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ON PROPERTIES OF MINIMIZERS TO SOME VARIATIONAL

INTEGRALS

MIROSLAV BULÍČEK

Abstract. In the calculus of variations, the first usual discussed property of

a minimizer is the validity of the Euler-Lagrange equations which follows by
using the variations with respect to the variable - unknown. On the other

hand, doing the variations with respect to the independent variable - x one

can deduce the so-called Noether equations. Such a property is usually derived
under the additional hypothesis the the minimizer is a C1 function. Such a

minimizer is then also called the fully stationary point and the importance

of its existence naturally arises in many fields, in particular in the regularity
theory. In this short note we show that the restriction on the smoothness of

a minimizer is in fact not needed for the validity of the Noether equation and

we prove its validity for all minimizers for general class of variational problems
where only natural growth assumptions are required and/or for sufficiently

smooth (but not C1) solutions to the Euler-Lagrange equations.

1. Introduction and statement of the result

We consider a variational integral

(1.1) J(u) :=

∫

Ω

F (x, u(x),∇u(x))− b(x) · u(x) dx

for an unknown u : Ω → R
N with N ∈ N and for a given b : Ω → R

N , where
Ω ⊂ R

d is an open bounded Lipschitz domain with dimension d ≥ 2. Next, for a
given set S we look for a minimizer u over such a set, i.e., we look for u ∈ S such
that

(1.2) J(u) ≤ J(v) for all v ∈ S.

In the paper, we are not interested whether such a minimizer exists but we are
more interested in further qualitative properties of such a minimizer and we look
for the assumptions on the potential F and the set S which will finally guarantee
the validity of the so-called Noether equation. To simplify the setting of the paper,
we consider that F has at most p-growth with respect to ∇u and that the set
S ⊂ W 1,p(Ω;RN ). More precisely, for the potential F , we assume that F : Ω ×
R

N × R
N×d → R is a Carathéodory mapping fulfilling for some K > 0, some

nonnegative f ∈ L1(Ω) and some p ∈ (1,∞) the following growth condition

(1.3) |F (x, u, η)| ≤ K(1 + |η|p + |u|q) + f(x),
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where

(1.4) q ≤







dp

d− p
if p < d,

q0 <∞ if p ≥ d.

Concerning b : Ω → R
N the minimal natural requirement in such a setting seems

to be

(1.5) b ∈ (W 1,p(Ω;RN ))∗.

Note that under such assumptions all expressions in (1.2) are well-defined1 provided
we consider S ⊂ W 1,p(Ω;RN ). On the other hand, the assumptions above do
not guarantee the existence of a minimizer but as mentioned at the beginning
we are not interested whether such a minimizer exists but we want to discuss
its further properties. The first and well-known property of a minimizer is that
it usually satisfies the so-called Euler-Lagrange equations that in the case when
S =W 1,p

0 (Ω;RN ) take the form (in the sense of distribution)

(1.6) − divFη(·, u,∇u) + Fu(·, u,∇u) = b in Ω,

provided that all object in (1.6) are well defined. In (1.6) and also in what follows
we use the following notation

Fη(x, u, η) :=
∂F (x, u, η)

∂η
: Ω× R

N × R
N×d → R

N×d,

Fu(x, u, η) :=
∂F (x, u, η)

∂u
: Ω× R

N × R
N×d → R

N ,

Fx(x, u, η) :=
∂F (x, u, η)

∂x
: Ω× R

N × R
N×d → R

d.

In addition, to guarantee the meaning to (1.6), i.e., its validity in the sense of dis-
tribution, it is natural to prescribe additional growth assumption on the derivatives
of F . Thus, we assume that F is for almost all x a C1 mapping satisfying

(1.7) |Fx(x, u, η)|+ |Fu(x, u, η)|+ |Fη(x, u, η)|
p

p−1 ≤ K(f(x) + |η|p + |u|q).

Under such growth assumptions, one can indeed “derive” the weak formulation of
Euler-Lagrange equations (1.6) by computing

(1.8)
d

dh
J(u+ hϕ)

∣

∣

∣

∣

h=0

= 0,

where ϕ ∈ D(Ω;RN ) is arbitrary.
Interestingly, it was already observed by Noether [6] that minimizing J(u) with

respect to the internal variable x, i.e., computing2

(1.9)
d

dh
J(u(x+ hϕ(x))) dx

∣

∣

∣

∣

h=0

= 0,

1Note here that having (1.5) we need to replace
∫
b(x)u(x) dx by the duality 〈b, u〉.

2Here it is assumed that at least formally u(x+ tϕ(x)) ∈ S.
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with arbitrary ϕ ∈ C1
0(Ω;R

d) leads formally to the following identity

−
d

∑

i=1

N
∑

α=1

Di

(

Fηα
i
(·, u,∇u)Dku

α
)

+DkF (·, u,∇u)− Fxk
(·, u,∇u)

=
N
∑

α=1

bα(·, u,∇u)Dku
α in Ω

(1.10)

for all k = 1, . . . , d, where we denoted Di :=
∂

∂xi
. Note that such an identity can

be also formally achieved by multiplying the α-th equation in (1.6) by Dku
α and

then summing the result with respect to α. Relation (1.10) is sometimes called
the Noether equation, or sometimes if u solves the Euler-Lagrange equations and
also the Noether equation then it is called the “fully” stationary point, i.e., also
stationary with respect to variations of the independent variables. The importance
of Noether solution (or “fully stationary” point) was successfully demonstrated
in [3] for proving the partial regularity for harmonic mappings and also in [1] for
proving the Hölder continuity of solution to (1.6) with F independent of u and in [2]
for F being dependent on u or in [4] for proving the regularity of certain variational
integrals. On the other hand in [1, 3, 4] it was assumed that either u satisfies (1.10)
or (1.10) was proved under some additional regularity, e.g. u ∈ C1, see also [5] for
more details. The validity of the Noether equation without any further assumption
on u was used in [2], where the author repeated a simpler version of the proof from
this article.

Thus, the main purpose of the paper is to show that under some assumption
on the structure of S any minimizer u ∈ S of J(u) in fact satisfies (1.11) provided

that F fulfills (1.7) and b ∈ Lp′

(Ω;RN ). Moreover, in case of “smooth” boundary,
we can show the validity of (1.10) up to the boundary. The strength of such a
result might seem to be surprising in view of the fact that in (1.9) we compose in
general two Sobolev functions whose result need not to be again a Sobolev function.
However, this difficulty can be overcome, and it is also the main ingredient in the
proof, by using the fact that the set S over which we minimize is rich enough. In
particular, we use the fact that the smooth functions are dense in such a set. Note
here that it does not have nothing to do with the convexity of the set but is more
related to the fact that the “target” space where u lies is a closed set.

Thus, the first result we prove here is related to the simplest case when S =
W 1,p

0 (Ω;RN ).

Theorem 1.1. Let Ω ∈ C0,1, F satisfy (1.3) and (1.7) and let b ∈ Lp′

(Ω;RN ).

Then for any u ∈W 1,p
0 (Ω;RN ) being a weak solution to (1.6) the following identity

holds

∫

Ω

d
∑

i,j=1

N
∑

α=1

Fηα
i
(x, u(x),∇u(x))Diψj(x)Dju

α(x) dx

−

∫

Ω

F (x, u(x),∇u(x)) divψ(x) +
d

∑

j=1

Fxj
(x, u(x),∇u(x))ψj(x) dx

=

∫

Ω

d
∑

i=1

N
∑

α=1

bα(x, u(x),∇u(x))ψi(x)Diu
α(x) dx

(1.11)



4 MIROSLAV BULÍČEK

for all ψ ∈ C0,1
0 (Ω;Rd) provided that one of the following holds

(A1) The function u has an additional regularity u ∈W 1,p+1

0 ∩W 2, p+1

2 (Ω;RN ).

(A2) The function u is a minimizer, i.e., for all v ∈W 1,p
0 (Ω;RN ) there holds

∫

Ω

F (x, u(x),∇u(x))− b(x) · u(x) dx ≤

∫

Ω

F (x, v(x),∇v(x))− b(x) · v(x) dx.

Moreover, if Ω ∈ C1,1, the identity (1.11) holds for all ψ ∈ C0,1(Ω;Rd) such that
ψ · ν = 0 on ∂Ω, where ν denotes the unit outer normal vector on ∂Ω.

We would like to mention here that Theorem 1.1 can be proved in a more general
setting, i.e., for more general growth conditions and for more general boundary data.
But since we want to overcome all technical details here, we present the result in
the simplest form. We would also like to emphasize that the result of Theorem 1.1
might be clear to the experts in the field but up to our best knowledge one cannot
find it in the existing literature. This is also a partial motivation of the paper, i.e.,
to have a well established reference for the validity of the Noether equation. The
rest of the paper is devoted to the proof of Theorem 1.1.

The second result we have in mind is then related to the case which cover also
the harmonic mapping.

Theorem 1.2. Let Ω ∈ C0,1 and F satisfy (1.3) and (1.7) and let b ∈ Lp′

(Ω;RN ).
Assume that K ⊂ R

N is a closed (even unbounded) set and that ud ∈ W 1,p(Ω;K)
is given and define

S := {v ∈W 1,p(Ω;K); v = ud on ∂Ω}.

Then for any u ∈ S being a minimizer to (1.2), i.e., for all v ∈ S satisfying (1.2),

the identity (1.11) holds for all ψ ∈ C0,1
0 (Ω;Rd).

According to our best knowledge, the property (1.11) is always required as an
additional information about the minimizer. Here, we in fact shows, that such
a property is automatically met by any minimizer. There is only one reasonable
restriction, namely the target set K must be closed, which is however the most
typical case when dealing with minimizers with some constraint.

We would also like to mention here, that the most important consequence of
(1.11) is the so-called monotonicity formula

d

dR

∫

BR

|∇u|p

Rd−p
≥ −C,

which holds for F satisfying some reasonable coercivity condition and also the
splitting condition, see [1, 2, 3] for details. Note that from above formula we see
that there is only ε step missing to prove Hölder continuity of the solution, which
can be dome by the method developed in [1] for K = R

N and moreover the above
information allows one to improve the estimates on the dimension of the singular
set in case of harmonic mapping, see [3].

2. Proof of the results

The proof is split onto two parts. First, we prove Theorem 1.1 for the case (A1).
Second, we focus on the proof of Theorem 1.1 - case (A2) and simultaneously onto
the proof of Theorem 1.2.
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2.1. Theorem 1.1 - the case (A1). We start with the case (A1). We recall the
weak formulation of (1.6)

∫

Ω

Fη(x, u(x),∇u(x)) · ∇ϕ(x) + Fu(x, u(x),∇u(x)) · ϕ(x) dx

=

∫

Ω

b(x) · ϕ(x) dx

(2.1)

that is valid for all ϕ ∈ W 1,∞
0 (Ω;RN ). Since we assume more regularity on u, we

can incorporate such a regularity with the assumptions on F and b, and we see that

(2.1) is valid for all ϕ ∈W
1, p+1

2

0 ∩Lp+1(Ω;RN ). Our goal is to set ϕ :=
∑d

i=1
ψiDiu

in (2.1). Since ψ is Lipschitz, it is evident (due to our assumptions on u) that

ϕ ∈W 1, p+1

2 ∩Lp+1(Ω;RN ). Thus, we just need to check that ψ has zero trace (note
that this is automatically fulfilled if ψ has compact support in Ω). First, because
u is zero on the boundary, then necessarily ∇u has only normal component not
equal to zero on the boundary. Thus, assuming that ψ has zero normal component
identically zero on ∂Ω we deduce that also ϕ has zero trace. Therefore, using this
choice of ϕ we get

∫

Ω

d
∑

i,j=1

N
∑

α=1

Fηα
i
(x, u(x),∇u(x))Di(ψj(x)Dju

α(x)) dx

+

∫

Ω

N
∑

α=1

d
∑

i=1

Fuα(x, u(x),∇u(x))ψi(x)Diu
α(x) dx

=

∫

Ω

N
∑

α=1

d
∑

i=1

bα(x)ψi(x)Diu
α(x) dx.

(2.2)

Since the first term can be rewritten as

d
∑

i,j=1

N
∑

α=1

Fηα
i
(x, u(x),∇u(x))Di(ψj(x)Dju

α(x))

= ψ(x) · ∇F (x, u(x),∇u(x))−
N
∑

α=1

d
∑

i=1

Fuα(x, u(x),∇u(x))ψi(x)Diu
α(x)

−
d

∑

i=1

Fxi
(x, u(x),∇u(x))ψi(x) +

d
∑

i,j=1

N
∑

α=1

Fηα
i
(x, u(x),∇u(x))Diψj(x)Dju

α(x),

we immediately deduce (1.11), which finishes the first part of the proof.

2.2. Theorem 1.1 - the case (A2) & Theorem 1.2. In this case, we first
assume that ψ ∈ D(Ω;Rd) is fixed and for arbitrary t ∈ R we define the mapping
gt : R

d → R
d by the following

(2.3) gt(x) := x+ tψ(x).

Then, it is clear that there exists t0 > 0 such that for any t ∈ (0, t0) the mapping
gt is a bijection with Lipschitz inverse g−1

t . Since ψ is compactly supported, it
is evident that t0 can be found in such a way that gt(Ω) = Ω for all t ∈ (0, t0).
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Moreover, we can compute the Jacobian of gt and g
−1
t and they are of the form

Jt(x) := det∇gt(x) = 1 + t divψ(x) + t2h(t, x),

J−1
t (x) := det∇g−1

t (x) =
1

1 + t divψ(g−1
t (x)) + t2h(t, g−1

t (x))
,

(2.4)

where h is a bounded function. Note that since ψ is Lipschitz, it is evident that for
some t0 there holds |Jt(x)| + |J−1

t (x)| ≤ C for all t ∈ (0, t0) and almost all x ∈ Ω.
Since Ω is Lipschitz, we know that we can find a sequence un ∈ C1(Ω;RN ) such
that

(2.5) un → u strongly in W 1,p(Ω;RN )

Then, for any t ∈ (0, t0) and any n ∈ N we define vnt ∈W 1,p(Ω;RN ) by the formula
(note here, that now it is a meaningful definition due to the smoothness of un)

vnt (x) := un(gt(x)).

Next, we would like to use (1.2) and to set there v := vnt . However, this would
be possible only for Theorem 1.1, where S is the whole space. On the other hand,
it is an incorrect setting in case of Theorem 1.2, since it is not true in principle
that vnt ∈ S. Therefore, we proceed slightly differently. First, we show that vnt is a
Cauchy sequence. Indeed, by using the substitution theorem and the definition of
vnt , we have (I denotes the identity matrix)

∫

Ω

|vnt (x)− vmt (x)|p + |∇(vnt (x)− vmt (x))|p dx

=

∫

Ω

|un(x)− um(x)|pJ−1
t (x) dx

+

∫

Ω

|(∇(un(x)− um(x)))(I + t∇ψ(g−1
t (x)))J−1

t (x) dx

≤ C‖un − um‖p1,p,

(2.6)

where for the last inequality, we used the facts that ψ is Lipschitz and J−1
t is

bounded. Consequently, since also un is Cauchy, we can find vt ∈ W 1,p(Ω;RN )
such that

(2.7) vnt → vt strongly in W 1,p(Ω;RN ).

In addition, since ψ has a compact support, it is evident that vt = u on ∂Ω.
Moreover, using the fact that K is closed we can deduce that due to the strong
convergence of un and from the fact that gt is a bijection and since Jt and J

−1
t are

bounded that also necessarily vt ∈W 1,p(Ω;K). Therefore, it is a correct comparison
function in (1.2), which directly implies

(2.8)

∫

Ω

F (x, u(x),∇u(x))− b(x) · u(x) dx

≤

∫

Ω

F (x, vt(x),∇vt(x))− b(x) · vt(x) dx

= lim
n→∞

∫

Ω

F (x, vnt (x),∇v
n
t (x))− b(x) · vnt (x) dx,

where the second equality follows from the properties of F (continuity and the
growth assumption) and from the strong convergence result (2.7). Next, we identify
the limit on the right hand side in a different way and we focus on the limit in the
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term with F . First, using the definition of vnt (and its smoothness), we observe
that

∂vnt (x)

∂xi
=

d
∑

j=1

∂un(gt(x))

∂xj

∂(gt(x))j
∂xi

and by using the definition of gt we deduce (now I denotes the identity matrix)
that

∇vnt (x) = ∇un(gt(x))(I + t∇ψ(x)).

Thus, using this relation in the definition of F and arguing by the substitution
theorem, we find that

∫

Ω

F (x, vnt (x),∇v
n
t (x)) dx =

∫

Ω

F (x, un(gt(x)),∇u
n(gt(x))(I + tψ(x))) dx

=

∫

Ω

F (g−1
t (x), un(x),∇un(x)(I + t∇ψ(g−1

t (x))))J−1
t (x) dx.

Due to the properties of gt, the growth assumptions (1.3) and the convergence
property (2.5), we can easily let n→ ∞ in (2.8) with the term with F to deduce

(2.9)

∫

Ω

F (x, u(x),∇u(x))− b(x) · (u(x)− vt(x)) dx

≤

∫

Ω

F (g−1
t (x), u(x),∇u(x)(I + t∇ψ(g−1

t (x))))J−1
t (x) dx.

Finally, we divide (2.9) by t and let t → 0+. First, we focus on the term with
b. We start with the observation that there exists t0 such that for all t ∈ (0, t0) we
have

(2.10)

∫

Ω

|vt(x)− u(x)|p

tp
dx ≤ C(u, ψ).

Indeed, using (2.5) and (2.7), we see that

‖vt − u‖pp = lim
n→∞

‖vnt − un‖pp(2.11)

and therefore we estimate only the term on the right hand side of (2.11). Since
both vnt and un are smooth, we can observe by using the Jensen inequality that for
all x ∈ Ω there holds

|vnt (x)− un(x)|p = |un(gt(x))− un(x)|p =

∣

∣

∣

∣

∫ 1

0

d

dτ
un(x+ τ(gt(x)− x)) dτ

∣

∣

∣

∣

p

=

∣

∣

∣

∣

∫ 1

0

d

dτ
un(x+ τtψ(x)) dτ

∣

∣

∣

∣

p

≤ tp
∫ 1

0

|∇un(x+ τtψ(x))|p|∇ψ(x)|p dτ

≤ Ctp
∫ 1

0

|∇un(x+ τtψ(x))|p dτ.
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Hence using the substitution and the Fubini theorem, we see that

∫

Ω

|vnt (x)− un(x)|p dx ≤ Ctp
∫

Ω

∫ 1

0

|∇un(x+ τtψ(x))|p dτ dx

= Ctp
∫ 1

0

∫

Ω

|∇un(x)|pJ−1
τt (x) dx dτ

≤ Ctp‖∇un‖pp ≤ Ctp

and with the help of (2.11), the estimate (2.10) easily follows. Consequently, due
to the reflexivity of Lp we can find a not relabeled subsequence such that

(2.12)
vt − u

t
⇀ U weakly in Lp(Ω;RN ).

Due to the uniqueness of the weak limit, we can identify the weak limit U as follows.
For an arbitrary smooth z ∈ D(Ω;RN ) we can use the substitution theorem, (2.5)
and (2.7) to obtain

∫

Ω

z(x) ·
vt(x)− u(x)

t
dx = lim

n→∞

∫

Ω

z(x) ·
un(gt(x))− u(x)

t
dx

= lim
n→∞

∫

Ω

z(g−1
t (x)) · un(x)J−1

t (x)− z(x) · u(x)

t
dx.

=

∫

Ω

z(g−1
t (x))J−1

t (x)− z(x)

t
· u(x) dx.

(2.13)

First, we can decompose the term on the right hand side as

(2.14)
z(g−1

t (x))J−1
t (x)− z(x)

t
= z(g−1

t (x))
J−1
t (x)− 1

t
+
z(g−1

t (x))− z(x)

t
.

Then, using the definition of J−1
t (2.4) we have

(2.15) lim
t→0

J−1
t (x)− 1

t
= − lim

t→0

divψ(g−1
t (x)) + th(t, g−1

t (x))

1 + t divψ(g−1
t (x)) + t2h(t, g−1

t (x))
= − divψ(x)

Similarly, using the definition of gt (2.3) we see that

(2.16) lim
t→0

g−1
t (x)− x

t
= lim

t→0

g−1
t (x)− gt(g

−1
t (x))

t
= − lim

t→0
ψ(g−1

t (x)) = −ψ(x),

and consequently, we have

lim
t→0

z(g−1
t (x))− z(x)

t
= lim

t→0

∫ 1

0

d

dτ

z(x− τ(x− g−1
t (x)))

t
dτ

= lim
t→0

∫ 1

0

(g−1
t (x))− x

t
· ∇z(x− τ(x− g−1

t (x))) dτ

= −ψ(x) · ∇z(x).

(2.17)
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Finally, we substitute (2.14)–(2.17) into (2.13) and let t → 0 to deduce (with the
help of the Lebesgue dominated convergence theorem) that

lim
t→0+

∫

Ω

z(x) ·
vt(x)− u(x)

t
dx

= −

∫

Ω

z(x) · u(x) divψ(x) +∇z(x) · (u(x)⊗ ψ(x)) dx

=

∫

Ω

N
∑

α=1

d
∑

k=1

zα(x)Dku
α(x)ψk(x) dx,

where the last identity follows from integration by parts. Consequently, due to the
uniqueness of the weak limit we can identify U and we have

(2.18) lim
t→0+

∫

Ω

b(x) ·
vt(x)− u(x)

t
dx =

∫

Ω

N
∑

α=1

d
∑

k=1

bα(x)Dku
α(x)ψk(x) dx.

Thus, we finished the limiting procedure in the term with b. Therefore, it remains
to discuss also the limit t→ 0+ in terms with F . First, we decompose the remaining
terms as

F (g−1
t (x), u(x),∇u(x)(I + t∇ψ(g−1

t (x))))J−1
t (x)− F (x, u(x),∇u(x))

= F (g−1
t (x), u(x),∇u(x)(I + t∇ψ(g−1

t (x))))(J−1
t (x)− 1)

+ F (g−1
t (x), u(x),∇u(x)(I + t∇ψ(g−1

t (x))))− F (g−1
t (x), u(x),∇u(x))

+ F (g−1
t (x), u(x),∇u(x))− F (x, u(x),∇u(x))

=: tI1(t, x) + tI2(t, x) + tI3(t, x).

(2.19)

Then using (2.15) and the growth assumption (1.3), we can deduce with the help
of the Lebesgue dominated convergence theorem (note that since ψ is Lipschitz it
has bounded gradient almost everywhere in Ω) that

(2.20) lim
t→0+

∫

Ω

I1(t, x) dx = −

∫

Ω

F (x, u(x),∇u(x)) divψ(x) dx.

Second, since F is C1 we rewrite the last term in the following way

I3(t, x) =
1

t

∫ 1

0

d

dτ
F (x− τ(x− g−1

t (x)), u(x),∇u(x)) dτ

=

∫ 1

0

d
∑

i=1

Fxi
(x− τ(x− g−1

t (x)), u(x),∇u(x))
(g−1

t (x))i − xi
t

dτ.

(2.21)

Hence, we see that it follows from (1.7) and also the definition of gt and (2.16) that

(2.22) |I3(t, x)| ≤ C(ψ)(|∇u(x)|p + |u(x)|q + 1 + f(x)),

which is an integrable function. Moreover, using (2.16), we directly obtain (using
also the definition of gt) that for almost all x ∈ Ω

(2.23) lim
t→0+

I3(t, x) = −
d

∑

i=1

Fxi
(x, u(x),∇u(x))ψi(x).
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Consequently, using (2.22), (2.23) and the Lebesgue dominated convergence theo-
rem, we deduce that

(2.24) lim
t→0+

∫

Ω

I3(t, x) dx = −

∫

Ω

d
∑

i=1

Fxi
(x, u(x),∇u(x))ψi(x) dx.

Finally, for the last term we again use the fact that F is C1 function and we rewrite
I2 in the following way

I2(t, x) =
1

t

∫ 1

0

d

dτ
F (g−1

t (x), u(x),∇u(x) + tτ(∇u(x)∇ψ(g−1
t (x)))) dτ

=

∫ 1

0

N
∑

α=1

d
∑

i,j=1

Fηα
i
(g−1

t (x), u(x),∇u(x) + tτ(∇u(x)∇ψ(g−1
t (x))))·

·Dju
α(x)Diψj(g

−1
t (x)) dτ.

(2.25)

Thus, using (1.7) and the Young inequality, we see that (note that ψ is Lipschitz)

(2.26) |I2(t, x)| ≤ C(ψ)(1 + |∇u(x)|p + |u(x)|q + f(x)).

Moreover, it is easy to let t → 0+ in (2.25) to get that for almost all x ∈ Ω there
holds

lim
t→0+

I2(t, x) =
N
∑

α=1

d
∑

i,j=1

Fηα
i
(x, u(x),∇u(x))Dju

α(x)Diψj(x).(2.27)

Hence, it directly follows from (2.26), (2.27) and the Lebesgue dominated conver-
gence theorem that

lim
t→0+

∫

Ω

I2(t, x) dx =

∫

Ω

N
∑

α=1

d
∑

i,j=1

Fηα
i
(x, u(x),∇u(x))Dju

α(x)Diψj(x) dx.(2.28)

Thus, dividing (2.9) by t, letting t → 0+ and using (2.18), (2.19), (2.20), (2.24)
and (2.28) we obtain the following inequality

(2.29)

∫

Ω

N
∑

α=1

d
∑

k=1

bα(x)Dku
α(x)ψk(x) dx+

∫

Ω

F (x, u(x),∇u(x)) divψ(x) dx

≤ −

∫

Ω

d
∑

i=1

Fxi
(x, u(x),∇u(x))ψi(x) dx

+

∫

Ω

N
∑

α=1

d
∑

i,j=1

Fηα
i
(x, u(x),∇u(x))Dju

α(x)Diψj(x) dx.

Since ψ was arbitrary, the same inequality must hold also for −ψ and therefore
(2.29) holds with the equality sign which is nothing else than (1.11).

Finally, we focus on the last part of Theorem 1.1, i.e., the case that ψ has zero
normal component on the boundary. We proceed exactly in the same manner as
above but we change the definition of gt in order to preserve the zero trace of the test
function. First, since u ∈W 1,p

0 we extend it by 0 outside Ω. The same extension is
then used for b. For simplicity (but without loss of generality) we assume in what
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follows that F (x, 0, 0) = 0. With this simplification we can extend the integration
domain and to conclude that
∫

Rd

F (x, u(x),∇u(x))− b(x) · u(x) dx ≤

∫

Rd

F (x, v(x),∇v(x))− b(x) · v(x) dx

for all v ∈ W 1,p(Rd;RN ) being identically equal to 0 outside Ω. Our main goal
is to choose v in a proper way. Note that the choice v(x) := u(x + tψ(x)) is not
allowed in general3 since v does not have zero trace on ∂Ω. Therefore we must
correct the definition of gt. Thus, let ψ be fixed Lipschitz function having zero
normal component on Ω and for simplicity assume that it has compact support in
R

d. Since Ω ∈ C1,1 there surely exists a Lipschtiz mapping ν̃ : Rd → R
d such that

ν̃(x) = ν(x) on ∂Ω where ν(x) denotes the outer normal vector at point x ∈ ∂Ω.
Then we define

gt(x) := x+ tψ(x) + Ct2ν̃(x).

Since ψ is tangential on the boundary and ν̃ is normal, we see that (for fixed ψ)
there exists C > 0 and t0 such that for all t ∈ (0, t0) there holds

gt(x) /∈ Ω for all x ∈ ∂Ω.

Consequently, we see that v := u◦gt ∈W 1,p
0 (Ω;RN ) can be used as a test function.

Then the proof follows line by line the proof for ψ having compact support, since
the pollution term with ν̃ is quadratic with respect to t and therefore all dependence
on ν̃ vanishes as we let t→ 0+. Thus, the proof is complete.
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3However, it is a possible setting in case that Ω is convex. Indeed for convex domain it follows
from the fact that ψ has zero normal component on boundary, that x + tψ(x) /∈ Ω. Therefore

since u is extended by zero outside Ω we get u(x+ tϕ(x)) = 0 for all x ∈ ∂Ω.


