n
B¥(w A @) = (xVE Vg + (gx; + (@ V) k+280k. o (4.51)
Q

3 _
(e Vi, Vo) + | o + (@ V) b + 280w, 00 | , (4.52)
2 0
agn — et —
<2—At + Py(tn) + B°K"W 790k>9

4™ — @n—l S — o
(T + B(@")* + P,(tn) + Cp(tn), %J)ﬂA

LM (D) (4.53)

(4.54)

Because of the SUPG and DC stabilization, we define the forms

BY po(u; A, @) (4.55)

3k . -
_ ZéKk<ﬂ+w Vk 4 280"k + V- (6ka;),w-Vgok>K
3 R _
+ Z 5Kw<2—zt +w-Vw+ 200w+ V- (e, Vw) ,'w-Vgow> ,
KeTa K
L§pe(u; @) (4.56)

Tm—1

Ak — & e
= ZéKk< N +Pk( )—F@k’ ’w'VQOk)>K
KeTa

—on1 — —
+ Y (B 4 5@ Pl + Ol - Vi)

KeTa

Bio(u; A, @) (4.57)

-y (oszVk:,chk>K + Y (@vw,v%)K

KeTa KeTa

+ Z / QK _aKk —CkKk) VEk - ( HE‘

KeTa

+2/ kw — Oy) T — k) Vw-(l‘l]@w)vs%dl"-

—2
KETa [w ’K

SI

) Vgokdyc

=
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We use the following notation. The parametéts, o, are defined by

_ (Alellx | 2Jlw]x R
Okp = 52 + 3 +28%|&0" || & ; (4.58)
K K
4|ley 2||w . -1
5Kw _ ( HhQHK+ ”h HK+25HW”HK) ‘
K K

The discontinuity capturing coefficients,, , anda/ , are determined by
e = Okn ||k, iy = O |[W]| k- (4.59)

The definitions of the discontinuity capturing coefficients, anda ., are based on the local
element residuals

3k — k" 4 k"

res (k*) = N LW VE 2855k — BOE — Pa(ty) — V- (exVEY) (4.60)
and
3 *_4An+An—1 R N — - .
res(w) = 2 2wm W VW 260" — B (&")2 — Py (ty) — Cp(tn) — V- (e VW)
(4.61)
We set
1 resq (k*
agr(k®) = 2AKk(k*)hK—H ||V1/(<:*||)KHK’ (4.62)
() = Aph(wny el (4.63)
Kw 2 Koullg (W ||vw*||K ) .

if |[VE*||x # 0and||Vw*||x # 0, otherwise,

(07:¢’ =] Ay = 0 (464)
Here,
25k + ( QEW )+
Agrp(E)=107— ——— | , Ag,=(07T— —r——] , 4.65
(k) < ||a1||KhK> " ool (4.65)
with (k) ()
res(k* res(w*
a; = ———=Vk*, ay=-——->-V'w. (4.66)
VR L Verl%

Finally, we define the stabilizekl — w turbulence model form&,, = B%;W and Ly =
Lk

BY (w; A, A, D) (4.67)
:Bkw< A (I))+BSUPG( A7(D)+B’[€)%(U7A*7A7(I))a
Ly (u; ®) = Ly (®) + L pe(u; @), (4.68)
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4.4.1. The solution of the problem for computing the quistit andw

Now we shall introduce the discrete problem for the deteatiom of the approximations to
the functions: andw at timet,, , 1, provided the approximate solution has already been caedput
on previous time levels. We use again the finite-dimensispated’, andV defined by (4.20
and se®y = Vi = WQ.

The nonlinear stabilization problem reads: Fihd = (ka,wa) € [Va]? satisfying condi-
tions (2.19) a), b) at the vertices lying dipA U 'y A and

BY (w; Ap, Apn, Pa) = LA (u; @p), VOA = (0ra, Pun) € Vi x VK. (4.69)

4.4.2. The solution of the complete discrete w turbulent flow problem at timg, .,

We want to findUa = (ua,pa), Aa = (ka,wa) andvra such that the following conditions
are satisfied:

a) U, satisfies (4.40), a).

b) Aa = (ka,wa) € [Va]? satisfies conditions (2.19), a), BO at the vertices lying'ga UT'ya
and (4.69).

c) Therelatiorvya = ka/wa is satisfied.

4.4.3. Algorithm for the solution of the discréte- w turbulent flow problem at timg, ., ;

(0) In the begining of the time marching processmset 0, Uy' = UR = (6, prey), vy =
WA = v, kXt = k% = 10y, wi' = wd = 10 (see the conditions specified in (2.7) and
Section 2.5). Then findi, = (ki,wi) € [Va]? satisfying conditions (2.19), a), b) at
vertices lying ol pa U Ty A and

B (uQ; AL, ®a) + BE po(ul; AL, @A) = LA (ud, Pa) VPA € VE x VR, (4.70)

(1) Lete > 0be given. Let the approximatidd, of the domairf),, andw’', @x ', an, k", kL, &%,
WX, Vka, Pr(tn), Po(tn), Cp(t,) (Quantities transformed to the domdixn by Remark 1)
have already been determined. &&t = (ux,pk, kA = kX, wh = WX, Vjp 1= Vjp =
kX Jwik.

(2) FiINndUa = (ua,pa) € Wa x Qa such thatu satisfies the boundary conditions (2.6) at
nodes ol'par U Ty A and

aNS(V;“AaUZ7UA7VA)+£NS(V;:A7U27UAaVA) (4.71)
‘I‘PNs(UA,VA) = fNS(VA) + FNs(VA) \V/VA € XA X QA-

(3) FindAa = (ka,wa) € [Val]? satisfying conditions (2.19, a), b) at vertices lyinglopa U
I'va and

Bi3 (ua, A5, Aa, o) = L (ua, Pa) VPA = (0ra, pua) € VA X VX, (4.72)
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(4) SetuTA = kA/wA.

5) If
lvia — vrall < e and |[UXA — Ua|l <&, (4.73)
then set
Ut i= Un, KXt o= ka, Wi o= wa, ViR = ka/wa, (4.74)
else
Ur :=Un, kX :=ka, Wi :=wa, Vi kA WA, (4.75)

and go to (2).

5. The realization of the coupled fluid-structure interaction problem

In this section we shall describe the algorithm of the nuoaniealization of the complete
fluid-structure interaction problem.

5.1. Construction of the ALE mapping for three degrees ofifree

The ALE mapping is constructed with the use of the linear &gna describing the defor-
mation of elastic bodies:

VIA+ @)V -dl + V- (uVd) =0 inQy, (5.1)

whered = (dy, d») is a displacement defined §&,. The Lane coefficients\ andy are computed
by

E.o E
A= a-a = a 5.2
1+o(1—2E) "~ 2720, (-2
wherekF, is an artificial Young modulus ang, is an artificial Poisson ratio.
The boundary conditions faf are prescribed by
d|r,ur, =0 (5.3)
and onl'y, they are determined by the functioh&), «(t), 5(t):
di = Xjcosa— Xssina, _
do = Xysina+ Xscosa + h, V=X, %) € R, (54)
for the main part of the airfoil and
di = Xjcos(a+ ) — Xysin(a+ )
+dpp cos a, B
dy = Xysin(a+ ) + X cos(a + ) Y= (X, Xo) € B, (®-5)
+dppsina + h,

for the flap of the airfoil.
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The solution of equations (5.1) gives us the ALE mappin@obntoQ, by the relation
AY)=Y +d(Y), Y €Qq, (5.6)

for each time.

System (5.1) is discretized by the conforming piecewisedirfinite elements on the meg
used for computing the velocity and pressure fields in thenoeg of the computational process
in the polygonal approximatiofly, of the domairt,,.

We introduce the finite element spaces

Xa = {da = (da1,da2);dnilx € PHK)VK € TR, i = 1,2}, (5.7)
Va = {pa € Xa;pa(0) =0 forall verticesd € 0},

and the form

Ba(da,on) = (A +w)(V-da). (V- @a)g, + (1Vd.Vepa)g, - (58)

Then the approximate solution of problem (5.1), (5.3) —X&%3lefined as a functiod, € Xa
satisfying the Dirichlet boundary conditions defined by3j5- (5.5) with the values of, o, 5 at
timet, 1 and considered at the vertices lying @1, and the identity

Ba(da,pa) =0 Vepp € Va. (5.9)

It is possible to choose the Lantoefficients\ andy as constants, but it is more suitable to
define them by (5.2), where the parametEgsando, are piecewise constant on the megh

We define them by
1

oalik =0.25, E,|lx = measi) (5.10)
where meady’) denotes the area of an elemékit The mesh around the airfoil is typically
refined into smaller triangles. Since smaller triangleslynpe larger Young modulug’, in
(5.10), the mesh around the airfoil moves with the airfod &s deformation is small.

If the displacemendl , is computed at time, . ;, then, in view of (5.6), the approximation of
the ALE mapping is obtained in the form

Atn.HA(Y) =Y + dA(Y), Y € Qoa. (511)

The knowledge of the ALE mapping at the time instamts, ¢, t,,.1 allows us to approximate
the domain velocity with the aid of the second-order backiiiference formula

30— 4A, A (AL A () + An A (A A (D)
N 27 ’

witH(x) €, (5.12)
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5.2. Discretization of the structural problem
In order to solve equations (3.1) of motion describing théodivibrations, we transform
them to a first-order system. We introduce the following tiota

Z(t) = (h(t),6(t), B(1)", = (L, Mo, Mg)", (5.13)
khh 0 0 th 0 0
K= 0 kw 0 |, D= 0 Dw 0 |, (5.14)
0 0 kg 0 0 Dgg
M = (Mi)7 1, (5.15)

where the components of the nonlinear mass mafirix M(Z) read
My =m, M= (S,— Sg)cosa+ Szcos(a+ ),
M3 = Sgcos(a+ B), My = M,
M22 = Ia —deF55+2dpF55COSﬁ, M23 = ]B+dpFSﬁ COSﬁ,
M31 = M13> M32 = M237 M33 = I,B-
Further, we introduce the following notatiof? - 3 x 3 zero matrix,I - unit 3 x 3 matrix, O -
3-dimensional zero vector ad- the vector of nonlinearities:

( (Sa — Sp)c’sin o + Sp(d + B)° sin(a + ) )
g =

(5.16)

dpFSIgBQ Slnﬂ—i—?(dpFS@)OéBSlnﬁ (517)

—dpF55d2 Sinﬁ
Then system (3.1) is equivalent to the first-order system
Z =h(t, 2), (5.18)

whereh is the vector function defined by

- (10 Q) () -(32)e+(3)) e

This system is equipped with the initial condition presitrijthe valueZ (0) given by conditions
(3.2). The initial value problem for system (5.18) is soi®dthe fourth-order Runge-Kutta
method. In the step from, to ¢,,.; one needs the evaluation of the vaILgé(§) at discretes
instantst € [t,,t,+1]. They are obtained by a linear extrapolation from the irakfs;,_;, t,]
t0 [tn, toya]. If the valuesf(t,) and f(t,..) have already been approximated, thgft) is
computed by the linear interpolation in the interiégl ¢,,.].

5.3. Computation of aerodynamic forces acting on the airfoil

In the case when the flap is not separated from the main bodhedditfoil, the aerodynamic
forcesC, M,, Mz at timet,,; are computed from (3.3) — (3.5) by using the approximation of
the stress tensor (3.6) known from the solutién = (ua,pa) Of the stabilized discrete flow
problem (4.40) and extrapolated to the boundary. The iategn (3.3) - (3.5) are computed with
the aid of numerical quadratures. In the case, when the flsgyiarated from the main body of
the airfoil, i.e. P, N F; = (), the force and moments can be computed on the basis of a weak
formulation similarly as in Satek et al. [47].
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5.4. Coupling procedure

In the solution of the complete coupled fluid-structure iatéion problem it is necessary to
apply a suitable coupling procedure. See, e.g. Badia and &€¢tjrior a general framework.
Here we apply the following algorithm.

(0) Prescribe > 0 - the measure of accuracy in the coupling procedure, andteaganV/ > 0
- the maximal number of iterations in the coupling procedure

(1) Assume that the solutiolix = (ua, pa) Of the discrete flow problem (4.40) and the force
L and torsional moment&1,, and Mz computed from (3.3) - (3.5) are known at time levels
t,—1 andt,.

(2) Extrapolate linearlyC, M, andM from the intervalt,,_1, t,] tO [t,, t,11]. Setm := 0.

(3) Prediction ofh, «, 8: Compute the displacemehtand the anglea and at timet,,; as
the solution of system (5.18) by the Runge-kutta method. Bemnby h*, o, 5*.

(4) On the basis oh*, o*, §* determine the position of the airfoil at timg,;, the domain
Q,..a, the ALE mapping4,, ., » and the domain velocitwx*'.

(5) Solve the nonlinear discrete stabilized problem (4at@met,,., by the Oseen-like iterative
algorithm 4.3.2 .

(6) Correction ot o, 5: Computel, M, and M from (3.3) - (3.5) at timeé,, ., and interpolate
L, M, and Mg onlt,, t,+1]. Computeh, «, § at timet,,; from (5.18) by the Runge-Kutta
method.

(7) If |h*—=h|+|a* —al+|5*— 8] > candm < M, seth* = h,a* =, * =, m:=m+1
and go to 4. Otherwise, := n + 1 and go to (2).

If M = 0, then we get a loose (weak) coupling of the flow and structorablems. With
increasingV/ and decreasing, the coupling becomes stronger.

Remark 4. The assumption that the approximate solution and the quantitiesC, M, Mz
are known at time instantg_; andt, is satisfied in practical computations, because the compu-
tational process starts with a fixed airfoil and flap, which agéeased after several time steps.

6. Numerical experiments

We performed computations for the airfoil configurationssidered in [28], where the au-
thors computed the stability bounds of a wing profile modeWi8C.NASTRAN, which is based
on a linear description of the structure behaviour.

The numerical simulation was carried out for the airfoil NAOB12 of the total length (in-
cluding the gap and flap - see Figurecly 0.3 m. The axes£A and E'F are placed at0 %
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and80 %, respectively, of the length of the whole airfoil measuirexin the leading edge. The
following structural parameters in equations (3.1) weredus

m = 0.086622kg, knn = 105109 N /m,
koo = 3.60558Nm/rad, ks = 0.2Nm/rad,

Sa —0.000779598 kg m, Sz = Okgm,

I, = 0.000487291kgm?  I5= 0.0000341104kgm?,
dpp = 0.140001 m, l= 0.079m.

The damping coefficient®;;,, D,., Dss were assumed to be zero. The gap between the main
lifting surface and the flap was varied frogn= 0% to g = 7% of the flap chord lengtiL; =
0.068 m.

Figure 2 shows examples of the triangulation around theibinfthe channel. The mesh was
anisotropically adapted by the method described in [9hgishe combination of the software
Angener [8] and the open source software GMSH [18], [19]. Tdtal number of fluid finite
elements was approximately 60 000 depending on the gap size.

The structural initial conditions in all computations weet to

R(0) = —1.5 mm, a(0) = 1° for g < 1.26% or h(0) = —5 mm, «(0) = 3° for g > 1.26%)
and
B(0) = h(0) = &(0) = (0) = 0.
The computational process started from the solution of the flast a fixed airfoil at time
t = —0.01 s. At timet = 0 the airfoil was released and the computation of the reatacten
started. (Cf. Remark 4.) Computations were carried out withithe stepr = 0.01¢/U, for the
kinematic viscositys = 1.5 - 107> m?/s, the air density = 1.225 kg/m? and the far-field flow
velocity U,, = 6 — 12 m/s corresponding to the Reynolds numbers betvieer 0° and2.4-10°.
The computational process was finished either by approgdime 7 = 2 s in aeroelastic stable
cases or if the process failed due to high vibration ampéiidvhen the aeroelastic instability
appeared for the unstable LCO and the amplitude of the flapeeecka limit value by which
the computational mesh was degenerated. The total comjpmefor the computation of the
responses(t), a(t), 5(t) fort = 0 — 2 s on a PC with Intel i7 processor and 4GB memory was
about 3 days.
The frequency analysis of the dynamic response was caraedith the aid of the Fourier
transform

Glh) = [ gty (6.2)

with ¢ = h, aor 5, andf,, = nAf € [0,50], Af = 0.1 Hz, approximated by the rectangle
formula

G(fa) = ) glt) e ™ At. (6.3)
k=0
Herei is the imaginary unit;At = T'/N andN is the number of time steps in the interf@| 7).
The results of the frequency analysis are shown in graphseadaantity

G(f)l = VR(G(fa) + S2GC(fa)).
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Figure 2: Detail of anisotropically adapted mesh for NACALRGirfoil for the gapy = 2.4% (nondeformed and
deformed position).

6.1. Numerical results - flutter analysis

Figures 3-7 show examples of the computed functibs, a(t), 3(t), the corresponding
spectra and the phase diagrams for Spalart-Allmarascand turbulence models and several
far-field flow velocitiesU,,. For the smaller flow velocity the amplitudes for the veittides-
placement, and the rotations, § are decreasing in time and the system is stable (see Figure
3). The spectra show three frequencies that belong to thealemotion of the airfoil and to
the rotations the main lifting part of the profile and of thefla'he lowest frequency at about
5.5 Hz belongs to the vertical airfoil motiadinand the two higher frequencies at about 12 Hz
and 15 Hz belong to the airfoil and the flap rotatianand g, respectively. Comparing the re-
sults in Figures 3-5 we can see that the damping of vibrati@eseases with the far-field flow
velocity and is lower for the Spalart-Allmaras turbulencedal than for theé: — «w model. Nev-
ertheless, the system is still stable in all three casespted in these figures. By increasing
the far-field flow velocity up td/,, = 11 m/s the vibration regime can be considered as a limit
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cycle oscillation (LCO) with a small amplitude less than 3réeg for the flap rotatio and
the highest frequency belonging to this motion becomes tbst slominant in the spectra (see
Figure 6). The system is still stable, if the model is usedadlecatastrophic” type of flutter with
a negative damping and quickly increasing vibration amagks appear in this case according to
the Spalart-Allmaras turbulence model. For the higher fleloeity U,, = 12 m/s, the system
is becoming unstable by a "catastrophic” flutter also by gigive £ — w model (see Figure 7).
In this case, the rotation amplitudes are increasing vestyadad the anglg for the flap reaches
values up to about 5 degrees after about 2 s oscillating Wwahdbminant flutter frequency of
about 15 Hz.

These results are in agreement with the NASTRAN computatiaosording to which the
system becomes unstable by flutter in torsion for the fadfilelw velocity at 11.3 m/s and the
flutter frequencyf.,. = 14.9 Hz (see Table 1 and [28], [29]).
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Figure 3: Airfoil with gap 0.54%: Functions(t), a(t), 8(t) (left), their spectra (midlle) and phase diagrams (right)
for k — w turbulence model and far-field airflow velocity 7 m/s.

The functionsh(t), a(t), 5(t) computed by the Spalart-Allmaras turbulence model and the
k — w turbulence model are compared in Figure 8. Both models gigey&lentical results in
the beginning of the transient regime just after releadnegairfoil at the time = 0 s. However,
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Figure 4: Airfoil with gap 0.54%: Functions(t), a(t), 5(t) (left), their spectra (midlle) and phase diagrams (right)
for k£ — w (full line) and Spalart-Allmaras turbulence model (dashwe€) and far-field airflow velocity 9 m/s.

after about 1 s the differences in the vibration amplitud@stifie two turbulence models are
getting remarkable. The — w turbulence model gives smaller vibration amplitudes. Tineia

is more damped by the aerodynamic forces computed by thev turbulence model and the
system is more stable comparing to the use of the Spalariakiis model.

This behaviour is demonstrated in Figure 9, which shows énmeging ratioD = In(ag/av,)/(27n),
calculated fromm cycles of the time response of the airfoil for the rotatioglaramplitudesy,
anda,, in dependence on the far-field air flow velocity for thrededi#nt gaps. If the damping
ratio D > 0, the system is stable, and whén < 0, the system is unstable by coupled mode
flutter for the rotationgy and 5. For example, for the gap widih= 3.74% and the far-field air
flow velocity 10 m/s the system is stabl® (> 0) when using thé — w turbulence model and
unstable D < 0) by flutter when the Spalart-Allmaras turbulence model esdus

The critical flutter velocitied/r evaluated from the damping ratio of the numerically simu-
lated time signals are shown in Figure 10 in dependence ogegh&vidth between the airfoil and
the gap. The flutter velocity/» ~ 11.1 m/s computed for the smallest gap= 0.54% by using
the k — w turbulence model is in good agreement with the flutter viyoti.32 m/s computed
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by NASTRAN (see [28] and [29]), where no gap was considerediamtinear theory was used.
The use of the Spalart Allmaras model in the numerical sitraria results in the lower flutter
velocities and by increasing the gap width the flutter veilesiare getting lower. We should note
here that for the gap shape considered (see Figure 2) it isssifpe to simulate properly the
cases for zero or very narrow gaps due to a technically ldmtaeximum of the angle for the flap
rotation and related meshing problems due to contacts ahtheng profile and flap surfaces.

Comparison of the presented finite element method with MSCTN®&N computations is
summarized in Table 1. It shows the vibration frequenciealidhree displacementgt), «(t), 5(t)
for a low far-field flow velocity and the critical flutter veliyg together with the corresponding
frequency computed by the presented finite element methwdpared with the NASTRAN
computations.

6.2. Numerical simulation of post flutter behaviour with laxgleration amplitudes

Up to now, the vibration amplitudes in all examples presgdid not exceed extremely high
values as can be encountered for the far-field flow veloditigiser than the flutter velocity. Such
example is presented in Figures 11 — 14 for the far-field vgldé,, = 11 m/s and the gap 6.95

30



h[mm]

a[deq]
o

Bldeg]
MhAhdNPoRrNWRG

t[s]

IG(h)I

1G(@)]

IG®)

dh/dt

20 |

-40

80

60 |

40

20 |

10
f[Hz]

da/dt

100
80
60 -
40
20

20l
a0t
60
80|

f[Hz]

dp/dt

-100

-100 Y

-200

-300

e R R T
-1 -0.8-0.6-04-02 0 02040608 1

400

300

200 |

100 4

10
flHz)

15

20

-400

Figure 6: Airfoil with gap 0.54%: Functions(t), a(t), 5(t) (left), their spectra (midlle) and phase diagrams (right)
for k — w (full line) and Spalart-Allmaras turbulence model (dastiee) and far-field airflow velocity 11 m/s.

%. The vibration amplitude for the flap is growing up to neatl/degrees when the numerical
simulation failed due to a large computational mesh deftionaThe corresponding computed
velocity flow fields around the fluttering airfoil are shownkiigures 12 — 14 at several time
instants marked in Figure 11. The shown velocity is definethasnagnitude of the velocity
related to the far-field velocity. It is possible to see digtire flow separation on the flap surface,
especially on the detailed snapshots viewing the veloaty fleld around the flap.

7. Conclusion

The paper was concerned with the numerical solution of iwvibrations induced by tur-
bulent flow. The motion of the airfoil with three degress adddom is described by a system
of three second-order nonlinear ordinary differentialaens for the vertical displacement and
rotation angles of the main airfoil body and the flap. The flewniodelled by the incompress-
ible Reynolds averaged Navier-Stokes equations (RANS) \wehSpalart-Allmaras ankl — w
turbulence models.

The developed method is based on several important ingrisdie
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e second-order BDF time discretization and the space digetan by the FEM for the
solution of the RANS system coupled with the partial différ@requations describing the
turbulence models,

e SUPG and div-div stabilization of the FEM for the RANS equasip
e SUPG and discotinuity capturing stabilizations of the FEivithe turbulence models,
e construction of the ALE mapping and the ALE velocity,

e algorithms for the realization of the solution of turbuldiw and of the fluid-structure
interaction coupling.

Numerical experiments proved that the developed technigjuebust with respect to the
magnitude of the Reynolds number and allows the simulatioairdbil vibrations with large
amplitudes.

The results of the numerical simulation show that the flugtability boundary of the airfoll
with three degrees of freedom can be sensitive to the gafhwieliveen the flap and the main
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h - bending| (3 - flap torsion| « - torsion| Up for flutter
f [Hz] f [Hz] fIHz] | [m/s] | [Hz] type
NASTRAN 5.39 11.4 15.2 11.3 | 14.9 | « - torsion
FEM 5.38 11.5 15.0 11.1 | 14.92

Table 1: Comparison of the results computed by NASTRAN witheonsidering the gap metween the airfoil and
the flap ([28], [29]) and by the developed finite element mdtfar eigen-frequencieg (computed by the FEM
for the far-field airflow velocity 6 m/s and the gap 0.54 %), far-field airflow velocity 6 m/s, for critical flutter
velocitiesUr and flutter frequencieg....

airfoil lifting surface. This is caused by an interactiontbé main airstream with the airflow
through the gap. This aside flow influences the vortex shedalirthe airfoil trailing edge, the
limit cycle oscillation amplitudes and the critical fluttezlocity. However, the results have to be
accepted with a caution, because the critical flutter flowaigf of the system studied was very
low and the influence of the flow inside the gap on the aerdelashavior of the airfoil can be
reduced in cases of higher far-field airflow velocities.

The airflow transition to the turbulence on the profile suefas well as the flow separation
is influenced by the airfoil vibration. The — w turbulence model corresponds better to the
NASTRAN computation of the critical flutter velocity and thisrbulence model seems better
than the Spalart Allmaras model also for numerical simatatf the post flutter behavior of the
system when the vibration amplitudes, especially for the iitaation, are large.

There are several subjects of a further research:

e comparison of computational results with wind-tunnel ekpents,
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e increas of the speed of computational processes,

e extension to the numerical simulation to compressible flow,

¢ theoretical analysis of qualitative properties of the digwed numerical technique.
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Figure 12: Velocity distribution around the fluttering pteffor U,, = 11 m/s computed by thé — w model at
several time instants marked in Figure 11 including 39latailind the flap. Part I.



Figure 13: Velocity distribution around the fluttering pteffor U,, = 11 m/s computed by thé — w model at
several time instants marked in Figure 11 including 4@etailind the flap. Part Il.



Figure 14: Velocity distribution around the fluttering pteffor U,, = 11 m/s computed by thé — w model at
several time instants marked in Figure 11 including a detailnd the flap.Part IlI.
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