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hp-DGFEM for nonlinear convection-diffusion problems ✩

Vı́t Dolejšı́1

Abstract

We deal with a numerical solution of nonlinear convection-diffusion problems with the aid of the discontinuous
Galerkin finite element method (DGFEM). We propose a new hp-adaptation technique, which is based on a com-
bination of a residuum-nonconformity estimator and a regularity indicator. The residuum-nonconformity estimator
consists of two building blocks and it marks mesh elements for a refinement. The regularity indicator decides if the
marked elements will be refined by h- or p-technique. The residuum-nonconformity estimator as well as the regularity
indicator are easily computable quantities. Moreover, the same technique estimates an algebraic error arising from an
iterative solution of the corresponding nonlinear algebraic system. The performance of the proposed hp-DGFEM is
demonstrated by five numerical examples.

Keywords: hp-discontinuous Galerkin finite element method, residuum-nonconformity indicator, regularity
estimator, algebraic error
2000 MSC: 65N30, 65N50, 65N22

1. Introduction

Our aim is to develop a sufficiently robust, efficient and accurate numerical scheme for the simulation of viscous
compressible flows. The discontinuous Galerkin (DG) methods have become very popular numerical techniques
for the solution of the compressible Navier-Stokes equations. DG space discretization uses (high order) piecewise
polynomial discontinuous approximation on arbitrary meshes. DG methods were employed in many papers for the
discretization of compressible fluid flow problems, see, e.g., [5, 6, 13, 15, 26–28, 30, 36] and the references cited
therein. Recent progress of the use of the DG method for compressible flow simulations can be found in [38].

In this paper, we solve a scalar nonlinear convection-diffusion equation (which represents a model problem for the
system of the compressible Navier-Stokes equations) with the aid of the DG method. We propose a new hp-adaptive
method which allows the refinement in the element size h as well as in the polynomial degree p. Similarly as the h

version of the finite element methods, a posteriori error estimates can be used to determine which elements should be
refined. However, a single error estimate cannot simultaneously determine whether it is better to do h or p refinement.
Several strategies for making this determination have been proposed over the years, see, e.g., [33] or [24] for a survey.
Based on many theoretical works, e.g., monographs [43, 44] or papers [4, 11, 45] we expect that an error converges at
an exponential rate in the number of degrees of freedom.

There exist many theoretical works deriving a posteriori error estimates based on various approaches for linear
or quasi-linear problems. On the other hand, the amount of papers dealing with a posteriori error estimates for
strongly non-linear problems is significantly smaller. Some overview of a posteriori error estimates can be found
in [46]. An prototypical example for a nonlinear problem is the p-Laplacian operator analysed in several papers.
However, with a few exceptions, e.g., [8], the error upper bounds involve unknown generic constants. In several
works, e.g., [1, 7, 9, 16], a residual flux-based dual norm was used as an error measure. This approach allows to
derive guaranteed bounds on the error, that is, error upper bounds without undetermined constants, and at the same
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time ensure robustness, that is, two-sided error bounds whose ratio is independent of the nonlinearity. A measurement
of the error in a dual norm is a base of our approach presented here.

The aim of this paper is not to derive any guaranteed and robust a posteriori error estimate, but to develop an
hp-algorithm which adaptively generates a “good” hp-mesh (mesh elements with the corresponding degrees of poly-
nomial approximation). On this mesh, we compute a sufficiently accurate approximation of the exact solution with
low computational costs. Although, we do not have a guaranteed error estimate, the presented numerical experiments
show that our estimate gives reasonable information about an error.

The proposed hp-adaptation strategy is based on a combination of a residuum-nonconformity estimator and a
regularity indicator. The residuum-nonconformity estimator gives a lower estimate of the error measure consisting
of the error measured in a dual norm and the quantity measuring a violation of the conformity of the solution. This
estimator is locally defined for each mesh element, it is easily computable and its implementation is very simple. The
regularity indicator is based on the integration of interelement jumps of the approximate solution over the element
boundary. Taking into account results from a priori error analysis (e.g., [14]), we define the regularity indicator. If this
value is smaller than a priori known value (without any undetermined constant) then we apply p-refinement otherwise
we use h-refinement. Both refinements (h and p) are only isotropic, anisotropic adaptation will be a subject of further
research.

The content of the rest of the paper is the following. In Section 2, we present the convection-diffusion problem and
recall its discontinuous Galerkin finite element (DGFE) discretization which leads to a nonlinear algebraic system.
Its solution by an iterative method is described in Section 3. Furthermore, Section 4 introduces the approach of the
residual dual norm as an error measure. Moreover, global, element and algebraic residuum estimators are defined.
The resulting hp-DGFEM is presented in Section 5. A computational verification of the presented method for a scalar
nonlinear convection-diffusion equation is given in Section 6. Finally, several concluding remarks are given in Section
7.

2. Problem description

2.1. Governing equations

We consider the nonlinear convection-diffusion problem

∇ · f (u) − ∇ · (K(u)∇u) = g(x), (1a)

u
∣

∣

∣∂ΩD
= uD, (1b)

K(u)
∂u

∂n

∣

∣

∣∂ΩN
= gN , (1c)

where u : Ω → R is the unknown scalar function defined on Ω ∈ R
d, d = 2, 3, we assume that Ω is polygonal for

simplicity. Moreover, f (u) = ( f1(u), . . . , fd(u)) : R→ R
d and K(u) = {Ki j(u)}d

i, j=1
: R→ R

d×d are nonlinear functions
of their arguments, n is the unit outer normal to ∂Ω and ∅ , ∂ΩD ∪ ∂ΩN = ∂Ω are disjoint parts of the boundary of Ω.
Symbols ∇ and ∇· mean the gradient and divergence operators, respectively.

We assume that fs ∈ C1(R), fs(0) = 0, s = 1, . . . , d, K is bounded and positively definite, g ∈ L2(Ω), uD is the
trace of some u∗ ∈ H1(Ω) ∩ L∞(Ω) on ∂ΩD and gN ∈ L2(∂ΩN). We use the standard notation for function spaces (see,
e. g., [40]): Lp(Ω) denote the Lebesgue spaces and Wk,p(Ω), Hk(Ω) = Wk,2(Ω) are the Sobolev spaces.

In order to introduce a weak solution, we define the spaces

V := {v; v ∈ H1(Ω), v|∂ΩD
= 0}, W := {v; v ∈ H1(Ω), v − u∗ ∈ V}. (2)

Definition 2.1. We say that function u is the weak solution of (1), if the following conditions are satisfied

a) u ∈ W ∩ L∞(Ω), (3a)

b)

∫

Ω

[∇ · f (u) v + (K(u)∇u) · ∇v] dx =

∫

Ω

gv dx +

∫

∂ΩN

u v dS ∀v ∈ V. (3b)

Let us note that the assumption u ∈ L∞(Ω) in (3a) guarantees the boundedness of functions f (u) and K(u) and
therefore the existence of the integrals in (3b). This assumption can be weakened if functions f (u) and K(u) satisfy
some growth conditions.
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2.2. Discretization of the problem

2.2.1. Triangulations

Let Th (h > 0) be a partition of the closure Ω of the domain Ω into a finite number of closed d-dimensional
simplicies K with mutually disjoint interiors. We call Th = {K}K∈Th

a triangulation of Ω and do not require the
conforming properties from the finite element method.

By Fh we denote the set of all open (d − 1)-dimensional faces (open edges when d = 2 or open faces when
d = 3) of all elements K ∈ Th. Further, the symbol F I

h
stands for the set of all Γ ∈ Fh that are contained in Ω (inner

faces). Moreover, we introduce notations F D
h

and F N
h

for the sets of all Γ ∈ Fh such that Γ ⊂ ∂ΩD and Γ ⊂ ∂ΩN ,
respectively. In order to simplify the notation, we put F ID

h
= F I

h
∪ F D

h
and F B

h
= F D

h
∪ F N

h
(superscript B as

boundary). Finally, for each Γ ∈ Fh, we define a unit normal vector nΓ. We assume that for Γ ∈ F B
h

the vector nΓ has
the same orientation as the outer normal of ∂Ω. For nΓ, Γ ∈ F I

h
, the orientation is arbitrary but fixed for each face.

2.2.2. Functional spaces

Over the triangulation Th we define the so-called broken Sobolev space Hs(Ω,Th) := {v; v|K ∈ Hs(K) ∀K ∈ Th},
s ≥ 0 with the seminorm |v|Hs(Ω,Th) :=

(

∑

K∈Th
|v|2

Hs(K)

)1/2
, where | · |Hs(K) denotes the seminorm of the Sobolev space

Hs(K), K ∈ Th.
Moreover, to each K ∈ Th, we assign a positive integer pK (=local polynomial degree). Then we define the set

ph := {pK ,K ∈ Th} and the finite dimensional subspace of H1(Ω,Th) which consists of discontinuous piecewise
polynomial functions associated with the vector ph by

S hp = {v; v ∈ L2(Ω), v|K ∈ PpK (K) ∀K ∈ Th}, (4)

where PpK (K) denotes the space of all polynomials on K of degree ≤ pK , K ∈ Th.
Furthermore, for each Γ ∈ F I

h
there exist two elements K(+),K(−) ∈ Th such that Γ ⊂ K(+) ∩ K(−). We use the

convention that K(−) lies in the direction of nΓ and K(+) in the opposite direction of nΓ. Then for v ∈ S hp, we introduce

the notation: v|(+)
Γ

is the trace of v|K(+) on Γ, v|(−)
Γ

is the trace of v|K(−) on Γ, {{v}}Γ :=
(

v|(+)
Γ
+ v|(−)

Γ

)

/2 denotes the mean

value of v on Γ and [[v]]Γ := v|(+)
Γ
− v|(−)

Γ
denotes the jump of v on Γ. Finally, for Γ ∈ F B

h
, we denote by v|(+)

Γ
the trace

of v|K(+) on Γ, where K(+) ∈ Th such that Γ ⊂ K(+) ∩ ∂Ω, and we put {{v}}Γ = [[v]]Γ := v|(+)
Γ

.

In case that nΓ, [[·]]Γ and {{·}}Γ are arguments of
∫

Γ
. . . dS , Γ ∈ Fh, we omit the subscript Γ and write simply n, [[·]]

and {{·}}, respectively.

2.2.3. DG discretization

We discretize equation (1a) with the aid of the interior penalty Galerkin (IPG) variant of the DGFE method in the
same way as in [18, 39]. For u, v ∈ H2(Ω,Th) we define the forms

ãh(u, v) :=
∑

K∈Th

∫

K

K(u)∇u · ∇v dx −
∑

Γ∈F ID
h

∫

Γ

(

{{K(u)∇u}} · n[[v]] − g{{K(u)∇v}} · n[[u]]
)

dS (5a)

+
∑

Γ∈F ID
h

∫

Γ

σ[[u]] [[v]] dS +
∑

Γ∈Fh

∫

Γ

H(u|(+)
Γ
, u|(−)
Γ
, n) [[v]] dS −

∑

K∈Th

∫

K

f (u) · ∇v dx,

ℓh(u, v) := (g, v) + (gN , v)N +

∫

∂ΩD

(

gK(u)∇v · nuD + σv uD
)

dS , (5b)

where g = −1, 0 and 1 for SIPG, IIPG and NIPG variants of DGFE method, respectively, the penalty parameter σ
is chosen by σ|Γ = εCWh

−1
Γ
, Γ ∈ Fh, where hΓ = diam(Γ), Γ ∈ Fh, ε denotes the amount of diffusivity (≈ K(·))

and CW > 0 is a suitable constant which guarantees the convergence of the method. The function H in (5a) is the
numerical flux, well-known from finite volume methods (see, e.g., [25], Section 3.2), which approximates convective

flux by f (u) · n ≈ H
(

u|(+)
Γ
, u|(−)
Γ
, n

)

on an element face. On ∂ΩD the value u|(−)
Γ

is taken from the boundary conditions

(1b) and on ∂ΩN the value u
(−)
Γ

is extrapolated from the interior of Ω. We shall assume that the numerical flux is
conservative and consistent, i.e., H(u, v, n) = −H(v, u,−n) and H(u, u, n) = f (u) · n, respectively, see [18] for details.

3



Furthermore, we put
c̃h(u, v) := ãh(u, v) − ℓh(u, v), u, v ∈ H2(Ω,Th), (6)

Now, we are ready to define the discrete problem.

Definition 2.2. We say that function uh ∈ S hp is an approximate solution of (3), if

c̃h(uh, vh) = 0 ∀vh ∈ S hp. (7)

Moreover, for the purpose of the error measure introduced in Section 4, we define the form Nh : H1(Ω,Th) → R

by

Nh(v) :=





















2
∑

Γ∈F I
h

∫

Γ

h−1
Γ [[v]]2 dS +

∑

Γ∈FD
h

∫

Γ

h−1
Γ (v − uD)2 dS





















1/2

, (8)

where uD is from (1b) and hΓ = diam(Γ), Γ ∈ Fh. We put the scaling factor 2 in front of the first due to the favorable
property (38). Finally, we characterise the solution of (3).

Lemma 2.3. The following implications are valid:

i) Let u ∈ H2(Ω) be the solution of (3) then

c̃h(u, vh) = 0 ∀vh ∈ H2(Ω,Th), (9a)

Nh(u) = 0. (9b)

ii) If u ∈ H2(Ω,Th) satisfies both conditions of (9) then u is the solution of (3).

Proof. The assertion i) follows immediately from the the consistency of c̃h, the continuity of traces of u on Γ ∈ F I
h

and the fact that u = uD on Γ ∈ F D
h

. In order to prove ii) we observe that (9b) implies u ∈ W. Furthermore, identity
(9a) for u ∈ H2(Ω,Th) ∩W and v ∈ H1(Ω) together with (3a), (5), (6) and the consistency of the numerical flux reads
0 = c̃h(u, v) = ãh(u, v) − ℓh(u, v) ∀v ∈ V which proves that u is the solution of (3). �

3. Solution strategy

The discrete problem (7) represents a system of Nh = dim S hp nonlinear algebraic equations. We solve it with the
aid of a Newton-like iterative method. In our approach, we employ some ideas presented in [15, 19, 21], where the
semi-implicit time discretization method for the solution of compressible flow problems was presented.

3.1. Linearization

In order to employ this approach, we assume that the numerical flux can be written in the form

H (u1, u2, n) := P+(u1, u2, n)u1 + P−(u1, u2, n)u2, (10)

where P+ and P− are suitable functions of their arguments. For example, the numerical fluxes based on the idea of
upwinding can be written in the form (10), see [25].

Moreover, we introduce functions As : R→ R, s = 1, . . . , d such that

fs(u) ≈ As(u)u, u ∈ R, s = 1, . . . , d. (11)

In this paper, we put As(u) := f ′s (u), u ∈ R, s = 1, . . . , d, which leads to the first order approximation of (11).
Finally, for u, v,w ∈ H2(Ω,Th), we define the form

ch(v, u,w) :=
∑

K∈Th

∫

K

K(v)∇u · ∇w dx −
∑

Γ∈F ID
h

∫

Γ

(

{{K(v)∇u}} · n[[w]] − g{{K(v)∇w}} · n[[u]]
)

dS + Jσh (u,w) (12)

+
∑

Γ∈Fh

∫

Γ

(

P+(v|(+)
Γ
, v|(−)
Γ
, n)u|(+)

Γ
+ P−(v|(+)

Γ
, v|(−)
Γ
, n)u|(−)

Γ

)

[[w]] dS −
∑

K∈Th

∫

K

d
∑

s=1

As(v)u
∂w

∂xs
dx.

4



The form ch is nonlinear with respect to its first argument but linear with respect its second and third arguments.
Moreover, due to (5a) – (5b), (10), (11) and (12), we have

ch(u, u, v) − ℓh(u, v) ≈ c̃h(u, v) ∀u, v ∈ H2(Ω,Th). (13)

3.2. Algebraic representation

Let {ϕi(x), i = 1, . . . ,Nh} be a basis of S hp which is constructed as a composition of local bases constructed
separately for each K ∈ Th. See [21], where one possibility is described in details. Thus, each uh ∈ S hp can be
expressed as

uh(x) =

Nh
∑

j=1

u jϕ j(x), Uh := {u j}Nh

j=1
∈ RNh , (14)

where u j ∈ R, j = 1, . . . ,Nh are the basis coefficients. Obviously, (14) defines an isomorphism between uh ∈ S hp and
Uh ∈ RNh . In order to rewrite the discrete problem (7), we define the vector-valued function

Fh : RNh → R
Nh , Fh (Uh) := {c̃h(uh, ϕi)}Nh

i=1
. (15)

Therefore, the discrete problem (7) reads

find Uh ∈ RNh such that Fh(Uh) = 0. (16)

3.3. Iterative method

To determine solution Uh of the system (16), we employ a damped Newton-like method which generates a se-
quence of approximations Un

h, n = 0, 1, . . . to the actual numerical solution Uh using the following algorithm. Given
an iterate Un

h, the update dn of Un
h to get to the next iterate

Un+1
h := Un

h + λ
ndn (17)

is defined by: find dn ∈ RNh such that
Ch(U

n
h)d

n = −Fh(U
n
h), (18)

where Ch is the flux matrix given by

Ch(Uh) :=
{

ch
(

uh, ϕ j, ϕi
)}Nh

i, j=1
.

Obviously, due to the local character of basis functions, matrix Ch has a sparse block structure, see [21]. Moreover,
λn ∈ (0, 1] is a damping parameter which ensures convergence of (17) – (18) in case when the initial guess U0

h is far
from the solution of (16).

Remark 3.1. Let us note that in virtue of (13), we have

Fh(Uh) ≈ Ch(Uh)Uh − qh(Uh) ∀Uh ∈ RNh , (19)

where qh(Uh) ∈ R
Nh corresponds to form ℓh by qh(Uh) = {ℓh(uh, ϕi)}Nh

i=1
. The algorithm (17) – (18) is the standard

damped Newton method (see [12, Chapter 3]) with the approximation of the Jacobian by

DFh(Uh)

DUh

≈ Ch(Uh), (20)

which follows from (19) if we omit derivatives of Ch and qh with respect to their arguments.

Remark 3.2. In practice, it is not necessary to update the flux matrix Ch(U
n
h) at each Newton iteration n = 1, 2, . . . .

Hence, in many cases, we replace (18) by
Ch(U

0
h)d

n = −Fh(U
n
h). (21)

Concerning the choice of the damping parameter, we start from the value λn = 1 and evaluate a monitoring function

θn :=
∥

∥

∥Fh(U
n+1
h )

∥

∥

∥/
∥

∥

∥Fh(U
n
h)

∥

∥

∥. If θn < 1 we proceed to the next Newton iteration. Otherwise, we put λn := λn/2 and

repeat the actual Newton iteration. Analysis of the convergence of this simplified Newton method and the monitoring

function can be found in [12].
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The iterative process (17) – (18) is terminated if a suitable algebraic stopping criterion is achieved. In Section
4.3, we present an algebraic stopping criterion following from the framework of residuum estimators. Let Ũh := Un

h

denote the output of the iterative process (17) – (18), i.e., an approximation of Uh satisfying the stopping criterion.
We denote by ũh ∈ S hp the function corresponding to Ũh by isomorphism (14). In general, ũh does not satisfy the
discrete problem (7) (c̃h(ũh, vh) , 0, vh ∈ S hp), since it suffers from a (nonlinear) algebraic error.

Remark 3.3. The linear algebraic system (18) is solved iteratively with the aid of GMRES method with a block ILU(0)

preconditioning, see [21].

4. Residuum estimator

In this section we investigate the discretization error u−uh and the algebraic error ũh−uh in a suitable (dual) norm
and define estimators giving some information about these errors. Based on them we define the stopping criterion for
the iterative process (17) – (18) and particularly, in Section 5, we propose the hp-adaptation strategy.

4.1. Error measure

Similarly as in [16], our proposed error measure consists of two building blocks, which are motivated by Lemma
2.3, namely relations (9a) and (9b). First, we proceed to a functional representation of the DG method. Let X be a
linear function space such that u ∈ X and uh ∈ X. It is equipped with a norm ‖·‖X . (The space X does not need to be
complete with respect to ‖·‖X .) In our case, X := H2(Ω,Th), the norm ‖·‖X will be specified later. Let X′ denote the
dual space to X. Moreover, let Ah : X → X′ be the nonlinear operator corresponding to c̃h by

〈Ahu, v〉 := c̃h(u, v), u, v ∈ X, (22)

where 〈·, ·〉 denotes the duality between X′ and X. We define the dual norm by

‖Ahu‖X′ := sup
0,v∈X

〈Ahu, v〉
‖v‖X

. (23)

In order to present the first building block we observe that if u ∈ H2(Ω) ⊂ X is the solution of (3) then due to (9a)
and (22), we have Ahu = 0. Then, the value

Rh(uh) := ‖Ahuh − Ahu‖X′ = ‖Ahuh‖X′ = sup
0,v∈X

〈Ahuh, v〉
‖v‖X

= sup
0,v∈X

c̃h(uh, v)

‖v‖X
(24)

defines the residuum error in the dual norm of the approximate solution uh ∈ S hp ⊂ X and it measures a violation
of (9a). The right-hand side of (24) depends only on uh and not on u. However, its is impossible to evaluate Rh(uh),
since the supremum is taken over an infinite-dimensional space. Therefore, in our approach, we seek the maximum
over some sufficiently large but finite dimension subspace of X, which is presented in 4.2.

The second building block is based on (9b), which characterizes a violation of the conformity of the weak solution
and a violation of the Dirichlet boundary condition. It is represented by the value Nh(uh) ≥ 0 given by (8) which we
call the nonconformity of the approximate solution. In contrast to Rh(uh) the quantity Nh(uh) is directly computable
from (8). Finally, our error measure is the sum of squares of the residuum error and nonconformity, i.e.,

Eh(uh) := (Rh(uh)2 +Nh(uh)
2)1/2. (25)

Corollary 1. Due to Lemma 2.3 we simply observe that Eh(uh) = 0 if and only if uh = u.

Remark 4.1. Corollary 1 is essential for the definition of the error measure in the adaptive algorithm. The same

property would be valid if the nonconformity is defined by

Nh(v) :=





















2
∑

Γ∈F I
h

∫

Γ

hαΓ[[v]]
2 dS +

∑

Γ∈FD
h

∫

Γ

hαΓ(v − uD)2 dS





















1/2

, α ∈ R.

However, the choice of α := −1 in (8) gives the order of convergenceNh(uh) = O(hp) if the exact solution is sufficiently
regular. The same order of convergence was obtained experimentally for ‖u − uh‖X and ρh(uh) given by (29) (which
approximates Rh(uh)), see Section 6.
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4.2. Global and element residuum estimators

In the previous section, we introduced the error measure Eh(uh) =
√

Rh(uh)2 +Nh(uh)2 of the approximate solution
uh ∈ S hp ⊂ X. WhereasNh(uh) is easy to evaluate, the quantity Rh(uh) has to be approximated in a suitable way, which
is presented in this section. For each K ∈ Th and each integer p ≥ 0, we define the space

S
p

K
:= {φh ∈ X, φh|K ∈ Pp(K), φh|Ω\K = 0}. (26)

Obviously, S
p

K
⊂ S

p+1
K
⊂ S

p+2
K
⊂ . . . , K ∈ Th. Moreover, we put

S +hp := {φ ∈ X; φ =
∑

K∈Th

cKφK , cK ∈ R, φK ∈ S pK+1
K

, K ∈ Th}. (27)

Finally, we observe that S hp ⊂ S +
hp

.
Now, we define the element residuum estimator

ρh,K(uh) := sup
0,ψh∈S

pK+1

K

c̃h(uh, ψh)

‖ψh‖X
= sup

ψh∈S
pK+1

K
,‖ψh‖X=1

c̃h(uh, ψh), uh ∈ X, (28)

for each K ∈ Th and the global residuum estimator

ρh(uh) := sup
0,ψh∈S +hp

c̃h(uh, ψh)

‖ψh‖X
= sup

ψh∈S +hp
,‖ψh‖X=1

c̃h(uh, ψh), uh ∈ X, (29)

which are easily computable quantities if ‖·‖X is suitably chosen, see Section 4.4.
Obviously, if u ∈ X is the exact solution of (3) then consistency (9a) implies 0 = ρh(u) = ρh,K(u), K ∈ Th.

Moreover, we have immediately a lower bound

ρh(uh) ≤ Rh(uh) = ‖Auh − Au‖X′ , (30)

since ρh is the supremum over subspace S +
hp
⊂ X. However, it is open if there exists an upper bound, i.e., Rh(uh) ≤

Cρh(uh), where C > 0. This will be the subject of further research.

Remark 4.2. It would be possible to define space S +
hp

in a different way, e.g., to enrich it be polynomials of even

higher degree or introduce some interelement splitting of elements K ∈ Th. However, any further enrichment of S
+
hp

requires additional computational time and the numerical experiments presented at the end of this paper shows that

the presented choice of S +
hp

is sufficient.

Remark 4.3. Obviously, it is possible to define estimators ρh,K(uh) and ρh(uh) directly by (28) and (29) without the
definition of the residuum error in the dual norm by (24). However, the introducing of the dual norm by (24) gives link
to other works, e.g., [1, 7, 9, 16].

4.3. Algebraic residuum estimators

Similarly as in the previous section, we define the estimator corresponding to the algebraic error residuum. Let
ũh ∈ S hp be an approximation of uh corresponding to Ũh := Un

h ∈ R
Nh (= the output of the iterative process (17) –

(18)) by (14).
We define the algebraic residuum estimator

ρAh (ũh) := sup
0,ψh∈S hp

c̃h(ũh, ψh)

‖ψh‖X
= sup

ψh∈S hp,‖ψh‖X=1

c̃h(ũh, ψh) = sup
ψh∈S hp,‖ψh‖X=1

(c̃h(ũh, ψh) − c̃h(uh, ψh)), (31)

which measures the algebraic error (the difference between ũh and uh). The last inequality in (31) follows from (7).
Obviously, if process (17) – (18) converges then ρA

h
(ũh) → 0 for n → ∞. Moreover, relations (29) and (31) give

ρA
h
(ũh) ≤ ρh(ũh), since in (29) the supremum is taken over the larger space.
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Our interest is to find solution ũh such that ρh(ũh) ≤ ω, where ω > 0 is a given tolerance. It is clear (cf. [35]) that
it makes no sense to carry out too many Newton iterations in (17) – (18) in order to decrease ρA

h
(ũh) to, e.g., machine

precision. It is reasonable to stop the iterative process (17) – (18) if

ρAh (ũh) ≤ βρh(ũh), (32)

where β ∈ (0, 1). Numerical experiments presented in Section 6 show that the choice β ≈ 0.01 gives very satisfactory
results in the sense that the approximation ũh is not influenced by an algebraic error and the nonlinear problem (16) is
not oversolved.

4.4. Choice of the norm ‖·‖X
In order to ensure a fast evaluation of estimators ρh and ρA

h
, we need to choose the norm ‖·‖X in a suitable way. Let

us present the following lemma.

Lemma 4.4. Let ((·, ·))X : X × X → R be a scalar product generating the norm ‖·‖X . Let ((·, ·))X satisfy the element-
orthogonality condition

((ψh, ψ
′
h))X = 0 ∀ψh ∈ S p

K
∀ψ′h ∈ S

p

K′ , K , K′ ∀p ≥ 0. (33)

Then

ρh(uh)
2 =

∑

K∈Th

ρh,K(uh)
2, (34)

Proof. See Appendix A. �

In order to fulfil the favorable property (34), it is not possible to put

((u, v))X :=
∑

K∈Th

∫

K

∇u · ∇v dx +
∑

Γ∈F ID
h

1

hΓ

∫

Γ

[[u]][[v]] dS , u, v ∈ X,

which would be natural in virtue of numerical analysis presented, e.g., in [2, 14, 18]. Based on numerical experiments,
we employ the scalar product

((u, v))X := δ(u, v)L2(Ω) + ε
∑

K∈Th

(∇u,∇v)L2(K), u, v ∈ X, (35)

where δ and ε are constants reflecting a size of “convection” and “diffusion”, for the case of the scalar equation (1a)
we put δ ≈ | f (·)| and ε ≈ |K(·)|. This scalar product satisfies (33) and the corresponding norm

‖ · ‖X :=
(

δ‖ · ‖2
L2(Ω)
+ ε| · |2

H1(Ω,Th)

)1/2
, (36)

is very often used in numerical analysis of singularly perturbed problems with δ = 1, see [42].
Therefore, it rests to evaluate the element residuum estimators ρh,K , K ∈ Th. This is a standard task of seeking a

constrain extrema over S
pK+1
K

with the constraint ‖ψh‖X = 1. This can be done directly very fast since the dimension

of S
pK+1
K

, K ∈ Th is small, namely dim(S
pK+1
K

) = (pk + 2)(pK + 3)/2 for dimension d = 2. See Appendix B, where
the evaluations of ρh,K , K ∈ Th is described in details.

4.5. Residuum-nonconformity estimators

We have already mentioned that the second building block of the error measure is given by nonconformityNh(uh)
defined by (8). For the purpose of mesh adaptation, we define its local variant

Nh,K(v) :=





















∑

Γ∈F I
h
∩∂K

∫

Γ

h−1
Γ [[v]]2 dS +

∑

Γ∈FD
h
∩∂K

∫

Γ

h−1
Γ (v − uD)2 dS





















1/2

, v ∈ H1(Ω,Th). (37)
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Obviously, from (8) and (37), we have

Nh(v)
2 =

∑

K∈Th

Nh,K(v)2. (38)

Finally, we define the local and global residuum-nonconformity estimators of the approximate solution uh ∈ S hp by

ηh,K(uh) :=
(

ρh,K(uh)
2 +Nh,K(uh)

2
)1/2

, K ∈ Th, (39a)

and ηh(uh) :=
(

ρh(uh)
2 +Nh(uh)

2
)1/2
=

















∑

K∈Th

ηh,K(uh)
2

















1/2

, (39b)

respectively. In virtue of (25), (30) and (39), we expect that the global residuum-nonconformity estimator ηh(uh)
approximates the error measure Eh(uh). In the following we introduce an adaptation technique which produces a
hp-mesh and the corresponding approximate solution such that the estimator ηh(uh) is under a given tolerance.

4.6. Computational costs of the residuum-nonconformity estimator

Before we proceed to the definition of the hp-adaptation process, we discuss the computational costs of the
residuum-nonconformity estimator. The evaluation of Nh(uh) is quite direct and it is negligible in comparison with,
e.g., one Newton step in (17) – (18).

The evaluation of ρh(uh) is described in Appendix B. Its most expensive part is the evaluation of c̃h(uh, ψi) for
each basis function ψi of S +

hp
. Let us remind that the setting of one vector Fh(Uh) in the Newton-like process (17) –

(18) requires evaluation of c̃h(uh, ψi) for each basis function ψi of S hp.
Since we use hierarchical basis functions, we evaluate c̃h(uh, ψi) only for ψi ∈ S +hp

\ S hp in addition. For simplicity
let pK = p ∀K ∈ Th, then we obtain

dim(S +hp) =
p + 3

p + 1
dim(S hp).

Therefore, evaluation of ρh(uh) requires (p + 3)/(p + 1) − 1 relatively more computational costs than evaluating
Fh(Uh). In the worst case scenario (p = 1) this factor is equal to one, for increasing p it tends to zero. Furthermore, an
evaluation of Fh(Uh) is obviously significantly cheaper than an evaluation of the flux matrix Ch(Uh) from (18). Thus
we estimate (based on our numerical experiences) that evaluation of the proposed residuum-nonconformity estimator
requires between 1% – 10% of additional computational time.

5. hp-adaptation process

In this section, we present a new hp-adaptive DG technique for the solution of (7). In Section 4, we defined the
element and global residuum-nonconformity estimators ηh,K and ηh, respectively. We employ the norm ‖·‖X given
by (36) which guarantees that equality (34) is valid. Let Th be a given mesh and ũh the corresponding approximate
solution of (7) outgoing from the iterative method (17) – (18) with (32). As already mentioned, our interest is to find
ũh ∈ S hp such that

ηh(ũh) ≤ ω, (40)

where ω > 0 is a given tolerance. Therefore, we employ the condition

ηh,K(ũh) ≤
ω
√

#Th

∀K ∈ Th, (41)

where #Th denotes the number of elements of Th. Obviously, if (41) is satisfied then, due to (39b), condition (40) is
valid and the adaptation process stops. Otherwise, we mark for refinement all K ∈ Th violating (41).

Furthermore, all marked elements will be refined either by h- or by p-adaptation, namely, either we split a given
mother element K into four daughter elements or we increase the degree of polynomial approximation for a given
element. Thus a new mesh Tĥ and a new set {p̂K ,K ∈ Tĥ} are created. We interpolate the old solution on a new mesh
and perform the next adaptation step till (40) is valid.
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5.1. Regularity indicator

The estimation of the regularity of the solution is an essential key of any hp-adaptation strategy. Our approach is
based on a measure of inter-element jumps which is the base of the jump indicator from [20] and the shock capturing
technique from [26]. See also [37] where the measure of the inter-element jumps is used for the shock detection and
limiting with DGM for hyperbolic problems. Numerical analysis [14] carried out for the scalar convection-diffusion
equation gives

∑

K∈Th

∫

∂K

[[uh − u]]2 dS =
∑

K∈Th

∫

∂K

[[uh]]
2 dS ≤ C

∑

K∈Th

h
2µK−1
K
|u|2HµK (K), (42)

where u and uh are the exact and the approximate solutions, respectively, C > 0 is a constant independent of h and
µK = min(pK + 1, sK). Moreover, pK is the degree of the polynomial approximation and sK is the integer degree of
local regularity of u, i.e., u|K ∈ HsK (K), K ∈ Th. The a priori error estimates (42) imply that if the exact solution is
sufficiently regular then p-adaptation (increasing of the degree of approximation) yields to a higher decrease of the
error. Otherwise, h-adaptation (element splitting) is more efficient.

Furthermore, the numerical experiments indicate that

∫

∂K

[[uh − u]]2 dS =

∫

∂K

[[uh]]
2 dS ≈ Ch

2µK−1
K
|u|2HµK (K), K ∈ Th. (43)

Based on relation (43), we propose the regularity indicator

gK(uh) :=

∫

∂K∩Ω[[uh]]
2 dS

|K|h2pK−3
K

, K ∈ Th, (44)

where |K| is the area of K ∈ Th. If sK ≥ pK + 1, then

gK(uh) ≈ O















h
2pK+1
K

h2
K
h

2pK−3
K















= O(h2
K). (45)

On the other hand, if sK < pK + 1, then

gK(uh) ≈ O















h2sK−1
K

h2
K
h

2pK−3
K















= O(h2δK
K

), (46)

where δK = sK − pK < 1. Therefore, from (45) and (46) we have

gK(uh) ≈ O(hmin(2, 2δK )
K

). (47)

We already mentioned that if the exact solution is sufficiently regular then p-adaptation is more efficient. However,
there is the following question: If the exact solution u ∈ HsK (K) for K ∈ Th which degree of polynomial approximation

p̄K is the optimal one? By optimal value we mean that the degrease of the computational error is the highest possible
for the given increase of the number of the degrees of freedom.

From (42) and (43), we can expect that the optimal degree of polynomial approximation satisfies pK + 1 ≈ sK
and therefore p̄K := ⌊sK − 1⌋ + 1 where symbol ⌊a⌋ denotes the integer part of a ∈ R. However, it is not clear if this
value p̄K is the correct one and moreover, if any optimal value even exists. Nevertheless, based on our computational
experiences, we formulate the following:

Proposition 5.1. Let K ∈ Th and the exact solution satisfies u ∈ HsK (K). Then the optimal value of the degree of

polynomial approximation on K is given by p̄K := ⌊sK + 1⌋ + 1.

In Section 6, we present several numerical experiments which (at least weakly) support the choice of p̄K from
Proposition 5.1.
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Remark 5.2. Let us note that Proposition 5.1 is in agreement with other results. E.g., in [11, Example 5], the exact

solution satisfies u ∈ H1(Ω) \ H2(Ω) and has a singularity in the origin. There, the (adaptively chosen) degree of

polynomial approximation around the origin was equal to 3. On the other hand, similar example was treated in [24],

there degree of polynomial approximation around the singularity was equal to 4.

Now, we are ready to finish the proposal of our hp-adaptation strategy. Let the optimal value of polynomial
approximation p̄K is given by Proposition 5.1. Then for the optimal value δ̄K := (sK − p̄K) we obtain the condition
2δK = 2(sK − p̄K) ∈ (−4, −2].

Therefore, we use the following strategy. Let K ∈ Th, pK be the degree of polynomial approximation and let
gK(uh) be given by (44). Then (in virtue of (47)), we use the following hp-refinement strategy.

gK(uh) ≤ h−2
K ⇒ pK is smaller than p̄K ⇒ p-refinement,

h−2
K < gK(uh) ≤ h−4

K ⇒ pK corresponds to p̄K ⇒ h-refinement,
h−4
K < gK(uh) ⇒ pK is larger than p̄K ⇒ h-refinement & p-coarsening.

(48)

5.2. h- and p-adaptation operations

In this paper we introduce several adaptation operations which are supported by our 2D code.

• h-refinement: we split a given mother element K into four daughter elements by connecting centers of its edges.
Then hanging nodes could appear in the neighboring elements.

• p-refinement: we increase the degree of polynomial approximation for a given element K, i.e., we put pK :=
pK + 1.

• h-coarsening: we reconstruct a mother element K from four daughter elements, which have arisen in a previous
adaptation level.

• p-coarsening: we decrease the degree of polynomial approximation for a given element K, i.e., we put pK :=
pK − 1.

• hp-substitution: if four daughter element are not marked for an additional refinement or coarsening and for each
of them gK(ũh) ≤ h−3

K
, we reconstruct the mother element K and increase a degree of polynomial approximation

on K simultaneously.

The h- and p- coarsening are performed if the value of the corresponding element residuum estimator ηh,K is sig-
nificantly smaller than the tolerance, in practice, if ηh,K(ũh) ≤ 10−2ω(#Th)

−1/2. The hp-substitution leads to a decrease
of Nh and thus it exhibits an efficient tool in situation when some singularity is localized after several adaptation steps.

5.3. hp-DGFE algorithm

The whole adaptation process can be schematically written in the following form.

1. let ω > 0 be a given tolerance,

2. let Th be a given mesh and S hp the finite element space,

3. by the iterative method (17) – (18) with the aid of the stopping criterion (32), we obtain ũh,

4. we evaluate ηh,K(ũh), K ∈ Th using (39a), ηh(ũh) using (39b) and gK(ũh), K ∈ Th using (47),

5. if ηh(ũh) ≤ ω then we stop the computation

6. for each K ∈ Th, we put ηmax := ω(#Th)
−1/2 and ηmin := 10−2ηmax

if ηh,K(ũh) > ηmax then

(a) if gK(ũh) ≤ h−2
K then we apply the p-refinement on K,

(b) if h−2
K < gK(ũh) ≤ h−4

K then we apply the h-refinement on K,
(c) if h−4

K < gK(ũh) then we apply the h-refinement and p-coarsening on K,

if ηh,K′(ũh) < ηmin for all daughter elements of the mother element K then

(a) we apply h-coarsening, i.e., we reconstruct the mother element K,
(b) if h−4

K′ < gK′ (ũh) then we apply p-coarsening on the mother element K′,

if ηmin ≤ ηh,K′(ũh) ≤ ηmax for all daughter elements of the mother element K then

(a) if gK(ũh) ≤ h−3
K

then we apply hp-substitution

7. we construct new mesh Th and the space S hp, go to step 3.
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6. Numerical experiments

In the previous sections, we introduced and developed the adaptive hp-DGFE method. Although its theoretical
justification is open, we demonstrate its performance in this section by several numerical examples. Let ũh be the
approximate solution resulting from iterative method (17) – (18), i.e., the solution influenced by the algebraic error.

Our goal is to document the following aspects of the hp-DGFE method:

(A0) verification of Proposition 5.1,

(A1) the same order of convergence of the estimators ηh(ũh), ρh(ũh) andNh(ũh) with respect to h and its relation with
the computational error ‖u − ũh‖X , (note that ηh(ũh)

2 = ρh(ũh)
2 +Nh(ũh)

2),

(A2) the efficiency, accuracy and robustness with respect to the nonlinear convection and diffusion of the hp-adaptive
algorithm from Section 5.3,

(A3) the performance of the stopping criterion (32) in the iterative process (17) – (18).

By the efficiency we mean that the hp-adaptation method gives the exponential order of convergence of the computa-
tional error with respect to the number of degrees of freedom. By the accuracy we mean that the computational error
converges with the same order as the residuum error estimates.

The aspects (A0) – (A3) are demonstrated by the following numerical examples:

(E0) Poisson problem with a corner singularity,

(E1) linear convection-diffusion equation with weak boundary layers from [10], [22],

(E2) nonlinear convection-diffusion equation with a corner singularity from [34],

(E3) quasi-linear elliptic problem with a regular analytical solution from [32], see also [31], [41],

(E4) quasi-linear elliptic problem with a corner singularity from [32], see also [47],

(E5) linear convection-diffusion equation with the strong exponential boundary layer.

For these cases, we know the exact solution and therefore we are able to evaluate the computational error. Let us
note that the computational error is evaluated with the aid of a numerical quadrature, namely the Dunavant rules for
triangles [23], which has the optimal order for the given number of integration nodes.

We carried out two types of computations for examples (E1) – (E5):

(C1) computations on uniform triangular grids with mesh step hl = h0/2
l, l = 1, 2, 3, (h0 is given) with Pp, p =

1, . . . , 5 polynomial approximation. We evaluate the computational error ‖u − ũh‖X given by (36), the noncon-
formity Nh(ũh) given by (8) and the error residuum estimator ρh(ũh) given by (29). Moreover, we present the
corresponding experimental orders of convergence (EOC) with respect to h defined by

EOC =
log ehl+1

− log ehl
log hl+1 − log hl

, l = 0, 1, 2, . . . , (49)

where eh denotes either ‖u − ũh‖X or Nh(ũh) or ρh(ũh).

(C2) hp-adaptive algorithm from Section 5.3 starting on mesh with step h0 and P1 polynomial approximation. We
evaluate again ‖u − ũh‖X ,Nh(ũh) and ρh(ũh) with the corresponding experimental orders of convergence (EOC)
with respect to the number of degrees of freedom Nh defined by

EOC =
log ehl+1

− log ehl

log(1/
√

Nhl+1
) − log(1/

√

Nhl )
, l = 1, 2, . . . , (50)
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Figure 1: Example (E0): the grid with the corresponding degrees of polynomial approximation obtain by hp-refinement (53) after 8 adaptation
cycles with p∗ = 2, the whole domain (left) and its detail (right).

Moreover, for both computations (C1) – (C2) we evaluate the “effectivity indexes”

i
ρ

eff
:=

ρh(ũh)

‖u − ũh‖X
, i

η

eff
:=

ηh(ũh)
(

‖u − ũh‖X2 +Nh(ũh)2
)1/2
=

(

ρh(ũh)
2 +Nh(ũh)

2
)1/2

(

‖u − ũh‖X2 +Nh(ũh)2
)1/2

. (51)

Let us note that indexes i
ρ

eff
and i

η

eff
are not standard effectivity indexes since ρh(ũh) is the approximation of Rh(ũh) and

not of ‖u − ũh‖X . The computations (C1) and (C2) demonstrate aspects (A1) and (A2), respectively. The aspect (A3)
is demonstrated for the examples (E2), (E3) and (E4). Finally, for examples (E3) and (E4), we compare the presented
hp-method with the results from [32] and [31].

6.1. (E0): Poisson problem with a corner singularity

This example serves only for the demonstration of Proposition 5.1. We consider the simple Poisson problem
−∆u = f with Dirichlet boundary conditions on unit square (0, 1)2, where the exact solution is

u(x1, x2) = (x2
1 + x2

2)α/2, α ∈ R. (52)

It is possible to show (see [3]) that u ∈ Hκ(Ω), κ ∈ (0, 1 + α), where Hκ(Ω) denotes the Sobolev-Slobodetskii space
of functions with ”non-integer derivatives”. Therefore, the exact solution has the singularity at the origin V0 := [0, 0]
and it is regular in the rest of the computational domain. We directly employ this a priori knowledge of the regularity
of the exact solution and test the following hp-adaptation procedure.

We start the computation on a very coarse grid (8 elements arising by the splitting the unit square on four uniform
squares and each of them is split on two triangles) with P1 approximation on each triangle. Moreover, let p∗ ≥ 1 be
given. Then in the algorithm from Section 5.3, we skip steps 4. and 5., and the step 6. is replaced by the following
hp-refinement:

if (V0 is a vertex of K) and (pK > p∗) then h-refinement on K,

else p-refinement on K,
K ∈ Th. (53)

Figure 1 shows an example of the hp-mesh arising from the hp-adaptation (53) for p∗ = 2. We carried out a set of
numerical experiments for α ∈ {0.499, 0.999, 1.499, 1.999, 2.499, 2.999} in (52) with values p∗ ∈ {1, 2, 3, 4, 5, 6}
in (53). Figure 2 shows the convergence of the error in the H1-seminorm with respect to the number of degrees of
freedom.

We observe that these results do not give a unique answer which degree of polynomial approximation is the best
one for the approximation of the solution with a known regularity. For each tested value α, there exist several values
p∗ giving almost the identical decrease of the error, the differences are negligible. However, we can conclude that the
value p̄K from Proposition 5.1 belongs among the “good” values p∗ for each case.
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α = 0.499 ⇒ u ∈ H3/2−ǫ(Ω), p̄K = 3 α = 0.999 ⇒ u ∈ H2−ǫ(Ω), p̄K = 3
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Figure 2: Example (E0), exact solution (52) with α ∈ {0.499, 0.999, 1.499, 1.999, 2.499, 2.999}: convergence of the error in the H1-seminorm
with respect to the number of degrees of freedom for different value of p∗ in hp-refinement (53), the whole figure and its detail for each case. For
each α, the corresponding regularity of the exact solution (ǫ > 0.001) and the corresponding value of p̄K from Proposition 5.1 is marked.
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(C1) uniform grids
lev #Th Nh ‖u − ũh‖X EOC Nh(ũh) EOC ρh(ũh) EOC i

ρ

eff
i
η

eff
CPU(s)

1 128 384 3.93E-01 – 1.12E+00 – 1.04E+00 – 2.65 1.29 0.4
1 512 1536 4.44E-01 -0.18 9.59E-01 0.23 8.51E-01 0.29 1.92 1.21 1.0
1 2048 6144 3.62E-01 0.29 6.21E-01 0.63 5.47E-01 0.64 1.51 1.15 3.0
1 8192 24576 2.24E-01 0.69 3.28E-01 0.92 3.01E-01 0.86 1.34 1.12 11.9

2 128 768 3.91E-01 – 8.44E-01 – 6.09E-01 – 1.56 1.12 0.5
2 512 3072 2.59E-01 0.60 5.49E-01 0.62 3.78E-01 0.69 1.46 1.10 1.1
2 2048 12288 1.24E-01 1.06 2.47E-01 1.15 1.66E-01 1.18 1.34 1.08 3.6
2 8192 49152 4.20E-02 1.56 8.21E-02 1.59 5.39E-02 1.63 1.28 1.07 18.8

3 128 1280 2.52E-01 – 5.66E-01 – 3.41E-01 – 1.35 1.07 0.7
3 512 5120 1.12E-01 1.17 2.49E-01 1.19 1.43E-01 1.25 1.28 1.05 1.7
3 2048 20480 3.10E-02 1.85 6.61E-02 1.91 3.77E-02 1.93 1.22 1.04 8.0
3 8192 81920 5.64E-03 2.46 1.14E-02 2.54 6.65E-03 2.50 1.18 1.04 31.2

4 128 1920 1.44E-01 – 3.30E-01 – 1.73E-01 – 1.20 1.03 0.8
4 512 7680 4.07E-02 1.82 9.26E-02 1.83 4.64E-02 1.90 1.14 1.02 2.3
4 2048 30720 6.86E-03 2.57 1.48E-02 2.65 7.31E-03 2.67 1.07 1.01 11.1
4 8192 122880 6.97E-04 3.30 1.45E-03 3.35 7.15E-04 3.35 1.03 1.00 44.1

5 128 2688 7.30E-02 – 1.69E-01 – 7.83E-02 – 1.07 1.01 1.1
5 512 10752 1.40E-02 2.38 3.13E-02 2.43 1.39E-02 2.50 0.99 1.00 3.8
5 2048 43008 1.53E-03 3.20 3.18E-03 3.30 1.40E-03 3.30 0.92 0.99 19.2
5 8192 172032 8.63E-05 4.14 1.74E-04 4.20 7.73E-05 4.18 0.90 0.98 93.0

(C2) hp-adaptation
lev #Th Nh ‖u − ũh‖X EOC Nh(ũh) EOC ρh(ũh) EOC i

ρ

eff
i
η

eff
CPU(s)

0 128 384 3.93E-01 – 1.12E+00 – 1.04E+00 – 2.65 1.29 0.3
1 128 768 3.91E-01 0.01 8.45E-01 0.82 6.09E-01 1.55 1.56 1.12 0.4
2 128 1248 2.52E-01 1.82 5.67E-01 1.65 3.41E-01 2.40 1.35 1.07 0.7
3 158 1968 1.21E-01 3.23 2.82E-01 3.06 1.63E-01 3.25 1.35 1.06 1.1
4 236 3450 3.72E-02 4.18 8.55E-02 4.26 4.83E-02 4.32 1.30 1.05 1.8
5 380 6322 6.93E-03 5.55 1.50E-02 5.75 7.41E-03 6.19 1.07 1.01 3.6
6 554 10492 7.86E-04 8.60 1.66E-03 8.67 8.40E-04 8.60 1.07 1.01 6.9
7 776 17270 5.73E-05 10.51 1.14E-04 10.76 5.62E-05 10.85 0.98 1.00 12.6
8 938 22438 2.07E-05 7.79 4.28E-05 7.47 2.20E-05 7.15 1.07 1.01 20.2

Table 1: Example (E1) given by (54) – (55) with ε = 10−2: error ‖u − ũh‖X , nonconformity Nh(ũh), residuum error estimate ρh(ũh) with the
corresponding EOC, indexes i

ρ

eff
, i
η

eff
and the computational time in seconds.

6.2. (E1): Linear convection-diffusion equation with weak boundary layers

We consider the scalar linear convection-diffusion equation (similarly as in [10], [22])

−ε△u − ∂u

∂x1
− ∂u

∂x2
= g in Ω := (0, 1)2, (54)

where ε > 0 is a constant diffusion coefficient. We prescribe a Dirichlet boundary condition on ∂Ω and the source
term g such that the exact solution has the form

u(x1, x2) =
(

c1 + c2(1 − x1) + e−x1/ε
) (

c1 + c2(1 − x2) + e−x2/ε
)

(55)

with c1 = −e−1/ε, c2 = −1 − c1. The solution contains two boundary layers along x1 = 0 and x2 = 0, whose width is
proportional to ε. Here we consider ε = 10−2 and ε = 10−3.

Tables 1 and 2 show the results of computations (C1) and (C2) for problem (54) – (55) with ε = 10−2 and ε = 10−3,
respectively, namely the values of the error ‖u − ũh‖X , nonconformityNh(ũh), residuum error estimate ρh(ũh) with the
corresponding EOC, indexes i

ρ

eff
, i
η

eff
and the computational times in seconds. We observe from the computations (C1)

that all quantities ‖u − ũh‖X , Nh(ũh) and ρh(ũh) converge at the similar order of convergence with respect to h. This
order is far from the optimal ones (O(hp)) due to a not sufficiently accurate capturing of the boundary layers on coarse
grids (relatively to the boundary layer thickness). The optimal values are seen for examples (E2) and (E3). These
results demonstrate the aspect (A1).
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(C1) uniform grids
lev #Th Nh ‖u − ũh‖X EOC Nh(ũh) EOC ρh(ũh) EOC i

ρ

eff
i
η

eff
CPU(s)

1 128 384 2.62E-02 – 2.04E+00 – 6.47E-01 – 24.64 1.05 0.5
1 512 1536 5.14E-02 -0.97 2.65E+00 -0.38 8.78E-01 -0.44 17.07 1.05 0.8
1 2048 6144 1.72E-01 -1.74 3.27E+00 -0.30 1.03E+00 -0.23 6.00 1.05 2.4
1 8192 24576 3.47E-01 -1.01 3.66E+00 -0.16 1.09E+00 -0.07 3.13 1.04 9.1

2 128 768 5.15E-01 – 2.02E+00 – 5.28E-01 – 1.02 1.00 0.5
2 512 3072 6.03E-01 -0.23 2.58E+00 -0.35 6.66E-01 -0.34 1.10 1.01 1.2
2 2048 12288 5.39E-01 0.16 3.02E+00 -0.23 7.35E-01 -0.14 1.36 1.01 3.9
2 8192 49152 4.32E-01 0.32 2.97E+00 0.03 6.77E-01 0.12 1.57 1.01 14.7

3 128 1280 9.36E-02 – 2.01E+00 – 4.41E-01 – 4.71 1.02 0.7
3 512 5120 2.91E-01 -1.64 2.50E+00 -0.32 5.38E-01 -0.29 1.85 1.02 1.9
3 2048 20480 3.89E-01 -0.42 2.71E+00 -0.12 5.49E-01 -0.03 1.41 1.01 6.5
3 8192 81920 3.04E-01 0.36 2.19E+00 0.31 4.19E-01 0.39 1.38 1.01 25.1

4 128 1920 5.60E-01 – 1.98E+00 – 3.85E-01 – 0.69 0.98 0.9
4 512 7680 4.85E-01 0.21 2.39E+00 -0.27 4.48E-01 -0.22 0.92 1.00 2.5
4 2048 30720 3.69E-01 0.39 2.32E+00 0.04 4.10E-01 0.13 1.11 1.00 9.1
4 8192 122880 1.96E-01 0.91 1.44E+00 0.69 2.42E-01 0.76 1.23 1.00 35.1

5 128 2688 3.43E-01 – 1.95E+00 – 3.38E-01 – 0.99 1.00 1.2
5 512 10752 4.07E-01 -0.25 2.24E+00 -0.20 3.76E-01 -0.15 0.92 1.00 4.0
5 2048 43008 2.88E-01 0.50 1.88E+00 0.26 2.98E-01 0.34 1.03 1.00 15.3
5 8192 172032 1.12E-01 1.37 8.31E-01 1.18 1.26E-01 1.24 1.13 1.00 71.9

(C2) hp-adaptation
lev #Th Nh ‖u − ũh‖X EOC Nh(ũh) EOC ρh(ũh) EOC i

ρ

eff
i
η

eff
CPU(s)

0 128 384 2.62E-02 – 2.04E+00 – 6.47E-01 – 24.64 1.05 0.3
1 128 768 5.15E-01 -8.59 2.02E+00 0.02 5.28E-01 0.59 1.02 1.00 0.5
2 146 1076 5.27E-01 -0.13 2.46E+00 -1.15 6.20E-01 -0.95 1.18 1.01 0.7
3 206 1834 4.53E-01 0.57 2.83E+00 -0.53 6.62E-01 -0.25 1.46 1.01 1.0
4 368 4036 3.89E-01 0.39 2.72E+00 0.10 5.46E-01 0.49 1.40 1.01 2.0
5 914 10498 3.04E-01 0.51 2.21E+00 0.43 4.20E-01 0.55 1.38 1.01 3.8
6 1904 22054 1.55E-01 1.81 1.13E+00 1.81 2.10E-01 1.87 1.35 1.01 9.3
7 3746 42724 4.94E-02 3.46 3.44E-01 3.60 6.36E-02 3.60 1.29 1.01 22.8
8 6380 73298 1.00E-02 5.91 6.64E-02 6.09 1.26E-02 6.00 1.26 1.01 45.9
9 7826 103948 1.54E-03 10.74 1.05E-02 10.58 1.98E-03 10.61 1.29 1.01 78.4
10 9725 142471 5.93E-04 6.04 3.87E-03 6.31 7.28E-04 6.33 1.23 1.01 122.7

Table 2: Example (E1) given by (54) – (55) with ε = 10−3: error ‖u − ũh‖X , nonconformity Nh(ũh), residuum error estimate ρh(ũh) with the
corresponding EOC, indexes i

ρ

eff
, i
η

eff
and the computational time in seconds.
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Figure 3: Example (E1) given by (54) – (55) with ε = 10−2: the final grid with the corresponding degrees of polynomial approximation, the whole
domain (left) and its detail (0, 1/20) × (0, 1/20) (right).
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Figure 4: Example (E1) given by (54) – (55) with ε = 10−3: the final grid with the corresponding degrees of polynomial approximation, the whole
domain (left) and its detail (0, 1/20) × (0, 1/20) (right).

Moreover, the computations (C2) show that the presented hp-method gives an exponential convergence of error
‖u − ũh‖X with respect to the number of degrees of freedom. The indexes i

ρ

eff
, i
η

eff
are close to one which supports the

accuracy of the method. Furthermore, Figures 3 and 4 show the final hp-grid obtained with the aid of the hp-DGFE
algorithm for ε = 10−2 and ε = 10−3, respectively. We observe that the h-adaptation was carried out in regions with
the boundary layers whereas the p-adaptation appears elsewhere. Finally, let us note that the presented strategy is not
too efficient for problems with boundary layers since our h-adaptation is only isotropic. More efficient is the use of an
anisotropic mesh adaptation, e.g., [29].

6.3. (E2): Nonlinear convection-diffusion equation with a corner singularity

We consider the scalar nonlinear convection-diffusion equation

−∇ · (K(u)∇u) − ∂u
2

∂x1
− ∂u

2

∂x2
= g in Ω := (0, 1)2, (56)

where K(u) is the nonsymmetric matrix given by

K(u) = ε

(

2 + arctan(u) (2 − arctan(u))/4
0 (4 + arctan(u))/2

)

. (57)

The parameter ε > 0 plays a role of an amount of diffusivity and we put ε = 10−3. We prescribe a Dirichlet boundary
condition on ∂Ω and set the source term g such that the exact solution is

u(x1, x2) = (x2
1 + x2

2)α/2x1x2(1 − x1)(1 − x2), α ∈ R. (58)

We present two choices: α = 4 and α = −3/2. It is possible to show (see [3]) that u ∈ Hκ(Ω), κ ∈ (0, 3+ α). Whereas
the choice α = 4 gives sufficiently regular solution, the choice α = −3/2 leads to the solution with a singularity at
x1 = x2 = 0. Numerical examples presented in [17], carried out for a little different problem, show that this singularity
avoids to achieve an order of convergence better than O(h3/2) in the L2-norm and O(h1/2) in the H1-seminorm for any
degree of polynomial approximation. Nevertheless, the exact solution is regular outside of the singularity.

Tables 3 and 4 show the results of computations (C1) and (C2) for problem (56) – (58) with α = 4 and α = −3/2,
respectively, namely the values of the error ‖u − ũh‖X , nonconformity Nh(ũh), residuum error estimate ρh(ũh) with
the corresponding EOC, indexes i

ρ

eff
, i

η

eff
and the computational times in seconds. From the computations (C1), we

observe that all quantities ‖u − ũh‖X , Nh(ũh) and ρh(ũh) converge at the expected orders O(hp) for α = 4 and O(h1/2)
for α = −3/2. These results demonstrate the aspect (A1).

17



(C1) uniform grids
lev #Th Nh ‖u − ũh‖X EOC Nh(ũh) EOC ρh(ũh) EOC i

ρ

eff
i
η

eff
CPU(s)

1 128 384 6.45E-03 – 1.99E-02 – 5.58E-03 – 0.86 0.99 0.7
1 512 1536 1.68E-03 1.94 8.29E-03 1.26 2.81E-03 0.99 1.68 1.03 1.7
1 2048 6144 7.15E-04 1.23 3.81E-03 1.12 1.43E-03 0.98 2.00 1.05 7.8
1 8192 24576 3.45E-04 1.05 1.82E-03 1.06 7.17E-04 0.99 2.08 1.06 52.4

2 128 768 4.42E-04 – 3.01E-03 – 6.35E-04 – 1.44 1.01 0.9
2 512 3072 1.06E-04 2.06 7.61E-04 1.98 1.67E-04 1.92 1.58 1.01 3.2
2 2048 12288 2.56E-05 2.05 1.91E-04 1.99 4.26E-05 1.97 1.67 1.02 18.1
2 8192 49152 6.23E-06 2.04 4.79E-05 2.00 1.07E-05 1.99 1.72 1.02 108.3

3 128 1280 3.87E-05 – 2.75E-04 – 5.22E-05 – 1.35 1.01 1.5
3 512 5120 4.45E-06 3.12 3.32E-05 3.05 6.71E-06 2.96 1.51 1.01 6.4
3 2048 20480 5.41E-07 3.04 4.06E-06 3.03 8.47E-07 2.99 1.56 1.01 35.4
3 8192 81920 6.76E-08 3.00 4.99E-07 3.02 1.06E-07 3.00 1.57 1.01 219.1

4 128 1920 2.75E-06 – 1.73E-05 – 3.05E-06 – 1.11 1.00 2.3
4 512 7680 1.57E-07 4.12 1.04E-06 4.05 1.89E-07 4.01 1.20 1.01 11.8
4 2048 30720 9.50E-09 4.05 6.38E-08 4.03 1.18E-08 4.00 1.24 1.01 62.7
4 8192 122880 5.61E-10 4.08 3.94E-09 4.02 7.42E-10 3.99 1.32 1.01 373.5

5 128 2688 1.10E-07 – 7.04E-07 – 1.13E-07 – 1.02 1.00 4.4
5 512 10752 2.81E-09 5.29 2.11E-08 5.06 3.46E-09 5.03 1.23 1.00 22.6
5 2048 43008 8.14E-11 5.11 6.48E-10 5.02 1.07E-10 5.01 1.32 1.01 115.6
5 8192 172032 1.60E-10 -0.98 1.44E-10 2.17 6.80E-11 0.66 0.42 0.74 708.3

(C2) hp-adaptation
lev #Th Nh ‖u − ũh‖X EOC Nh(ũh) EOC ρh(ũh) EOC i

ρ

eff
i
η

eff
CPU(s)

0 128 384 6.45E-03 – 1.99E-02 – 5.58E-03 – 0.86 0.99 0.5
1 128 768 4.43E-04 7.73 3.01E-03 5.45 6.35E-04 6.27 1.43 1.01 0.9
2 128 1280 3.87E-05 9.54 2.75E-04 9.36 5.22E-05 9.78 1.35 1.01 1.2
3 128 1920 2.75E-06 13.05 1.73E-05 13.65 3.05E-06 14.02 1.11 1.00 1.8
4 128 2688 1.10E-07 19.12 7.04E-07 19.02 1.13E-07 19.59 1.02 1.00 2.9
5 128 3584 2.49E-09 26.35 1.62E-08 26.24 2.42E-09 26.72 0.97 1.00 4.5
6 128 4608 2.98E-11 35.22 2.23E-10 34.08 3.00E-11 34.92 1.01 1.00 6.8
7 128 5760 3.17E-15 82.03 2.02E-14 83.51 1.56E-14 67.83 4.91 1.25 10.9

Table 3: Example (E2) given by (56) – (58) with α = 4: error ‖u − ũh‖X , nonconformity Nh(ũh), residuum error estimate ρh(ũh) with the corre-
sponding EOC, indexes i

ρ

eff
, i
η

eff
and the computational time in seconds.
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(C1) uniform grids
lev #Th Nh ‖u − ũh‖X EOC Nh(ũh) EOC ρh(ũh) EOC i

ρ

eff
i
η

eff
CPU(s)

1 128 384 1.32E-02 – 1.41E-01 – 4.52E-02 – 3.43 1.05 0.9
1 512 1536 8.98E-03 0.55 8.21E-02 0.78 2.25E-02 1.00 2.51 1.03 2.0
1 2048 6144 6.36E-03 0.50 5.02E-02 0.71 1.31E-02 0.79 2.06 1.03 6.7
1 8192 24576 4.50E-03 0.50 3.36E-02 0.58 8.55E-03 0.61 1.90 1.02 39.7

2 128 768 5.98E-03 – 6.70E-02 – 1.26E-02 – 2.11 1.01 1.2
2 512 3072 4.19E-03 0.51 4.89E-02 0.45 8.08E-03 0.64 1.93 1.01 3.3
2 2048 12288 2.97E-03 0.50 3.41E-02 0.52 5.34E-03 0.60 1.80 1.01 12.7
2 8192 49152 2.10E-03 0.50 2.38E-02 0.52 3.62E-03 0.56 1.72 1.01 53.7

3 128 1280 5.50E-03 – 6.36E-02 – 6.25E-03 – 1.14 1.00 1.8
3 512 5120 3.84E-03 0.52 4.78E-02 0.41 4.31E-03 0.54 1.12 1.00 5.2
3 2048 20480 2.70E-03 0.51 3.37E-02 0.51 2.91E-03 0.57 1.08 1.00 21.6
3 8192 81920 1.91E-03 0.50 2.37E-02 0.51 1.99E-03 0.55 1.04 1.00 101.5

4 128 1920 4.29E-03 – 5.52E-02 – 4.32E-03 – 1.01 1.00 2.7
4 512 7680 2.97E-03 0.53 3.95E-02 0.48 3.06E-03 0.50 1.03 1.00 7.2
4 2048 30720 2.09E-03 0.51 2.74E-02 0.53 2.02E-03 0.59 0.97 1.00 32.1
4 8192 122880 1.48E-03 0.50 1.92E-02 0.51 1.39E-03 0.55 0.94 1.00 144.2

5 128 2688 4.10E-03 – 4.98E-02 – 3.22E-03 – 0.78 1.00 4.5
5 512 10752 2.82E-03 0.54 3.51E-02 0.51 2.19E-03 0.55 0.78 1.00 13.1
5 2048 43008 1.98E-03 0.51 2.44E-02 0.52 1.45E-03 0.60 0.73 1.00 54.2
5 8192 172032 1.41E-03 0.50 1.72E-02 0.51 1.00E-03 0.54 0.71 1.00 320.5

(C2) hp-adaptation
lev #Th Nh ‖u − ũh‖X EOC Nh(ũh) EOC ρh(ũh) EOC i

ρ

eff
i
η

eff
CPU(s)

0 128 384 1.32E-02 – 1.41E-01 – 4.52E-02 – 3.43 1.05 0.6
1 128 759 5.98E-03 2.32 6.70E-02 2.18 1.26E-02 3.75 2.11 1.01 1.0
2 128 919 5.50E-03 0.87 6.36E-02 0.55 6.26E-03 7.31 1.14 1.00 1.5
3 128 969 4.30E-03 9.31 5.52E-02 5.35 4.34E-03 13.81 1.01 1.00 1.8
4 134 1089 2.98E-03 6.29 3.96E-02 5.69 3.09E-03 5.86 1.04 1.00 2.2
5 140 1191 2.10E-03 7.81 2.75E-02 8.14 2.07E-03 8.91 0.99 1.00 2.6
6 152 1371 1.49E-03 4.82 1.93E-02 4.99 1.45E-03 5.03 0.97 1.00 2.9
7 158 1456 1.25E-03 5.92 1.62E-02 6.02 1.33E-03 2.95 1.06 1.00 3.3
8 161 1483 9.81E-04 25.21 1.20E-02 30.83 1.06E-03 23.46 1.08 1.00 3.8
9 164 1514 7.11E-04 31.61 8.60E-03 32.64 8.06E-04 26.80 1.13 1.00 4.3
10 170 1584 5.25E-04 13.36 6.24E-03 14.15 6.45E-04 9.85 1.23 1.00 4.8
11 176 1654 4.01E-04 12.42 4.63E-03 13.80 5.47E-04 7.57 1.36 1.00 5.4

Table 4: Example (E2) given by (56) – (58) with α = −3/2: error ‖u − ũh‖X , nonconformity Nh(ũh), residuum error estimate ρh(ũh) with the
corresponding EOC, indexes i

ρ

eff
, i
η

eff
and the computational time in seconds.

19



    0.0Ε+00     5.0Ε−01     1.0Ε+00
    0.0Ε+00

    5.0Ε−01

    1.0Ε+00

    0.0Ε+00     2.5Ε−03     5.0Ε−03
    0.0Ε+00

    2.5Ε−03

    5.0Ε−03

P1P1

P2P2

P3P3

P4P4

P5P5

hp

Figure 5: Example (E2) given by (56) – (58) with α = −3/2: the final grid with the corresponding degrees of polynomial approximation, the whole
domain (left) and its detail (0, 1/200) × (0, 1/200) (right).

Moreover, the computations (C2) show that the error ‖u − ũh‖X converges exponentially for α = 4 and significantly
faster than O(h1/2) for α = −3/2. Furthermore, the indexes i

ρ

eff
, i
η

eff
are close to one. An increase of i

ρ

eff
and i

η

eff
in Table

3 for the last adaptation level is caused by the fact that we are close to the machine accuracy.
Furthermore, Figure 5 shows the final hp-grid obtained with the aid of the hp-DGFE algorithm for α = −3/2. (The

case α = 4 is not interesting since only p-refinement is carried out due to the regularity of the exact solution.) We
observe that the h-adaptation was carried out in a small region near the singularity. On the other hand, the p-adaptation
appears in regions where the solution is regular.

6.4. (E3): Quasi-linear elliptic problem with a regular solution

We consider the quasi-linear elliptic problem from [32] (see also [31], [41]),

−∇ · (µ(|∇u|)∇u) = f in Ω := (0, 1)2, (59)

where

µ(|∇u|) = 2 +
1

1 + |∇u| . (60)

We consider a homogeneous Dirichlet boundary condition on ∂Ω and select g such that the analytical solution (59) –
(60) is given by

u(x1, x2) = x1(1 − x1)x2(1 − x2)(1 − 2x2)e−20(2x1−1)2

. (61)

Table 5 shows the results of computations (C1) and (C2) for problem (59) – (61), namely the values of the error
‖u − ũh‖X , nonconformity Nh(ũh), residuum error estimate ρh(ũh) with the corresponding EOC, indexes i

ρ

eff
, i
η

eff
and

the computational times in seconds. From the computations (C1), we observe that all quantities ‖u − ũh‖X ,Nh(ũh) and
ρh(ũh) converge at the expected order O(hp) since u given by (61) is regular. These results demonstrate the aspect (A1).
Similarly as in the previous examples, the computations (C2) show that the computational error ‖u − ũh‖X converges
exponentially and the indexes i

ρ

eff
, i
η

eff
are between 1 and 3 and they approach to one for increasing Nh which supports

the aspect (A2).
Furthermore, Figure 6, left shows the final hp-grid obtained with the aid of the hp-DGFE algorithm. We observe

that the p-adaptation dominates since the exact solution is regular. Our results differ from the results from [32,
Example 1], where hp-DGFE computations on quadrilateral grids are performed. Our approach yields to more p-
refinements and we achieve the same level of error with a smaller number of degrees of freedom (Table 5), compare
with [32, Fig. 1 c,d], where the error 10−5 in the ‖·‖X-norm was achieved with almost 2E+4 degrees of freedoms.
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(C1) uniform grids
lev #Th Nh ‖u − ũh‖X EOC Nh(ũh) EOC ρh(ũh) EOC i

ρ

eff
i
η

eff
CPU(s)

1 128 384 2.96E-02 – 9.31E-03 – 1.02E-01 – 3.46 3.31 0.5
1 512 1536 1.83E-02 0.70 5.84E-03 0.67 6.83E-02 0.58 3.74 3.57 1.0
1 2048 6144 9.36E-03 0.97 2.85E-03 1.04 3.57E-02 0.93 3.82 3.66 4.0
1 8192 24576 4.71E-03 0.99 1.41E-03 1.02 1.81E-02 0.98 3.84 3.69 18.3

2 128 768 1.19E-02 – 3.84E-03 – 3.85E-02 – 3.23 3.09 0.6
2 512 3072 2.77E-03 2.10 1.20E-03 1.68 9.10E-03 2.08 3.28 3.04 1.7
2 2048 12288 7.11E-04 1.96 3.33E-04 1.85 2.35E-03 1.95 3.31 3.03 7.8
2 8192 49152 1.79E-04 1.99 8.57E-05 1.96 5.94E-04 1.98 3.32 3.02 42.9

3 128 1280 2.00E-03 – 8.07E-04 – 5.33E-03 – 2.67 2.50 0.9
3 512 5120 3.56E-04 2.49 1.50E-04 2.43 1.04E-03 2.36 2.92 2.72 3.2
3 2048 20480 4.57E-05 2.96 1.72E-05 3.12 1.35E-04 2.95 2.96 2.79 15.0
3 8192 81920 5.74E-06 2.99 2.07E-06 3.06 1.70E-05 2.99 2.97 2.81 82.0

4 128 1920 6.62E-04 – 2.13E-04 – 1.78E-03 – 2.69 2.58 1.3
4 512 7680 4.00E-05 4.05 1.72E-05 3.63 1.07E-04 4.06 2.67 2.49 5.2
4 2048 30720 2.56E-06 3.96 1.24E-06 3.79 6.83E-06 3.97 2.67 2.44 24.9
4 8192 122880 1.61E-07 3.99 8.07E-08 3.94 4.31E-07 3.99 2.67 2.43 161.1

5 128 2688 1.00E-04 – 4.50E-05 – 2.35E-04 – 2.35 2.18 2.2
5 512 10752 3.98E-06 4.65 1.79E-06 4.65 9.73E-06 4.60 2.44 2.27 9.9
5 2048 43008 1.28E-07 4.96 5.00E-08 5.16 3.18E-07 4.93 2.48 2.34 58.1
5 8192 172032 4.03E-09 4.99 1.47E-09 5.09 1.01E-08 4.98 2.50 2.37 423.6

(C2) hp-adaptation
lev #Th Nh ‖u − ũh‖X EOC Nh(ũh) EOC ρh(ũh) EOC i

ρ

eff
i
η

eff
CPU(s)

0 128 384 2.96E-02 – 9.31E-03 – 1.02E-01 – 3.46 3.31 0.4
1 128 768 1.19E-02 2.63 3.84E-03 2.55 3.85E-02 2.82 3.23 3.09 0.7
2 128 1280 2.00E-03 6.99 8.07E-04 6.11 5.33E-03 7.74 2.67 2.50 1.1
3 128 1920 6.62E-04 5.45 2.13E-04 6.56 1.78E-03 5.40 2.69 2.58 1.6
4 128 2688 1.00E-04 11.22 4.50E-05 9.25 2.35E-04 12.04 2.35 2.18 2.6
5 128 3584 2.26E-05 10.36 8.01E-06 12.01 5.10E-05 10.63 2.26 2.16 4.1
6 128 4480 3.42E-06 16.92 1.52E-06 14.89 7.26E-06 17.48 2.12 1.98 6.0
7 128 5416 5.73E-07 18.81 2.24E-07 20.19 1.14E-06 19.46 2.00 1.90 8.3
8 128 6216 1.74E-07 17.34 6.08E-08 18.92 3.36E-07 17.82 1.93 1.85 11.3
9 275 14301 3.73E-08 3.69 7.75E-09 4.94 4.18E-08 5.00 1.12 1.12 21.4

Table 5: Example (E3) given by (59) – (61): error ‖u − ũh‖X , nonconformity Nh(ũh), residuum error estimate ρh(ũh) with the corresponding EOC,
indexes i

ρ

eff
, i
η

eff
and the computational time in seconds.
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Figure 6: Example (E3) given by (59) – (61): the final grid with the corre-
sponding degrees of polynomial approximation.

 0.0001

 0.001

 0.01

 0.1

 1

 0  1000  2000  3000  4000  5000  6000  7000

number of degrees of freedom

|| u - uh||X
ρh(uh)

Figure 7: Example (E4) given by (59), (62) – (63): conver-
gence of the error ‖u − ũh‖X and the residuum error estimate
ρh(ũh) with respect to the number of degrees of freedom.

6.5. (E4): Quasi-linear elliptic problem with a corner singularity

Similarly as in [32] (see also [31], [41]), we consider again the quasi-linear elliptic problem (59) in the L-shaped
domain (−1, 1)2 \ [0, 1) × (−1, 0) with

µ(|∇u|) = 1 + e−|∇u|
2

, (62)

with the Dirichlet boundary condition on ∂Ω and g such that the analytical solution (59), (62) is given by (in polar
coordinates)

u(r, ϕ) = r2/3 sin(2ϕ/3). (63)

We note the u < H2(Ω) but it is regular outside of x1 = x2 = 0.
Table 6 shows the results of computations (C1) and (C2) for problem (59), (62) – (63), namely the values of the

error ‖u − ũh‖X , nonconformity Nh(ũh), residuum error estimate ρh(ũh) with the corresponding EOC, indexes i
ρ

eff
, i
η

eff

and the computational times in seconds. From the computations (C1), we observe that all quantities ‖u − ũh‖X ,Nh(ũh)
and ρh(ũh) converge at the order O(h2/3) (we suppose that u ∈ Hβ(Ω), β < 1 + 2/3). These results demonstrate the
aspect (A1).

Similarly as in the previous examples, the computations (C2) show that the computational error ‖u − ũh‖X con-
verges exponentially and the indexes i

ρ

eff
, i
η

eff
approach to a constant value (not far from one) for increasing Nh which

supports the aspect (A2). In some cases, EOC are negative, since the error as well as the estimate is decreasing even
for the decreasing number of degrees of freedom, see Figure 7. It is an advantage our algorithm that it can reduce the
number of degrees of freedom as well as the computational error. Finally, Figure 8 shows the final hp-grid obtained
with the aid of the hp-DGFE algorithm. The h-adaptation was carried out only in a small region near the singularity.

Table 6 shows that the error level 2 · 10−4 in the ‖·‖X-norm was achieved with about 6800 degrees of freedom. In
[31, Figure 3] the same error was achieved with less than 6000 degrees of freedom and in [32, Fig. 2 c,d], with slightly
more than 4000 degrees of freedom. From this point of view our approach is a little less efficient than techniques from
[31, 32] for problem (59), (62) – (63). However, let us note that techniques from [31, 32] use quadrilateral grids.
The number of degrees of freedom for one quadrilateral element is equal to (pK + 1)2, where pK is the degree of
polynomial approximation in each coordinate direction of a quadrilateral element. On the other hand, the number of
degrees of freedom for two triangles (forming one quadrilateral) is equal to (pK + 1)(pk + 2). Therefore, triangular
elements requires a little more degrees of freedom for the same asymptotic order of convergence. From this point of
view the comparison of the efficiency of our approach with results from [31, 32] is not bad.

6.6. (E5): Linear convection-diffusion equation with the strong exponential layer

The exact solution from Section 6.2 contains the boundary layer, however, the diffusive term was relatively large.
Therefore, we consider the problem

−ε△u + ∂u

∂x1
= 1 in Ω := (0, 1)2, (64)
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(C1) uniform grids
lev #Th Nh ‖u − ũh‖X EOC Nh(ũh) EOC ρh(ũh) EOC i

ρ

eff
i
η

eff
CPU(s)

1 150 450 1.29E-01 – 2.53E-02 – 2.01E-01 – 1.55 1.54 0.7
1 600 1800 8.31E-02 0.64 1.69E-02 0.58 1.31E-01 0.62 1.58 1.56 2.1
1 2400 7200 5.28E-02 0.65 1.12E-02 0.59 8.57E-02 0.61 1.62 1.60 8.0
1 9600 28800 3.35E-02 0.66 7.28E-03 0.63 5.56E-02 0.62 1.66 1.64 36.0

2 150 900 4.79E-02 – 1.46E-02 – 6.58E-02 – 1.37 1.35 1.0
2 600 3600 3.01E-02 0.67 9.46E-03 0.62 4.21E-02 0.65 1.40 1.37 3.6
2 2400 14400 1.89E-02 0.67 6.07E-03 0.64 2.67E-02 0.65 1.42 1.38 12.7
2 9600 57600 1.19E-02 0.67 3.86E-03 0.65 1.69E-02 0.66 1.42 1.39 58.3

3 150 1500 3.33E-02 – 9.73E-03 – 3.21E-02 – 0.96 0.97 1.7
3 600 6000 2.09E-02 0.67 6.20E-03 0.65 2.02E-02 0.67 0.96 0.97 5.3
3 2400 24000 1.32E-02 0.67 3.94E-03 0.65 1.27E-02 0.66 0.97 0.97 21.4
3 9600 96000 8.31E-03 0.67 2.49E-03 0.66 8.04E-03 0.66 0.97 0.97 113.4

4 150 2250 2.45E-02 – 6.82E-03 – 1.79E-02 – 0.73 0.75 2.8
4 600 9000 1.54E-02 0.67 4.32E-03 0.66 1.12E-02 0.69 0.72 0.75 9.2
4 2400 36000 9.73E-03 0.67 2.74E-03 0.66 7.04E-03 0.66 0.72 0.75 34.3
4 9600 144000 6.13E-03 0.67 1.73E-03 0.66 4.45E-03 0.66 0.73 0.75 164.3

5 150 3150 2.00E-02 – 4.99E-03 – 1.09E-02 – 0.54 0.58 4.3
5 600 12600 1.26E-02 0.67 3.15E-03 0.66 6.74E-03 0.69 0.54 0.57 15.3
5 2400 50400 7.93E-03 0.67 2.00E-03 0.66 4.25E-03 0.67 0.54 0.57 58.1
5 9600 201600 5.00E-03 0.67 1.26E-03 0.66 2.69E-03 0.66 0.54 0.58 326.1

(C2) hp-adaptation
lev #Th Nh ‖u − ũh‖X EOC Nh(ũh) EOC ρh(ũh) EOC i

ρ

eff
i
η

eff
CPU(s)

0 96 288 1.49E-01 – 2.89E-02 – 2.32E-01 – 1.56 1.54 0.5
1 96 576 5.56E-02 2.84 1.67E-02 1.58 7.59E-02 3.22 1.37 1.34 1.0
2 96 960 3.86E-02 1.42 1.13E-02 1.54 3.73E-02 2.78 0.97 0.97 2.0
3 96 1435 2.85E-02 1.51 7.92E-03 1.75 2.10E-02 2.87 0.74 0.76 3.3
4 96 1639 2.32E-02 3.09 5.79E-03 4.71 1.27E-02 7.48 0.55 0.59 4.9
5 96 1821 1.98E-02 3.05 4.38E-03 5.31 8.21E-03 8.36 0.42 0.46 6.8
6 96 2027 1.66E-02 3.30 3.41E-03 4.68 5.56E-03 7.28 0.34 0.39 9.0
7 96 2225 1.41E-02 3.46 2.71E-03 4.90 3.90E-03 7.60 0.28 0.33 11.5
8 108 2885 8.59E-03 3.82 1.82E-03 3.09 2.58E-03 3.20 0.30 0.36 15.0
9 138 4191 6.29E-03 1.67 1.39E-03 1.42 2.16E-03 0.94 0.34 0.40 20.0
10 183 5840 4.79E-03 1.64 1.13E-03 1.28 2.02E-03 0.41 0.42 0.47 25.7
11 201 6252 3.59E-03 8.48 9.34E-04 5.50 1.97E-03 0.77 0.55 0.59 31.1
12 216 6337 2.77E-03 41.10 7.96E-04 25.55 2.02E-03 -4.07 0.73 0.75 35.8
13 219 6375 1.86E-03 369.09 5.35E-04 368.53 1.38E-03 349.61 0.74 0.77 41.2
14 228 6297 1.32E-03 -78.54 3.76E-04 -80.13 1.03E-03 -66.89 0.78 0.80 45.7
15 252 6550 8.30E-04 23.70 2.37E-04 23.70 6.49E-04 23.67 0.78 0.80 51.7
16 252 6208 5.23E-04 -16.90 1.49E-04 -16.91 4.10E-04 -16.84 0.78 0.80 57.1
17 282 6700 3.30E-04 12.09 9.43E-05 12.11 2.60E-04 12.02 0.79 0.80 64.0
18 288 6778 2.10E-04 96.63 5.97E-05 96.51 1.66E-04 94.98 0.79 0.81 70.9

Table 6: Example (E4) given by (59), (62) – (63): error ‖u − ũh‖X , nonconformity Nh(ũh), residuum error estimate ρh(ũh) with the corresponding
EOC, indexes i

ρ

eff
, i
η

eff
and the computational time in seconds.
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Figure 8: Example (E4) given by (59), (62) – (63): the final grid with the corresponding degrees of polynomial approximation, the whole domain
(top left) and its details with magnification 20 (top right), 200 (bottom left) and 2000 (bottom right).
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where 0 < ε ≪ 1 is a constant diffusion coefficient. We employ the values ε ∈ {10−4, 10−5, 10−6}. We prescribe the
Dirichlet boundary condition on ∂Ω such that the exact solution has the form

u(x1, x2) = x1 −
e(x1−1)/ε − e−1/ε

1 − e−1/ε
. (65)

The solution possesses a strong exponential boundary layer at x1 = 1, its width is proportional to ε. Therefore, the
computations were carried out on a priori refined mesh along the boundary layer, see Figure 10, top left.

Table 7 show the results of computations (C2) for problem (64) – (65), namely the values of the error ‖u − ũh‖X ,
nonconformityNh(ũh), residuum error estimate ρh(ũh) with the corresponding EOC, indexes i

ρ

eff
, i
η

eff
and the computa-

tional times in seconds. Let us recall that ‖u − ũh‖X is evaluated with the aid of the Dunavant quadrature [23] applied
to each K ∈ Th and that the Dunavant integration nodes are in the interior of the triangle.

We observe that the computational error ‖u − ũh‖X is small on the initial grid for all ε considered. In the first
levels of adaptation, the error increases and after (approximately) 6 – 12 adaptation cycles, the error starts to decrease.
However, only for the case ε = 10−4, the adaptation process ends with the smaller error than it has started. For
ε = 10−5 and ε = 10−6, the error at the end of the adaptation process is several orders higher than the error on the
initial grid. From this point of view, it may seem that the solution on the initial grid is much better than the solution
on the adapted grids and hence the mesh adaptation does not makes sense for this case. This effect is explained in the
following.

Figure 9 shows the cuts of the approximate solutions along x2 = 0.5 in comparison with the exact solution on
the initial mesh (lev = 0) and on the selected meshes obtained by several levels of mesh adaptation (lev = 7 and
lev = 12 for ε = 10−4, lev = 10 and lev = 14 for ε = 10−5 and lev = 12 and lev = 17 for ε = 10−6). We found
that on the initial mesh (lev = 0), the approximate solution uh ≈ x1, see the first and the second columns in Figure
9. Therefore, the boundary layer is “completely ignored” by the numerical scheme. This is a characteristic property
of the discontinuous Galerkin discretization (in contrary to the standard finite element method) since the Dirichlet
boundary condition is prescribed by the boundary penalty term

∑

Γ∈FD
h

∫

Γ

σ(u − uD) v dS , σ|Γ = εCWh
−1
Γ , hΓ = diam(Γ) (66)

in (5). The penalty parameter σ in (66) is small for ε ≪ 1 (and for not too small hΓ). This is a typical example
when some physical feature (e.g., the boundary layer) is not captured by the numerical scheme since the characteristic
length of the physical feature is many times smaller than the mesh size h.

Hence, if a mesh is not sufficiently refined along x1 = 1 then uh ≈ x1 and thus

u − uh ≈ −
e(x1−1)/ε − e−1/ε

1 − e−1/ε
=: ẽh. (67)

Obviously, ẽh(x) = 1 for all x = (x1, x2) ∈ {1} × (0, 1) and ẽh(x) ≪ 1 for x = (x1, x2) ∈ (0, 1 − ǫ) × (0, 1) where ǫ ≪ 1
and ǫ ∼ ε. When we evaluate ‖ẽh‖X with the aid of the Dunavant quadrature applied to each element of a coarse grid,
we obtain a small number, i.e., ‖ẽh‖X ≪ 1. This follows from the fact that the integration nodes on the coarse grid are
inside of the set (0, 1 − ǫ) × (0, 1) (they are far from the boundary layer) and therefore ẽh(·) ≪ 1 in these integration
nodes. Nevertheless, when the mesh is refined near the boundary layer, the new integration nodes arise closer and
closer to x1 = 1, ẽh(·) in these nodes is bigger and hence the value ‖ẽh‖X (computed with the aid of the numerical
quadrature mentioned above) increases. This argumentation implies that the values of ‖u − ũh‖X in Table 7 for the
lower levels of mesh adaptation are not correct because the quadrature errors are too large. In order to evaluate correct
values, it is necessary to employ a better (adaptive) numerical quadrature.

Moreover, whereas the computational error ‖u − ũh‖X as well as the global residuum estimator ρh(ũh) on the initial
mesh are small, the nonconformity Nh(uh) is large due to the second term in (8). Then the proposed adaptive process
refines the elements near the wall with x1 = 1. On the refined grids, the penalty parameter σ ∼ h1

Γ
in (66) is higher

and thus the boundary penalty is stronger. Therefore, after several levels of mesh adaptations, the boundary layer is
captured with an increasing accuracy, see the third and fourth columns of Figure 9. Obviously, in order to achieve the
smaller computational error in Table 7 for ǫ = 10−5 and ǫ = 10−6, additional mesh refinement is necessary. However,
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(C2) hp-adaptation, ε = 10−4

lev #Th Nh ‖u − ũh‖X EOC Nh(ũh) EOC ρh(ũh) EOC i
ρ

eff
i
η

eff
CPU(s)

0 20 60 6.01E-04 – 1.41E+00 – 4.00E-02 – 66.59 1.00 0.2
1 26 84 1.18E-03 -4.01 1.98E+00 -2.04 6.49E-02 -2.88 55.05 1.00 0.3
2 38 146 2.64E-03 -2.92 2.78E+00 -1.23 9.16E-02 -1.24 34.64 1.00 0.5
3 38 228 5.54E-01 -23.98 2.78E+00 0.00 7.00E-02 1.20 0.13 0.98 1.0
4 68 572 7.55E-01 -0.67 3.87E+00 -0.72 5.79E-02 0.41 0.08 0.98 2.2
5 128 1265 7.55E-01 -0.00 5.29E+00 -0.79 4.16E-02 0.83 0.06 0.99 3.6
6 260 2745 6.88E-01 0.24 6.93E+00 -0.69 8.55E-02 -1.86 0.12 1.00 6.7
7 665 7370 5.85E-01 0.33 8.07E+00 -0.31 1.44E-01 -1.06 0.25 1.00 15.3
8 1601 17040 3.78E-01 1.04 7.03E+00 0.33 1.59E-01 -0.23 0.42 1.00 37.6
9 3254 33597 1.52E-01 2.68 3.65E+00 1.93 9.22E-02 1.61 0.61 1.00 73.4
10 6155 71014 6.10E-02 2.44 1.39E+00 2.57 1.65E-02 4.59 0.27 1.00 142.7
11 12491 142978 1.05E-02 5.02 2.66E-01 4.73 2.78E-03 5.10 0.26 1.00 310.8
12 28631 341645 1.93E-03 3.89 5.06E-02 3.81 3.80E-04 4.57 0.20 1.00 1066.6
13 62303 751569 8.67E-05 7.88 2.43E-03 7.71 4.67E-05 5.32 0.54 1.00 2511.9
14 62795 891916 1.62E-05 19.58 5.17E-04 18.04 1.55E-05 12.85 0.96 1.00 3837.7

(C2) hp-adaptation, ε = 10−5

lev #Th Nh ‖u − ũh‖X EOC Nh(ũh) EOC ρh(ũh) EOC i
ρ

eff
i
η

eff
CPU(s)

0 20 60 5.11E-05 – 1.41E+00 – 6.47E-03 – 126.67 1.00 0.3
1 26 84 7.68E-05 -2.42 2.00E+00 -2.06 1.48E-02 -4.90 192.05 1.00 0.3
2 38 134 1.31E-04 -2.30 2.82E+00 -1.48 2.71E-02 -2.60 205.82 1.00 0.4
3 38 188 1.58E-04 -1.10 2.82E+00 0.00 2.30E-02 0.96 145.26 1.00 0.5
4 68 496 6.40E-03 -7.63 3.99E+00 -0.71 3.46E-02 -0.84 5.40 1.00 0.8
5 128 1111 1.22E-01 -7.32 5.62E+00 -0.85 4.30E-02 -0.54 0.35 1.00 4.1
6 248 2305 4.47E-01 -3.55 7.90E+00 -0.93 3.68E-02 0.43 0.08 1.00 8.1
7 509 5063 7.16E-01 -1.20 1.10E+01 -0.85 6.40E-02 -1.40 0.09 1.00 12.8
8 1199 12122 7.64E-01 -0.15 1.51E+01 -0.73 1.06E-01 -1.17 0.14 1.00 23.3
9 2381 22369 6.97E-01 0.30 2.01E+01 -0.92 1.59E-01 -1.31 0.23 1.00 42.7
10 5288 46699 5.96E-01 0.43 2.43E+01 -0.52 2.07E-01 -0.71 0.35 1.00 86.8
11 12962 116971 4.12E-01 0.80 2.32E+01 0.11 2.10E-01 -0.03 0.51 1.00 203.9
12 30545 278553 1.87E-01 1.83 1.38E+01 1.19 1.30E-01 1.11 0.69 1.00 470.1
13 51005 513038 5.42E-02 4.05 4.16E+00 3.93 3.01E-02 4.78 0.56 1.00 1013.5
14 122522 1223768 7.66E-03 4.50 7.16E-01 4.05 5.22E-03 4.03 0.68 1.00 2619.2

(C2) hp-adaptation, ε = 10−6

lev #Th Nh ‖u − ũh‖X EOC Nh(ũh) EOC ρh(ũh) EOC i
ρ

eff
i
η

eff
CPU(s)

0 20 60 5.01E-06 – 1.41E+00 – 7.08E-04 – 141.23 1.00 0.5
1 26 78 7.13E-06 -2.69 2.00E+00 -2.64 1.94E-03 -7.69 271.87 1.00 0.6
2 38 114 1.04E-05 -1.97 2.83E+00 -1.83 4.92E-03 -4.91 475.06 1.00 0.7
3 38 138 9.29E-06 1.14 2.83E+00 0.00 5.02E-03 -0.20 540.11 1.00 0.9
4 68 300 1.70E-05 -1.56 4.00E+00 -0.89 9.39E-03 -1.61 550.77 1.00 1.2
5 128 701 3.90E-05 -1.95 5.65E+00 -0.82 1.50E-02 -1.10 384.28 1.00 1.8
6 248 1560 1.02E-04 -2.41 7.99E+00 -0.86 2.21E-02 -0.97 216.16 1.00 4.2
7 488 3680 1.34E-03 -6.00 1.13E+01 -0.80 2.66E-02 -0.43 19.79 1.00 31.5
8 968 7736 6.02E-02 -10.23 1.59E+01 -0.93 3.63E-02 -0.84 0.60 1.00 49.8
9 2309 18366 3.31E-01 -3.94 2.24E+01 -0.79 5.62E-02 -1.01 0.17 1.00 86.5
10 4424 35328 6.52E-01 -2.07 3.13E+01 -1.03 8.36E-02 -1.21 0.13 1.00 156.9
11 9032 71963 7.68E-01 -0.46 4.34E+01 -0.91 1.19E-01 -1.00 0.16 1.00 306.8
12 21320 171956 7.20E-01 0.15 5.84E+01 -0.68 1.63E-01 -0.72 0.23 1.00 700.6
13 48776 403909 6.31E-01 0.31 7.36E+01 -0.54 2.08E-01 -0.57 0.33 1.00 1673.4
14 121928 1037468 4.76E-01 0.59 7.72E+01 -0.10 2.25E-01 -0.16 0.47 1.00 4582.0
15 275957 2429960 2.50E-01 1.51 5.44E+01 0.82 1.64E-01 0.75 0.65 1.00 11417.9
16 614204 5445709 8.26E-02 2.75 2.25E+01 2.19 6.67E-02 2.23 0.81 1.00 30659.3
17 1032713 9964991 1.33E-02 6.04 3.84E+00 5.85 9.60E-03 6.42 0.72 1.00 67721.9

Table 7: Example (E5) given by (64) – (65) with ε = 10−4, ε = 10−5 and ε = 10−6: the approximation of the error ‖ū − ũh‖X , nonconformity
Nh(ũh), residuum error estimate ρh(ũh) with the corresponding EOC, indexes i

ρ

eff
, i
η

eff
and the computational time in seconds.
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a further increase of the number of degrees of freedom is behind of our technical limits. It would be also more efficient
to apply an anisotropic mesh adaptation which significantly reduces the number of degrees of freedom for such type
of problems. Finally, Figure 10 shows the details of the final hp-grids around the boundary layers for each case, a
very strong h-refinement around the boundary layer is observed.

6.7. Demonstration of aspect (A3) – stopping criterion for the iterative process

Finally, we demonstrate the efficiency of the stopping criterion (32) in the iterative Newton-like method (17)
– (18) with β = 10−2. We denote by ũn

h
, n = 0, 1, . . . the functions corresponding to the Newton iterations Un

h

by the isomorphism (14). Figure 11 shows the convergence of the Newton approximations ũn
h

for each adaptation
cycle, particularly the residuum estimator ρh(ũ

n
h
) and algebraic residuum estimator ρA

h
(ũn

h
) for examples (E2) (with

α = −3/2), (E3) and (E4), respectively.
We observe that the iterative processes are stopped at each adaptation cycle when ρh(ũ

n
h
) changes only negligibly.

We deduce that any additional iteration would decrease ρA
h
(ũn

h
) but not ρh(ũ

n
h
). For (E2) and (E3) only few Newton

iterations are performed at each adaptation cycle, for (E4) these numbers are higher due the singularity. Finally, this
Figure contains also the ℓ2-norm of the residuum Fh(Ũh) for completeness.

7. Conclusion and outlook

In this article, we presented a new hp-adaptive method for the solution of convection-diffusion problems. This
approach is based on a combination of the residuum nonconformity estimator and the regularity indicator. Numerical
experiments show that the presented method gives an exponential order of convergence of the computational error
with respect to the number of degrees of freedom and that the residuum nonconformity estimator converges with the
same order as the computational error. These properties were observed for problems with a regular solution, a corner
singularity and boundary layer, for problems with linear as well as non-linear convection and diffusion. The subject
of further research is the numerical analysis of the presented method, an extension to evolution problems and the
development of an anisotropic mesh adaptation.

Appendix A. Proof of Lemma 4.4

Proof. Let uh ∈ S hp be the approximate solution. Within this proof, we put F(φh) := c̃h(uh, φh), φh ∈ S +hp
, F is a linear

functional. Moreover, let φK ∈ S pK+1
K

, K ∈ Th denote functions attaining the corresponding local maxima (28), i.e.,
‖φK‖X = 1 and ηh,K(uh) = F(φK), K ∈ Th. In order to prove the Lemma, we need to verify that

max
φh∈S +hp

,‖φh‖X=1
F(φh) =

(

F(φK)2)
)1/2

. (A.1)

Let
ψ :=

∑

K∈Th

ξKφK , (A.2)

where ξK ∈ R, K ∈ Th are unknown coefficients. We seek ξK , K ∈ Th such that ‖ψ‖X = 1 and F(ψ) is maximal.
Obviously, due to (33), 1 = ‖ψ‖2X =

∑

K∈Th
ξ2
K . Moreover,

F(ψ) =
∑

K∈Th

ξKF(φK) ≤
















∑

K∈Th

ξ2
K

















1/2 















∑

K∈Th

F(φK)2

















1/2

=

















∑

K∈Th

F(φK)2

















1/2

. (A.3)

On the other hand, if we put

ξK :=
F(φK)

(

∑

K∈Th
F(φK)2

)1/2
, K ∈ Th (A.4)
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ε = 10−4: lev = 0 lev = 0 (detail) lev = 7 (detail) lev = 12 (detail)
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Figure 9: Example (E5) given by (64) – (65): the cut of the approximate solution along x2 = 0.5 in comparison with the exact solution after several
adaptation cycles, the cases ε = 10−4 (top), ε = 10−5 (centre) and ε = 10−6 (bottom).
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initial grid ε = 10−4

.00000 .50000 1.00000 .99800 .99900 1.00000

P1P1

P2P2

P3P3

P4P4

P5P5

P6P6

hp

ε = 10−5 ε = 10−6

.99950 .99975 1.00000 .99990 .99995 1.00000

P1P1

P2P2

P3P3

P4P4

P5P5

P6P6

hp

Figure 10: Example (E5) given by (64) – (65): the initial grid and the details of the final grids with the corresponding degrees of polynomial
approximation for ε = 10−4, ε = 10−5 and ε = 10−6.
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Figure 11: Convergence of the Newton approximations ũn
h
for each adaptation cycle l = 0, . . . , 15, residuum estimator ρh(ũ

n
h
), algebraic residuum

estimator ρA
h
(ũn

h
) and the ℓ2-norm of the algebraic residuum Fh(Ũh).

then together with (A.2) we have

F(ψ) =

∑

K∈Th
F(φK)

2

(

∑

K∈Th
F(φK)2

)1/2
=

















∑

K∈Th

F(φK)
2

















1/2

. (A.5)

Hence, the choice (A.4) maximize F(ψ) if ψ is given by (A.2).
Finally, by a contradiction, we prove that ψ :=

∑

K∈Th
ξKφK , with ξK , K ∈ Th are given by (A.4), attains the

maximum of (29). Let ψ′ :=
∑

K∈Th
ξ′Kφ

′
K , where φ

′
K ∈ S

pK+1
K

and ξ′K ∈ R for all K ∈ Th such that 1 = ‖ψ′‖2X =
∑

K∈Th
(ξ′K)

2 (due to (33)) and
F(ψ′) > F(ψ). (A.6)

Obviously,

F(ψ′) =
∑

K∈Th

ξ′KF(φ
′
K) ≤

∑

K∈Th

ξ′KF(φK) ≤
∑

K∈Th

ξKF(φK) = F(ψ)
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which is in contradiction with (A.6). The first inequality follows from the fact that F(φK) ≥ F(φ′K), K ∈ Th and the
second inequality (A.3) – (A.5). �

Appendix B. Evaluation of local residuum estimators

We describe how to evaluate

ηh,K(uh) := sup
0,ψh∈S

pK+1

K

c̃h(uh, ψh)

‖ψh‖X
, K ∈ Th, (B.1)

given by (28). Let K ∈ Th be an arbitrary but fixed element and ψi, i = 1, . . . ,N be basis functions of the correspond-
ing space S

pK+1
K

given by (26). Let ((·, ·))X denote the scalar product which generates the norm ‖ · ‖X . We define the
“stiff matrix” S by

S := {S i j}Ni, j=1, S i j := ((ψi, ψ j))X , i, j = 1, . . . ,N. (B.2)

Moreover, we put
d := {di}Ni=1, di := c̃h(uh, ψi), i = 1, . . . ,N. (B.3)

Let ψ ∈ S
pK+1
K

, then ψ =
∑N

i=1 ξiψi, where ξi ∈ R, i = 1, . . . ,N are the basis coefficients. Obviously, ‖ψ‖X =
∑N

i=1 ξiξ jS i j. Therefore, the task to find the maximum of (B.1) is equivalent to seek the real coefficients ξi ∈ R, i =

1, . . . ,N such that the functional

Ψ(ξ1, . . . , ξN) := c̃h(uh, ψ) =

N
∑

i=1

ξic̃h(uh, ψi) =

N
∑

i=1

ξidi (B.4)

achieves a maximum provided that
∑N

i=1 ξiξ jS i j = 1. This is a standard task of seeking of a constrain extrema which
can be solved by the technique of the Lagrange multipliers. Let

Ψ̄(ξ1, . . . , ξN) := Ψ(ξ1, . . . , ξN) + λ

N
∑

i=1

ξiξ jS i j =

N
∑

i=1

ξidi + λ

N
∑

i=1

ξiξ jS i j. (B.5)

The coefficients ξi, i = 1, . . . ,N maximizing (B.4) satisfies the relations

0 =
∂Ψ̄

∂ξi
= di + 2λξiS ii + λ

N
∑

j=1
j,i

ξ jS i j, i = 1, . . . ,N, (B.6)

1 =

N
∑

i=1

ξiξ jS i j.

Let α = (ξ1, . . . , ξN)
T. We define a matrix S̄ by

S̄ = {S̄ i j}Ni, j=1, S̄ i j = S i j + S iiδi j, (B.7)

where δi j is the Kronecker symbol. Then (B.6) can be written in the equivalent form

0 = d + λS̄α, (B.8)

1 = α
T
Sα. (B.9)

In virtue of (B.8), we have α = − 1
λ
S̄
−1d and putting into (B.9) we obtain λ2 := ᾱTSᾱ, where ᾱ := −S̄−1d. Finally, we

put α := ᾱ/λ and ηh,K(uh) :=
∑N

i=1 ξidi.
The presented approach is very fast, since it is carried out separately for each K ∈ Th. Therefore, we have

N = (pK + 2)(pK + 3)/2 for d = 2, which is a relatively small number and thus the inversion S̄
−1 can be computed

directly.
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[35] P. Jiránek, Z. Strakoš, M. Vohralı́k, A posteriori error estimates including algebraic error and stopping criteria for iterative solvers., SIAM J.
Sci. Comput. 32 (3) (2010) 15671590.

[36] C. M. Klaij, M. H. van Raalte, H. van der Ven, H. J. W. van der Vegt, h-multigrid for space-time discontinuous Galerkin discretizations of the
compressible Navier-Stokes equations, J. Comput. Phys. 227 (2007) 1024–1045.

[37] L. Krivodonova, J. Xin, J.-F. Remacle, N. Chevaugeon, J. Flaherty, Shock detection and limiting with discontinuous Galerkin methods for
hyperbolic conservation laws, Applied Numerical Mathematics 48 (34) (2004) 323 – 338.

[38] N. Kroll, H. Bieler, H. Deconinck, V. Couallier, H. van der Ven, K. Sorensen (eds.), ADIGMA A European Initiative on the Development
of Adaptive Higher-Order Variational Methods for Aerospace Applications, vol. 113 of Notes on Numerical Fluid Mechanics and Multidis-
ciplinary Design, Springer Verlag, 2010.
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