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Abstract

The subject of the paper is the numerical simulation of the interaction of two-dimensional in-
compressible viscous flow and a vibrating airfoil with largeamplitudes. The airfoil with three
degrees of freedom performs rotation around an elastic axis, oscillations in the vertical direc-
tion and rotation of a flap. The numerical simulation consists of the finite element solution of the
Reynolds averaged Navier-Stokes equations combined with Spalart-Allmaras ork−ω turbulence
models, coupled with a system of nonlinear ordinary differential equations describing the airfoil
motion with consideration of large amplitudes. The time-dependent computational domain and
approximation on a moving grid are treated by the Arbitrary Lagrangian-Eulerian formulation
of the flow equations. Due to large values of the involved Reynolds numbers an application of
a suitable stabilization of the finite element discretization is employed. The developed method
is used for the computation of flow-induced oscillations of the airfoil near the flutter instability,
when the displacements of the airfoil are large, up to±40 degrees in rotation. The paper contains
the comparison of the numerical results obtained by both turbulence models.
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1. Introduction

The interaction of flowing fluids and vibrating structures isthe main subject of aero-elasticity,
which studies the influence of aerodynamic forces on an elastic structure. The flow-induced
vibrations may affect negatively the operation and stability of aircrafts, blade machines, bridges,
and many other structures in mechanical or civil engineering. The main goal of aero-elasticity is
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the prediction of the bounds of the structure stability, to cure the aero-elastic instabilities leading
to flutter or divergence and to analyze postcritical regimes. This discipline is highly developed,
particularly from engineering point of view (see, e.g., themonographs [10] and [34])).

From the point of view of mathematical theory, there are not too many works dealing with
such problems, due to a high mathematical complexity of the problem, caused by the time-
dependence of the domain occupied by the fluid and coupling ofthe system of equations de-
scribing flow and elastic structure. The mathematical simulation of fluid and structure interaction
requires to consider viscous, usually turbulent flow, changes of the flow domain in time, nonlin-
ear behaviour of the elastic structure and to solve simultaneously the evolution systems for the
fluid flow and for the oscillating structure. Considering the Reynolds averaged Navier-Stokes
equations and a vibrating structure with large displacements, the change of the fluid domain
cannot be neglected. The methods with moving meshes ([13], [25]) must be employed and the
application of efficient and robust methods for the numerical solution is required.

The subject of our attention is the numerical analysis of theinteraction of viscous turbulent
flow with a vibrating airfoil. Recent studies on numerical modelling of the postflutter behaviour
of airoils in laminar two-dimensional (2D) incompressibleflow were overwieved by the authors
in the previous study (Feistauer et al. [14]), where the method allowing the solution of large am-
plitude flow-induced vibrations of an airfoil with 3 degreesof freedom (3-DOF) was developed
and tested. However, none of the studies mentioned in this paper deals with turbulent flow, which
is necessary to take into account for high Reynolds numbers (105 − 108).

For an extensive treatment of turbulent flows, one can be refered, e.g. to [27], [40], [42], [46].
Turbulent flow has a three-dimensional character, but in a number of cases, two-dimensional
models are applied to the numerical simulation of turbulentflow. Similar situation appears in
theory, as can be found in [15]. In a turbulent flow simulation, techniques based on the Reynolds
averaged Navier-Stokes (RANS) equations are often applied.As a result, the system called
Reynolds equations (see [40], Chapter 4) is obtained. It contains the so-called Reynolds stresses,
evaluated with the aid of a turbulent viscosity model. It canbe computed from algebraic relations
or it can be obtained with the aid of the solution of additional equations for turbulence quantities,
such ask andω (see, e.g. [40], Chapter 10).

The effect of turbulence in aeroelastic computations is studied in civil engineering as well
as in turbomachine, nuclear and aerospace engineering applications. For example, Baxevanou et
al. [2] modeled the aeroelastic stability of a wind turbine blade section. The Reynolds averaged
Navier-Stokes equations for 2D incompressible flow were solved numerically using the finite
volume method on structured, curvilinear grids using two versions of thek − ω high Reynolds
number model of Wilcox with wall functions and wall treatment. The stability of a flexible,
cylindrical rod subjected to turbulent annular leakage flowwas studied by Langthjem et al [24].
A cylindrical rod in a narrow annulus is a common component inpower-generation engineering.
It can also serve as a model of a high-speed train in a tunnel.

The response of suspension bridges to wind excitation was studied by Salvatori and Spinelli
[41] by numerical simulations with a specifically developedfinite element program implement-
ing structural nonlinearities. The response under turbulent wind was evaluated through a Monte
Carlo approach. The unsteady flow field around a 2D rectangularbridge section was studied
by Mannini et al. [31], [32] using unsteady Reynolds-averaged Navier-Stokes (URANS) equa-
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tions at Reynolds numbers from2.6 · 104 to 1.8 · 106. The flow was simulated by the finite-
volume unstructured solver and the results obtained with one- and two-equation turbulence mod-
els (Spalart-Allmaras, Wilcoxk− ω, Menter-SST, linearized explicit algebraic) were compared.
A novel numerical algorithm for the study of the effects of wind turbulence on bridge flutter was
proposed by Caracoglia [5]. The coupled-mode flutter threshold for bending-torsional modes of
a long-span bridge is estimated in the time domain by stochastic calculus techniques.

Subcritical flutter characteristics were examined by Matsuzaki and Torii [33] using a bending-
torsion wing model subjected to flow turbulence with a view toapplications for flutter bound-
ary prediction. The wing response due to random inputs was represented by the autoregressive
moving-average model. The effect of atmospheric turbulence on the flutter and post-flutter dy-
namics of a structurally nonlinear 2D airfoil in incompressible turbulent flow was investigated
numerically by Poirel and Price [36], [38] using a Monte Carloapproach. A general overview of
random flutter in aeroelasticity given by the random nature of a structure excitation in turbulent
flow was published by Poirel and Price in the paper [37] concentrating on a numerical flutter
investigation of 2D linear airfoil in turbulent flow.

Srinivasan et al. [45] used the finite difference method for the solution of 2D RANS equations
modelling the turbulent flow around the oscillating airfoilNACA0015 in rotation. By testing five
models of turbulence the authors found that one-equation models provide significant improve-
ment over the algebraic and half-equation models but have their own limitation. A dynamically
shaped rigid airfoil utilizing a moving flap has been studiedby Lian et al. [26] at a Reynolds
number of about 80 000, when the movement of the solid structure was prescribed. The RANS
equations for incompressible fluids and two different versions of thek−ε turbulence model have
been employed. A pressure-based numerical procedure was based on the finite volume method
using the moving grid. The algebraic model of turbulence wasapplied to the numerical simula-
tion of turbulent flow-induced vibrations of an airfoil withtwo degrees of freedom (2-DOF) by
Dubcova et al. [11] and [12]. The 2-DOF airfoil with freeplaynonlinearity in pitch was inves-
tigated numerically by Zhao et al. [53], [54] for low, intermediate and high level of turbulence.
Poirel et al. [39] studied the low amplitude self-sustainedpitch airfoil oscillations in incompress-
ible flow by 2D numerical simulations in the Reynolds number range from5.0 · 104 to 1.5 · 105.
Both laminar and URANS calculations using the SSTk−ω model with a low-Reynolds-number
correction have been performed and found to produce reasonably accurate limit cycle pitching
oscillations (LCO). It was shown that turbulence tends to supress the pitching oscillations.

A 2-DOF airfoil moving in both pitching and plunging was studied numerically for transonic
flow by Geissler [16] based on a 2D Navier-Stokes equations solver and the Spalart-Allmaras tur-
bulence model. A numerical investigation of the 2-DOF bending/torsion flutter characteristics of
an airfoil in 2D transonic flow was carried out by Weber et al. [51] using a time-domain method.
The Reynolds averaged Navier-Stokes (RANS) equations were used and the turbulence model-
ing was based either on algebraic Baldwin-Lomax or one-equation Baldwin-Barth or Spalart-
Allmaras turbulence models. The paper by Wang and Zha [50] investigates the NLR7301 airfoil
limit cycle oscillation (LCO) in transonic flow caused by the flow nelinearity of the fluid-structure
interaction using detached eddy simulation (DES) of turbulence.

Everywhere, small amplitudes of structural vibrations were considered and no effects of large
rotation amplitudes resulting in a nonlinear mass matrix for 3-DOF airfoil were taken into ac-
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Figure 1: Model scheme - airfoil with 3 degrees of freedom with a gap.

count as in previous authors study Feistauer et al. [14] for laminar flow. In the present paper
we are concerned with a numerical simulation of 2D viscous incompressible turbulent flow past
a moving airfoil, which is considered as a solid flexibly supported body with three degrees of
freedom, allowing its vertical and torsional oscillationsand the rotation of a flap. The turbulence
is modelled by two models, namely by the one equation Spalart-Allmaras model ([44]) and also
by thek − ω model ([44], [23]).

The numerical simulation consists of the finite element solution of the RANS equations and
the equations for the evaluation of the turbulent viscosity. This is coupled with the system of
nonlinear ordinary differential equations describing theairfoil vibration with large amplitudes.
The time dependent computational domain and a moving grid are taken into account with the
aid of the arbitrary Lagrangian-Eulerian (ALE) formulation. In order to avoid spurious numer-
ical oscillations, the SUPG and div-div stabilization is applied. The solution of the ordinary
differential equations is carried out by the Runge-Kutta method. Special attention is paid to the
construction of the ALE mapping of a reference domain on the computational domain at individ-
ual time instants. The resulting nonlinear discrete algebraic systems are solved by the Oseen-like
iterative processes. All components of the realization of the solution are assembled together by a
coupling procedure. The algorithms of weak and strong coupling of flow and structure problems
are formulated. The method was tested on a flutter problem forwhich the stability boundary was
computed by NASTRAN program code ([28], [29]).

2. Description of the incompressible turbulent flow

We shall consider two-dimensional nonstationary flow of a viscous, incompressible fluid in
a domainΩt depending on timet ∈ [0, T ], whereT > 0. By Ωt and∂Ωt we shall denote the
closure and the boundary, respectively, of the domainΩt. The boundary∂Ωt is the union of
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mutually disjoint partsΓD, ΓO a ΓWt
, i.e. ∂Ωt = ΓD ∪ ΓO ∪ ΓWt

, where different boundary
conditions are prescribed. The partΓD represents the inlet and fixed, impermeable walls,ΓO

denotes the outlet. We assume thatΓD andΓO are independent of time in contrast toΓWt
, which

is the moving airfoil boundary at timet. The moving airfoil surfaceΓWt consists of two parts,
the profile surfacePt and the flap surfaceFt, i.e.ΓWt

= Pt ∪ Ft. We consider the flap separated
from the main body of the airfoil by a narrow gap of a widthg. See Figure 1.

2.1. Governing equations

Viscous incompressible flow is described by the velocityu = u(x, t) and the kinematic
pressurep = p(x, t) depending onx ∈ Ωt andt ∈ [0, T ]. The density of the fluidρ is assumed
to be constant. The character of the flow depends on the magnitude of the Reynolds number
Re = U∞c/ν, whereν is the kinematic viscosity,U∞ denotes the far field velocity andc is the
length of the airfoil chord. For a sufficiently small Reynoldsnumber the flow is laminar. With
the increasing value of the Reynolds number the flow becomes turbulent.

The turbulent flow is characterized by the fact that the fluid velocity field varies significantly
and irregularly both in position and in time. The turbulenceis a complicated motion, which re-
sults from the nonlinear advection that creates interactions between different scales of motion,
which are the principal current (or the large eddies) and theeddying, random and reverse fluctu-
ations. There are several strategies for the modelling of turbulent flow. For main concepts see,
e.g., the monographs [40], [46], [52].

One possibility is to use the Reynolds decomposition of the flow velocityu and the kinematic
pressurep in the form

u = u+ u′,
p = p+ p′,

(2.1)

whereu is the mean part of the velocity vector,p is the mean part of the kinematic pressure, and
u′ andp′ are their turbulent fluctuations. As a result we get the Reynolds averaged Navier-Stokes
(RANS) equations ([40], [52])

∂u

∂t
+ (u · ∇)u+∇p−∇ ·

(
2(ν + νT )D

)
= 0

∇ · u = 0
in Ωt, (2.2)

where the components of the tensorD are given by

Dij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, (2.3)

and the turbulent eddy viscosity coefficientνT = νT (x, t) requires further modelling.

2.2. Reynolds averaged Navier-Stokes equations

In what follows, we shall work with the averaged velocity andpressure. Because of the
simplification of notation, we shall omit the symbol ”bar” and simply writeu instead ofu andp
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instead ofp. This means that the above system will be written in the form

∂u

∂t
+ (u · ∇) u+∇p−∇ ·

(
(ν + νT )(∇u+∇Tu)

)
= 0. (2.4)

∇ · u = 0,

System (2.4) is equipped with the initial condition

u(x, 0) = u0, x ∈ Ω0, (2.5)

and the boundary conditions

a)u|ΓD
= uD, b) u|ΓWt

= wD, (2.6)

c) − (p− pref )ni + (ν + νT )
2∑

j=1

(
∂ui
∂xj

+
∂uj
∂xi

)
nj = 0 onΓO, i = 1, 2.

Heren = (n1, n2) is the unit outer normal to the boundary∂Ωt of the domainΩt, uD is a
prescribed velocity on the partΓD. Condition (2.6) b) represents the assumption that the fluid
adheres to the airfoil moving with the velocitywD. By pref we denote a prescribed reference
(far field) pressure.

In numerical experiments carried out in Section 6, the initial and boundary data are specified
as

uD = u0 = (U∞, 0), (2.7)

whereU∞ denotes the magnitude of the far-field velocity. The vector functionwD denotes the
velocity of the motion of the airfoil, which is a part of the sought solution.

In the above system (2.4), the averaged velocityu, averaged pressurep and the turbulent
viscosityνT are unknown functions. This system has to be completed by a turbulence model for
νT . Here we shall use the Spalart-Allmaras andk − ω models.

2.3. Spalart-Allmaras one-equation turbulence model

This section is concerned with the description of the Spalart-Allmaras one-equation model
([44]) for the determination of the turbulent viscosityνT .

We introduce an auxiliary functioñν = ν̃(x, t), x ∈ Ωt, t ∈ [0, T ], which is defined as a
solution of the following initial-boundary value problem:Find ν̃ such that it satisfies the equation

∂ν̃

∂t
+ (u · ∇)ν̃ = ∇ · (ε(ν̃)∇ν̃) +

3

2
cb2(∇ν̃)

2 + cb1S̃(ν̃)ν̃ − s(ν̃)ν̃2, (2.8)

in Ωt, t ∈ (0, T ), the initial condition

ν̃(x, 0) = ν̃0(x) for x ∈ Ω0, (2.9)

and the boundary conditions

ν̃|ΓD
= ν̃D, ν̃|ΓWt

= 0,
∂ν̃

∂n

∣∣∣
ΓO

= 0. (2.10)
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The functionsε(ν̃), S̃(ν̃), s(ν̃) are defined in such way that we successively set

ωij =
1

2

(
∂ui
∂xj

−
∂uj
∂xi

)
, i, j = 1, 2, S =

√√√√2
2∑

i,j=2

ω2
ij ,

ε(ν̃) =
3

2
(ν + ν̃), χ(ν̃) =

ν̃

ν
,

fv1(ν̃) =
χ3(ν̃)

χ3(ν̃) + c3v
, fv2(ν̃) = 1−

χ(ν̃)

1 + χ(ν̃)fv1(ν̃)
, (2.11)

S̃(ν̃) =

(
S +

ν̃

κ2y2
fv2(ν̃)

)
, r(ν̃) =

ν̃

S̃(ν̃)κ2y2
,

g(ν̃) = r(ν̃) + cw2
(r6(ν̃)− r(ν̃)), s(ν̃) =

cw1

y2


 1 + c6w3

1 +
c6w3

g6(ν̃)




1

6

,

wherey = y(x) denotes the distance of a pointx ∈ Ωt from the nearest wall (e.g. airfoil surface,
channel walls, etc.) The empirical constants appearing in the above formulas are taken from [52]:

cb1 = 0.1355, cb2 = 0.622, β =
2

3
, cv = 7.1, (2.12)

cw2
= 0.3, cw3

= 2.0, κ = 0.41,

and

cw1
=
cb1
κ2

+
1 + cb2
β

. (2.13)

Assuming that̃ν is known, the turbulent viscosityνT used in (2.4) is defined by the relation

νT = ν̃fv1(ν̃). (2.14)

2.4. k − ω turbulence model

Another possibility is the application of two-equations turbulence models. Herek − ω tur-
bulence model ([23], [52]) will be used. In this case the turbulent viscosityνT is defined by the
relation

νT =
k

ω
, (2.15)

where the functionsk = k(x, t) andω = ω(x, t) defined forx ∈ Ωt, t ∈ [0, T ] are refered to
as the turbulent kinetic energy and the specific turbulent dissipation rate, respectively. They are
obtained as solutions of the equations

∂k

∂t
+ (u · ∇)k = Pk − β∗ωk +∇ · ((ν + σkνT )∇k) (2.16)

∂ω

∂t
+ (u · ∇)ω = Pω − βω2 +∇ · ((ν + σωνT )∇ω) + CD, (2.17)
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equipped with the initial conditions

k(x, 0) = k0(x),
ω(x, 0) = ω0(x),

for x ∈ Ω0, (2.18)

and the boundary conditions

a) k(x, t) = 0, ω(x, t) = ωwall, for x ∈ ΓWt, t ∈ (0, T ),
b) k(x, t) = kD(x), ω(x, t) = ωD(x), for x ∈ ΓD, t ∈ (0, T ),
c) ∂k

∂n
(x, t) = 0, ∂ω

∂n
(x, t) = 0, for x ∈ ΓO, t ∈ (0, T ).

(2.19)

The production terms are given by

Pk =
k

ω

2∑

i,j=1

D2
ij, Pω = αω

2∑

i,j=1

D2
ij, (2.20)

CD =
σD
ω

max

{
2∑

i=1

∂k

∂xi

∂ω

∂xi
, 0

}
.

(The expressionsDij are defined in a similar way as in (2.3).) The closure coefficientsβ, β∗, σk,
σω, αω are chosen by [23]:

β = 0.075, β∗ = 0.09, σω = 0.5, σk =
2

3
, κ = 0.41, σD = 0.5, (2.21)

αω =
β

β∗
− σω

κ2

β∗1/2
.

2.5. Specification of the initial and boundary conditions inturbulence models

In the Spalart-Allmaras model we choose

ν̃D = ν̃(0) = ν̃, (2.22)

whereν̃ is chosen so that (cf. 2.14)

ν̃fv1(ν̃)) = ν/10 (2.23)

As for thek − ω model, we set

ν0T = ν, k0 = ω0ν, ω0 = 10 s−1, (2.24)

kD = 1.5 · 10−4U2
∞, , ωD = 10 s−1, ωwall =

6ν

βf 2
1

, (2.25)

wherey1 is the distance of the barycenter of the mesh element adjacent to the boundary used
in the finite element method (see Section 4). This means thatωwall depends on the mesh. The
definition of ωwall is motivated by the asymptotic behaviour of the specific dissipation rateω
close to the surface - see [52], Chapter 4.
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2.6. Arbitrary Lagrangian-Eulerian method
In order to simulate flow in a moving domainΩt, we employ the arbitrary Lagrangian-

Eulerian (ALE) method (cf. [35]), based on a regular one-to-one ALE mapping

At : Ω0 7→ Ωt, Y ∈ Ω0 7→ x(Y , t) = At(Y ) ∈ Ωt, t ∈ [0, T ]. (2.26)

At is the identity in the part of the boundary∂Ωt, where there is no interaction with the body
and also there is no deformation of the boundary. The reference domainΩ0 is identical with the
domain occupied by the fluid at the initial timet = 0. The coordinates of pointsx ∈ Ωt are
called the spatial coordinates, the coordinates of pointsY ∈ Ω0 are called the ALE coordinates
or the reference coordinates.

Now we define the domain velocity

w̃(Y , t) =
∂At(Y )

∂t
=
∂x(Y , t)

∂t
. (2.27)

This velocity can be expressed in the spatial coordinates as

w(x, t) = w̃
(
A−1

t (x), t
)
. (2.28)

Further, for any functionf = f(x, t), x ∈ Ωt, t ∈ [0, T ] we setf̃(Y , t) = f(At(Y ), t) and define
its ALE derivative by

DA

Dt
f(x, t) =

∂f̃

∂t
(Y , t), Y = A−1

t (x). (2.29)

The application of the chain rule gives

DA

Dt
f =

∂f

∂t
+w · ∇f. (2.30)

2.7. Governing equations in the ALE form
Using relation (2.30), the Reynolds averaged Navier-Stokesequations and the turbulence

models can be rewritten in the ALE form. First, the Reynolds averaged Navier-Stokes system
reads

DAu

Dt
+ ((u−w) · ∇) u+∇p−∇ ·

(
(ν + νT )(∇u+∇uT )

)
= 0, (2.31)

∇ · u = 0. (2.32)

Further, the Spalart-Allmaras equation (2.8) has the ALE form

DAν̃

Dt
+ ((u−w) · ∇)ν̃ = ∇ · (ε(ν̃)∇ν̃) +

3

2
cb2(∇ν̃)

2 + cb1S̃(ν̃)ν̃ − s(ν̃)ν̃2, (2.33)

and thek − ω turbulence model has the ALE form

DAk

Dt
+ ((u−w) · ∇)k = Pk − β∗ωk +∇ · ((ν + σkνT )∇k) (2.34)

DAω

Dt
+ ((u−w) · ∇)ω = Pω − βω2 +∇ · ((ν + σωνT )∇ω) + CD. (2.35)
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3. Nonlinear equations of the airfoil motion

The deformation of the computational domain depends on the motion of the airfoil, which
is described by the rotation angleα = α(t) of the whole airfoil around an elastic axisEA, the
rotation angleβ = β(t) of the flap around an elastic axisEF and the vertical displacement
h = h(t) of the whole airfoil, see Figure 1. The functionsα(t), β(t) andh(t) form a solution of
the following system of nonlinear ordinary differential equations (see [20]):

mḧ+ [(Sα − Sβ) cosα + Sβ cos(α + β)] α̈ + Sββ̈ cos(α + β) (3.1)

−(Sα − Sβ)α̇
2 sinα− Sβ(α̇ + β̇)2 sin(α + β) +Dhhḣ+ khhh = L,

[(Sα − Sβ) cosα + Sβ cos(α + β)] ḧ+ [(Iα − 2dPFSβ) + 2dPFSβ cos β] α̈

+ [Iβ + dPFSβ cos β] β̈ − dPFSββ̇
2 sin β − 2dPFSβα̇β̇ sin β +Dααα̇ + kααα = Mα,

Sβ cos(α + β)ḧ+ [Iβ + dPFSβ cos β] α̈ + Iββ̈ + dPFSβα̇
2 sin β +Dβββ̇ + kβββ = Mβ.

HereL is the vertical component of the aerodynamical force actingon the whole airfoil,Mα is
the torsional moment of the aerodynamical force acting on the whole airfoil with respect to the
axisEA, Mβ is the torsional moment of the aerodynamical force acting onthe flap of the airfoil
with respect to the flap axisEF , Dhh, Dαα, Dββ are the coefficients of a structural damping,
Sα, Iα andm denote the static moment of the whole airfoil around the elastic axisEA, the
moment of inertia of the whole airfoil around the elastic axis EA and the mass of the whole
profile, respectively, the coefficientSβ is the static moment of the flap of the airfoil around the
flap axisEF andIβ is the moment of inertia of the flap of the airfoil around the flap axisEF .
The constantskhh, kαα, kββ denote the spring stiffness of the flexible support of the airfoil and
dPF is the distance between the elastic axisEA and the flap axisEF .

System (3.1) is equipped with the initial conditions

α(0) = α0, α̇(0) = α1,

β(0) = β0, β̇(0) = β1,

h(0) = h0, ḣ(0) = h1.

(3.2)

The interaction between the flow and the airfoil is given by the non-stationary force compo-
nentL and the momentsMα andMβ defined by

L = −l

∫

Pt∪Ft

2∑

j=1

τ2jnj dS, (3.3)

Mα = −l

∫

Pt∪Ft

2∑

i,j=1

τijnj(−1)i(x1+δ1i − xEA
1+δ1i

) dS, (3.4)

Mβ = −l

∫

Ft

2∑

i,j=1

τijnj(−1)i(x1+δ1i − xEF
1+δ1i

) dS, (3.5)
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wherel is the depth of the segment of the airfoil,n = (n1, n2) is the outer unit normal to∂Ωt on
ΓWt = Pt ∪ Ft, the symbolδij is the Kronecker symbol defined byδij = 1 for i = j andδij = 0
for i 6= j, x1 andx2 are the coordinates of points onΓWt, xEA

i , i = 1, 2, are the coordinates of
the current location of the elastic axisEA andxEF

i , i = 1, 2, are the coordinates of the current
location of the flap elastic axisEF . The stress tensor components are given by the relation

τij = ̺

[
−pδij + (ν + νT )

(
∂ui
∂xj

+
∂uj
∂xi

)]
. (3.6)

The interaction of the fluid and the airfoil is formed by the solution of the turbulent flow prob-
lem consisting of equations (2.31), (2.32) equipped with conditions (2.5), (2.6) and completed
by the turbulence model (2.33), (2.9), (2.10) or (2.34), (2.35), (2.18), (2.19), which are coupled
with the structural model (3.1), (3.2) via (3.3) – (3.6). In what follows, we shall be concerned
with the discretization of the flow problem and describe the algorithm for the numerical solution
of the complete fluid-structure interaction problem.

4. Discretization of the flow problem

4.1. Time discretization
In order to discretize the flow problem in time, we construct an equidistant partition of the

time interval[0, T ] is constructed formed by time instants0 = t0 < t1 < · · · < T , tn = nτ, n =
0, 1, . . ., with a time stepτ > 0. We use the approximationsu(tn) ≈ un, p(tn) ≈ pn and
w(tn) ≈ wn at timetn for the velocity, the pressure and the domain velocity, respectively. The
ALE derivative will be approximated by the second-order backward difference formula (known
as BDF2). For a given pointY ∈ Ω0 from the reference configuration on a given time leveltn
we can write

Atn−1
(Y ) = xn−1 ∈ Ωtn−1

, Atn(Y ) = xn ∈ Ωtn , Atn+1
(Y ) = xn+1 ∈ Ωtn+1

. (4.1)

Using definition (2.29), where we setf := u, we shall approximate the ALE derivative of the
velocity at timetn+1 and pointxn+1 by the formula

DAu

Dt
(xn+1, tn+1) ≈

3ũn+1(Y )− 4ũn(Y ) + ũn−1(Y )

2τ
(4.2)

=
3un+1(xn+1)− 4un(xn) + un−1(xn−1)

2τ
.

Taking into account thatAtn+1
(A−1

ti
(xi)) ∈ Ωtn+1

, we introduce the functionŝui = ui ◦ Ati ◦
A−1

tn+1
, i = n, n − 1, obtained by the transformation ofun andun−1 to the domainΩ := Ωtn+1

.
Now the implicit scheme for the unknown functionsu := un+1 : Ω 7→ IR2 andp := pn+1 : Ω 7→
IR read

3u− 4ûn + û
n−1

2τ
(4.3)

+((u−wn+1) · ∇)u+∇p−∇ ·
(
(ν + νT )(∇u+∇Tu)

)
= 0,

∇ · u = 0, (4.4)

considered inΩ. We assume thatu andp satisfy the boundary conditions (2.6).
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Remark 1. In what follows, if we have a sequencef i : Ωti → IR, i = 0, 1, . . ., and fix an index
n, then we set̂f i = f i ◦ Ati ◦ A

−1
tn+1

, which are functions defined inΩtn+1
.

4.2. Finite element space discretization of the RANS system

Let us assume that the approximation of the turbulent viscosity νT is known at timetn+1. The
starting point for the space discretization of system (4.3), (4.4) by the finite element method is
the weak formulation. For simplicity we setΩ = Ωtn+1

, ΓW = ΓWtn+1
, u = un+1, p = pn+1.

We define the velocity and pressure function spaces

W = [H1(Ω)]2, X = {v ∈ W ; v|ΓD∪ΓW
= 0}, Q = L2(Ω), (4.5)

whereL2(Ω) is the Lebesgue space of square integrable functions over the domainΩ andH1(Ω)
is the Sobolev space of functions square integrable together with their first order derivatives.
Further, ifσ ⊂ IR2, then by(·, ·)σ we denote the scalar product inL2(σ): (ϕ, ψ)σ =

∫
σ
ϕψ dx.

Moreover, by‖ · ‖σ we shall denote the norm defined as‖ϕ‖σ = maxσ|ϕ|.
The weak formulation is obtained in a standard way. Equation(4.3) is multiplied by a test

functionv ∈ X and equation (4.4) is multiplied by a test functionq ∈ Q, integrated over the
domainΩ, Green’s theorem is applied, the boundary condition (2.6),c) is used and the resulting
integral identities are summed. In this way we get the forms

aNS(νT , U
∗, U, V ) =

3

2τ
(u,v)Ω +

(
(ν + νT )(∇u+∇Tu),∇v

)
Ω

+
(
((u∗ −wn+1) · ∇)u,v

)
Ω

−(p,∇ · v)Ω + (∇ · u, q)Ω,

fNS(V ) =
1

2τ

(
4ûn − û

n−1, v
)
Ω
−

∫

ΓO

prefv · n dS,

(4.6)

where we use the notationU = (u, p), U∗ = (u∗, p∗), V = (v, q).
We define aweak solutionas a coupleU = (u, p) ∈ W ×Q such thatu satifies the boundary

conditions (2.6), a)-b), and the identity

aNS(νT , U, U, V ) = fNS(V ) ∀ V = (v, q) ∈ X ×Q. (4.7)

In order to apply the finite element method to the numerical solution, we assume that the
domainΩ∆ is a polygonal approximation of the computational domain attime tn+1. By ΓD∆ and
ΓW∆ we shall denote the parts of∂Ω∆ approximatingΓD andΓW , respectively. Further, byT∆

we denote a triangulation ofΩ∆ formed by a finite number of closed triangles. The parameter∆
denotes the maximal size of elementsK ∈ T∆. We assume that any two different triangles are
either disjoint or intersect each other in a common face or ina common vertex (cf., e.g. [6]). We
use the Taylor-HoodP 2/P 1 elements ([48]). This means that

Q∆ = {q ∈ C(Ω∆); q|K ∈ P 1(K) ∀K ∈ T∆},

W∆ = {v ∈ [C(Ω∆)]
2;v|K ∈ [P 2(K)]2 ∀K ∈ T∆}, (4.8)

X∆ = {v ∈ W∆;v|ΓD∆∪ΓW∆
= 0}.
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Here the symbolP k(K) denotes the space of all polynomials onK of degree≤ k. The couple
(X∆, Q∆) satisfies the Babuška-Brezzi condition (see, e.g. [3], [4], [49]), which is important for
the stability of the finite element scheme. The domain velocity wn+1 at timetn+1 is approximated
by a functionw∆ = wn+1

∆ , we use the approximationŝui ≈ ûi
∆, i = n, n − 1. Further, the

formsaNS andfNS will be modified so that in (4.6) we shall writeΩ∆ instead ofΩ.
Now theapproximate solution of the flow problemis defined as a coupleU∆ = (u∆, p∆) ∈

W∆ ×Q∆ such that

aNS(νT , U∆, U∆, V∆) = fNS(V∆), ∀V∆ = (v∆, q∆) ∈ X∆ ×Q∆, (4.9)

andu∆ satisfies approximately the Dirichlet boundary conditions(2.6), a), b). This means that
these conditions are satisfied at thenodes, i.e., the vertices and midpoints of sides of elements
lying on the approximationsΓD∆ andΓW∆ of ΓD andΓW , respectively.

By the symbolRe = U∞c/ν we denote the Reynolds number. HereU∞ denotes the magni-
tude of the far-field velocity andc is the length of the airfoil chord. For high Reynolds numbers
approximate solutions can contain nonphysical spurious oscillations. In order to avoid them, we
shall apply the streamline-diffusion (also called the SUPG- streamline upwind Petrov-Galerkin)
stabilization and the div-div stabilization. For a velocity vectoru∗ we introduce the transport
velocityw∗ = w∗(u∗) = u∗ −wn+1

∆ and define the forms

ℓNS(νT , U
∗, U, V ) =

∑

K∈T∆

δK

(
3

2τ
u−∇ · ((ν + νT )(∇u+∇Tu)),v

)

K

+
∑

K∈T∆

δK ((w∗ · ∇)u+∇p, (w · ∇)v)K

FNS(V ) =
∑

K∈T∆

δK

(
1

2τ
(4ûn − û

n−1), (w · ∇)v

)

K

,

PNS(U, V ) =
∑

K∈T∆

τK(∇ · u,∇ · v)K .

(4.10)

Here
U = (u, p) U∗ = (u∗, p) V = (v, q),

andδK , τK ≥ 0 are parameters defined on the basis of results from [17] and [30] and our numer-
ical experiments and tests. We put

δK = δ∗
hK

2‖w∗‖K
ξ(ℜw

∗

K ), (4.11)

where‖w∗‖K = maxK |w
∗|, hK is the size ofK measured in the direction ofw∗ and

ℜw
∗

K =
hK‖w

∗‖K
2ν

, ξ(ℜw
∗

K ) = min

(
ℜw

∗

K

6
, 1

)
. (4.12)

The parametersτK are defined by

τK = τ ∗hK‖w
∗‖K , τ ∗ ∈ (0, 1]. (4.13)
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In practical computations we use the valuesδ∗ = 0.025 andτ ∗ = 1.
The solution of the stabilized discrete problem is such a coupleU∆ = (u∆, p∆) ∈ W∆ ×Q∆

thatu∆ satisfies the boundary conditions (2.6), a), b) at the nodes lying onΓD∆ ∪ ΓW and

aNS(νT , U∆, U∆, V∆) + ℓNS(νT , U∆, U∆, V∆) + PNS(U∆, V∆) (4.14)

= fNS(V∆) + FNS(V∆), ∀V∆ = (v∆, q∆) ∈ X∆ ×Q∆.

The couple(u∆, p∆) represents the approximate solution on the time leveltn+1 defined in the
approximation of the domainΩtn+1

.

Remark 2. The above procedure can also be used for the numerical solution of laminar flow. We
simply setνT = 0 and solve problem (4.14). To this end, the following Oseen iterative process
can be used. Starting from an initial approximationUn+1

∆,0 at time tn+1 and assuming that the
iterationUn+1

∆,m has already been computed, we defineUn+1
∆,m+1 = (u∆,m+1, p∆,m+1) ∈ W∆ ×Q∆

satisfying (2.6), a), b) at the nodes onΓD∆ ∪ ΓW∆ and

aNS(0, U
n+1
∆,m, U

n+1
∆,m+1, V∆) + ℓNS(0, U

n+1
∆,m, U

n+1
∆,m+1, V∆) + PNS(U

n+1
∆,m+1, V∆)

= fNS(V∆) + FNS(V∆), ∀V∆ = (v∆, q∆) ∈ X∆ ×Q∆.
(4.15)

We obtain a sequenceUn+1
∆,m, m = 0, 1, . . ., and assume that it converges to the solutionUn+1

∆ of
equation (4.14) withνT = 0. We setU1

∆,0 = (u0
∆, p) and for each time leveltn+1, n ≥ 1, we set

Un+1
∆,0 = (2ûn

∆ − û
n−1
∆ , pn∆). The numerical realization of the Oseen iterations is described e.g.

in [14].

4.3. Discretization of the Spalart-Allmaras turbulence equation

Equation (2.33) is discretized in time similarly as the RANS system (2.31) - (2.32) by the
second-order backward difference formula. At every timetk we approximatẽν(tk) ≈ ν̃k. Let us
assume that we have already obtained the approximationsun andν̃n. Then, as in Remark 1, we
set

̂̃νn−1
= ν̃n−1 ◦ Atn−1

◦ A−1
tn+1

, ̂̃νn = ν̃n ◦ Atn ◦ A−1
tn+1

, (4.16)

which is the transformation of the functionsν̃n−1, ν̃n from the domainsΩtn−1
, Ωtn to Ωtn+1

. For
simplicity we shall use the notationψ for the functionν̃(n+1).

Because of computing the numerical solution of equation (2.33) at timetn+1 we shall use the
following linearization of nonlinear terms:

ε(ψ)∇ψ ≈ ε(̂̃νn)∇ψ,
(∇ψ)2 ≈ ∇̂̃νn · ∇ψ,
s(ψ)ψ2 ≈ s(̂̃νn)

[
(̂̃νn)2 + 2̂̃νn(ψ − ̂̃νn)

]
(4.17)

= s(̂̃νn)(2̂̃νnψ − (̂̃νn)2),
S̃(ψ)ψ ≈ S̃(̂̃νn)̂̃νn.
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Then we obtain the following linearized scheme for the computation of the functionψ:

3ψ − 4̂̃νn + ̂̃νn−1

2∆t
+ (u−w) · ∇ψ

= div(ε(̂̃νn)∇ψ) + 3

2
cb2∇

̂̃νn · ∇ψ (4.18)

+cb1S̃(
̂̃νn)̂̃νn − s(̂̃νn)(2̂̃νnψ − (̂̃νn)2), n = 0, 1, . . . ,

which is equipped with the boundary conditions (2.10), rewritten now for the functionψ:

ψ|ΓD
= ν̃D, ψ|ΓW

= 0,
∂ψ

∂n

∣∣∣
ΓO

= 0. (4.19)

The space discretization of problem (4.18) - (4.19) is carried out by the finite element method
over the triangulationT∆ of the domainΩ∆, which is a polygonal approximation of the domain
Ωtn+1

. We define the spaces

V∆ =
{
ϕ ∈ C(Ω∆);ϕ|K ∈ P1(K) ∀K ∈ T∆

}
, (4.20)

V0
∆ = {ϕ ∈ V∆;ϕ = 0 on ΓD∆ ∪ ΓW∆},

(4.21)

and the forms

Bsa(u, ψ, ϕ) =
3

2∆t
(ψ, ϕ)Ω∆

+ (ε(̂̃νn)∇ψ,∇ϕ)Ω∆
(4.22)

+((u−w) · ∇ψ, ϕ)Ω∆
−

(
3

2
cb2∇

̂̃νn · ∇ψ − 2s(̂̃νn)̂̃νnψ, ϕ
)

Ω∆

,

Lsa(ϕ) =
1

2∆t
(2̂̃νn − ̂̃νn−1

, ϕ)Ω∆
(4.23)

+(cb1S̃(
̂̃νn)̂̃νn + s(̂̃νn)(̂̃νn)2, ϕ)Ω∆

.

Assuming thatu is known, the approximate solution of problem (4.18), (4.19) is defined as
a functionψ∆ ∈ V∆ satisfying the Dirichlet boundary conditions (4.19) at thevertices lying on
ΓD∆ ∪ ΓW∆ such that

Bsa(u, ψ∆, ϕ∆) = Lsa(ϕ∆), ∀ϕ∆ ∈ V0
∆. (4.24)

In the case of large Reynolds numbers, we apply the SUPG stabilization, combined with
discontinuity capturing (DC) introducing an additional dissipation in the crosswind direction.
(See, e.g. [22]), [7] and [21].) To this end, we define the vector-valued function

b = b(u) = u−wn+1
∆ −

3

2
cb2∇

̂̃νn. (4.25)
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By ψ∗ we denote an auxiliary variable (approximation ofψ) and introduce the forms

Bsa
SUPG(u, ψ, ϕ) (4.26)

=
∑

K∈T∆

δ̃K

(
3ψ

2∆t
+ b · ∇ψ − div(ε(̂̃νn)∇ψ) + 2s(̂̃νn)̂̃νnψ, b · ∇ϕ

)

K

,

Lsa
SUPG(u, ϕ) (4.27)

=
∑

K∈T∆

δ̃K

(
4̂̃νn − ̂̃νn−1

2∆t
+ cb1S̃(

̂̃νn)̂̃νn + s(̂̃νn)(̂̃νn)2, b · ∇ϕ
)

K

,

Bsa
DC(u, ψ

∗, ψ, ϕ) =
∑

K∈T∆

αK(ψ
∗)(∇ψ,∇ϕ)K (4.28)

+
∑

K∈T∆

(
(max(αK(ψ

∗)− α′

K , 0)− αK(ψ
∗))

b⊗ b

‖b‖2K
∇ψ,∇ϕ

)

K

.

Here

δ̃K =

(
4‖ε(̂̃νn)‖K

h2K
+

2‖b‖K
hK

+ ‖s(̂̃νn)‖K
)−1

, (4.29)

b⊗ b =

(
b21, b1b2
b1b2, b22

)
(4.30)

and
α′

K = δ̃K‖b‖
2
K . (4.31)

The norm‖b‖2K is defined by

‖b‖K = maxK (|b1|+ |b2|) . (4.32)

Similarly we define the norms‖ε(̂̃νn‖K and‖s(̂̃νn)‖K .
Further, we define the local element residuals

resK(ψ
∗) =

3ψ∗ − 4̂̃νn + ̂̃νn−1

2∆t
+ b · ∇ψ∗ (4.33)

−div(ε(̂̃νn)∇ψ∗)− s(̂̃νn)(̂̃νn)2 − cb1S̃(
̂̃νn) + 2s(̂̃νn)̂̃νnψ∗,

and set

αK(ψ
∗) =





1

2
AK(ψ

∗)hK
‖resK(ψ∗)‖K
‖∇ψ∗‖K

if ‖∇ψ∗‖K 6= 0,

0 elsewhere,
(4.34)

wherehK is the characteristics length of the elementK (we use the size of the elementK
measured in the direction ofb), AK is given by

AK(ψ
∗) = max

(
0, 0.7−

2ε(̂̃νn)
‖a1(ψ∗)‖KhK

)
(4.35)
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with

a1(ψ
∗) =

resK(ψ∗)

‖∇ψ∗‖K
. (4.36)

Now let us define the complete stabilized Spalart-Allmaras turbulence model forms

Bsa
TM(u, ψ∗, ψ, ϕ) (4.37)

= Bsa(u, ψ, ϕ) +Bsa
SUPG(u, ψ, ϕ) +Bsa

DC(u, ψ
∗, ψ, ϕ),

Lsa
TM(u∆, ϕ) = Lsa(ϕ) + Lsa

SUPG(u, ϕ). (4.38)

Then (provided the finite element approximationu∆ of the flow velocity at timetn+1 is
given), the stabilized discrete problem forψ is formulated in the following way: Findψ∆ ∈ V∆

satisfying the Dirichlet boundary conditions (4.19) at thevertices lying onΓD∆ ∪ΓW∆ such that

Bsa
TM(u, ψ∆, ψ∆, ϕ∆) = Lsa

TM(u, ϕ∆)) ∀ϕ∆ ∈ V0
∆. (4.39)

4.3.1. The solution of the complete Spalart-Allmaras turbulent flow problem
Summarizing (4.10), (2.14) and (4.39), we can formulate thescheme for the computation of

turbulent flow at the time instanttn+1 in the polygonal approximationΩ∆ of the domainΩtn+1
:

FindU∆ = (u∆, p∆), ψ∆, ν̃∆, νT∆
such that

a) U∆ = (u∆, p∆) ∈ W∆ ×Q∆, (4.40)

u∆ satisfies (2.6), a), b) at the nodes lying onΓD∆ andΓW∆,

aNS(νT∆, U∆, U∆, V∆) + ℓNS(νT∆, U∆, U∆, V∆) + PNS(U∆, V∆)

= fNS(V∆) + FNS(V∆) ∀V∆ ∈ X∆ ×Q∆,

b) ψ∆ ∈ V∆,

Bsa
TM(u∆, ψ∆, ψ∆, ϕ∆) = Lsa

TM(u∆, ϕ∆) ∀ϕ∆ ∈ V0
∆,

c) ν̃∆ = ψ∆,

d) νT∆ = ν̃∆fv1(ν̃∆).

If we obtain the solution of this problem, then(un+1
∆ , pn+1

∆ ) = (u∆, p∆), ν̃
(n+1)
∆ = ν̃∆ = ψ∆ and

ν
(n+1)
T∆ = νT∆ represent the approximate solution of the Spalart-Allmaras turbulence model at

time tn+1. The solution of problem (4.40) is carried out with the use ofthe following Oseen-like
iterative process.

4.3.2. Algorithm for the solution of the discrete Spalart-Allmaras turbulent flow problem at time
tn+1

(0) In the begining of the time marching process setn = 0, U−1
∆ = U0

∆ = (u0, pref ), ν̃
(−1)
∆ =

ν̃
(0)
∆ = ν̃∆, whereν̃∆ is chosen so that̃ν∆fv1(ν̃∆) = ν/10 (see the conditions specified in

(2.7) and Section 2.5). Then findψ∗
∆ ∈ V∆ satisfying the Dirichlet boundary conditions

(4.19) at the vertices lying onΓD∆ ∪ ΓW∆ and

Bsa(u0, ψ∗

∆, ϕ∆) +Bsa
SUPG(u

0, ψ∗

∆, ϕ∆) = Lsa
TM(u0, ϕ∆) ∀ϕ∆ ∈ V0

∆. (4.41)

(In this way we get the initial value ofψ∗
∆.)
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(1) Letε > 0 be given. Let the approximationΩ∆ of the domainΩtn+1
andwn+1

∆ ), ûn−1
∆ , ûn∆,

̂̃νn−1

∆ , ̂̃νn∆,
ν̂T∆ (quantities transformed to the approximation of the domainΩ∆tn+1

by Remark 1) have
already been determined. Set

ν∗∆ := ν̂nT∆, ψ
∗

∆ := ̂̃νn∆, U∗

∆ := (ûn
∆, p̂

n
∆). (4.42)

(2) FindU∆ = (u∆, p∆) ∈ W∆×Q∆ such thatu∆ satisfies the boundary conditions (2.6) at the
nodes onΓD∆ ∪ ΓW∆ and

aNS(ν
∗

T∆, U
∗

∆, U∆, V∆) + ℓNS(ν
∗

T∆, U
∗

∆, U∆, V∆) (4.43)

+PNS(U∆, V∆) = fNS(V∆) + FNS(V∆) ∀V∆ ∈ X∆ ×Q∆.

(3) Findψ∆ ∈ V∆ such that it satisfies the Dirichlet conditions (4.19) at thevertives onΓD∆ ∪
ΓW∆ and

Bsa
TM(u∆, ψ

∗

∆, ψ∆, ϕ∆) = Lsa
TM(u∆, ϕ∆) ∀ϕ∆ ∈ V0

∆. (4.44)

(4) Setν̃∆ := ψ∆, νT∆ := ν̃∆fv1(ν̃∆).

(5) If
‖ν∗T∆ − νT∆‖ < ε and ‖U∗

∆ − U∆‖ < ε, (4.45)

then set
U

(n+1)
∆ := U∆, ν̃

(n+1)
∆ := ψ∆, ν

(n+1)
T∆ := νT∆, (4.46)

else
ν∗T∆ := νT∆, U∗

∆ := U∆, ψ∗

∆ := ψ∆, (4.47)

and go to (2).

Remark 3. In order to increase the stability of this algorithm, it is suitable to apply a few inner
iterations in (4.44) of the following form: Setψ∆,0 := ψ∗

∆ and for i = 0, . . . , l (l = 1 or 2) find
ψ∆,i+1 ∈ V∆ such that it satisfies the Dirichlet conditions (4.19) at thevertices fromΓD∆ ∪ΓW∆

and
Bsa

TM(u∆, ψ∆,i, ψ∆,i+1, ϕ∆) = Lsa
TM(u∆, ϕ∆) ∀ϕ∆ ∈ V0

∆. (4.48)

Then putψ∆ = ψ∆,l+1.

4.4. Discretization of thek − ω turbulence model
The discretization of thek − ω system (2.34), (2.35) is carried out in a similar way as in the

previous section. The time derivative is approximated by the second-order backward difference
formula, use suitable test functionsϕk andϕω for the obtained approximations fork andω,
respectively, use the notation introduced in Remark 1 and introduce the following linearized
approximations:

β∗ωk(tn+1) ≈ 2β∗ω̂nkn+1 − β∗ω̂nk̂n, (4.49)

βω2(tn+1) ≈ 2βω̂nωn+1 − β(ω̂n)2,

Pk(tn+1) ≈ P̂k(tn), Pω(tn+1) ≈ P̂ω(tn).
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Further, we use the notation

εk = ν + σkν̂
n
T , εω = ν + σkν̂

n
T , (4.50)

Λ = (k, ω), Φ = (ϕk, ϕω), w = w(u) = u−wn+1
∆ .

Then we get the following forms:

Bkω(u; Λ,Φ) = (εk∇k,∇ϕk)Ω +

(
3k

2∆t
+ (w · ∇) k + 2β∗ω̂nk, ϕk

)

Ω

(4.51)

+(εω∇ω,∇ϕω)Ω +

(
3ω

2∆t
+ (w · ∇) k + 2βω̂nω, ϕω

)

Ω

, (4.52)

Lkω(Φ) =
(4k̂n − k̂n−1

2∆t
+ P̂k(tn) + β∗k̂nω̂n, ϕk

)
Ω

(4.53)

+
(4ω̂n − ω̂n−1

2∆t
+ β(ω̂n)2 + P̂ω(tn) + ĈD(tn), ϕω

)
Ω∆

. (4.54)

Because of the SUPG and DC stabilization, we define the forms

Bkω
SUPG(u; Λ,Φ) (4.55)

=
∑

K∈T∆

δKk

( 3k

2∆t
+w · ∇k + 2β∗ω̂nk +∇ · (εk ∇k) ,w · ∇ϕk

)
K

+
∑

K∈T∆

δKω

( 3ω

2∆t
+w · ∇ω + 2βω̂nω +∇ · (εω ∇ω) ,w · ∇ϕω

)
K
,

Lkω
SUPG(u; Φ) (4.56)

=
∑

K∈T∆

δKk

(4k̂n − k̂n−1

2∆t
+ P̂k(tn) + β∗k̂nω̂n,w · ∇ϕk)

)
K

+
∑

K∈T∆

δKω

(4ω̂n − ω̂n−1

2∆t
+ β(ω̂n)2,+P̂ω(tn) + ĈD(tn),w · ∇ϕk)

)
K
,

Bkω
DC(u; Λ,Φ) (4.57)

=
∑

K∈T∆

(
αKk∇k,∇ϕk

)
K
+
∑

K∈T∆

(
α̂K∇ω,∇ϕω

)
K

+
∑

K∈T∆

∫

K

(
(αKk − α′

Kk)
+ − αKk

)
∇k ·

(
w ⊗w

‖w‖2K

)
∇ϕkdx.

+
∑

K∈T∆

∫

K

(
(αKω − α′

Kω)
+ − αKω

)
∇ω ·

(
w ⊗w

‖w‖2K

)
∇ϕω dx.
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We use the following notation. The parametersδKk, δKω are defined by

δKk =

(
4‖εk‖K
h2K

+
2‖w‖K
hK

+ 2β∗‖ω̂n‖K

)−1

, (4.58)

δKω =

(
4‖εω‖K
h2K

+
2‖w‖K
hK

+ 2β‖ω̂n‖K

)−1

.

The discontinuity capturing coefficientsα′
Kkω andα′

Kω are determined by

α′

Kk = δKk ‖w‖K , α′

Kω = δKω ‖w‖K . (4.59)

The definitions of the discontinuity capturing coefficientsαKk andαKω are based on the local
element residuals

res1(k
∗) =

3k∗ − 4k̂n + k̂n−1

2∆t
+w ·∇k∗+2β∗ω̂nk∗−β∗ω̂nk̂n− P̂k(tn)−∇ · (εk∇k

∗) (4.60)

and

res2(ω
∗) =

3ω∗ − 4ω̂n + ω̂n−1

2∆t
+w ·∇ω∗+2βω̂nω∗−β∗(ω̂n)2−P̂ω(tn)−ĈD(tn)−∇·(εω∇ω

∗)

(4.61)
We set

αKk(k
∗) =

1

2
AKk(k

∗)hK
‖res1(k

∗)‖K
‖∇k∗‖K

, (4.62)

αKω(ω
∗) =

1

2
AKωhK(ω

∗)
‖res2(ω

∗)‖K
‖∇ω∗‖K

, (4.63)

if ‖∇k∗‖K 6= 0 and‖∇ω∗‖K 6= 0, otherwise,

αKk=0, αKω = 0. (4.64)

Here,

AKk(k
∗) =

(
0.7−

2εk
‖a1‖KhK

)+

, AKω =

(
0.7−

2εω
‖a2‖KhK

)+

, (4.65)

with

a1 =
res1(k∗)
‖∇k∗‖2K

∇k∗, a2 =
res2(ω∗)

‖∇ω∗‖2K
∇∗ω. (4.66)

Finally, we define the stabilizedk − ω turbulence model formsBTM = Bkω
TM andLTM =

Lkω
TM :

Bkω
TM(u; Λ∗,Λ,Φ) (4.67)

= Bkω(u; Λ,Φ) +Bkω
SUPG(u; Λ,Φ) +Bkω

DC(u; Λ
∗,Λ,Φ),

Lkω
TM(u; Φ) = Lkω(Φ) + Lkω

SUPG(u; Φ), (4.68)
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4.4.1. The solution of the problem for computing the quantitiesk andω
Now we shall introduce the discrete problem for the determination of the approximations to

the functionsk andω at timetn+1, provided the approximate solution has already been computed
on previous time levels. We use again the finite-dimensionalspacesV∆ andV0

∆ defined by (4.20
and setVω

∆ = Vk
∆ = V0

∆.
The nonlinear stabilization problem reads: FindΛ∆ = (k∆, ω∆) ∈ [V∆]

2 satisfying condi-
tions (2.19) a), b) at the vertices lying onΓD∆ ∪ ΓW∆ and

Bkω
TM(u; Λ∆,Λ∆,Φ∆) = Lkω

TM(u; Φ∆), ∀Φ∆ = (ϕk∆, ϕω∆) ∈ Vk
∆ × Vω

∆. (4.69)

4.4.2. The solution of the complete discretek − ω turbulent flow problem at timetn+1

We want to findU∆ = (u∆, p∆), Λ∆ = (k∆, ω∆) andνT∆ such that the following conditions
are satisfied:

a) U∆ satisfies (4.40), a).

b) Λ∆ = (k∆, ω∆) ∈ [V∆]
2 satisfies conditions (2.19), a), B0 at the vertices lying onΓD∆∪ΓW∆

and (4.69).

c) The relationνT∆ = k∆/ω∆ is satisfied.

4.4.3. Algorithm for the solution of the discretek − ω turbulent flow problem at timetn+1

(0) In the begining of the time marching process setn = 0, U−1
∆ = U0

∆ = (u0, pref ), ν
−1
T∆ =

ν0T∆ = ν, k−1
∆ = k0∆ = 10ν, ω−1

∆ = ω0
∆ = 10 (see the conditions specified in (2.7) and

Section 2.5). Then findΛ∗
∆ = (k∗∆, ω

∗
∆) ∈ [V∆]

2 satisfying conditions (2.19), a), b) at
vertices lying onΓD∆ ∪ ΓW∆ and

Bkω(u0
∆; Λ

∗

∆,Φ∆) +Bkω
SUPG(u

0
∆; Λ

∗

∆,Φ∆) = Lkω
TM(u0

∆,Φ∆) ∀Φ∆ ∈ Vk
∆ × Vω

∆. (4.70)

(1) Letε > 0 be given. Let the approximationΩ∆ of the domainΩtn+1
andwn+1

∆ , ûn−1
∆ , ûn

∆, k̂
n−1
∆ , k̂n∆, ω̂

n−1
∆ ,

ω̂n
∆, ν̂nT∆, P̂k(tn), P̂ω(tn), ĈD(tn) (quantities transformed to the domainΩ∆ by Remark 1)

have already been determined. SetU∗
∆ = (ûn

∆, p̂
n
∆, k∗∆ := k̂n∆, ω

∗
∆ := ω̂n

∆, ν∗T∆ := ν̂nT∆ =
k∗∆/ω

∗
∆.

(2) FindU∆ = (u∆, p∆) ∈ W∆ × Q∆ such thatu satisfies the boundary conditions (2.6) at
nodes onΓD∆ ∪ ΓW∆ and

aNS(ν
∗

T∆, U
∗

∆, U∆, V∆) + ℓNS(ν
∗

T∆, U
∗

∆, U∆, V∆) (4.71)

+PNS(U∆, V∆) = fNS(V∆) + FNS(V∆) ∀V∆ ∈ X∆ ×Q∆.

(3) FindΛ∆ = (k∆, ω∆) ∈ [V∆]
2 satisfying conditions (2.19, a), b) at vertices lying onΓD∆ ∪

ΓW∆ and

Bkω
TM(u∆,Λ

∗

∆,Λ∆,Φ∆) = Lkω
TM(u∆,Φ∆) ∀Φ∆ = (ϕk∆, ϕω∆) ∈ Vk

∆ × Vω
∆. (4.72)
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(4) SetνT∆ := k∆/ω∆.

(5) If
‖ν∗T∆ − νT∆‖ < ε and ‖U∗

∆ − U∆‖ < ε, (4.73)

then set
Un+1
∆ := U∆, k

n+1
∆ := k∆, ω

n+1
∆ := ω∆, ν

n+1
T∆ := k∆/ω∆, (4.74)

else
U∗

∆ := U∆, k
∗

∆ := k∆, ω
∗

∆ := ω∆, ν
∗

T∆k
∗

∆/ω
∗

∆, (4.75)

and go to (2).

5. The realization of the coupled fluid-structure interaction problem

In this section we shall describe the algorithm of the numerical realization of the complete
fluid-structure interaction problem.

5.1. Construction of the ALE mapping for three degrees of freedom

The ALE mapping is constructed with the use of the linear equations describing the defor-
mation of elastic bodies:

∇[(λ+ µ)∇ · d] +∇ · (µ∇d) = 0 inΩ0, (5.1)

whered = (d1, d2) is a displacement defined inΩ0. The Laḿe coefficientsλ andµ are computed
by

λ =
Eaσa

(1 + σa)(1− 2Ea)
, µ =

Ea

2 + 2σa
, (5.2)

whereEa is an artificial Young modulus andσa is an artificial Poisson ratio.
The boundary conditions ford are prescribed by

d|ΓD∪ΓO
= 0 (5.3)

and onΓW0
they are determined by the functionsh(t), α(t), β(t):

d1 = X1 cosα−X2 sinα,
d2 = X1 sinα +X2 cosα + h,

Y = (X1, X2) ∈ P0, (5.4)

for the main part of the airfoil and

d1 = X1 cos(α + β)−X2 sin(α + β)
+dPF cosα,

d2 = X1 sin(α + β) +X2 cos(α + β)
+dPF sinα + h,

Y = (X1, X2) ∈ F0, (5.5)

for the flap of the airfoil.
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The solution of equations (5.1) gives us the ALE mapping ofΩ0 ontoΩt by the relation

At(Y ) = Y + d(Y ), Y ∈ Ω0, (5.6)

for each timet.
System (5.1) is discretized by the conforming piecewise linear finite elements on the meshT 0

∆

used for computing the velocity and pressure fields in the begining of the computational process
in the polygonal approximationΩ0∆ of the domainΩ0.

We introduce the finite element spaces

X∆ = {d∆ = (d∆1, d∆2); d∆i|K ∈ P 1(K) ∀K ∈ T 0
∆, i = 1, 2}, (5.7)

V∆ = {ϕ∆ ∈ X∆;ϕ∆(θ) = 0 for all verticesθ ∈ ∂Ω0},

and the form

B∆(d∆,ϕ∆) = ((λ+ µ)(∇ · d∆), (∇ ·ϕ∆))Ω0∆
+ (µ∇d,∇ϕ∆)Ω0∆

. (5.8)

Then the approximate solution of problem (5.1), (5.3) – (5.5) is defined as a functiond∆ ∈ X∆

satisfying the Dirichlet boundary conditions defined by (5.3) – (5.5) with the values ofh, α, β at
time tn+1 and considered at the vertices lying on∂Ω0 and the identity

B∆(d∆,ϕ∆) = 0 ∀ϕ∆ ∈ V∆. (5.9)

It is possible to choose the Lamé coefficientsλ andµ as constants, but it is more suitable to
define them by (5.2), where the parametersEa andσa are piecewise constant on the meshT 0

∆.
We define them by

σa|K = 0.25, Ea|K =
1

meas(K)
, (5.10)

where meas(K) denotes the area of an elementK. The mesh around the airfoil is typically
refined into smaller triangles. Since smaller triangles imply the larger Young modulusEa in
(5.10), the mesh around the airfoil moves with the airfoil and its deformation is small.

If the displacementd∆ is computed at timetn+1, then, in view of (5.6), the approximation of
the ALE mapping is obtained in the form

Atn+1∆(Y ) = Y + d∆(Y ), Y ∈ Ω0∆. (5.11)

The knowledge of the ALE mapping at the time instantstn−1, tn, tn+1 allows us to approximate
the domain velocity with the aid of the second-order backward difference formula

wn+1
∆ (x) =

3x− 4Atn∆(A
−1
tn+1∆

(x)) +Atn−1∆(A
−1
tn+1∆

(x))

2τ
, x ∈ Ωtn+1∆. (5.12)
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5.2. Discretization of the structural problem
In order to solve equations (3.1) of motion describing the airfoil vibrations, we transform

them to a first-order system. We introduce the following notation:

Z(t) = (ḣ(t), α̇(t), β̇(t))T , f = (L,Mα,Mβ)
T , (5.13)

K =




khh 0 0
0 kαα 0
0 0 kββ


 , D =




Dhh 0 0
0 Dαα 0
0 0 Dββ


 , (5.14)

M = (Mij)
3
i,j=1, (5.15)

where the components of the nonlinear mass matrixM = M(Z) read

M11 = m, M12 = (Sα − Sβ) cosα + Sβ cos(α + β),
M13 = Sβ cos(α + β), M21 =M12,
M22 = Iα − 2dPFSβ + 2dPFSβ cos β, M23 = Iβ + dPFSβ cos β,
M31 =M13, M32 =M23, M33 = Iβ.

(5.16)

Further, we introduce the following notation:O - 3 × 3 zero matrix,I - unit 3 × 3 matrix, 0 -
3-dimensional zero vector andg - the vector of nonlinearities:

g =




(Sα − Sβ)α̇
2 sinα + Sβ(α̇ + β̇)2 sin(α + β)

dPFSββ̇
2 sin β + 2(dPFSβ)α̇β̇ sin β
−dPFSβα̇

2 sin β


 . (5.17)

Then system (3.1) is equivalent to the first-order system

Ż = h(t,Z), (5.18)

whereh is the vector function defined by

h(t,Z) =

(
M

−1(Z) O

O I

)((
f(t)
0

)
−

(
D O

O K

)
Z +

(
g

0

))
. (5.19)

This system is equipped with the initial condition prescribing the valueZ(0) given by conditions
(3.2). The initial value problem for system (5.18) is solvedby the fourth-order Runge-Kutta
method. In the step fromtn to tn+1 one needs the evaluation of the valuesf(t̂) at discretes
instantst̂ ∈ [tn, tn+1]. They are obtained by a linear extrapolation from the interval [tn−1, tn]
to [tn, tn+1]. If the valuesf(tn) andf(tn+1) have already been approximated, thenf(t̂) is
computed by the linear interpolation in the interval[tn, tn+1].

5.3. Computation of aerodynamic forces acting on the airfoil
In the case when the flap is not separated from the main body of the airfoil, the aerodynamic

forcesL, Mα, Mβ at timetn+1 are computed from (3.3) – (3.5) by using the approximation of
the stress tensor (3.6) known from the solutionU∆ = (u∆, p∆) of the stabilized discrete flow
problem (4.40) and extrapolated to the boundary. The integrals in (3.3) - (3.5) are computed with
the aid of numerical quadratures. In the case, when the flap isseparated from the main body of
the airfoil, i.e. Pt ∩ Ft = ∅, the force and moments can be computed on the basis of a weak
formulation similarly as in Sv́aček et al. [47].
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5.4. Coupling procedure

In the solution of the complete coupled fluid-structure interaction problem it is necessary to
apply a suitable coupling procedure. See, e.g. Badia and Codina [1] for a general framework.
Here we apply the following algorithm.

(0) Prescribeε > 0 - the measure of accuracy in the coupling procedure, and an integerM ≥ 0
- the maximal number of iterations in the coupling procedure.

(1) Assume that the solutionU∆ = (u∆, p∆) of the discrete flow problem (4.40) and the force
L and torsional momentsMα andMβ computed from (3.3) - (3.5) are known at time levels
tn−1 andtn.

(2) Extrapolate linearlyL, Mα andMβ from the interval[tn−1, tn] to [tn, tn+1]. Setm := 0.

(3) Prediction ofh, α, β: Compute the displacementh and the anglesα andβ at timetn+1 as
the solution of system (5.18) by the Runge-kutta method. Denote it byh∗, α∗, β∗.

(4) On the basis ofh∗, α∗, β∗ determine the position of the airfoil at timetn+1, the domain
Ωtn+1∆, the ALE mappingAtn+1∆ and the domain velocitywn+1

∆ .

(5) Solve the nonlinear discrete stabilized problem (4.40)at timetn+1 by the Oseen-like iterative
algorithm 4.3.2 .

(6) Correction ofh, α, β: ComputeL,Mα andMβ from (3.3) - (3.5) at timetn+1 and interpolate
L, Mα andMβ on [tn, tn+1]. Computeh, α, β at timetn+1 from (5.18) by the Runge-Kutta
method.

(7) If |h∗ −h|+ |α∗ −α|+ |β∗ − β| ≥ ε andm < M , seth∗ = h, α∗ = α, β∗ = β,m := m+1
and go to 4. Otherwise,n := n+ 1 and go to (2).

If M = 0, then we get a loose (weak) coupling of the flow and structuralproblems. With
increasingM and decreasingε, the coupling becomes stronger.

Remark 4. The assumption that the approximate solutionU∆ and the quantitiesL,Mα,Mβ

are known at time instantstn−1 andtn is satisfied in practical computations, because the compu-
tational process starts with a fixed airfoil and flap, which are released after several time steps.

6. Numerical experiments

We performed computations for the airfoil configurations considered in [28], where the au-
thors computed the stability bounds of a wing profile model byMSC.NASTRAN, which is based
on a linear description of the structure behaviour.

The numerical simulation was carried out for the airfoil NACA0012 of the total length (in-
cluding the gap and flap - see Figure 1)c = 0.3 m. The axesEA andEF are placed at40 %
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and80 %, respectively, of the length of the whole airfoil measuredfrom the leading edge. The
following structural parameters in equations (3.1) were used:

m = 0.086622 kg, khh = 105.109N/m,
kαα = 3.69558Nm/rad, kββ = 0.2Nm/rad,
Sα = −0.000779598 kgm, Sβ = 0kgm,
Iα = 0.000487291 kgm2, Iβ = 0.0000341104 kgm2,

dPF = 0.140001m, l = 0.079m.

The damping coefficientsDhh, Dαα, Dββ were assumed to be zero. The gap between the main
lifting surface and the flap was varied fromg = 0% to g = 7% of the flap chord lengthLf =
0.068 m.

Figure 2 shows examples of the triangulation around the airfoil in the channel. The mesh was
anisotropically adapted by the method described in [9], using the combination of the software
Angener [8] and the open source software GMSH [18], [19]. Thetotal number of fluid finite
elements was approximately 60 000 depending on the gap size.

The structural initial conditions in all computations wereset to

h(0) = −1.5 mm, α(0) = 1◦ for g ≤ 1.26% or h(0) = −5 mm, α(0) = 3◦ for g > 1.26%(6.1)

and

β(0) = ḣ(0) = α̇(0) = β̇(0) = 0.

The computational process started from the solution of the flow past a fixed airfoil at time
t = −0.01 s. At timet = 0 the airfoil was released and the computation of the real interaction
started. (Cf. Remark 4.) Computations were carried out with thetime stepτ = 0.01c/U∞ for the
kinematic viscosityν = 1.5 · 10−5 m2/s, the air densityρ = 1.225 kg/m3 and the far-field flow
velocityU∞ = 6−12 m/s corresponding to the Reynolds numbers between1.2 ·105 and2.4 ·105.
The computational process was finished either by approaching timeT = 2 s in aeroelastic stable
cases or if the process failed due to high vibration amplitudes, when the aeroelastic instability
appeared for the unstable LCO and the amplitude of the flap exceeded a limit value by which
the computational mesh was degenerated. The total computertime for the computation of the
responsesh(t), α(t), β(t) for t = 0− 2 s on a PC with Intel i7 processor and 4GB memory was
about 3 days.

The frequency analysis of the dynamic response was carried out with the aid of the Fourier
transform

G(fn) =

∫ T

0

g(t) e−2πifnt dt (6.2)

with g = h, α or β, andfn = n∆f ∈ [0, 50], ∆f = 0.1 Hz, approximated by the rectangle
formula

G(fn) =
N−1∑

k=0

g(tk) e
−2πifntk ∆t. (6.3)

Herei is the imaginary unit,∆t = T/N andN is the number of time steps in the interval[0, T ).
The results of the frequency analysis are shown in graphs of the quantity

|G(fn)| =
√
ℜ2(G(fn)) + ℑ2(G(fn)).
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Figure 2: Detail of anisotropically adapted mesh for NACA 0012 airfoil for the gapg = 2.4% (nondeformed and
deformed position).

6.1. Numerical results - flutter analysis

Figures 3-7 show examples of the computed functionsh(t), α(t), β(t), the corresponding
spectra and the phase diagrams for Spalart-Allmaras andk − ω turbulence models and several
far-field flow velocitiesU∞. For the smaller flow velocity the amplitudes for the vertical dis-
placementh and the rotationsα, β are decreasing in time and the system is stable (see Figure
3). The spectra show three frequencies that belong to the vertical motion of the airfoil and to
the rotations the main lifting part of the profile and of the flap. The lowest frequency at about
5.5 Hz belongs to the vertical airfoil motionh and the two higher frequencies at about 12 Hz
and 15 Hz belong to the airfoil and the flap rotationsα andβ, respectively. Comparing the re-
sults in Figures 3-5 we can see that the damping of vibrationsdecreases with the far-field flow
velocity and is lower for the Spalart-Allmaras turbulence model than for thek − ω model. Nev-
ertheless, the system is still stable in all three cases presented in these figures. By increasing
the far-field flow velocity up toU∞ = 11 m/s the vibration regime can be considered as a limit
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cycle oscillation (LCO) with a small amplitude less than 3 degrees for the flap rotationβ and
the highest frequency belonging to this motion becomes the most dominant in the spectra (see
Figure 6). The system is still stable, if the model is used, but a ”catastrophic” type of flutter with
a negative damping and quickly increasing vibration amplitudes appear in this case according to
the Spalart-Allmaras turbulence model. For the higher flow velocityU∞ = 12 m/s, the system
is becoming unstable by a ”catastrophic” flutter also by using thek − ω model (see Figure 7).
In this case, the rotation amplitudes are increasing very fast and the angleβ for the flap reaches
values up to about 5 degrees after about 2 s oscillating with the dominant flutter frequency of
about 15 Hz.

These results are in agreement with the NASTRAN computations, according to which the
system becomes unstable by flutter in torsion for the far-field flow velocity at 11.3 m/s and the
flutter frequencyfcr = 14.9 Hz (see Table 1 and [28], [29]).
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Figure 3: Airfoil with gap 0.54%: Functionsh(t), α(t), β(t) (left), their spectra (midlle) and phase diagrams (right)
for k − ω turbulence model and far-field airflow velocity 7 m/s.

The functionsh(t), α(t), β(t) computed by the Spalart-Allmaras turbulence model and the
k − ω turbulence model are compared in Figure 8. Both models give nearly identical results in
the beginning of the transient regime just after releasing the airfoil at the timet = 0 s. However,
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Figure 4: Airfoil with gap 0.54%: Functionsh(t), α(t), β(t) (left), their spectra (midlle) and phase diagrams (right)
for k − ω (full line) and Spalart-Allmaras turbulence model (dashedline) and far-field airflow velocity 9 m/s.

after about 1 s the differences in the vibration amplitudes for the two turbulence models are
getting remarkable. Thek − ω turbulence model gives smaller vibration amplitudes. The airfoil
is more damped by the aerodynamic forces computed by thek − ω turbulence model and the
system is more stable comparing to the use of the Spalart-Allmaras model.

This behaviour is demonstrated in Figure 9, which shows the damping ratioD = ln(α0/αn)/(2πn),
calculated fromn cycles of the time response of the airfoil for the rotation angle amplitudesα0

andαn, in dependence on the far-field air flow velocity for three different gaps. If the damping
ratioD > 0, the system is stable, and whenD < 0, the system is unstable by coupled mode
flutter for the rotationsα andβ. For example, for the gap widthg = 3.74% and the far-field air
flow velocity 10 m/s the system is stable (D > 0) when using thek − ω turbulence model and
unstable (D < 0) by flutter when the Spalart-Allmaras turbulence model is used.

The critical flutter velocitiesUF evaluated from the damping ratio of the numerically simu-
lated time signals are shown in Figure 10 in dependence on thegap width between the airfoil and
the gap. The flutter velocityUF ≈ 11.1 m/s computed for the smallest gapg = 0.54% by using
thek − ω turbulence model is in good agreement with the flutter velocity 11.32 m/s computed
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Figure 5: Airfoil with gap 0.54%: Functionsh(t), α(t), β(t) (left), their spectra (midlle) and phase diagrams (right)
for k − ω (full line) and Spalart-Allmaras turbulence model (dashedline) and far-field airflow velocity 10 m/s.

by NASTRAN (see [28] and [29]), where no gap was considered andthe linear theory was used.
The use of the Spalart Allmaras model in the numerical simulations results in the lower flutter
velocities and by increasing the gap width the flutter velocities are getting lower. We should note
here that for the gap shape considered (see Figure 2) it is impossible to simulate properly the
cases for zero or very narrow gaps due to a technically limited maximum of the angle for the flap
rotation and related meshing problems due to contacts of themoving profile and flap surfaces.

Comparison of the presented finite element method with MSC.NASTRAN computations is
summarized in Table 1. It shows the vibration frequencies for all three displacementsh(t), α(t), β(t)
for a low far-field flow velocity and the critical flutter velocity together with the corresponding
frequency computed by the presented finite element method, compared with the NASTRAN
computations.

6.2. Numerical simulation of post flutter behaviour with largevibration amplitudes
Up to now, the vibration amplitudes in all examples presented did not exceed extremely high

values as can be encountered for the far-field flow velocitieshigher than the flutter velocity. Such
example is presented in Figures 11 – 14 for the far-field velocity U∞ = 11 m/s and the gap 6.95
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Figure 6: Airfoil with gap 0.54%: Functionsh(t), α(t), β(t) (left), their spectra (midlle) and phase diagrams (right)
for k − ω (full line) and Spalart-Allmaras turbulence model (dashedline) and far-field airflow velocity 11 m/s.

%. The vibration amplitude for the flap is growing up to nearly40 degrees when the numerical
simulation failed due to a large computational mesh deformation. The corresponding computed
velocity flow fields around the fluttering airfoil are shown inFigures 12 – 14 at several time
instants marked in Figure 11. The shown velocity is defined asthe magnitude of the velocity
related to the far-field velocity. It is possible to see clearly the flow separation on the flap surface,
especially on the detailed snapshots viewing the velocity flow field around the flap.

7. Conclusion

The paper was concerned with the numerical solution of airfoil vibrations induced by tur-
bulent flow. The motion of the airfoil with three degress of freedom is described by a system
of three second-order nonlinear ordinary differential equations for the vertical displacement and
rotation angles of the main airfoil body and the flap. The flow is modelled by the incompress-
ible Reynolds averaged Navier-Stokes equations (RANS) with the Spalart-Allmaras andk − ω
turbulence models.

The developed method is based on several important ingredients:
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Figure 7: Airfoil with gap 0.54%: Functionsh(t), α(t), β(t) (left), their spectra (midlle) and phase diagrams (right)
for k − ω (full line) and Spalart-Allmaras turbulence model (dashedline) and far-field airflow velocity 12 m/s.

• second-order BDF time discretization and the space discretization by the FEM for the
solution of the RANS system coupled with the partial differential equations describing the
turbulence models,

• SUPG and div-div stabilization of the FEM for the RANS equations,

• SUPG and discotinuity capturing stabilizations of the FEM for the turbulence models,

• construction of the ALE mapping and the ALE velocity,

• algorithms for the realization of the solution of turbulentflow and of the fluid-structure
interaction coupling.

Numerical experiments proved that the developed techniqueis robust with respect to the
magnitude of the Reynolds number and allows the simulation ofairfoil vibrations with large
amplitudes.

The results of the numerical simulation show that the flutterstability boundary of the airfoil
with three degrees of freedom can be sensitive to the gap width between the flap and the main
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Figure 8: Functionsh(t),α(t), β(t) computed by the Spalart-Allmaras (dashed line) andk−ω (solid line) turbulence
models for the far-field velocity 10 m/s and the gaps: 0.54 % (left), 3.74% (middle) and 5.58 % (right).

h - bending β - flap torsion α - torsion UF fcr flutter
f [Hz] f [Hz] f [Hz] [m/s] [Hz] type

NASTRAN 5.39 11.4 15.2 11.3 14.9 α - torsion
FEM 5.38 11.5 15.0 11.1 14.92

Table 1: Comparison of the results computed by NASTRAN without considering the gap metween the airfoil and
the flap ([28], [29]) and by the developed finite element method for eigen-frequenciesf (computed by the FEM
for the far-field airflow velocity 6 m/s and the gap 0.54 %), forfar-field airflow velocity 6 m/s, for critical flutter
velocitiesUF and flutter frequenciesfcr.

airfoil lifting surface. This is caused by an interaction ofthe main airstream with the airflow
through the gap. This aside flow influences the vortex shedding at the airfoil trailing edge, the
limit cycle oscillation amplitudes and the critical fluttervelocity. However, the results have to be
accepted with a caution, because the critical flutter flow velocity of the system studied was very
low and the influence of the flow inside the gap on the aeroelastic behavior of the airfoil can be
reduced in cases of higher far-field airflow velocities.

The airflow transition to the turbulence on the profile surface as well as the flow separation
is influenced by the airfoil vibration. Thek − ω turbulence model corresponds better to the
NASTRAN computation of the critical flutter velocity and thisturbulence model seems better
than the Spalart Allmaras model also for numerical simulation of the post flutter behavior of the
system when the vibration amplitudes, especially for the flap rotation, are large.

There are several subjects of a further research:

• comparison of computational results with wind-tunnel experiments,
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Figure 9: Aerodynamic damping versus far-field flow velocityfor the gaps of the width 0.54%, 3.74% and 5.28%.

• increas of the speed of computational processes,

• extension to the numerical simulation to compressible flow,

• theoretical analysis of qualitative properties of the developed numerical technique.
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Figure 12: Velocity distribution around the fluttering profile for U∞ = 11 m/s computed by thek − ω model at
several time instants marked in Figure 11 including a detailaround the flap. Part I.39



Figure 13: Velocity distribution around the fluttering profile for U∞ = 11 m/s computed by thek − ω model at
several time instants marked in Figure 11 including a detailaround the flap. Part II.40



Figure 14: Velocity distribution around the fluttering profile for U∞ = 11 m/s computed by thek − ω model at
several time instants marked in Figure 11 including a detailaround the flap.Part III.
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