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Abstract

We deal with the numerical solution of the non-stationary compressible Navier-Stokes equations with the
aid of the backward difference formula – discontinuous Galerkin finite element (BDF-DGFE) method. This
scheme is sufficiently stable, efficient and accurate with respect to the space as well as time coordinates.
The nonlinear algebraic systems arising from the BDF-DGFE discretization are solved by an iterative
Newton-like method. The main benefit of this paper are residual error estimates which are able to identify
the computational errors following from the space and time discretizations and from the inexact solution
of the nonlinear algebraic systems. Thus we propose an efficient algorithm where the algebraic, spatial and
temporal errors are balanced. The computational performance of the proposed method is demonstrated
by a list of numerical experiments.

Keywords: discontinuous Galerkin finite element method; compressible Navier-Stokes equations; nonlin-
ear algebraic problems; residual error estimates

1 Introduction

Our aim is to develop a numerical scheme for the simulation of steady as well as unsteady viscous compress-
ible flows, which is sufficiently efficient and accurate for a wide range of flow regimes. The discontinuous
Galerkin finite element (DGFE) methods have become a very popular numerical technique for the solution
of the compressible Navier-Stokes equations. DGFE space discretization uses a (higher order) piecewise
polynomial discontinuous approximation on arbitrary meshes. DGFE methods were employed in many
papers for the discretization of compressible fluid flow problems, let us cite the pioneering works [7, 8, 38, 9]
and some recent papers [48, 34, 24, 6, 28, 12, 23] and the references cited therein. Recent progress of the
use of the DGFE method for compressible flow simulations can be found in [35].

The space DGFE discretization leads to a system of stiff ordinary differential equations (ODEs) which
should be solved by a suitable ODEs solver. Due to the stiffness of the ODEs, the implicit time discretiza-
tions are more efficient than the explicit ones. However, implicit schemes lead to the necessity to solve
a nonlinear system of algebraic equations at each time level. These nonlinear systems are usually solved
by the Newton method, which requires an evaluation of the Jacobi matrix, see [8, 32]. In [17, 22], we
developed the semi-implicit method which is based on a formal linearization of the inviscid and viscous
fluxes. Then we solved only a linear algebraic system at each time level. Although the semi-implicit
method yields satisfactory results, the choice of the time step was a little problematic. In some situations,
it should be chosen carefully in order to avoid a failure of the computational process.

In order to guarantee an accuracy with respect to the time, a high order time discretization approach
should be employed. Among several possible main approaches, we prefer the backward difference formula
(BDF) methods since they have lower computational costs (in comparison to the implicit Runge-Kutta
methods and the time discontinuous Galerkin discretization). The size of the resulting nonlinear algebraic
systems does not depend on the order of the BDF method.
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2 Dedicated to Professor Miloslav Feistauer on the occasion of his 70th birthday.

1



Residual error estimates for a high order BDF-DGFEM 2

In this paper, we develop a fully implicit n-step backward difference formula – discontinuous Galerkin
finite element (BDF-DGFE) method for the solution of the Navier-Stokes equations. The nonlinear alge-
braic systems are solved by an inexact Newton-time method where the Jacobi matrix is replaced by the
“flux-matrix” arising in the semi-implicit scheme in [22]. The resulting scheme is practically uncondition-
ally stable, it has a high order of accuracy with respect to space as well as time coordinates and it has
low computational costs.

However, in order to achieve the accuracy as well as the efficiency of the numerical method, an ultimate
goal is an estimate of the computational error (= difference between the exact and the approximate
solution). This is a complex problem since the numerical solution is influenced by three types of errors:

• space (or spatial) error resulting from the space semi-discretization of the Navier-Stokes equations
by the DGFE method when the exact solution is approximated piecewise polynomially,

• time (or temporal) error resulting from the solution of the resulting ODEs system with the aid of
the BDF scheme,

• algebraic error (including rounding errors) resulting from the inexact solution of the corresponding
nonlinear algebraic systems at each time step.

It is clear that in order to ensure the accuracy as well as the efficiency of the numerical method, these
errors should be balanced.

There exist several theoretical papers dealing with a posteriori error estimates for model nonlinear
time-dependent problems, let us mention [1, 37, 41, 46, 45, 19] and the references therein. For the linear
time-dependent problems, the list of citations is much longer, see, e.g., [49] for a review. Concerning the
compressible flow problem, a rigorous a posteriori numerical analysis is open. There exist only few papers
dealing with error estimates for the compressible flow problems. Let us mention [33] using the so-called
goal-oriented a posteriori error estimation for stationary compressible Navier-Stokes equations based on
the approach [10], see also [29]. A similar idea was developed in [4] for the space-time discontinuous
Galerkin method applied to the Navier-Stokes equations.

The difference between the exact and the approximate solutions is usually estimated by an error
estimator reflecting the space as well as the time discretizations. Moreover, this estimator is split into its
spatial and temporal parts which reflect the space and time discretization separately (in some sense).

The approach presented in this paper is different. The spatial error is considered as a difference between
the approximate (=space-time discrete) solution and the time semi-discrete solution (which is formally
exact with respect to the space). Similarly, the temporal error is considered as a difference between
the approximate solution and the space semi-discrete solution (which is formally exact with respect to
the time). Thereafter, we derive (rather heuristic) residual error estimators which are able to identify
the space, time and algebraic errors. These estimates are based on an approximation of the errors in a
dual norm similarly as in [18] where we dealt with steady nonlinear convection-diffusion problems. This
approach is very fast and simple to implement since neither an additional problem is solved nor a finite
element reconstruction is constructed.

The aim of this paper is to develop an algorithm which gives the numerical solution with the smallest
possible computational error in the shortest possible computational time for the given mesh, the given degree
of polynomial approximation in space and the given order of BDF. Therefore, based on the mentioned
residual error estimators, we define an algorithm which gives a numerical solution where the time and
algebraic errors do not essentially contribute to the total computational error, the time partition is not
too fine and the nonlinear algebraic systems are not over-solved.

The content of the rest of the paper is the following. In Sections 2 and 3, we recall the system of
the compressible Navier-Stokes equations and its discretization by the BDF-DGFE method from [17],
respectively. In Section 4, we introduce the efficient solution strategy of the arising nonlinear algebraic
systems. Moreover, Section 5 contains the derivation of the space, time and algebraic residual error
estimates and the definition of the final algorithm. Section 6 contains a set of numerical experiments
demonstrating the efficiency, accuracy and robustness of the proposed strategy. Concluding remarks are
given in Section 7.

2 Compressible flow problem

Let Ω ⊂ R
2 be a bounded domain with a piecewise polynomial Lipschitz boundary and T > 0. We

set QT = Ω × (0, T ) and by ∂Ω denote the boundary of Ω which consists of several disjoint parts. We
distinguish inlet ∂Ωi, outlet ∂Ωo and impermeable walls ∂ΩW , i.e. ∂Ω = ∂Ωi ∪ ∂Ωo ∪ ∂ΩW . The system
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of the Navier-Stokes equations describing the motion of a non-stationary viscous compressible flow can be
written in the dimensionless form

∂w

∂t
+

2
∑

i=1

∂f i(w)

∂xi
=

2
∑

i=1

∂

∂xi

(

2
∑

j=1

Ki,j(w)
∂w

∂xj

)

in QT , (1)

where w = w(x, t) : QT → R
4, w = (ρ, ρv1, ρv2, e)

T is the unknown state vector (ρ is the density,
v = (v1, v2) is the vector of velocity and e is the energy), f i : R

4 → R
4, i = 1, 2, represents the inviscid

fluxes and Ki,j : R4 → R
4×4, i, j = 1, 2 are matrices defining the viscous terms. The forms of vectors

f i, i = 1, 2, and matrices Ki,j , i = 1, 2, can be found, e.g., in [17] or [25, Section 4.3]. We consider the
Newtonian type of fluid accompanied by the state equation of a perfect gas and the definition of total
energy.

The system (1) is of hyperbolic-parabolic type and it is equipped with the initial condition w(x, 0) =
w0(x), x ∈ Ω and suitable boundary conditions. On the inlet and outlet, we prescribe Dirichlet boundary
conditions for some of the flow variables, while Neumann conditions are used for the remaining variables,
see e.g., in [17, 23, 25, 26]. On the impermeable walls, we set

v = 0, ∂θ/∂n = 0 on ∂ΩW , (2)

where v is the velocity vector and ∂θ/∂n denotes the normal derivative of the temperature, for details,
see [16, 17].

Let us mention that the Euler fluxes f i, i = 1, 2, satisfy (see [25, Lemma 3.1]) f i(w) = Ai(w)w,

i = 1, 2, where Ai(w) =
Df i(w)

Dw , i = 1, 2, are the Jacobi matrices of f i. Moreover, we define the matrix

P (w,n) =

2
∑

i=1

Ai(w)ni, (3)

where n = (n1, n2) ∈ R
2, |n|2 = n2

1 + n2
2 = 1, which plays a role in the definition of the numerical flux.

Finally, if w is the state vector satisfying the wall boundary condition (2), then

2
∑

j=1

Ki,j(w)
∂w

∂xj

∣

∣

∣

∣

∣

∂ΩW

= (0, ti,1, ti,2, 0)
T =:

2
∑

j=1

K
W
i,j(w)

∂w

∂xj

∣

∣

∣

∣

∣

∂ΩW

, i = 1, 2, (4)

where ti,j are the components of the stress tensor and KW
i,j , i, j = 1, 2 are matrices which have the first

and the last rows equal to zeros and the other rows are identical with the rows of Ki,j , i, j = 1, 2.
In the case of inviscid flow (i.e., Ki,j = 0, i, j = 1, 2), we obtain the reduced problem of the Euler

equations. Thus the boundary conditions should be replaced by the appropriate “inviscid conditions”
which are chosen in such a way that the system of the Euler equations is linearly well-posed. The
boundary condition (2) is replaced by v ·n = 0 where n is a unit outer derivative to ∂Ω. For more details
see, e.g., [25, Section 3.3.6].

3 BDF-DGFE method for the Navier-Stokes equations

In this section, we recall the backward difference formula – discontinuous Galerkin finite element (BDF-
DGFE) method for the solution of the Navier-Stokes equations (1) presented in [17]. However, in contrast
to [17], we employ the treatment of the boundary conditions from [23] which has better convergence
properties. Moreover, in contrast to [17, 23], we do not employ the semi-implicit time discretization but
the fully implicit one.

We use the standard notation for function spaces with usual norms and semi-norms (see, e. g., [36],
[40]): L2(M) denotes the Lebesgue space of square integrable functions over a setM , Hk(M), k = 0, 1, . . .
are the Sobolev spaces of functions with square integrable weak derivatives of order k over M . The bolted
symbols Hk(M), k = 0, 1, . . . denote Sobolev spaces of vector-values functions fromM to R

4. By (·, ·)0,M
we denote the L2-scalar product over M .

Furthermore, L2(I;X) (H1(I;X)) is the Bochner space of functions square integrable (square inte-
grable first time derivative) over an interval I ⊂ R with values in a Banach spaceX and C(I;X) (C1(I;X))
is the space of continuous (continuously differentiable) mappings of an interval I ⊂ R into X.
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3.1 Triangulations

Let Th (h > 0) be a partition of the closure Ω of the domain Ω into a finite number of closed two-
dimensional elements K with mutually disjoint interiors. Moreover, let FK : K̂ → R

2 be a polynomial
mapping such that FK(K̂) = K where K̂ = {(x̂1, x̂2); x̂i ≥ 0, i = 1, 2, x̂1 + x̂2 ≤ 1} is the reference
triangle. If K ∩ ∂Ω = ∅ or K ∩ ∂Ω is a straight line then FK is an affine mapping and K is a triangle.
Otherwise, FK is a polynomial mapping giving an approximation of the segment K ∩ ∂Ω and hence K is
a curved triangle. For simplicity, we do not distinguish between Ω and Ωh := ∪K∈Th

K and simply write
Ω. We call Th = {K}K∈Th

a triangulation of Ω.
By Fh we denote the set of all open (one-dimensional) edges of all elements K ∈ Th. Further, the

symbol F
I
h stands for the set of all Γ ∈ Fh that are contained in Ω (inner faces). Moreover, we define

F
W
h , F

i
h and F

o
h as the sets of all Γ ∈ Fh such that Γ ⊂ ∂ΩW , Γ ⊂ ∂Ωi and Γ ⊂ ∂Ωo, respectively.

In order to simplify the notation, we set F
io
h = F

i
h ∪F

o
h and F

B
h = F

W
h ∪F

i
h ∪F

o
h . Finally, for each

Γ ∈ Fh we define a unit normal vector nΓ. We assume that for Γ ∈ F
B
h the vector nΓ has the same

orientation as the outer normal of ∂Ω. For each Γ ∈ F
I
h , the orientation of nΓ is arbitrary but fixed.

3.2 Discontinuous finite element spaces

Let Th be the triangulation then we define the so-called broken Sobolev spaces

H2(Th) := {v : Ω→ R; v|K ∈ H
2(K) ∀K ∈ Th} and HHH2(Th) := [H2(Th)]

4 (5)

of scalar and vector-valued functions, respectively, with the standard norm and seminorm satisfying

‖v‖2H2(Th)
=
∑

K∈Th

‖v‖2H2(K), |v|2H2(Th)
=
∑

K∈Th

|v|2H2(K), v ∈ H2(Th), (6)

‖v‖2H2(Th)
=
∑

K∈Th

‖v‖2
H2

(K)
, |v|2H2(Th)

=
∑

K∈Th

|v|2
H2

(K)
, v ∈HHH2(Th).

The discontinuous Galerkin finite element (DGFE) solution of (1) is sought in a finite dimensional
subspace of HHH2(Th) which consists of piecewise polynomial functions. The DGFE method allows the use
of different polynomial degrees over elements but for simplicity we consider here the fixed degree p of
polynomial approximation for all K ∈ Th. Over the triangulation Th we define the finite dimensional
space of discontinuous piecewise polynomial functions associated with p by

Sp
h = {v; v ∈ L2(Ω), v|K ◦ FK ∈ Pp(K̂) ∀K ∈ Th}, (7)

where Pp(K̂) denotes the space of all polynomials on K̂ of degree ≤ p.We seek the approximate solution
in the space of vector-valued functions SSSp

h = [Sp
h]

4, whose dimension is Nh = 2#Th(p + 1)(p + 2), where
#Th is the number of elements of Th. Obviously, Sp

h ⊂ H2(Th) and SSS
p
h ⊂HHH2(Th).

For each Γ ∈ F
I
h there exist two elements K(+),K(−) ∈ Th such that Γ ⊂ K(+) ∩ K(−). We use

the convention that K(−) lies in the direction of nΓ and K(+) in the opposite direction of nΓ. Then for
v ∈ H2(Th), we introduce the notation: v|(+)

Γ is the trace of v|K(+) on Γ, v|(−)
Γ is the trace of v|K(−) on

Γ, 〈v〉Γ :=
(

v|(+)
Γ + v|(−)

Γ

)

/2 is the mean value of v on Γ and [[v]]Γ := v|(+)
Γ − v|(−)

Γ is the jump of v on

Γ. Similarly, we define the jumps and the mean values for vector-valued functions. In case that nΓ, [[·]]Γ
and 〈·〉Γ are arguments of

∫

Γ
. . . dS, Γ ∈ Fh we omit the subscript Γ and write simply n, [[·]] and 〈·〉,

respectively. Finally, for Γ ∈ F
B
h we denote by v|(+)

Γ the trace of v|K(+) on Γ, where K(+) ∈ Th such that
Γ ⊂ K(+) ∩ ∂Ω.

3.3 Discretization forms

In this section we recall the definitions of forms arising from the interior penalty Galerkin (IPG) discretiza-
tion of the Navier-Stokes equations (1). Their derivation can be found, e.g., in [16, 17, 32].
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3.3.1 Inviscid terms

For wh,ϕϕϕh ∈HHH
2(Th), we define the form

bh(wh,ϕϕϕh) :=
∑

Γ∈Fh

∫

Γ

(

P
+ (〈wh〉 ,n)wh|

(+)
Γ + P

− (〈wh〉 ,n)wh|
(−)
Γ

)

· [[ϕϕϕh]] dS

−
∑

K∈Th

∫

K

2
∑

i=1

Ai(wh)wh ·
∂ϕϕϕh

∂xi
dx, (8)

where P± are the positive and negative parts of the matrix P given by (3) which define the Vijayasundaram
numerical flux [47] used for the approximation of inviscid fluxes through Γ ∈ Fh. For Γ ∈ F

B
h , we have

to specify the meaning of wh|
(−)
Γ . For Γ ∈ F

W
h , we set

wh|
(−)
Γ :=M

(

wh|
(+)
Γ

)

, (9)

where M : R4 → R
4 is the “mirror operator” defined on Γ ∈ ∂ΩW such that

w = (ρ,v, e)T ⇒

{

M(w) = (ρ, ρv − 2ρ(v · n)n, e)T for inviscid flow,
M(w) = (ρ,−ρv, e)T for viscous flow,

(10)

where n is the unit outer normal to ∂ΩW . Therefore, for inviscid flow, the normal components of the
velocities of w and M(w) have the same magnitude and the opposite direction. For viscous flow, the ve-
locities of w andM(w) have the same magnitude and the opposite directions. The remaining components
of w and M(w) (density, energy and tangential component of the velocity) are the same.

Finally, for Γ ∈ F
io
h , we set

wh|
(−)
Γ := LRP (wh|

(+)
Γ ,wD,nΓ), Γ ∈ F

io
h , (11)

where LRP (·, ·, ·) represents the solution of the local Riemann problem considered on edge Γ ∈ F
io
h and

wD is a given state vector (e.g. from far-field boundary conditions), see [21]. For more details, we refer
to [22] or [23].

3.3.2 Viscous terms

In [17], we presented and studied three variants of the DGFE discretization with interior penalty, namely
SIPG, NIPG and IIPG. Based on our computational experiences, we prefer the IIPG (incomplete interior
penalty Galerkin variant) namely due to its easier formulation. Then, for wh,ϕϕϕh ∈HHH

2(Th), we define the
form

ah(wh,ϕϕϕh) :=
∑

K∈Th

∫

K

2
∑

i,j=1

(

Ki,j(wh)
∂wh

∂xj

)

·
∂ϕϕϕh

∂xi
dx (12)

−
∑

Γ∈FI
h

∫

Γ

2
∑

i=1

〈

2
∑

j=1

Ki,j(wh)
∂wh

∂xj

〉

ni · [[ϕϕϕh]] dS

−
∑

Γ∈Fio
h

∫

Γ

2
∑

i,j=1

Ki,j(wh|
(+)
Γ )

∂wh

∂xj
ni ·ϕϕϕh dS

−
∑

Γ∈FW
h

∫

Γ

2
∑

i,j=1

K
W
i,j(wh|

(+)
Γ )

∂wh

∂xj
ni ·ϕϕϕh dS

where KW
i,j , i, j = 1, 2 are defined by (4).

3.3.3 Interior and boundary penalties

For wh,ϕϕϕh ∈HHH
2(Th), we define the form

J
σ
h(wh,ϕϕϕh) =

∑

Γ∈FI
h

∫

Γ

σ[[wh]] · [[ϕϕϕh]] dS +
∑

Γ∈Fio
h

∫

Γ

σ(wh − B(wh)) ·ϕϕϕh dS

+
∑

Γ∈FW
h

∫

Γ

σ(wh − B(wh)) · V(ϕϕϕh) dS, (13)
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where B(·) : R4 → R
4 is the operator of the boundary condition given by

B(wh) := (ρ|Γ, 0, 0, ρ|ΓcV θ|Γ) for Γ ∈ F
W
h , (14)

B(wh) := LRP (wh|
(+)
Γ ,wD,nΓ) for Γ ∈ F

io
h , (15)

where cV is the specific heat at constant volume and LRP is given by (11). Moreover, the operator
V : R4 → R

4 is given by V(ϕϕϕ) = (0, ϕ2, ϕ3, 0) for ϕϕϕ = (ϕ1, ϕ2, ϕ3, ϕ4). The role of V is to penalize only the
components of w, for which the Dirichlet boundary conditions are prescribed on fixed walls. Moreover,
the penalty parameter σ is chosen by

σ|Γ = CW p2/(diam(Γ)Re) , Γ ∈ Fh, (16)

where Re is the Reynolds number of the flow, p is the degree of the polynomial approximation and CW > 0
is a suitable constant which guarantees the convergence of the method. In numerical experiments presented
here, we set CW = 10. For inviscid flows, we set σ|Γ = 0, Γ ∈ Fh.

3.4 Space semi-discretization

In order to simplify the notation, for wh, ϕϕϕh ∈HHH
2(Th), we set

ch (wh,ϕϕϕh) := ah (wh,ϕϕϕh) + bh (wh,ϕϕϕh) + J
σ
h (wh,ϕϕϕh) . (17)

Due to the consistency of the DGFE method, we find that if w ∈ C1((0, T );HHH2(Ω)) is the regular
solution of the Navier-Stokes equations (1) with the corresponding initial and boundary conditions, then

(

∂w(x, t)

∂t
,ϕϕϕ(x)

)

0,Ω

+ ch (w(x, t), ϕϕϕ(x)) = 0 ∀ϕϕϕ ∈HHH2(Th) ∀t ∈ (0, T ). (18)

Now, we introduce the space semi-discretization of (1). Let C1([0, T ];SSSp
h) denote the space of contin-

uously differentiable mappings of the interval [0, T ] into SSSp
h.

Definition 3.1. A function wh ∈ C
1([0, T ];SSSp

h) is called the space semi-discrete solution of (1), if
(

∂wh(t)

∂t
,ϕϕϕh

)

0,Ω

+ ch(wh(t),ϕϕϕh) = 0 ∀ϕϕϕh ∈ SSS
p
h ∀ t ∈ (0, T ), (19a)

wh(0) = w
0
h, (19b)

where w0
h ∈ SSS

p
h denotes the L2-projection of the initial condition w0 in SSSp

h.

The problem (19) represents a system of ordinary differential equations (ODEs) for wh(t), which has to
be discretized in time by a suitable method. Since this system is stiff, it is advantageous to use an implicit
time discretization. In order to obtain a sufficiently stable and accurate approximation with respect to
the time coordinate, we use the backward difference formula (BDF), see, e.g., [30], for the solution the
ODE problem (19).

3.5 Full space-time discretization

In order to finalise the discretization of (1), we introduce a partition of the time interval (0, T ) with
0 = t0 < t1 < t2 < · · · < tr = T . The subscript r denotes the number of time steps necessary to achieve
final time T . Obviously, r depends on the size of the time steps τk := tk − tk−1, k = 1, . . . , r and since we
use an adaptive choice of the time step, its value is not a priori known. In the following we do not denote the
explicit dependence of r on the computational parameters. Moreover, we set Ik := (tk−1, tk), k = 1, . . . , r
and Iτ := {Ik}

r
k=1. Let w

k
h ∈ SSS

p
h denote a piecewise polynomial approximation of wh(tk), k = 0, 1, . . . , r.

We define the following scheme.

Definition 3.2. The approximate solution of (1) by the implicit n-step BDF-DGFE method is defined
as functions wk

h ∈ SSS
p
h, k = 0, . . . , r, satisfying the conditions

1

τk

(

n
∑

l=0

αn,lw
k−l
h ,ϕϕϕh

)

0,Ω

+ ch

(

w
k
h,ϕϕϕh

)

= 0 ∀ϕϕϕh ∈ SSS
p
h, k = n, . . . , r, (20a)

w
0
h is the L2-projection of the initial condition w

0 in SSSp
h, (20b)

w
l
h ∈ SSS

p
h, l = 1, . . . , n− 1 are given by a suitable “less-step” method, (20c)
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constant time step variable time step
n = 1 n = 2 n = 3 n = 1 n = 2 n = 3

αn,0 1 3
2

11
6 1 2 θk+1

θk+1
θkθk−1

θkθk−1+θk−1+1 + 2θk+1
θk+1

αn,1 −1 −2 −3 −1 −(θk + 1) − (θk+1)(θkθk−1+θk−1+1)
θk−1+1

αn,2
1
2

3
2

θ2
k

θk+1
θ2
k(θkθk−1+θk−1+1)

θk+1

αn,3 − 1
3 −

(θk+1)θ2
kθ

3
k−1

(θk−1+1)(θkθk−1+θk−1+1)

Tab. 1: Values of αn,l, l = 0, . . . , n for n = 2, 3, θk := τk/τk−1, k = 1, 2, . . . , r.

where n ≥ 1 is the degree of the BDF scheme and the BDF coefficients αn,l, l = 0, . . . , n depend on time
steps τk−l, l = 0, . . . , n.

The n-step BDF-DGFE method (shortly n-BDF-DGFE method) has formally the order of convergence
O(hp + τn) in the L2(0, T ;H1(Ω))-norm. For n = 1 and n = 2 these methods are unconditionally stable,
and for increasing n they lose more and more stability, for n > 7 these methods are definitely unstable,
see [30, Section III.5]. In practice, we employ the n-BDF-DGFE scheme for n = 1, 2, 3, the values of the
corresponding coefficients αn,l, l = 0, . . . , n, n = 1, 2, 3 are given in Table 1 for a constant and a variable
time steps.

The problem (20) represents a nonlinear algebraic system for each k = 1, . . . , r which should be solved
by a suitable solver, see Section 4.

Remark 3.3. In practice, we realise relation (20c) in such a way, that for l = 1, . . . , n − 1 we employ
the l-step BDF-DGFE scheme, i.e., the one step BDF (= backward Euler) at first time step, the two steps
BDF at second time step, etc. For simplicity, we formally replace (20a) and (20c) by

1

τk

(

n
∑

l=0

αn,lw
k−l
h ,ϕϕϕh

)

0,Ω

+ ch

(

w
k
h,ϕϕϕh

)

= 0 ∀ϕϕϕh ∈ SSS
p
h, k = 1, . . . , r, (21)

and we do not emphasise this fact in the following.

4 Solution strategy

In this section, we develop a solution strategy of the nonlinear algebraic systems (20).

4.1 Algebraic representation

Let Nh denote the dimension of the piecewise polynomial space SSSp
h and Bh := {ϕϕϕi(x)}

Nh
i=1 denote a set of

linearly independent functions forming a basis of SSSp
h. It is possible to construct a basis Bh as a composition

of local bases constructed separately for each K ∈ Th and each component of the vector-values functions.
We construct the (almost) L2-orthonormal basis B̂ of polynomials of degree ≤ p on the reference triangle
K̂ by the Gram-Schmidt orthogonalization process applied to the set of monomials of degree ≤ p on K̂.
Finally, with the aid of the mappings FK , K ∈ Th, we define the local basis for each K ∈ Th. Obviously,
if FK is linear, then the L2-orthogonality is preserved. Otherwise, the orthogonality is violated but it does
not cause any problems in practical applications since the a curved face K ∩ ∂Ω is close to a straight one
and hence the corresponding mapping FK is close to a linear one. More details can be found in [23].

Let wk
h ∈ SSS

p
h be a piecewise polynomial function. It can be expressed as

w
k
h(x) =

Nh
∑

j=1

ξk,jϕϕϕj(x) ∈ SSS
p
h ←→ ξk := {ξk,j}Nhj=1 ∈ R

Nh , k = 1, . . . , r, (22)
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where ξk,j ∈ R, j = 1, . . . , Nh, k = 1, . . . , r are the basis coefficients. Obviously, (22) defines an isomor-
phism between wk

h ∈ SSS
p
h and ξk ∈ R

Nh .
In order to rewrite the nonlinear algebraic systems (21), we define the vector-valued function F h :

[RNh ]n × R
Nh → R

Nh by

F h

({

ξk−l

}n

l=1
; ξk

)

:=

{

1

τk

(

n
∑

l=0

αn,lw
k−l
h ,ϕϕϕi

)

+ ch(w
k
h,ϕϕϕi)

}Nh

i=1

, k = 1, . . . , r, (23)

where ξk−l ∈ R
Nh is the algebraic representation of wk−l

h ∈ SSSp
h for l = 1, . . . , n. We do not emphasise

that F h depends explicitly on τk. Therefore, the algebraic representation of the systems (21) reads: for
the given vectors ξk−1, ξk−2, . . . , ξk−n ∈ R

Nh

find ξk ∈ R
Nh such that F h(

{

ξk−l

}n

l=1
; ξk) = 0, k = 1, . . . , r. (24)

The system (24) is strongly nonlinear and we solve it by a Newton-like iterative method where the
Jacobi matrix in the Newton method is replaced by the so-called flux matrix developed in the context of
the semi-implicit DGFE method in [17, 22, 23].

4.2 Flux matrix

In virtue of (8), (12), (13) and (17), for w̄h,wh,ϕϕϕh ∈HHH
2(Th), we define the form cLh :HHH2(Th)×HHH

2(Th)×
HHH2(Th)→ R by

c
L
h (w̄h,wh,ϕϕϕh) (25)

:=
∑

Γ∈Fh

∫

Γ

P
+ (〈w̄h〉 ,n)wh|

(+)
Γ · [[ϕϕϕh]] dS +

∑

Γ∈Fh\Fio
h

∫

Γ

P
− (〈w̄h〉 ,n)wh|

(−)
Γ · [[ϕϕϕh]] dS

−
∑

K∈Th

∫

K

2
∑

i=1

Ai(w̄h)wh ·
∂ϕϕϕh

∂xi
dx+

∑

K∈Th

∫

K

2
∑

i,j=1

(

Ki,j(w̄h)
∂wh

∂xj

)

·
∂ϕϕϕh

∂xi
dx

−
∑

Γ∈FI
h

∫

Γ

2
∑

i=1

〈

2
∑

j=1

Ki,j(w̄h)
∂wh

∂xj

〉

ni · [[ϕϕϕh]] dS

−
∑

Γ∈Fio
h

∫

Γ

2
∑

i=1

2
∑

j=1

Ki,j(w̄h|
(+)
Γ )

∂wh

∂xj
ni · [[ϕϕϕh]] dS

−
∑

Γ∈FW
h

∫

Γ

2
∑

i,j=1

K
W
i,j(w̄h|

(+)
Γ )

∂wh

∂xj
ni ·ϕϕϕh dS

+
∑

Γ∈FI
h

∫

Γ

σ[[wh]] · [[ϕϕϕh]] dS +
∑

Γ∈Fio
h

∫

Γ

σwh ·ϕϕϕh dS +
∑

Γ∈FW
h

∫

Γ

σwh · V(ϕϕϕh) dS

and the form dh :HHH2(Th)×HHH
2(Th)→ R by

dh(w̄h,ϕϕϕh) :=−
∑

Γ∈Fio
h

∫

Γ

P
− (〈w̄h〉 ,n) w̄h|

(−)
Γ · [[ϕϕϕh]] dS (26)

+
∑

Γ∈Fio
h

∫

Γ

σB(w̄h) ·ϕϕϕh dS +
∑

Γ∈FW
h

∫

Γ

σB(w̄h) · V(ϕϕϕh) dS.

Obviously, due to relations (8), (12), (13), (17) and (25) – (26), we have the consistency between forms
ch and cLh , namely

ch(wh,ϕϕϕh) = c
L
h (wh,wh,ϕϕϕh)− dh(wh,ϕϕϕh) ∀wh,ϕϕϕh ∈HHH

2(Th). (27)

Furthermore, the form cLh is linear with respect to its second and third arguments.
Using the notation from Section 4.1, we define the Nh ×Nh flux matrix

Ch

(

ξ̄
)

:=

{

αn,0

τk
(ϕϕϕj ,ϕϕϕi)0,Ω + c

L
h (w̄h,ϕϕϕj ,ϕϕϕi)

}Nh

i,j=1

(28)
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and the vector

qh

({

ξk−l

}n

l=1
, ξ̄
)

:=







−
1

τk

(

n
∑

i=1

αn,iw
k−l
h ,ϕϕϕi

)

0,Ω

+ dh(w̄h,ϕϕϕi)







Nh

i=1

, (29)

where ϕϕϕi ∈ Bh, i = 1, . . . , Nh are the basis functions, ξ̄ ∈ R
Nh and ξk−l ∈ R

Nh , l = 1, . . . , n are the

algebraic representation of w̄h ∈ SSS
p
h and wk−l

h ∈ SSSp
h, l = 1, . . . , n, respectively. We do not emphasise that

Ch and qh depend explicitly on τk. Finally, using (23) and (27) – (29), we have

F h(
{

ξk−l

}n

l=1
; ξk) = Ch(ξk)ξk − qh(

{

ξk−l

}n

l=1
, ξk), k = 1, . . . , r. (30)

Let us note that the flux matrix Ch has a block structure and it is sparse. In virtue of (25), we easily
find that each block-row of Ch corresponds to one K ∈ Th and it contains a diagonal block and several
off-diagonal blocks. Each off-diagonal block corresponds to one face Γ ∈ Fh. Obviously, the sparsity of
Ch is identical to the sparsity of the Jacobi matrix DF h(

{

ξk−l

}n

l=1
; ξ)/Dξ. Therefore, in the following

Newton-like method, we use Ch as the approximation of DF h(
{

ξk−l

}n

l=1
; ξ)/Dξ in the definition of our

iterative Newton-like method. This approximation follows from relation (30), when we fix the arguments
of Ch and qh and perform the differentiation with respect to ξk.

Remark 4.1. Let us mention computational costs of the evaluation of F h and Ch. For simplicity,
let us consider conforming triangular grids. Then F h has Nh = #Th(p + 1)(p + 1)/2 entries and Ch

has approximately 4#Th((p + 1)(p + 1)/2)2 non-vanishing entries. Therefore, an evaluation of F h is
approximately 2(p+ 1)(p+ 2)-times cheaper than an evaluation of Ch.

4.3 Iterative algorithm

In the following, we do not emphasise the dependence of F h on ξk−l, l = 1, . . . , n, hence we set F h(ξ) :=
F h(

{

ξk−l

}n

l=1
; ξ). In order to determine solution ξk of the system (24), we employ a damped Newton-like

method [15] which generates a sequence of approximations ξl
k, l = 0, 1, . . . to the actual numerical solution

ξk using the following algorithm. Given an iterate ξl
k, the update dl of ξl

k to get to the next iterate

ξ
l+1
k := ξ

l
k + λl

d
l (31)

is defined by: find dl ∈ R
Nh such that

Ch(ξ
l
k)d

l = −F h(ξ
l
k), (32)

where Ch is the flux matrix given by (30) and λl ∈ (0, 1] is a damping parameter which ensures convergence
of (31) – (32) in case when the initial guess ξ0

k is far from the solution of (24).

4.3.1 Choice of the damping parameter

We start from the value λl = 1 and evaluate a monitoring function δl :=
∥

∥F h(ξ
l+1
k )

∥

∥/
∥

∥F h(ξ
l
k)
∥

∥. If δl < 1

we proceed to the next Newton iteration. Otherwise, we set λl := λl/2 and repeat the actual Newton
iteration. Analysis of the convergence of the Newton method and the monitoring function can be found
in [15].

4.3.2 Update of the flux matrix

Obviously, it is not necessary to update the flux matrix Ch(ξ
l
k) at each Newton iteration l = 1, 2, . . .

and each time level k = 1, . . . , r. In virtue of Remark 4.1, it is much cheaper to evaluate F h than Ch.
Therefore, it is more efficient to perform more Newton iterations than to update Ch. In practice, we
update Ch, either the damping parameter λ achieves a minimal prescribed value (using the algorithm
described in Section 4.3.1) or the prescribed maximal number of Newton iteration was achieved.
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4.3.3 Termination of iterative process

The iterative process (31) – (32) is terminated if a suitable algebraic stopping criterion is achieved. The
standard approach is to set

∥

∥

∥
F h(ξ

l
k)
∥

∥

∥
≤ TOL, (33)

where ‖·‖ and TOL are a given norm and a given tolerance, respectively. However, it is difficult to choose
TOL in order to guarantee the accuracy and in order to avoid an over-solution of the algebraic system.
In Section 5.6, we present an algebraic stopping criterion following from the framework of residual error
estimators.

4.3.4 Solution of the linear algebraic systems

The linear algebraic systems (32) are solved by the GMRES method ([42]) with the block ILU(0) precon-
ditioner, its sparsity is the same as the sparsity of matrix C, see [23] for detail. The solution from the
previous Newton iteration is used as an initial condition for GMRES. In order not to oversolve the linear
systems, we usually perform only few GMRES iterations, particularly we stop this iterative solver when
the actual preconditioned residuum is two times smaller than the initial one. This criterion may seem to
be too weak, however, numerical experiments (not presented here) indicate that it is sufficient.

4.3.5 Choice of the time step

We still have to specify the choice of the time steps τk, k = 1, . . . , r in (20). Obviously, too large time steps
cause a decrease of accuracy and on the other hand, too small time steps lead to a decrease in efficiency.
Standard approaches (e.g., [30], [31]) estimate the local discretization error of the time discretization of
the ODE system (19). Then the size of the time step is chosen based on this estimate in such a way that
the local discretization error is under a given tolerance ω. We employed a similar approach in [20] for the
n-BDF-DGFE scheme. However, the tolerance ω should be given (empirically) by a user. Our aim is to
adapt the time step in such a way that the temporal error is controlled by the spatial one. In Section 5.6,
we present an adaptive time step algorithm following from the framework of residual error estimators.

5 Error estimates

In this section we present the main novelty of this paper. We have defined the BDF-DGFE solution of
the Navier-Stokes equations by (20), which was solved with the aid of the iterative algorithm (31) – (32).
The total computational error (= the difference between the (unknown) exact solution and approximate
solution resulting from (31) – (32)) depends on the following discretization parameters:

• space mesh Th,

• degrees of polynomial approximation p,

• size of time steps τk,

• degree of the BDF scheme n,

• an inexactness of the iterative solver represented by the violation of F h( · ; ξk) = 0 introduced in
(24).

Our goal is to identify the errors originating from the space discretization, from the time discretization
and algebraic errors resulting from the inaccurate solution of (24). Particularly, we want to determine a
stopping criterion for the iterative algorithm (31) – (32) and the strategy for adaptive choice of the time
step is such a way that

• the resulting approximate BDF-DGFE solution is not essentially influenced by the time discretiza-
tion and algebraic errors,

• the time partition Iτ is not too fine and the nonlinear algebraic systems are not over-solved.

5.1 Functional spaces

We define several functional spaces, which are the base for the identification of the total, space, time
and algebraic errors. Let Iτ be the time partition of (0, T ) introduced in Section 3.4 and let QKk :=
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K×Ik, K ∈ Th, Ik ∈ Iτ denote a space-time element. We define the broken space-time space over Th×Iτ
by

H1(Iτ ,HHH
2(Th)) :=

{

ψψψ : QT → R
4; ψψψ|QKk ∈ H

1(Ik;H
2(K)), K ∈ Th, Ik ∈ Iτ

}

, (34)

which consists of piecewise regular functions on space time elements QKk, K ∈ Th, Ik ∈ Iτ , which are
in general discontinuous between two neighbouring elements K,K′ ∈ Th and between two time intervals
Ik, Ik+1 ∈ Iτ .

Let SSSp
h be the space of vector-valued piecewise polynomial functions defined in Section 3.2 and let

P q(Iτ ) := {v : (0, T )→ R
4, v|Ik ∈ [P q(Ik)]

4, Ik ∈ Iτ}, where q ≥ 0 is an integer and P q(Ik) is the space
of vector-valued polynomials of order ≤ q on interval Ik, k = 1, . . . , r. Now, we define three subspaces of
H1(Iτ ,HHH

2(Th)), namely

H1(Iτ ;SSS
p
h) :=

{

ψψψ ∈ H1(Iτ ,HHH
2(Th)); ψψψ(·, t) ∈ SSS

p
h for a.e. t ∈ (0, T )

}

, (35a)

Sq
τ (Iτ ;HHH

2(Th)) :=
{

ψψψ ∈ H1(Iτ ,HHH
2(Th)); ψψψ(x, ·) ∈ P

q(Iτ ) for a.e. x ∈ Ω
}

, (35b)

Sq
τ (Iτ ;SSS

p
h) :=

{

ψψψ ∈ H1(Iτ ,HHH
2(Th)); ψψψ|QKk ∈ [P p(K)× P q(Ik)]

4, (35c)

K ∈ Th, Ik ∈ Iτ} ,

where P p(K) × P q(Ik) is the space of polynomials on QKk of the degree ≤ p with respect to x ∈ K
and the degree ≤ q with respect to t ∈ Ik for K ∈ Th and Ik ∈ Iτ . Therefore, all three spaces from
(35) are piecewise regular on space time elements QKk, K ∈ Th, Ik ∈ Iτ but generally discontinuous
on QT . Moreover, H1(Iτ ;SSS

p
h) consists of functions piecewise polynomial with respect to the space coor-

dinates, Sq
τ (Iτ ;HHH

2(Th)) consists of functions piecewise polynomial with respect to the time coordinate
and Sq

τ (Iτ ;SSS
p
h) consists of functions piecewise polynomial with respect to the space as well as the time

coordinates. Obviously, each function ψψψ from Sq
τ (Iτ ;HHH

2(Th)) on Ω× Ik can be expressed as

ψψψ|Ω×Ik =

q
∑

i=0

ϕϕϕk
i (x)φ

k
i (t), φk

i ∈ P
q(Ik), k = 0, 1, . . . , r, (36)

where ϕϕϕk
i (x) ∈ HHH2(Th) for i = 0, . . . , q, k = 0, 1, . . . , r. Similarly, each function ψψψ from Sq

τ (Iτ ;SSS
p
h) on

Ω× Ik can be expressed by (36) where ϕϕϕk
i (x) ∈ SSS

p
h for i = 0, . . . , q, k = 0, 1, . . . , r.

Finally, we define a subspace of Sq
τ (Iτ ;SSS

p
h) by

P q
τ (Iτ ;SSS

p
h) := C(0, T ;SSSp

h) ∩ S
q
τ (Iτ ;SSS

p
h), (37)

which consists of functions continuous with respect to time on (0, T ), generally discontinuous in space
and their restrictions on each space-time element QKk, K ∈ Th, k = 1, . . . , r are polynomial functions of
degree q and p with respect to time and space, respectively. Obviously, we have inclusions

P q
τ (Iτ ;SSS

p
h) ⊂ Sq

τ (Iτ ;SSS
p
h) ⊂ H1(Iτ ;SSS

p
h) ⊂ H1(Iτ ,HHH

2(Th)), (38)

C(0, T ;HHH2(Ω)) ⊂ Sq
τ (Iτ ;HHH

2(Th)) ⊂ H1(Iτ ,HHH
2(Th)).

Definition 5.1. Let {vl}rl=0 be a finite sequence of functions vl ∈HHH2(Th), l = 0, . . . , r. We identify this
sequence with a function v̄ ∈ S0

τ (Iτ ;HHH
2(Th)) (piecewise constant with respect to time) such that

v̄ ∈ S0
τ (Iτ ;HHH

2(Th)), v̄|Ω×Il := v
l, l = 1, . . . , r. (39)

For simplicity, we write v̄|Il := v̄|Ω×Il = vl, l = 1, . . . , r in the following. Similarly, we identify a
finite sequence of functions {vl

h}
r
l=0, vh ∈ SSSp

h, l = 0, . . . , r with v̄h ∈ S0
τ (Iτ ;SSS

p
h) by (39) and we write

v̄h|Il := v̄h|Ω×Il = vl
h, l = 1, . . . , r.

5.2 Reformulation of the (semi-)discretizations

In this section, we introduce a reformulation of the semi-discrete and discrete problems from Section 3.
We define the form Ahτ (z,ψψψ) : H

1(Iτ ,HHH
2(Th))×H

1(Iτ ,HHH
2(Th))→ R by

Ahτ (z,ψψψ) :=

∫ T

0

[

(

∂z

∂t
,ψψψ

)

0,Ω

+ ch (z, ψψψ)

]

dt, z,ψψψ ∈ H1(Iτ ,HHH
2(Th)), (40)

where ch is given by (17), and the forms Ak
hτ : S0

τ (Iτ ;HHH
2(Th))×HHH

2(Th)→ R, k = 1, . . . , r by

A
k
hτ (z̄,ϕϕϕ) :=

1

τk

(

n
∑

l=0

αn,lz̄|Ik−l ,ϕϕϕ

)

0,Ω

+ ch (z̄|Ik ,ϕϕϕ) , z̄ ∈ S0
τ (Iτ ;HHH

2(Th)), ϕϕϕ ∈HHH
2(Th), (41)
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where n ≥ 1 is the order of the BDF method, αn,l, l = 0, . . . , n are the corresponding BDF coefficients and
z̄|Il , l = 0, . . . , r has the meaning from Definition 5.1. Let us mention that each form Ak

hτ , k = 1, . . . , r
does not depend explicitly on z̄(t) for all t ∈ (0, T ) but only on z̄(t) for t ∈ Ik−n ∪ · · · ∪ Ik. The range of
t, on which Ak

hτ depends non-trivially, is given by the superscripts of Ak
hτ .

Finally, we define the form Ahτ : S0
τ (Iτ ;HHH

2(Th))× S
0
τ (Iτ ;HHH

2(Th))→ R by

Ahτ (z̄, ψ̄ψψ) :=
r
∑

k=1

τkA
k
hτ (z̄, ψ̄ψψ|Ik ), z̄, ψ̄ψψ ∈ S0

τ (Iτ ;HHH
2(Th)), (42)

where Ak
hτ , k = 1, . . . , r are given by (41).

Now, we are ready to proceed to the reformulation of the relation for the exact and (semi)discrete
solutions. Let w ∈ C1(0, T,HHH2(Ω)) formally denote the exact solution of the Navier-Stokes equations
(1) satisfying the corresponding initial and boundary conditions. We already mentioned that due to the
consistency of the DGFE method, w satisfies the identity (18). This together with (40) implies that the
exact solution w satisfies identity

Ahτ (w,ψψψ) = 0 ∀ψψψ ∈ H1(Iτ ,HHH
2(Th)). (43)

Moreover, let wl
h ∈ SSSp

h, l = 1, . . . , r be the approximate solution given by (20), we identify it with a
function w̄hτ ∈ S

0
τ (Iτ ;SSS

p
h) using (39). Then (21), (41) and (42) imply

A
k
hτ (w̄hτ ,ϕϕϕh) = 0 ∀ϕϕϕh ∈ SSS

p
h, k = 1, . . . , r =⇒ Ahτ (w̄hτ , ψ̄ψψh) = 0 ∀ψ̄ψψh ∈ S

0
τ (Iτ ;SSS

p
h). (44)

In Section 3.4, we derived the approximate solution wk
h ∈ SSS

p
h, k = 1, . . . , r from the space semi-discrete

solution wh ∈ C
1([0, T ];SSSp

h) satisfying (19a). Then, in virtue of (40), we have

Ahτ (wh,ψψψh) = 0 ∀ψψψh ∈ H
1(Iτ ;SSS

p
h). (45)

The approximate solution wk
h ∈ SSS

p
h, k = 1, . . . , r satisfying (20) can be alternatively derived by the

application of the BDF discretization to the weak formulation (18), which leads to a time semi-discrete
solution wk

τ ∈HHH
2(Th), k = 1, . . . , r satisfying

1

τk

(

n
∑

l=0

αn,lw
k−l
τ ,ϕϕϕ

)

0,Ω

+ ch

(

w
k
τ ,ϕϕϕ

)

= 0 ∀ϕϕϕ ∈HHH2(Th), k = 1, . . . , r, (46a)

w
0
τ is the L2-projection of the initial condition w

0 in HHH2(Th), (46b)

where n ≥ 1 is the degree of the BDF scheme and αn,l, l = 0, . . . , n are the BDF coefficients in the same way
as in Definition 3.2 and with the formalism given by Remark 3.3. Again, we identify the time semi-discrete
solution {wl

τ}
r
l=0 with a function w̄τ ∈ S

0
τ (Iτ ;HHH

2(Th)) with the aid of (39), i.e, w̄τ |Il = wl
τ , l = 0, . . . , r.

Then (46a), due to (41) and (42), can be written in the equivalent form

A
k
hτ (w̄τ ,ϕϕϕ) = 0 ∀ϕϕϕ ∈HHH2(Th), k = 1, . . . , r (47)

=⇒ Ahτ (w̄τ , ψ̄ψψ) = 0 ∀ψ̄ψψ ∈ S0
τ (Iτ ;HHH

2(Th)).

We summarise the “solutions” of the Navier-Stokes equations (1) introduced above:

• exact solution w ∈ C1(0, T ;HHH2(Ω)) satisfying (43),

• space semi-discrete solution wh ∈ C
1(0, T,SSSp

h) satisfying (45),

• time semi-discrete solution w̄τ ∈ S
0
τ (Iτ ;HHH

2(Th)) satisfying (47),

• approximate (or space-time discrete) solution w̄hτ ∈ S
0
τ (Iτ ;SSS

p
h) satisfying (44).

5.3 Error measures and error estimators

Let wk
h ∈ SSSp

h, k = 0, . . . , r be the approximate solution given by (20). With the aid of (39), we have
already introduced the function w̄hτ ∈ S

0
τ (Iτ ;SSS

p
h) which is piecewise constant on Ik ∈ Iτ with respect to

time. Moreover, we define a function whτ ∈ P
n
τ (Iτ ;SSS

p
h) (continuous and piecewise polynomials of degree

n in time) by

whτ (x, tk) = w
k
h(x), x ∈ Ω, k = 0, . . . , r, (48)

whτ (x, t)|Ω×Ik = L
n(wk+1

h ,wk
h, . . . ,w

k−n+1
k )|Ω×Ik ,
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where L
n is the Lagrangian interpolation of degree n in the space R×SSSp

h constructed over pairs

(tk−n+1,w
k−n+1
h ), (tk−n+2,w

k−n+2
h ), . . . , (tk,w

k
h), (tk+1,w

k+1
h ).

(The idea of piecewise polynomial reconstruction in time was developed and analysed in [39, 2] for
linear evolution problems). Therefore, both functions

w̄hτ ∈ S
0
τ (Iτ ;SSS

p
h) and whτ ∈ P

n
τ (Iτ ;SSS

p
h)

can be considered as the approximate solution of (1) given by (20).
Similarly as in, e.g., [3, 11, 13, 19], we employ an error measure in the dual norm in the following way.

Let V be a linear vector space with a norm ‖·‖V , (the space V does not need to be complete with respect
to ‖·‖V ) and let a(·, ·) : V × V → R be a form linear with respect to its second argument and let Vh be a
finite dimensional subspace of V . Moreover, let u ∈ V and uh ∈ Vh be an exact and approximate solution
of a fictitious problem defined by

a(u, ϕ) = 0 ∀ϕ ∈ V and a(uh, ϕh) = 0 ∀ϕh ∈ Vh, (49)

respectively. Then the error measure in the dual norm on the space V is given by

E(uh) := ‖Auh −Au‖V ′ := sup
ϕ∈V
ϕ6=0

a(uh, ϕ)− a(u, ϕ)

‖ϕ‖V
= sup

ϕ∈V
ϕ6=0

a(uh, ϕ)

‖ϕ‖V
, (50)

where A is the operator from V to its dual space corresponding to a(·, ·) given by 〈Au,ϕ〉 := a(u, ϕ), u, ϕ ∈
V , where 〈·, ·〉 denotes the duality between V and V ′. The last equality in (50) follows from (49).

Now, in virtue of (49) – (50), we introduce an error measure of the approximate solution, particularly
the space-time (total) error, the time error, the space error and the (nonlinear) algebraic error.

Space-time error is defined as the difference between the exact solution w and the approximate
(=space-time discrete) solution whτ in the dual norm of the space H1(Iτ ,HHH

2(Th)), namely

EST (whτ ) := sup
ψψψ∈H1(Iτ ,HHH

2(Th))

ψψψ 6=0

Ahτ (whτ ,ψψψ)−Ahτ (w,ψψψ)

‖ψψψ‖X
= sup

ψψψ∈H1(Iτ ,HHH
2(Th))

ψψψ 6=0

Ahτ (whτ ,ψψψ)

‖ψψψ‖X
, (51)

where ‖·‖X is a norm defined on H1(Iτ ,HHH
2(Th)) (and on all its subspaces of course) and it will be specified

later. The equality in (51) follows from (43).
Time error is defined as the difference between the space semi-discrete solution wh (which is formally

exact in time) and the approximate (= space-time discrete) solution whτ in the dual norm of the space
H1(Iτ ;SSS

p
h), namely

ET (whτ ) := sup
ψψψ∈H1(Iτ ;SSS

p
h
)

ψψψ 6=0

Ahτ (whτ ,ψψψ)−Ahτ (wh,ψψψ)

‖ψψψ‖X
= sup

ψψψ∈H1(Iτ ;SSS
p
h
)

ψψψ 6=0

Ahτ (whτ ,ψψψ)

‖ψψψ‖X
, (52)

where the equality follows from (45).
Space error is defined as the difference between the time semi-discrete solution w̄τ (which is formally

exact in space) and the approximate (= space-time discrete) solution w̄hτ in the dual norm of the space
S0
τ (Iτ ;HHH

2(Th)), namely

ES(w̄hτ ) := sup
ψ̄ψψ∈S0

τ (Iτ ;HHH2(Th))

ψ̄ψψ 6=0

Ahτ (w̄hτ , ψ̄ψψ)−Ahτ (w̄τ , ψ̄ψψ)
∥

∥ψ̄ψψ
∥

∥

X

= sup
ψ̄ψψ∈S0

τ (Iτ ;HHH2(Th))

ψ̄ψψ 6=0

Ahτ (w̄hτ , ψ̄ψψ)
∥

∥ψ̄ψψ
∥

∥

X

, (53)

where the equality follows from (47).
Algebraic error represents the inaccuracy of the solution of the discrete problem (21) ⇔ (44) due

to the iterative Newton-like method presented in Section 4.3. Let w̃k
h ∈ SSSp

h, k = 0, . . . , r correspond
to the output ξn

k of this iterative method through the isomorphism (22) and wk
h ∈ SSS

p
h, k = 0, . . . , r be

the approximate solution satisfying (exactly) (44). Let ¯̃whτ ∈ S0
τ (Iτ ;SSS

p
h) and w̄hτ ∈ S0

τ (Iτ ;SSS
p
h) be the

functions corresponding to {w̃k
h}

r
k=0 and {wk

h}
r
k=0 by (39), respectively. Then we set

EA( ¯̃whτ ) := sup
ψ̄ψψh∈S0

τ (Iτ ;SSS
p
h
)

ψ̄ψψ 6=0

Ahτ ( ¯̃whτ , ψ̄ψψh)−Ahτ (w̄hτ , ψ̄ψψh)
∥

∥ψ̄ψψh

∥

∥

X

= sup
ψ̄ψψh∈S0

τ (Iτ ;SSS
p
h
)

ψ̄ψψ 6=0

Ahτ ( ¯̃whτ , ψ̄ψψh)
∥

∥ψ̄ψψh

∥

∥

X

, (54)
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where the equality follows from (44).
However, an evaluation of error measures EST (whτ ), ET (whτ ) and ES(w̄hτ ) is practically impos-

sible since the supremum is taken over infinite dimensional spaces H1(Iτ ,HHH
2(Th)), H

1(Iτ ;SSS
p
h) and

S0
τ (Iτ ;HHH

2(Th)), respectively. Therefore, in our approach, we seek the maximum over some sufficiently
large but finite dimension subspaces of the spaces mentioned above. Particularly, for q = 0, 1, 2, . . . we
define spaces

Sq
τ (Iτ ;SSS

p+1
h ) :=

{

ψψψ ∈ H1(Iτ ,HHH
2(Th)); ψψψ|QKk ∈ [P p+1(K)× P q(Ik)]

4,K ∈ Th, Ik ∈ Iτ
}

, (55)

which consists of vector-values piecewise polynomial functions on QKk of the degree ≤ p+ 1 with respect
to x ∈ K and the degree ≤ q with respect to t ∈ Ik for K ∈ Th and Ik ∈ Iτ .

Let w̃k
h ∈ SSS

p
h, k = 0, . . . , r denote the resulting approximate solution of the n-BDF-DGFE method

(20) computed by the Newton-like method and let w̃hτ ∈ Pn
τ (Iτ ;SSS

p
h) and ¯̃whτ ∈ S0

τ (Iτ ;SSS
p
h) be the

corresponding piecewise polynomial and piecewise constant reconstruction introduced in Section 5.3. Then
based on (51) – (54), we define the residual error estimators

ηST(w̃hτ ) := sup
ψψψh∈Snτ (Iτ ;SSS

p+1
h

)

ψψψh 6=0

Ahτ (w̃hτ ,ψψψh)

‖ψψψh‖X
, (56a)

ηT(w̃hτ ) := sup
ψψψh∈Snτ (Iτ ;SSS

p
h
)

ψψψh 6=0

Ahτ (w̃hτ ,ψψψh)

‖ψψψh‖X
, (56b)

ηS( ¯̃whτ ) := sup
ψ̄ψψh∈S0

τ (Iτ ;SSS
p+1
h

)

ψ̄ψψh 6=0

Ahτ ( ¯̃whτ , ψ̄ψψh)
∥

∥ψ̄ψψh

∥

∥

X

, (56c)

ηA( ¯̃whτ ) := sup
ψ̄ψψh∈S0

τ (Iτ ;SSS
p
h
)

ψ̄ψψh 6=0

Ahτ ( ¯̃whτ , ψ̄ψψh)
∥

∥ψ̄ψψh

∥

∥

X

= EA( ¯̃whτ ), (56d)

which we call space-time, time, space and algebraic residual error estimators, respectively. Here, n denotes
the order of the employed BDF scheme.

5.4 Properties of the residual error estimators

Obviously, if w ∈ C1(0, T ;HHH2(Ω)) ⊂ H1(Iτ ,HHH
2(Th)) is the exact solution of (43) then due to the

consistency, we have 0 = ηST(w) = ηT(w). Moreover, let w̄ ∈ S0
τ (Iτ ;HHH

2(Th)) be constructed from
functions w(·, tk) ∈HHH

2(Ω), k = 1, . . . , r by Definition 5.1 then ηS(w̄) = O(τn+1) = ηA(w̄), where n is the
degree of the BDF scheme.

Furthermore, we have immediately lower bounds

ηST(w̃hτ ) ≤ EST (w̃hτ ), ηT(w̃hτ ) ≤ ET (w̃hτ ), ηS( ¯̃whτ ) ≤ ES( ¯̃whτ ), ηA( ¯̃whτ ) = EA( ¯̃whτ ), (57)

w̃hτ ∈ P
n
τ (Iτ ;SSS

p
h),

¯̃whτ ∈ S
0
τ (Iτ ;SSS

p
h), since the suprema in the estimates η∗ are taken over smaller spaces

than the suprema in the error estimates E∗. However, it is open if there exists an upper bound, i.e.,
E∗(·) ≤ Cη∗(·), where C > 0. This will be the subject of future research.

Finally, from (56), we simply found that

ηT(w̃hτ ) ≤ ηST(w̃hτ ), ηA( ¯̃whτ ) ≤ ηS( ¯̃whτ ), w̃hτ ∈ P
n
τ (Iτ ;SSS

p
h),

¯̃whτ ∈ S
0
τ (Iτ ;SSS

p
h). (58)

On the other hand, although the numerical experiments show (see Section 6.1) that

ηS( ¯̃whτ ) ≤ ηST(w̃hτ ), ηA( ¯̃whτ ) ≤ ηT(w̃hτ ), w̃hτ ∈ P
n
τ (Iτ ;SSS

p
h),

¯̃whτ ∈ S
0
τ (Iτ ;SSS

p
h), (59)

the validity of (59) is open.

Remark 5.2. It would be possible to define space SSSp+1
h in a different way, e.g., to enrich it by polynomials

of even higher degree or introduce some interelement splitting of elements K ∈ Th. However, any further
enrichment of SSSp+1

h requires additional computational time and the numerical experiments show that the
presented choice of SSSp+1

h is sufficient.
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5.5 Evaluation of the residual error estimators

In order to simplify the notation in the following, we introduce a generic definition of the residual error
estimators (56) by

η⋆(w̃hτ ) := sup
ψψψh∈Xh
ψψψh 6=0

Ahτ (w̃hτ ,ψψψh)

‖ψψψh‖X
, (60)

which formally represents any definition (56a) or (56b) or (56c) or (56d), where Xh denotes the corre-
sponding functional space in (56). We define the residual error estimates at time interval Ik by replacing
(60) by

ηk⋆ (w̃hτ ) := sup
0 6=ψψψh∈Xh

supp(ψψψh)⊂Ω×Ik

Ahτ (w̃hτ ,ψψψh)

‖ψψψh‖X
, k = 1, . . . , r (61)

and the element residual error estimate by replacing (60) by

ηk,K⋆ (w̃hτ ) := sup
0 6=ψψψh∈Xh

supp(ψψψh)⊂K×Ik

Ahτ (w̃hτ ,ψψψh)

‖ψψψh‖X
, k = 1, . . . , r, K ∈ Th. (62)

The generic definitions (61) and (62) define the (space-time, time, space and algebraic) residual error
estimates ηkST, η

k
T, η

k
S and ηkA on the time interval Ik, k = 1, . . . , r and the element (space-time, time,

space and algebraic) residual error estimates ηk,KST , ηk,KT , ηk,KS and ηk,KA on element K ∈ Th and on the
time interval Ik, k = 1, . . . , r, respectively.

For simplicity, we set X := H1(Iτ ,HHH
2(Th)). Obviously, Sn

τ (Iτ ;SSS
p
h) ⊂ Sn

τ (Iτ ;SSS
p+1
h ) ⊂ X and

S0
τ (Iτ ;SSS

p
h) ⊂ S0

τ (Iτ ;SSS
p+1
h ) ⊂ X. If the norm ‖·‖X is suitable chosen then the evaluation of η⋆, ⋆ ∈

{ST, T, S,A} is cheap. First, we present the following lemma.

Lemma 5.3. Let (·, ·)X : X ×X → R be a scalar product generating the norm ‖·‖X . Let (·, ·)X satisfy
the element-orthogonality condition

(ψh, ψ
′
h)X = 0 ∀ψh, ψ

′
h ∈ X such that (63)

supp(ψh) ⊂ K × Ik, supp(ψ′
h) ⊂ K′ × Ik′ , K 6= K′ k 6= k′.

Then

η⋆(whτ )
2 =

r
∑

k=1

ηk⋆ (whτ )
2 =

r
∑

k=1

∑

K∈Th

ηk,K⋆ (whτ )
2. (64)

Proof. The proof is analogous to the proof [18, Lemma 4.3]. �

If the norm ‖·‖X satisfies (63) then the global estimators can be evaluated simply be summing of
squares of the element estimators, due to (64). Then, it is sufficient to evaluate the element residual error
estimators ηk,K⋆ , for all k = 1, . . . , r and all K ∈ Th. This is a standard task of seeking a constrained
extremum over the finite dimensional space

XK,k
h := {ψψψh ∈ Xh; supp(ψψψh) ⊂ K × Ik} ⊂ [P p+1(K)× P q(Ik)]

4, K ∈ Th, k = 1, . . . , r.

We evaluate the form Ahτ (w̃hτ ,ψψψh) in (62) for functions ψψψh forming a basis of XK,k
h and then we seek the

constrained extremum by the technique of the Lagrange multipliers, see [18, Appendix] for more details.
Let us note that the seeking of the constrained extrema is relatively fast in comparison to the other parts
of the computational process, see Tables 4 and 6.

In order to fulfil the favorable property (64), we employ (based on numerical experiments) the scalar
product

(u, v)X :=







∫ T

0



(u, v)0,Ω +
1

Re

∑

K∈Th

(∇u,∇v)0,K



 dt







1/2

, u, v ∈ X, (65)

where Re is the Reynolds number, for inviscid flow we put 1/Re := 0. This scalar product satisfies (63)
with the corresponding norm

‖u‖X :=

{
∫ T

0

[

‖u‖2L2(Ω) +
1

Re
|u|2HHH1(Th)

]

dt

}1/2

, u ∈ X. (66)



Residual error estimates for a high order BDF-DGFEM 16

5.6 An employment of the error estimates in the solution strategy

In Section 4, we introduced the solution strategy for the solution of the sequence of the nonlinear algebraic
systems given by Definition 3.2 with the aid of the inexact Newton-like method. Two aspects stay open
there: the termination of the iterative process (31) – (32) and the choice of the time step. We employ
the residual error estimates introduced in previous sections. Again, let w̃k

h ∈ SSSp
h, k = 0, . . . , r denote

the resulting approximate solution of the n-BDF-DGFE method (20) computed by iterative process (31)
– (32) and let w̃hτ ∈ Pn

τ (Iτ ;SSS
p
h) and ¯̃whτ ∈ S0

τ (Iτ ;SSS
p
h) be the corresponding piecewise polynomial and

constant reconstructions introduced in Section 5.3.

Termination of the iterative process (31) – (32) We stop this iterative process at time level tk if the
algebraic residual error estimate at time interval Ik is sufficiently small in comparison to the space residual
error estimate at time interval Ik, i.e.,

ηkA( ¯̃whτ ) ≤ cAη
k
S( ¯̃whτ ), k = 1, . . . , r, (67)

where 0 < cA < 1 is a suitable constant which checks a relative influence of the nonlinear algebraic error
to the space discretization. Its is reasonable to set cA ∈ [10−2, 10−1].

Choice of the time step in (20) The aim is to choose the time step τk such that the time residual error
estimate at time interval Ik is controlled by the space residual error estimate at time interval Ik, i.e.,

ηkT(w̃hτ ) ≤ cT η
k
S( ¯̃whτ ), k = 1, . . . , r, (68)

where cT > 0 is a suitable constant representing a desired ratio of the time and space error. Therefore, at
each time level k = 1, . . . , r, we evaluate estimates ηkT(w̃hτ ) and ηkS( ¯̃whτ ) and define the “optimal” time
step

τoptk := τk

(

cT η
k
S( ¯̃whτ )

ηkT(w̃hτ )

)1/(n+1)

. (69)

Now, if condition (68) is not satisfied we repeat the kth-time step with τoptk instead of τk otherwise we
proceed to the (k + 1)th-time step with τk+1 := τoptk . This technique is standard, more details can be
found in [30, 31, 20].

For non-stationary flow simulation, its is reasonable to set cT ∈ [10−2, 10−1] in order to suppress the
influence of the time discretization with respect to the space discretization. On the other hand, when
we use the scheme (20) for a steady state simulation with the aid of time stabilization, cT can be large,
e.g., cT := 1, cT := 10 or even higher values. Finally, let us note that numerical experiments showed that
parameters cA and cT should satisfy cA < cT otherwise some instability may appear in the computation
due to an insufficient solution of the algebraic systems. This is a reasonable requirement that the algebraic
residual error estimate is smaller than the time residual error estimate.

Remark 5.4. Let us note that it is possible to consider the local criteria, when we replace (67) and (68)
by

ηk,KA ( ¯̃whτ ) ≤ c′Aη
k,K
S ( ¯̃whτ ) and ηk,KT (w̃hτ ) ≤ c′T η

k,K
S ( ¯̃whτ ) ∀K ∈ Th, k = 1, . . . , r,

respectively, where c′A > 0 and c′T > 0 are given tolerances. However, based on our experiences, these
local criteria are problematic in the situation when the approximate solution is equal (up to a computer
precision) to the exact one on some K ∈ Th (e.g., the flow is constant on elements K which are far from
the airfoil). Then we have ηk,KA ( ¯̃whτ ) ≈ ηk,KS ( ¯̃whτ ) for these elements and thus the local criterion above
can not be satisfied.

5.7 Space-time adaptive BDF-DGFE method

It is challenging to develop a full space-time adaptive technique for non-stationary problems. Hence, using
the residual error estimators described above, we propose an adaptive algorithm which adapts (locally) the
mesh and (globally) the size of the time step. Therefore, the computational grid will not be further fixed
but it may change at each time level. By T

k
h we denote the mesh used on the time level tk, k = 1, . . . , r.

The aim is to adapt the mesh and the time step in such a way that the residual error estimator ηST
is under a given tolerance ω > 0, i.e.,

ηST(w̃hτ ) ≤ ω. (70)
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In the computational process, we prescribe the tolerance for the space-time residual error estimates
ηkST, k = 1, . . . , r on the time interval Ik, namely

ηkST(w̃hτ ) ≤ ωk, ωk := ω
√

τk/T , k = 1, . . . , r, (71)

where ωk is the tolerance for the time level tk, k = 1, . . . , r. The condition (71) implies (70) due to (64).
Moreover, in order to guarantee condition the (71), we prescribe the tolerance for the element space-time
residual error estimates ηk,KST , namely

ηk,KST (w̃hτ ) ≤ ωK,k, ωK,k := ωk(#T
k
h )−1/2, K ∈ T

k
h , k = 1, . . . , r, (72)

where #T
k
h denotes the number of triangles of T

k
h . The condition (72) implies (70) due to (64).

Then we define the following space-time adaptive process:

1) let ω > 0 be a given tolerance, T
0
h the initial mesh and τ0 the initial time step,

2) let k = 1,

3) we solve problem (24) by the iterative method (31) – (32) till of the stopping criterion ηkA( ¯̃whτ ) ≤
cAη

k
S( ¯̃whτ ) is satisfied,

4) if ηkT(w̃hτ ) > cT η
k
S( ¯̃whτ ) we adapt the time step τk according (69) and go to step 3),

5) if ηk,KST (w̃hτ ) > ωK,k for some K ∈ T
k
h then we refine K and go to step 3),

6) if tk = T then the computation finishes,

7) we put with T
k+1
h := T

k
h , τk+1 := τoptk , k := k + 1 and go to step 3).

The elements K violating condition (72) are refined by splitting into four daughter elements by con-
necting the centres of its edges. Then the so-called hanging nodes arise. Let us note that the presented
space-time adaptive process requires several technical aspects which are not presented here. In order to
achieve a reasonable computational performance, we need to prescribe the maximal number of level of
refinement, the maximal level of the hanging node, etc. Furthermore, in order to increase the efficiency,
we have to remove elements where the residual error estimate is sufficiently small. Moreover, the use
of n-step BDF method for n ≥ 2 requires an interpolation of the solution given on the previous meshes
to the new one. In Section 6.4, we present the application of this algorithm to the viscous shock-vortex
interaction. However, this is only a preliminary result showing some potential of the presented residual
error estimates. The main drawback of this approach is the isotropic mesh refinement which is not too
much efficient for problems with strong shock waves.

6 Numerical experiments

In this section, we present several numerical experiments which demonstrate the computational perfor-
mance of the implicit n-step BDF-DGFE scheme (20) and the residual error estimators (56). Our aim
is to demonstrate the efficiency of the presented solution strategy and its robustness with respect to the
flow regime.

6.1 Isentropic vortex propagation

We consider the propagation of an isentropic vortex in compressible inviscid flow, analysed numerically
in [43]. This example is suitable for the demonstration of the performance of the proposed residual error
estimators since the regular exact solution is known and thus we can simply evaluate the computational
error. Then we are able to identify the influence of the space and time discretization parameters h and τ ,
respectively, to the total computational error.

The computational domain is taken as [0, 10] × [0, 10], extended periodically in both directions. The
mean flow is ρ = 1, v = (1, 1) (diagonal flow) and p = 1 (symbol p denotes the pressure of the flow whereas
p denotes the degree of polynomial approximation). To this mean flow we add an isentropic vortex, i.e.
perturbation in v and the temperature θ = p/ρ, but no perturbation in the entropy η = p/ργ :

δv =
ε

2π
exp[(1− r2)/2](−x̄2, x̄1), δθ = −

(γ − 1)ε2

8γπ2
exp[1− r2], δη = 0, (73)

where (−x̄2, x̄1) = (x1 − 5, x2 − 5), r2 = x21 + x22, and the vortex strength ε = 5. The perturbations δρ
and δp are obtained from the above relations.
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It is clear that the exact solution of the Euler equations with the initial conditions

ρ(x, 0) = ρ̄+ δρ, v(x, 0) = v̄ + δv, p(x, 0) = p̄+ δp, (74)

and periodic boundary conditions is just the passive convection of the vortex with the mean velocity.
Therefore, we are able to evaluate the computational error ‖w − w̃hτ‖ over the space-time domain QT :=
Ω × (0, T ), where w is the exact solution of (1) and w̃hτ ∈ Pn

τ (Iτ ;SSS
p
h) is the piecewise polynomial

reconstruction of the output of the Newton-like iterative process (31) – (32) w̃k
h, k = 0, . . . , r with the aid

of (48). We evaluate ‖w − w̃hτ‖ in the L2(0, T ;HHH1(Th))-seminorm and in the L2(QT )-norm.

Investigation of the temporal discretization error We investigate the behaviour of the residual error
estimates for different τ on a (fixed) unstructured quasi-uniform triangular grid with #Th = 986 triangles.
The average element size of this mesh is given by h := 1/

√

#Th/2 ≈ 0.450. The simulation was performed
with the aid of the n-BDF-DGFE scheme (20) for P1, P2 and P3 polynomial approximation with respect to
space and for n = 1, 2 and 3 (order of the method with respect to the time). We carried out computation
for the final time T = 10 (1 period in time). In order to suppress the influence of the nonlinear algebraic
error we set cA := 10−3 in (67).

In the following, we investigate namely the relation between the ratio ηT(w̃hτ )/ηS( ¯̃whτ ) and the error
‖w − w̃hτ‖. Therefore, we carried out 8 computations with fixed time step τ ℓ, ℓ = 1, . . . , 8 for each pair
(Pp, n), p = 1, 2, 3, n = 1, 2, 3. We set τ1 := 0.05 and τ ℓ+1 := τ ℓ/2, ℓ = 1, . . . , 7.

The first part of Table 2 shows the value of errors ‖ehτ‖1 := ‖ehτ‖L2(0,T ;HHH1(Th))
, ‖ehτ‖0 := ‖ehτ‖L2(QT ),

residual error estimators ηA, ηS, ηT, ηST, the ratio ηT/ηS and the computational time (some non-interesting
cases are omitted). The computations where ηT/ηS ≤ 0.01 are bolted.

From these results, we observe the following facts:

• Generally, higher degree of DGFE method p and higher order of BDF n give smaller computational
errors.

• The estimator ηS is almost independent of τ and the estimator ηT decreases for a decreasing τ .

• For each pair (Pp, n), p = 1, 2, 3, n = 1, 2, 3 there exists a limit value τ⋆ such that for any time step
τ ℓ < τ⋆ we obtain (almost) the same computational error as for τ⋆. It means that (from a practical
point of view) the temporal error is negligible compared to the spatial error. Obviously, the limit
value τ⋆ is larger for large degree n of the BDF scheme.

• The condition ηT(w̃hτ )/ηS( ¯̃whτ ) ≤ 10−2 looks like as a reasonable detection if the corresponding
time step τ ℓ is bellow the limit value τ⋆. We can easily observe that the computational errors almost
do not change for the bolted lines in the first part of Table 2, an exception is the first case p = 1
and n = 1.

The relation between the ratio ηT(w̃hτ )/ηS( ¯̃whτ ) and the computational error is also demonstrated
by Figures 1 and 2 which show the isolines of the Mach number and the Mach number distribution along
a diagonal at t = 10 for the P3 polynomial approximation, the 3-step BDF and selected τ ℓ, ℓ = 1, 2, 3, 7.
We observe that for larger τ ℓ the quality of the solution is violated. However, there is now difference for
ℓ = 3 and ℓ = 7. For ℓ = 3, we have ηT(w̃hτ )/ηS( ¯̃whτ ) ≈ 0.155 which is sufficient for the quality of the
visualised results.

The second part of Table 2 shows the results obtained by the adaptive choice of the time step with
cT = 0.01 (here τ means the average time step) presented in Section 5.6. We find that for each pair
(Pp, n), p = 1, 2, 3, n = 1, 2, 3 we are able to achieve almost the same level of the computational error as
for fixed time step computations with τ ℓ < τ⋆ but the computational time is significantly reduced.

Investigation of the spatial discretization error We investigate the behaviour of the residual error es-
timates for different meshes. We perform the computation on unstructured quasi-uniform triangular
grids having 580, 2484 and 10008 elements which corresponds to the average element size h = 0.587,
h = 0.284 and h = 0.141, respectively. For each grid, we employ the Pk, k = 1, 2, 3 polynomial approx-
imation and the 3-step BDF with the adaptive choice of the time step with cT = 0.01. The achieved
results are presented in the third part of Table 2. The penultimate column in this table shows the index
iX := ηST/‖ehτ‖L2(0,T ;HHH1(Th))

reflecting the ratio between the space-time residual error estimate ηST and
the computational error in the norm ‖·‖L2(0,T ;HHH1(Th))

. The index iX is not the usual effectivity index
since ηST is the approximation of the error in the dual norm.

We observe that due to the adaptive choice of the time step with cT = 0.01 in (68), the spatial error
dominates the temporal one for each case. Moreover, the computational error in the norm ‖·‖L2(0,T ;HHH1(Th))
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FIXED TIME STEP, FIXED MESH with h = 4.50E-01

τ Pp n
∥

∥ehτ
∥

∥

1

∥

∥ehτ
∥

∥

0 ηA ηS ηT ηST ηT/ηS CPU(s)

5.00E-02 1 1 6.98E+00 3.82E+00 4.41E-03 8.00E+00 1.21E+00 8.11E+00 1.52E-01 293
2.50E-02 1 1 4.81E+00 2.43E+00 3.96E-03 9.17E+00 7.41E-01 9.20E+00 8.09E-02 454
1.25E-02 1 1 3.47E+00 1.52E+00 5.78E-03 1.00E+01 4.17E-01 1.00E+01 4.16E-02 633
6.25E-03 1 1 2.81E+00 1.01E+00 8.23E-04 1.05E+01 2.22E-01 1.05E+01 2.11E-02 1167
3.13E-03 1 1 2.52E+00 7.46E-01 7.85E-05 1.08E+01 1.15E-01 1.08E+01 1.06E-02 2335
1.57E-03 1 1 2.40E+00 6.23E-01 7.13E-03 1.10E+01 5.91E-02 1.10E+01 5.39E-03 3685
7.85E-04 1 1 2.35E+00 5.65E-01 3.83E-03 1.10E+01 2.98E-02 1.10E+01 2.70E-03 5590
3.92E-04 1 1 2.32E+00 5.38E-01 1.62E-03 1.11E+01 1.49E-02 1.11E+01 1.35E-03 11174

5.00E-02 1 2 2.65E+00 6.97E-01 6.15E-03 1.10E+01 4.04E-01 1.10E+01 3.68E-02 299
2.50E-02 1 2 2.36E+00 5.35E-01 5.21E-03 1.11E+01 1.94E-01 1.11E+01 1.74E-02 447
1.25E-02 1 2 2.31E+00 5.16E-01 5.14E-03 1.11E+01 9.31E-02 1.11E+01 8.37E-03 616
6.25E-03 1 2 2.30E+00 5.13E-01 1.11E-03 1.11E+01 4.12E-02 1.11E+01 3.71E-03 1208
3.13E-03 1 2 2.30E+00 5.13E-01 4.59E-04 1.11E+01 1.68E-02 1.11E+01 1.51E-03 2414
1.57E-03 1 2 2.30E+00 5.13E-01 8.93E-03 1.11E+01 1.10E-02 1.11E+01 9.91E-04 2953
7.85E-04 1 2 2.30E+00 5.13E-01 3.46E-03 1.11E+01 4.21E-03 1.11E+01 3.78E-04 5893

5.00E-02 1 3 2.33E+00 5.56E-01 6.12E-03 1.10E+01 3.64E-01 1.11E+01 3.29E-02 310
2.50E-02 1 3 2.31E+00 5.24E-01 5.87E-03 1.11E+01 1.87E-01 1.11E+01 1.69E-02 433
1.25E-02 1 3 2.30E+00 5.16E-01 4.28E-03 1.11E+01 9.18E-02 1.11E+01 8.26E-03 630
6.25E-03 1 3 2.30E+00 5.14E-01 4.27E-04 1.11E+01 4.09E-02 1.11E+01 3.68E-03 1252
3.13E-03 1 3 2.30E+00 5.13E-01 4.64E-04 1.11E+01 1.68E-02 1.11E+01 1.51E-03 2482
1.57E-03 1 3 2.30E+00 5.13E-01 8.22E-03 1.11E+01 1.04E-02 1.11E+01 9.39E-04 3070
7.85E-04 1 3 2.30E+00 5.13E-01 3.34E-03 1.11E+01 4.10E-03 1.11E+01 3.69E-04 6137

5.00E-02 2 1 6.61E+00 3.68E+00 4.74E-04 8.75E-01 1.20E+00 1.52E+00 1.37E+00 664
2.50E-02 2 1 4.07E+00 2.21E+00 5.70E-04 1.05E+00 7.40E-01 1.30E+00 7.08E-01 1195
1.25E-02 2 1 2.32E+00 1.23E+00 4.70E-04 1.18E+00 4.17E-01 1.26E+00 3.53E-01 1698
6.25E-03 2 1 1.29E+00 6.51E-01 5.42E-04 1.27E+00 2.22E-01 1.30E+00 1.75E-01 2802
3.13E-03 2 1 7.59E-01 3.39E-01 1.95E-04 1.33E+00 1.15E-01 1.33E+00 8.67E-02 4367
1.57E-03 2 1 5.21E-01 1.77E-01 1.76E-05 1.36E+00 5.87E-02 1.36E+00 4.32E-02 8680
7.85E-04 2 1 4.32E-01 9.63E-02 1.35E-06 1.37E+00 2.96E-02 1.37E+00 2.15E-02 17482
3.92E-04 2 1 4.03E-01 5.89E-02 9.59E-04 1.38E+00 1.49E-02 1.38E+00 1.08E-02 23213

5.00E-02 2 2 1.08E+00 4.39E-01 6.89E-04 1.35E+00 2.71E-01 1.38E+00 2.01E-01 676
2.50E-02 2 2 4.85E-01 1.19E-01 7.27E-04 1.38E+00 8.97E-02 1.38E+00 6.49E-02 1157
1.25E-02 2 2 4.00E-01 4.64E-02 6.02E-04 1.39E+00 3.28E-02 1.39E+00 2.36E-02 1600
6.25E-03 2 2 3.90E-01 3.66E-02 8.13E-04 1.39E+00 1.31E-02 1.39E+00 9.40E-03 2370
3.13E-03 2 2 3.89E-01 3.57E-02 8.88E-05 1.39E+00 5.26E-03 1.39E+00 3.78E-03 4523
1.57E-03 2 2 3.89E-01 3.56E-02 4.84E-05 1.39E+00 2.06E-03 1.39E+00 1.48E-03 9014
7.85E-04 2 2 3.89E-01 3.56E-02 1.80E-05 1.39E+00 7.74E-04 1.39E+00 5.56E-04 17738

5.00E-02 2 3 1.24E+00 2.11E-01 8.76E-04 1.71E+00 5.97E-01 1.81E+00 3.50E-01 661
2.50E-02 2 3 3.95E-01 4.83E-02 7.12E-04 1.39E+00 7.60E-02 1.39E+00 5.48E-02 1122
1.25E-02 2 3 3.89E-01 3.70E-02 4.82E-04 1.39E+00 3.04E-02 1.39E+00 2.19E-02 1610
6.25E-03 2 3 3.89E-01 3.58E-02 6.62E-04 1.39E+00 1.26E-02 1.39E+00 9.09E-03 2379
3.13E-03 2 3 3.89E-01 3.56E-02 7.04E-05 1.39E+00 5.18E-03 1.39E+00 3.73E-03 4665
1.57E-03 2 3 3.89E-01 3.56E-02 6.40E-06 1.39E+00 2.04E-03 1.39E+00 1.47E-03 9189
7.85E-04 2 3 3.88E-01 3.56E-02 3.94E-05 1.39E+00 7.72E-04 1.39E+00 5.55E-04 17999

1.25E-02 3 1 2.24E+00 1.23E+00 5.97E-05 1.28E-01 4.17E-01 4.39E-01 3.27E+00 4601
6.25E-03 3 1 1.20E+00 6.47E-01 5.47E-05 1.41E-01 2.22E-01 2.67E-01 1.58E+00 6990
3.13E-03 3 1 6.21E-01 3.33E-01 2.06E-05 1.49E-01 1.15E-01 1.91E-01 7.72E-01 12622
1.57E-03 3 1 3.20E-01 1.70E-01 4.35E-05 1.54E-01 5.87E-02 1.66E-01 3.82E-01 17855
7.85E-04 3 1 1.68E-01 8.55E-02 3.69E-06 1.56E-01 2.96E-02 1.60E-01 1.89E-01 35690

2.50E-02 3 2 2.52E-01 1.11E-01 7.66E-05 1.57E-01 8.40E-02 1.79E-01 5.35E-01 2726
1.25E-02 3 2 8.10E-02 2.80E-02 6.90E-05 1.59E-01 2.75E-02 1.61E-01 1.73E-01 4273
6.25E-03 3 2 5.67E-02 7.66E-03 6.06E-05 1.59E-01 9.36E-03 1.59E-01 5.89E-02 6636
3.13E-03 3 2 5.54E-02 3.67E-03 7.69E-05 1.59E-01 3.30E-03 1.59E-01 2.07E-02 11393
1.57E-03 3 2 5.54E-02 3.27E-03 1.81E-05 1.59E-01 1.18E-03 1.59E-01 7.42E-03 18216
7.85E-04 3 2 5.55E-02 3.24E-03 1.36E-06 1.59E-01 4.21E-04 1.59E-01 2.65E-03 36108

2.50E-02 3 3 1.22E+00 9.63E-02 5.69E-04 1.07E+00 5.07E-01 1.18E+00 4.73E-01 2665
1.25E-02 3 3 5.76E-02 8.87E-03 6.82E-05 1.59E-01 2.47E-02 1.61E-01 1.55E-01 4216
6.25E-03 3 3 5.56E-02 3.91E-03 4.60E-05 1.59E-01 8.84E-03 1.59E-01 5.56E-02 6736
3.13E-03 3 3 5.55E-02 3.30E-03 9.15E-05 1.59E-01 3.20E-03 1.59E-01 2.01E-02 10502
1.57E-03 3 3 5.55E-02 3.25E-03 1.34E-05 1.59E-01 1.16E-03 1.59E-01 7.30E-03 19118
7.85E-04 3 3 5.55E-02 3.24E-03 9.62E-07 1.59E-01 4.17E-04 1.59E-01 2.62E-03 37156

ADAPT TIME STEP, FIXED MESH with h = 4.50E-01

τ Pp n
∥

∥ehτ
∥

∥

1

∥

∥ehτ
∥

∥

0 ηA ηS ηT ηST ηT/ηS CPU(s)

2.37E-03 1 1 2.46E+00 6.89E-01 2.21E-04 1.09E+01 8.75E-02 1.09E+01 8.04E-03 3006
3.17E-02 1 2 2.40E+00 5.35E-01 5.99E-03 1.11E+01 8.03E-02 1.11E+01 7.21E-03 409
5.78E-02 1 3 2.26E+00 4.77E-01 6.26E-03 1.12E+01 7.33E-02 1.12E+01 6.54E-03 286

2.93E-04 2 1 3.98E-01 5.09E-02 6.63E-04 1.38E+00 1.13E-02 1.38E+00 8.16E-03 27515
1.14E-02 2 2 3.96E-01 4.20E-02 4.90E-04 1.39E+00 1.01E-02 1.39E+00 7.28E-03 1734
2.52E-02 2 3 3.87E-01 3.44E-02 7.51E-04 1.39E+00 9.10E-03 1.40E+00 6.52E-03 1141

3.81E-03 3 2 5.54E-02 4.06E-03 3.37E-05 1.59E-01 1.15E-03 1.59E-01 7.26E-03 10165
1.40E-02 3 3 5.62E-02 3.51E-03 7.29E-05 1.59E-01 1.05E-03 1.59E-01 6.61E-03 4001

SPACE CONVERGENCE with adapt time step

h Pp n
∥

∥ehτ
∥

∥

1

∥

∥ehτ
∥

∥

0 ηA ηS ηT ηST ηT/ηS iX CPU(s)

5.87E-01 1 3 3.07E+00 9.41E-01 7.83E-03 1.37E+01 8.93E-02 1.37E+01 6.51E-03 4.47 160
2.84E-01 1 3 1.36E+00 1.63E-01 4.12E-03 7.55E+00 4.99E-02 7.55E+00 6.62E-03 5.54 993
1.41E-01 1 3 6.66E-01 3.65E-02 2.04E-03 3.85E+00 2.57E-02 3.85E+00 6.68E-03 5.78 7212

5.87E-01 2 3 6.94E-01 9.02E-02 1.28E-03 2.34E+00 1.52E-02 2.34E+00 6.51E-03 3.36 539
2.84E-01 2 3 1.61E-01 9.31E-03 2.79E-04 5.71E-01 3.82E-03 5.71E-01 6.69E-03 3.55 4326
1.41E-01 2 3 3.99E-02 1.12E-03 5.71E-05 1.43E-01 9.51E-04 1.43E-01 6.66E-03 3.58 35330

5.87E-01 3 3 1.31E-01 1.07E-02 1.70E-04 3.53E-01 2.30E-03 3.53E-01 6.52E-03 2.70 1869
2.84E-01 3 3 1.57E-02 6.87E-04 1.74E-05 4.21E-02 2.77E-04 4.21E-02 6.59E-03 2.68 16247
1.41E-01 3 3 2.83E-03 6.80E-05 1.76E-06 5.30E-03 3.54E-05 5.30E-03 6.69E-03 1.87 134013

Tab. 2: Isentropic vortex propagation: the value of errors ‖ehτ‖1, ‖ehτ‖0, residual error estimators
ηA, ηS, ηT, ηST and the ratio ηT/ηS, (results with ηT/ηS ≤ 0.01 are bolted) and iX :=
ηST/‖ehτ‖1.
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P3, 3-BDF,τ =5.00E-02 P3, 3-BDF,τ =2.50E-02 P3, 3-BDF,τ =1.25E-02 P3, 3-BDF,τ =7.85E-04

Fig. 1: Isentropic vortex propagation: isolines of the Mach number at t = 10 for P3, 3-BDF and
τ ℓ = 0.05/2ℓ−1, ℓ = 1, 2, 3, 7.
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Fig. 2: Isentropic vortex propagation: distribution of the Mach number along the diagonal cut
{(x1, x2) ∈ R

2, (x1, x2) = (s, 10 − s), s ∈ (0, 10)} at t = 10 for P3, 3-BDF and τ ℓ =
0.05/2ℓ−1, ℓ = 1, 2, 3, 7, total view (left) with two details.

converges with respect to h in the same order as the space-time residual error estimate ηST. Hence, this
estimate gives a reasonable information about the computational error when meshes are refined.

Comparison of different solution strategies We study the computational performance of the proposed
BDF-DGFE method, namely the algebraic stopping criterion (67). For the isentropic vortex propagation,
we compare several solution strategies for the solution of the nonlinear algebraic systems (24):

new : the strategy proposed in this paper, i.e., the iterative solver (31) – (32) with the algebraic stopping
criterion (67),

imp7 : the iterative solver (31) – (32) with the “standard” algebraic stopping criterion (33), where we
prescribe the tolerance TOL := ǫNh, where Nh is the number of equations in (24) and ǫ = 10−7,

imp9 : as imp7 with ǫ = 10−9,

imp11 : as imp7 with ǫ = 10−11,

semi : the semi-implicit time discretization developed in [17, 23].

We performed the computation by these techniques on two grids with the average element size h1 =
0.587 and h2 = 0.284 and with the aid of P1 and P3 polynomial approximation and the 3-steps BDF
method. Table 3 shows this comparison, namely the total number of the time steps, the total number of
the Newton iterations, the total number of the GMRES iterations and the total computational time.

We observe that the technique semi is inefficient due to an insufficient solution of the nonlinear algebraic
systems on each time level which causes a significant decrease of the size of the time step in comparison to
the approach new. Similarly, imp7 is inefficient for all cases, only one Newton iteration (and one GMRES
iteration) is performed at each time step since the tolerance TOL = 10−7Nh in the stopping criterion (33)
is too high. Consequently, the insufficient solution of the nonlinear algebraic systems causes a significant
decrease of the size of the time step.

The strategy imp9 is faster than new for pairs (h1, P1) and (h2, P1) but inefficient for P3 approximation.
Moreover, imp11 is comparable with new for (h1, P1), (h2, P1) and even for the pair (h1, P3) but not for
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method h Pk time Newton GMRES CPU
steps iters iters time

new 5.87E-01 1 178 807 807 162.3
imp7 5.87E-01 1 1267 1267 1267 564.9
imp9 5.87E-01 1 178 668 668 161.0
imp11 5.87E-01 1 177 845 845 190.0
semi 5.87E-01 1 1267 1267 1267 718.4

new 5.87E-01 3 535 2446 2446 1855.1
imp7 5.87E-01 3 13867 13867 13867 24650.7
imp9 5.87E-01 3 13867 13867 13867 24547.8
imp11 5.87E-01 3 535 1793 1793 2308.2
semi 5.87E-01 3 13867 13867 13867 26896.1

new 2.84E-01 1 232 1149 1149 985.8
imp7 2.84E-01 1 3156 3156 3156 6068.3
imp9 2.84E-01 1 233 832 832 872.3
imp11 2.84E-01 1 232 1102 1102 1089.4
semi 2.84E-01 1 3156 3156 3156 7691.6

new 2.84E-01 3 1106 5008 5008 16278.5
imp7 2.84E-01 3 38964 38964 38964 296222.1
imp9 2.84E-01 3 38979 38979 38979 295667.2
imp11 2.84E-01 3 38924 38924 38924 296329.4

Tab. 3: Isentropic vortex propagation: comparison of techniques new, imp7, imp9, imp11 and
semi.

(h2, P3). Therefore, we conclude that for each pair (hi, Pk) we are able to find ǫ > 0 such that the
strategy with the stopping criterion (33) with TOL := ǫNh is more efficient than (or comparable to) new.
However, the problem is that we have to seek the optimal value ǫ experimentally. This is advantage of
our approach that the stopping criterion (67) works universally.

Finally, let us note that the technique semi is more efficient than the others for steady-state solutions
when we do not need to take a care about the accuracy with respect to the time.

Computational costs of the algorithm We study the relative computational costs for several parts of the
proposed BDF-DGFE technique. Namely, we distinguish the following individual parts of our code:

• matrices-vectors: the evaluation of the flux matrices Ch and the vectors F h in (32) for all Newton
iterations in all time steps,

• linear systems: solution of the linear algebraic systems (32) for all Newton iterationss in all time
steps,

• reconstructions: the piecewise polynomial and constant reconstruction whτ and w̄hτ including the
evaluation of form Ahτ in (62) for the basis function ψψψh of space XK,k

h , K ∈ Th, k = 1, . . . , r,

• constrained extrema: the computing of the constrained extrema in (62) for each K ∈ Th, k =
1, . . . , r,

• others: the pre-processing, the post-processing, saving of files, etc.

Table 4 shows the relative computational times for these parts of the code obtained by the 3-steps BDF-
DGFE method with P1 and P3 polynomial approximation on the grids with h1 = 0.587 and h2 = 0.284.
We simply observe that the computation of the constrained extrema does not essentially increase the total
computational time and its relative computational costs are lower for the higher degrees of polynomial
approximation and in fact independent of h. This supports the assertion from Section 5.5 that the seeking
of the constrained extrema is relatively fast in comparison to the other parts of the computational process.

6.2 Inviscid low Mach number flow

In the second example, we deal with an inviscid low Mach number flow around the NACA 0012 airfoil.
This case was solved in [5] where a preconditioned technique was developed. The experiments presented
here were obtained by the standard (unpreconditioned) Vijayasundaram numerical flux.
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matrices linear reconstructions constrained
h Pk vectors systems whτ , w̄hτ extrema others total

5.87E-01 1 25.7 % 21.5 % 29.7 % 8.2 % 14.9 % 100.0%
5.87E-01 3 24.6 % 41.0 % 16.7 % 6.0 % 11.7 % 100.0%

2.84E-01 1 26.4 % 22.1 % 29.8 % 8.2 % 13.6 % 100.0%
2.84E-01 3 24.5 % 40.8 % 16.9 % 6.0 % 11.8 % 100.0%

Tab. 4: Relative computational costs for each individual part of the BDF-DGFE algorithm.

Fig. 3: The grid used, details of the profile (left) and leading edge (right).

The angle of attack is equal to zero and the far-field Mach number M∞ is set to 10−1, 10−2, 10−3

and 10−4. The computations were carried out on a grid having 3 587 elements (see Figure 3) with the aid
of the n-BDF-DGFE method (20) with n = 1, 2, 3 and Pp, p = 1, 2, 3, 4 polynomial approximation. We
employ the algorithm from Section 4 with the adaptive choice of the time step and the stopping criterion
(67) presented in Section 5.6.

Obviously, the data settings of this example lead to a steady state solution. In this case, when a
steady state solution is sought, we can employ our algorithm with no care about the size of the temporal
error. In practice, we employ condition (68) with, e.g., cT = 10. Figure 4 shows the comparison of the
convergence of the solution to the steady state solution with M = 0.1 for P3 approximation, the 3-steps
BDF and with cT = 10 and cT = 10−1 in (68). Similarly as in [23], the convergence to the steady-state is
measured by

∥

∥F SS
h (ξk)

∥

∥

ℓ2
, where (according to (23)) we set

F
ss
h (ξk) :=

{

ch(w
k
h,ϕϕϕi)

}Nh

i=1
∈ R

Nh , k = 1, . . . , r, (75)

where ξk ∈ R
Nh is the algebraic representation of wk

h ∈ SSSp
h. We simply found that with cT = 10 we

achieve the steady state in significantly shorter computational time than with cT = 10−1 since in the
computation with cT = 10 we do not care about the accuracy with respect to the time. Moreover, if the
accuracy with respect to the time is unimportant then it is sufficient to use the one-step BDF method
(the backward Euler method).

Now, we present the performance of the iterative Newton-like method (31) – (32) with the stopping
criterion (67) where we set cA := 0.1 and the adaptive choice of the time step given following from
condition (68) where we set cT := 10.

Table 5 shows the results for the far field Mach numbers M∞ = 10−1, 10−2, 10−3 and 10−4, with the
aid of the Pp, p = 1, . . . , 4 polynomial approximation and the one step BDF method, namely the ratios
(pmax−pmin)/pmax, (ρmax−ρmin)/ρmax, the drag coefficient cD and the lift coefficient cL. The pressure as
well as the density fluctuations are of order M2

∞ which is in agreement with the theoretical results in the
incompressible limit. A small violation of the order of the density fluctuations is observed forM∞ = 10−4.
This and the degradation of cD and cL values for M∞ = 10−4 are caused most likely due to not using a
preconditioned numerical flux, see [5].

Moreover, Table 5 (the last three columns) shows the number of the time steps necessary to reach the
steady state solution, the total number of the Newton iterations and the total number of the GMRES
iterations in all time steps. We observe that these values do not change dramatically neither for increasing
degree of approximation nor for the decreasing inlet Mach number.
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Fig. 4: Low Mach number flow with M = 0.1 for P3 approximation, 3-steps BDF and with cT = 10
and cT = 10−1, steady-state residuum with respect to the number of time steps (left) and
with respect to the computational time (right).

M∞ Pk
pmax−pmin

pmax

ρmax−ρmin
ρmax

cD cL time Newton GMRES

steps iters iters

1.00E-01 1 9.89E-03 7.08E-03 3.53E-04 1.44E-03 25 50 478
1.00E-01 2 9.87E-03 7.09E-03 1.03E-04 1.04E-03 26 67 506
1.00E-01 3 9.87E-03 7.06E-03 5.35E-05 7.66E-04 31 95 583
1.00E-01 4 9.86E-03 7.06E-03 3.21E-05 6.55E-04 34 122 719

1.00E-02 1 9.93E-05 7.10E-05 3.63E-04 1.99E-03 24 32 630
1.00E-02 2 9.91E-05 7.11E-05 8.23E-05 1.40E-03 29 50 914
1.00E-02 3 9.90E-05 7.07E-05 5.13E-05 9.55E-04 35 79 955
1.00E-02 4 9.90E-05 7.07E-05 2.18E-05 8.56E-04 38 83 912

1.00E-03 1 9.92E-07 7.35E-07 3.50E-04 1.76E-03 26 30 1147
1.00E-03 2 9.92E-07 7.26E-07 6.68E-05 7.19E-05 27 33 1162
1.00E-03 3 9.90E-07 7.58E-07 4.55E-05 5.37E-04 37 64 1948
1.00E-03 4 9.91E-07 9.80E-07 9.67E-05 3.50E-04 37 65 1778

1.00E-04 1 9.91E-09 4.33E-08 2.56E-04 3.09E-04 19 19 905
1.00E-04 2 9.90E-09 2.04E-08 -6.60E-05 5.48E-04 24 24 999
1.00E-04 3 9.90E-09 2.51E-08 -9.56E-06 5.02E-04 33 35 1484
1.00E-04 4 9.90E-09 9.69E-08 -2.03E-05 5.11E-04 35 36 1440

Tab. 5: Low Mach number flows for far field Mach number M∞ = 10−1, 10−2, 10−3 and 10−4,
with the aid of Pp, p = 1, . . . , 4 polynomial approximation: ratios (pmax − pmin)/pmax,
(ρmax − ρmin)/ρmax, drag coefficient cD, lift coefficient cL, the number of time steps and
the total number of the Newton and GMRES iterations.
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matrices linear reconstructions constrained
Pk n vectors systems whτ , w̄hτ extrema others total

1 1 16.3 % 56.7 % 16.0 % 5.3 % 5.8 % 100.0%
1 2 13.2 % 61.8 % 16.5 % 4.4 % 4.1 % 100.0%
1 3 11.5 % 60.7 % 19.5 % 4.1 % 4.2 % 100.0%

2 1 11.6 % 75.4 % 7.9 % 2.7 % 2.4 % 100.0%
2 2 12.9 % 68.0 % 12.4 % 3.3 % 3.3 % 100.0%
2 3 8.4 % 78.8 % 9.0 % 2.1 % 1.7 % 100.0%

3 1 11.5 % 79.3 % 5.2 % 2.4 % 1.6 % 100.0%
3 2 15.0 % 72.3 % 7.9 % 3.0 % 1.8 % 100.0%
3 3 8.5 % 81.9 % 6.4 % 1.9 % 1.4 % 100.0%

4 1 12.7 % 80.8 % 3.4 % 2.2 % 1.1 % 100.0%
4 2 12.2 % 79.9 % 4.5 % 2.3 % 1.1 % 100.0%
4 3 12.8 % 77.3 % 6.1 % 2.5 % 1.3 % 100.0%

Tab. 6: Relative computational costs for each individual part of the n-step BDF-DGFE algorithm.

Furthermore, Figures 5 and 6 demonstrate the performance of the iterative Newton-like method (31)
– (32) for two selected cases (M∞ = 10−2 and M∞ = 10−4 using the P4 polynomial approximation).
Namely, Figures 5 – 6 (top) show the size of the algebraic, space and time residual error estimators ηkA,
ηkS and ηkT at time level k = 1, . . . , r and the corresponding size of the CFLk number which reflect the size
of the time step τk. The CFLk number is defined as the ratio of the actual time step τk and the time step
size following from the stability condition of an “explicit” time discretization, namely

CFLk :=
τk

maxK∈Th

(

|K|−1 maxΓ∈∂K λ(wk
h|Γ)|Γ|

) ,

where λ(wk
h|Γ) is the spectral radius of the matrix P (wk

h|Γ,nΓ) given by (3). We observe the balance
between the error estimators ηkA, η

k
T and ηkS at each time level. The size of the time step is adaptively

increased up to very large values when the computation approaches to the steady-state.
Moreover, Figures 5 – 6 (centre) show the typical behaviour of the convergence of the nonlinear

algebraic residuum ‖F h(ξ
n
k )‖ℓ2 in the Newton-like iterative process, where F h(ξ

n
k ) is given by (23). We

found that only few Newton iterations are carried out at each time step. Moreover, the marked dots
denote updates of the flux matrix Ch(ξ

n
k ) in the corresponding Newton step discussed in Section 4.3.2.

We observe that only a few updates of Ch(ξ
n
k ) are carried out during the whole computation. Furthermore,

Figures 5 – 6 (bottom) show the corresponding numbers of Newton iterations and the numbers of GMRES
iterations at each time step for this example.

Finally, Table 6 (similarly as Table 4) shows the relative computational times for the individual parts
of the code for M∞ = 0.01, Pk, k = 1, . . . , 4 polynomial approximation and n-step BDF, n = 1, 2, 3. We
simply observe that the computation of the constrained extrema does not essentially increase the total
computational time and its relative computational costs are lower for the higher degrees of polynomial
approximation.

6.3 Viscous subsonic flow

Similarly as in [23, 35, 17], we consider a laminar viscous subsonic flow around the NACA 0012 profile
with inlet Mach numberMinlet = 0.5, angle of attack α = 2◦ and Reynolds number Re = 5 000. In [23, 17],
we presented steady-state solutions for this flow regime with several degrees of polynomial approximation
with several grids. We employ an unstructured grid similar to the grid from Figure 3. Similarly as in
Section 6.2, we carry out computations with the P4 polynomial approximation, 3-steps BDF and with
cT = 10 and cT = 10−2 in (68). Figure 7 shows the convergence of the steady-state residuum and the
corresponding value CFLk for both settings cT = 10 and cT = 10−2. Obviously, for cT = 10 we obtain
the steady-state solution. On the other hand, for cT = 10−2, where we have a much higher resolution in
time, we obtain a non-steady solution. Moreover, Figure 8 shows the dependence of the lift coefficient cL
of the dimensionless physical time for P3 and P4 polynomial approximation with the 3-steps BDF-DGFE
method with cT = 10−2 in (68). The constant value cL-”steady” was obtained with the same method but
with cT = 10. Finally, Figure 9 shows the isolines of the Mach number for both P3 and P4 polynomial
approximations and both cT = 10 and cT = 10−2.
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Fig. 5: Low Mach number flow with M = 0.01 for the P4 approximation and the 1-step BDF:
size of the algebraic, space and time residual error estimators ηkA, η

k
S , η

k
T and the CFLk

number at time level k = 1, . . . , r (top), the convergence of the nonlinear algebraic residuum
‖F h(ξ

n
k )‖ℓ2 in the Newton-like iterative process at each time level, marked dots denote

updates of the flux matrix Ch(ξ
n
k ) in the corresponding Newton step (centre) and the

number of Newton iterations and GMRES iterations at each time level (bottom).
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Fig. 6: Low Mach number flow with M = 0.0001 for the P4 approximation and the 1-step BDF:
size of the algebraic, space and time residual error estimators ηkA, η

k
S , η

k
T and the CFLk

number at time level k = 1, . . . , r (top), the convergence of the nonlinear algebraic residuum
‖F h(ξ

n
k )‖ℓ2 in the Newton-like iterative process at each time level, marked dots denote

updates of the flux matrix Ch(ξ
n
k ) in the corresponding Newton step (centre) and the

number of Newton iterations and GMRES iterations at each time level (bottom).
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Fig. 7: Viscous subsonic flow for P4 approximation, cT = 10 and cT = 10−2, steady-state residuum
(left) and the value CFLk (right) with respect to the number of time steps.

These experiments indicate that an insufficiently accurate resolution with respect to the time may
lead a different flow regime (steady-flow vs. non-steady). These results are in agreement with [35], where
this example was solved by several research groups. They achieved mostly the steady state solution using
steady-state solvers or implicit time discretizations (with large time steps). Only a sufficiently accurate
(explicit) time discretization (carried out by University of Stuttgart) gave the unsteady flow regime, see
[35, Chapter 5]. We suppose that the same observation can be obtained by the (standard) adaptive time
methods based on estimates of the local discretization error of the resulting ODE systems. However, the
tolerance for the local discretization error depends on the user and the tolerance, which is able to capture
the unsteadiness of this flow regime and which is not too small, has to be found empirically. On the
other hand, in our approach, we simply set the tolerance from the comparison of the space and time error
estimates.

6.4 Viscous shock-vortex interaction

This example represents a challenging unsteady viscous flow simulation. Similarly as in [14, 44, 27],
we consider the viscous interaction of a plane weak shock with a single isentropic vortex. During the
interaction, acoustic waves are produced, and we investigate the ability of the numerical scheme to capture
these waves. The computational domain is Ω = (0, 2) × (0, 2) with the periodic extension in the x2-
direction. A stationary plane shock is located at x1 = 1. The prescribed pressure jump through the
shock is pR − pL = 0.4, where pL and pR are the pressures from the left and the right of the shock
wave, respectively, corresponding to the inlet (left) Mach number ML = 1.1588. The reference density
and velocity are those of the free uniform flow at infinity. Particularly, we define the initial density,
x1-component of velocity and pressure by

ρL = 1, uL =MLγ
1/2, pL = 1, ρR = ρLK1, uR = uLK

−1
1 , pR = p1K2, (76)

where

K1 =
γ + 1

2

M2
L

1 + γ−1
2
M2

L

, K2 =
2

γ + 1

(

γM2
L −

γ − 1

2

)

. (77)

Here, the subscripts L and R denote the quantities at x < 1 and x > 1, respectively, κ = 1.4 is the Poisson
constant. The Reynolds number is 2000. An isolated isentropic vortex centred at [0.5, 1] is added to the
base flow. The tangential velocity in the vortex is given by

vθ = c1r exp(−c2r
2), c1 = uc/rc, c2 = r−2

c /2, r = ((x1 − 0.5)2 − (x2 − 1)2)1/2, (78)

where we set rc = 0.075 and uc = 0.5. The computations are stopped at the dimensionless time T = 0.7.
We apply the space-time adaptive BDF-DGFE method from Section 5.7. The initial coarse grid has

192 element and it was priori refined in the vicinity of the stationary shock wave. We employ the 2-steps
BDF-DGFE method with the P4 polynomial approximation in space since it is more stable than the 3-
steps BDF method in situation when the size of the time step has to be decreased after mesh refinement.
In the space-time adaptive algorithm we set cA = 10−2 in (67), cT = 0.1 in (68) and ω = 0.08 in (70).
Figure 10 shows the mesh adaptively refined in the first step. This figure shows also the initial setting of
the shock and the isentropic vortex with their details.
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Fig. 8: Viscous subsonic flow for P3 (top) and P4 (bottom) approximation, time evolution of the
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number for the setting cT = 10 and cT = 10−2.
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Figures 11 and 12 show the results of the simulation of the viscous shock-vortex interaction, namely
adapted meshes with the corresponding isolines of the pressure and the pressure distribution along x2 = 1
at several time instants. We observe a nice capturing of the interaction with the appearance of the incident
and the reflected acoustic waves. Moreover, we observe that there is only a small refinement in the vicinity
of the vortex. It is due to the fact, that the P4 polynomial approximation is already very accurate and
hence the h-adaptation is not further required.

7 Conclusion

We presented a higher order numerical method for the solution of the non-stationary compressible Navier-
Stokes equations, which is based on the discontinuous Galerkin discretization and the high backward
difference formulae. We developed the residual error estimates technique, which is based on the approxi-
mation of the error measured in the dual norm. This approach is able to identify the several ingredients
of the total error, namely its algebraic, spatial and temporal parts. Based on them we defined an adaptive
algorithm which

i) solves the corresponding algebraic systems untill the algebraic error estimate does not influence the
spatial error estimate,

ii) chooses the time step such that the temporal error estimate is controlled by the spatial error estimate,

iii) adapts the mesh in such a way that space-time error estimate is under a given tolerance.

Several numerical experiments confirmed these items and demonstrated the ability of the presented
method.

However, there are several open questions, namely a theoretical background of this approach. Another
challenge is a use of these residual error estimates for an (possible anisotropic) hp-adaptive method.
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