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Abstract

We design a new mesoscopic thin-film model for shape-memory materials which takes into account

mutual thermomechanical effects. Starting from a microscopic thermodynamical bulk model we guide

the reader through a suitable dimension-reduction procedure followed by a scale transition valid for

specimen large in area up to a limiting model which describes microstructure by means of parametrized

measures. All our models obey the second law of thermodynamics and possess suitable weak solutions.

This is shown for the resulting thin-film models by making the procedure described above mathematically

rigorous.The main emphasize is, thus, put on modeling and mathematical treatment of conjoint inter-

actions of mechanical and thermal effects accompanying phase transitions and on overpassing specimen

dimensions and material scales.
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1 Introduction

Shape-memory alloys (SMAs) belong to the group of so-called smart materials owing to their outstanding
response to thermal and/or mechanical loads. In particular, they exhibit the shape-memory effect related to
recovery from deformation by heat supply. The remarkable behavior of SMAs is due to a diffusionless solid-
to-solid phase transition (martensitic transformation) characterized by a change in the crystal lattice; in
particular, the specimen can transit from a phase of higher symmetry of the crystal lattice, called austenite,
to a phase with a less symmetric lattice, referred to as martensite. Martensite exists in many symmetry-
related variants. Hence, the aforementioned phase transition is often accompanied by fast spatial oscillations
of the deformation gradient in martensite, the so-called microstructure. A SMA specimen can, then, by
restructuring this microstructure (sometimes referred to as reorientation) compensate mechanical loads,
which is a key ingredient for its thermo-mechanical response.

Due to their particular multiscale character, when changes of the crystal lattice lead to extra-ordinary
response on macroscale, SMAs have been in the scope of research of physicists, mathematicians and engi-
neers for the last decades, cf. the monographs [9, 18, 25, 38, 42] for example. In particular, developing
reliable models on various time and length-scales as well as surpassing scales is still a big challenge to these
communities [41].

Models of the behavior of SMAs then serve for experiment interpretation or when tailoring SMA samples
to a specific application area like to surgical tools or stents (for which SMAs are already widely used nowadays
[20]); cf. [48] also for other applications. Thus, a large number of models has been developed for specific
scales and/or loading regimes, see, e.g., [46] for a survey.

Within this contribution, we consider only continuum-mechanics based models operating on the single-
crystalline level. Following [46], such models can be divided intomicroscopic andmesoscopic ones; the crucial
difference is that microscopic models operate on the scale of several µm’s and record fully the oscillations of
the deformation gradient while mesoscopic models record only asymptotics of fine oscillations, e.g. in terms
of Young measures generated by gradients (cf. [28]) and are suited for laboratory-sized specimen. Even
though, as mentioned, the modelling effort has been large in the past decades, a model for single-crystalline
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SMAs on the mesoscopic scale that would reflect the thermo-mechanically coupled nature of SMAs has been
proposed only very recently [7].

The main goal of this contribution is to adapt the aforementioned model [7] to the special geometry
of thin films. Indeed, this adaptation is of importance since thin-film specimens are widely used for their
microactuator behavior in micro-electro-mechanical (MEMS) devices as they are able to form, under certain
circumstances, tents and tunnels [10, 19, 37]. They profit from the fact that the sizes of these components
can be reduced significantly without affecting their functionality that, as explained above, stems merely from
crystallographic changes; hence, actuators from SMAs possess a significant power–weight ratio [40].

Dimension reduction, i.e. the rigorous limit procedure when one dimension of the specimen becomes
negligible, forms an important tool for obtaining models for the thin-film geometry. In the context of SMAs,
this 3D-2D dimension reduction has been performed in the static case; see [10] for the static analysis on
the micro- or [30] on the macro-scale (the transition from the first to the latter was shown by Shu [49]),
or on a purely mesoscopic level [15, 24]; similar procedures are used also in the context of multimaterials
[8]. Nevertheless, a dimension reduction in the evolutionary mesoscopic model capturing thermo-mechanical
coupling is, to our best knowledge, still missing in the literature.

Thus, we fill this gap by rigorously deriving a thin-film model in the thermo-mechanically coupled set-
ting. To reach this goal we propose (see Section 2) a two-step procedure: starting from the microscopic
thermodynamically consistent hyperelastic bulk model [7], we perform the dimension reduction and then we
upscale to a mesoscopic model.

This paper is structured as follows. First, in Section 2, we formally review bulk and thin-film microscopic
models which are a starting point of our consideration and which furnish us with ingredients needed for the
limiting mesoscopic one. Then in Section 3, we review the existence of a suitably defined weak solution to
the microscopic model and, in Section 4, we pass to a thin-film limiting model as the material thickness goes
to zero. Finally, Section 5 is devoted to the existence of a weak solution to a mesoscopic model stemming
from the microscopic one by omitting surface energy terms.

2 Considered models and captured effects

In this section, let us shortly introduce the models considered in this contribution and highlight the main
effects they capture. As mentioned, the goal of this contribution is to develop a mesoscopic, thermomechani-
cally-coupled model in the thin-film geometry.

It is well known [17] that mesoscopic models form a good approximation of microscopic models when
the size of the specimen becomes much larger than the size of the microstructure formed in the specimen;
e.g., in [17] the volume of the specimen approached +∞. Now, the assumption that the volume of the
specimen is infinitely large does not seem to be compatible with the assumption that one dimension of
the specimen becomes negligible—which characterizes the dimension reduction. Therefore, we perform the
following two-step limiting procedure

Microscopic bulk model → Microscopic thin-film model → Mesoscopic thin-film model,

i.e. we consider a thermomechanically coupled model for bulk SMAs that fully resolves the microstructure
and let one dimension of the specimen vanish in the first step. We, thus, obtain a thin-film model that is
again thermomechanically coupled and fully resolves the microstructure (microscopic thin-film model); in
this model, we perform then the upscaling for thin-films large in area to obtain the mesoscopic thin-film
model. This sequence of reasoning is kept throughout the article.

2.1 Microscopic bulk model

The starting point of our analysis shall be a microscopic bulk model, analogous to [7], defined in the frame-
work of generalized standard materials, cf. [26]. Take Ωε ⊂ R

3 (the reference configuration of the body),
ε > 0, such that

Ωε := ω × (0, ε) for some ω ⊂ R
2, (1)

as usual in dimension reduction problems; here ω, the plane of the film, is a bounded Lipschitz domain in
the (x1, x2) plane with disjoint boundary segments γD ∪γN ∪N = ∂ω, where γD is the part of the boundary
where Dirichlet boundary condition is prescribed, on γN we demand a Neumann boundary conditions and
N is a null set; moreover, ε is the thickness measure of the body. Furthermore, time t ∈ [0, T ] shall be
considered on a finite time horizon 0 < T < +∞, and we denote Qε := [0, T ] × Ωε the space-time cylinder,
its boundary Σε := [0, T ]× ∂Ωε, while Σε

N := [0, T ]× Γε
N for Γε

N := γN × (0, ε); Σε
D and Γε

D analogously.
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In what follows, y(t) : Ωε → R
3 will denote the deformation of Ωε at each time instance t ∈ [0, T ]. The set

of state variables further includes the temperature θ : Qε → R and an internal variable, namely a vectorial
phase field λ : Qε → R

M+1 that, up to small mismatch, corresponds to the vector of volume fractions of
the variants of martensite and/or the austenite phase. Indeed, when assuming that the considered material
can exist in M ∈ N variants of martensite, together with the austenite we have possible M + 1 states of the
specimen. Hence, we may introduce L : R3×3 → R

M+1 a continuous, frame-indifferent, (i.e. L(F ) = L(RF )
for every R ∈ SO(3) and every F ∈ R

3×3) bounded mapping such that

L(∇y)i =

{

volume fraction of the i’s variant of martensite if i ≤ M,

volume fraction of austenite if i = M + 1;

e.g. L(·)i can be chosen such that it equals one near the respective well and vanishes far from it [29]. We
then assume that λ ∼ L(∇y), the size of the mismatch is controlled by the penalty term in (2). Moreover,
we follow the modelling assumption that the evolution of the internal variable leads to energy dissipation
(so, indirectly, change of the ratio of the martensitic variants and/or austenite phase leads to dissipation).

Within the framework of generalized standard solids, we have to constitutively define two potentials: the
Gibbs free energy Gε

η and a dissipation potential Rε
η (the two parameters denote the dependence on both

the bulk thickness ε and the parameter η governing microscopic effects). Here we confine ourselves to the
following forms of the two potentials:

Gε
η(t, y, λ, θ) =

∫

Ωε

H(∇y, λ, θ) dx

︸ ︷︷ ︸

Helmholtz free energy

−

∫

Ωε

f(t) · y dx−

∫

Γε
N

g(t) · y dS

︸ ︷︷ ︸

external loading

+ η
(∥
∥∇2y

∥
∥
2

L2(Ωε;R3×3×3)
+‖∇λ‖2L2(Ωε;R(M+1)×3)

)

︸ ︷︷ ︸

interfacial energy

+κ ‖λ−L(∇y)‖
2
W−1,2(Ωε;RM+1)

︸ ︷︷ ︸

penalty term

(2)

following [21, 44], we propose the following partially linearized ansatz

H(F, λ, θ) := W (F ) + Z(θ) + (θ − θtr)a · λ, ∀F ∈ R
3×3, λ ∈ R

M+1, θ > 0, (3)

where θtr > 0 is the temperature at which austenite and martensite are energetically equal, W is the purely
mechanic part of the Helmholtz free energy, Z purely thermal part and a := (0, 0, . . . , 0,−str)

⊤ with str
being a specific transformation entropy, which corresponds, roughly, to the Clausius–Clapeyron constant
multiplied by the transformation strain, cf. [4, 29]. Also, the transformation entropy is proportional to the
latent heat. Let us note that the thermomechanical coupling term is the leading order in the chemical energy
[50].

When choosing W of a multi-well character with the individual wells manifesting the variants of marten-
site and the austenitic phase, this choice allows the model to predict the formation of microstructure, or
in other words, oscillations of the deformation gradient. Now, as the interfacial energy in (2) (the form is
chosen following, e.g., [9, 38]) has a compactifying effect, the size of the microstructure is controlled by η.

The dissipation potential is chosen in the form

Rε
η(ẏ, λ̇) =

∫

Ωε

η|∇ẏ|+
α

q
|λ̇|q + δ∗S(λ̇) dx, (4)

with real constants α > 0 and q ≥ 2, the dot standing for ḣ := ∂h
∂t . The last term δ∗S(λ̇), the Legendre–

Fenchel conjugate of the indicator function of a bounded convex neighborhood S of the origin 0 ∈ R
M+1, is

considered 1-homogeneous (to capture dissipation due to rate-independent processes—considered dominant)
and non-smooth at δ∗S(0) (to assure that the change of the phase variable—and, in particular, also the

martensite/austenite transition—is an activated process). The term α
q |λ̇|

q corresponds to dissipation due to
rate-dependent processes which needs to be included at time-scales where heat conduction takes place, cf.
[12]. Finally, the term η|∇ẏ| models pinning effects, cf. [1], which will vanish on the mesoscopic scale.

The evolution of the state variables is then standardly [26], in quasistatic approximation, governed by
the following inclusions accompanied with the balance of the entropy s:

∂ẏR
ε
η(ẏ, λ̇) + ∂yG

ε
η(t, y, λ, θ) ∋ 0, (5a)

∂λ̇R
ε
η(ẏ, λ̇) + ∂λG

ε
η(t, y, λ, θ) ∋ 0, (5b)

θṡ+ div j = ∂

(
α

q
|λ̇|q + δ∗S(λ̇)

)

λ̇+ η|∇ẏ|. (5c)
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In the last equation, j stands for the heat flux and shall be assumed to be governed by the Fourier law, i.e.
j = −K(λ, θ)∇θ with K being the heat conductivity tensor. Moreover, ∂ is the convex sub-differential which
we used in (5a) only formally (since Gε

η(t, y, λ, θ) is not convex). We shall give a rigorous weak formulation
of the system (5) in Section 3 – here, for highlighting ideas, we believe the formal system is sufficient.

Remark 1 (Boundary conditions). The system (5), of course, needs to be furnished with appropriate bound-
ary conditions. As it turns out, this is rather non-trivial due to the fact that we included the second gradients
in the Gibbs free energy through its interfacial part. Due to this fact, we have to work in the context of so-
called non-simple continua where boundary conditions have to prescribed with special care (see e.g. [45]).
We shall, thus, assume that the boundary conditions for (5a) in the strong formulation are such that they
“vanish” in weak formulation. The entropy equation (5c) is, nonetheless, furnished by Robin-type boundary
conditions, cf. Section 3.

To summarize, the system (5) records formation of microstructure of finite width in martensite as well as
its dissipative evolution that is linked to thermal effects, in particular, the shape-memory effect (i.e. recovery
from deformation by heat supply) is captured; also, an “inverse” effect is included in the model, namely,
the heating/cooling of the specimen during martensitic transformation – since the latent heat in SMAs is
typically larger than dissipative effects the mentioned cooling can indeed be observed [50].

2.2 Microscopic thin-film model

Now when ε → 0+ in the potentials (2)–(4), we obtain (after suitable rescaling and a careful limit procedure
exposed in Section 3) the following “thin-film Gibbs free energy and dissipation potential”

Gη(t, y, b, λ, θ) =

∫

ω

H (∇py, b, λ, θ) dzp
︸ ︷︷ ︸

in-plane Helmholtz free energy

−

∫

ω

f0(t) · y dzp −

∫

γN

g0(t) · y dSp

︸ ︷︷ ︸

external force acting in-plane

+

η
(∥
∥∇2

py
∥
∥
2

L2(ω;R3×2×2)
+ 2 ‖∇pb‖

2
L2(ω;R3×2) + ‖∇pλ‖

2
L2(Ωε;R(M+1)×2)

)

︸ ︷︷ ︸

interfacial energy

+

κ ‖λ− L(∇py|b)‖
2
W−1,2(ω;RM+1)

︸ ︷︷ ︸

mismatch term

,

(6a)

where H (∇py, b, λ, θ) = W (∇py|b) + Z(θ) + (θ − θtr)a · λ, and

Rη(ẏ, ḃ, λ̇) =

∫

ω

η|(∇pẏ|ḃ)|+
α

q
|λ̇|q + δ∗S(λ̇) dzp. (6b)

So, the potentials (6a) and (6b) are analogous to (2) and (4) but operate only on the two-dimensional
domain ω and, following [10], we obtained a further state variable b that refers to the Cosserat vector and
measures the deformation of the cross-section of the thin film. All state variables y, b, λ and θ in (6a) will be
shown to be independent of the third variable x3, likewise the external forces: f0(t, x1, x2) = f(t, x1, x2, 0),
g0(t) analogously. Consistently, we introduced ∇p, the in-plane gradient, more precisely,

(∇pu)ij = ∂ui/∂xj for anyu : ω → R
d and i = 1, . . . , 3 and j = 1, 2; (7)

also a point (x1, x2, x3) ∈ Ωε consists of an in-plane xp = (x1, x2) and a normal component x3. Lastly, we
introduce the notation (F |z) ∈ R

3×3 if F ∈ R
3×2 and z ∈ R

3 is the last column of the matrix.
With the definition of the two needed potentials at hand, we have the evolution of the thin-film specimen

governed by the following system analogous to (5)

∂(ẏ,ḃ)Rη(ẏ, ḃ, λ̇) + ∂(y,b)Gη(t, y, b, λ, θ) ∋ 0, (8a)

∂λ̇Rη(ẏ, ḃ, λ̇) + ∂λGη(t, y, b, λ, θ) ∋ 0, (8b)

θṡ+ div j = ∂

(
α

q
|λ̇|q + δ∗S(λ̇)

)

λ̇+ η
∣
∣(∇pẏ|ḃ)

∣
∣. (8c)

Since the structure of the model is pertained from the bulk model, its main features are analogous to the
ones highlighted in the previous subsection.
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2.3 Mesoscopic thin-film model

For thin films of large area passing to the limit η → 0+ is justified by scaling arguments similar to [7, 17];
this limit is sometimes referred to as relaxation.

In such a case the interfacial energy vanishes and so the microstructure—or, in other words, oscillations of
the deformation gradient—become “infinitely fine”; therefore, we need a suitable mathematical tool to cap-
ture this phenomenon. To this end, we employ here the so-called gradient Young measure ν ∈ Gp

ΓD
(Ω;R2×3)

which we shortly, we introduce these measures in Section 5; at this point it is sufficient to think of them as
representatives of the “infinitely fine” microstructure. We use the operator “ •” to indicate an application

of the (gradient) Young measure on its dual, a continuous function with appropriate growth at infinity.
On the other hand, in the thin-film geometry, also the Cosserat vector can form fast spatial oscillations

additionally to the deformation gradient. This is caused by the fact that a thin film can form an accordion-like
structure; if the area of the thin film approaches infinity also the piling up of the film into the accordion-like
structure may become infinitely fine causing again “infinitely fast” oscillations of the Cosserat vector. We
capture these by introducing the Young measure µ ∈ Yp

ΓD
(Ω;R3).

After passing η → 0+, the Gibbs free energy will read as

G(t, y, ν, µ, λ, θ) =

∫

ω

W • (ν, µ) + Z(θ) + (θ − θtr)a · λ(t) dzp
︸ ︷︷ ︸

(relaxed) Helmholtz free energy

+κ
∥
∥
∥λ− L • (ν, µ)

∥
∥
∥

2

W−1,2(ω;R3×3)
︸ ︷︷ ︸

mismatch term

−

∫

ω

f0(t) · y dzp −

∫

γN

g0(t) · y dSp

︸ ︷︷ ︸

external forces

, (9)

here we denoted ∇y = id • νzp for a.a. zp ∈ ω the “average deformation” induced by the microstructure.

Notice that the interfacial energy is missing now. Similarly, we scale pinning effects in the dissipation
potential to zero and obtain

R(λ̇) =

∫

ω

α

q
|λ̇|q + δ∗S(λ̇) dz.

Again, the evolution of the state variables is governed by the following set of equations/inclusions:

∂(ν,µ)G(t, y, ν, µ, λ, θ) ∋ 0, (10a)

∂λ̇R(λ̇) + ∂λG(t, y, ν, µ, λ, θ) ∋ 0, (10b)

θṡ+ div j = ∂

(
α

q
|λ̇|q + δ∗S(λ̇)

)

λ̇. (10c)

In this system, in particular, (10a) is merely a formal inclusion since the set of gradient Young measures
is not convex, therefore the (convex) subdifferential loses sense here. However, we shall formulate (10a)
later, in Section 5, via a minimization problem which will, additionally, capture the standard assumption in
quasi-static processes that the Gibbs free energy is minimized in every t ∈ [0, T ].

Lastly, let us note that this mesoscopic model does predict several geometric properties of the microstruc-
ture, on the other side, the width of the microstructure is not captured anymore. In this approximation
it is so fine that it becomes a characteristic of a single material point—in accord with our intentions with
the upscaling. Still, all the important effects stemming from the interplay of formation of microstructure,
dissipation and heat conduction in the specimen remain included.

3 Analysis of the microscopic bulk model

Let us now review the weak formulation of (5) and a proof of existence of weak solutions following [6, 7, 44].
We start with some preparatory paragraphs introducing the necessary notation and the so-called enthalpy
transformation that will come in handy for the analysis performed later.

To perform the latter, we first transform the entropy equation (5c) into a heat equation by employing
the standard Gibbs relation s = −H ′

θ; thus getting

cv(θ)θ̇ − div (K(λ, θ)∇θ) =
α

q
|λ̇|q + δ∗S(λ̇) + η|∇ẏ|+ θa · λ̇, (11)
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where cv(θ) = −θH ′′
θθ is the specific heat capacity. Note that the adiabatic term +θa · λ̇ results from the

proposed thermo-mechanical coupling and leads (as already announced) to heating/cooling during phase
transition which is actually dominant over the dissipated energy transformed to heat, as observed in exper-
iments [50].

Reformulating this heat equation (11) through the enthalpy transformation (cf. [44], for example) by
introducing the enthalpy w through

w = ĉv(θ) =

∫ θ

0

cv(r) dr, (12)

one arrives to the relation

ẇ − div (K(λ, θ)∇w) = α|λ̇|q + δ∗S(λ̇) + η|∇ẏ|+Θ(w)a · λ̇, (13)

where

Θ(w) :=

{

ĉ−1
v (w) = θ, if w ≥ 0,

0, otherwise
, and K(λ, θ) :=

K(λ,Θ(w))

cv(Θ(w))
.

We refer to (13) as the enthalpy equation; notice that this will be more convenient for our analysis since the
time derivative is not multiplied by the specific heat capacity anymore. Let us stress that in more complicated
situations—when we do not have the partially linearized ansatz (3) for the Helmholtz free energy—it requires
more care to perform the enthalpy transformation (12), cf. [47].

Let us consider the following Robin boundary condition for (13)

(
K(λ, θ)∇w

)
· n+ bΘ(w) = bθext on Σε,

for b, θext ∈ R a given heat-transfer coefficient, θext a given external temperature; cf. [7].
As far as additional notation is concerned, we will use Gε

η for the “deformation-related” part of the Gibbs
free energy

Gε
η(t, y(t), λ(t),Θ(w(t))) :=

∫

Ωε

W (∇y(t)) + η
∣
∣∇2y(t)

∣
∣
2
+

κ

2

∣
∣∇△−1(λ(t)− L(∇y(t)))

∣
∣
2
dx

−

∫

Ωε

f(t) · y(t) dx−

∫

Γε
N

g(t) · y(t) dS,

since this is the only part of the energy that contributes to the semi-stability (14).
Further, where it shall be obvious, we will denote the list of arguments of Gε

η and Gε
η at time t simply by

t, that is,

Gε
η(t) ≡ Gε

η(t, y(t), λ(t),Θ(w(t))), Gε
η(t) ≡ Gε

η(t, y(t), λ(t),Θ(w(t)))

Lastly,

((u, v))ε =

∫

Ωε

∇△−1u · ∇△−1v dx

will stand for the inner product in W−1,2(Ωε;R
M+1) ≃

(
W 1,2

0 (Ωε;R
M+1)

)∗
, while Varh(u; I ×M) shall be

the time-variation of a map u with respect to h ≥ 0, more precisely

Varh(u; I ×M) := sup

{
n∑

i=1

∫

M

h(u(ti, x)− u(ti−1, x)) dx :

for all partitions [t0, tn] = I, n ∈ N, such that t0 < t1 < · · · < tn

}

;

we shall omit the space argument I ×M in case I ×M = Qε.

3.1 Weak Formulation

To define a suitable weak solution of the system (5), we shall call for the energetic-solution concept (see
e.g. [35]) further adapted to combinations of rate-independent/rate-dependent processes in [44]. Let us note
that, for further convenience, we will explicitly express the dependence of the solutions on the parameters ε
and η in their notation.
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Definition 1. The triple (yη,ε, λη,ε, wη,ε) belonging to

yη,ε ∈ BV (0, T ;W 1,1(Ωε;R
3)) ∩ L∞(0, T ;W 2,2(Ωε;R

3)),

λη,ε ∈ W 1,q(0, T ;Lq(Ωε;R
M+1)) ∩ L∞(0, T ;W 1,2(Ωε;R

(M+1)×3)),

wη,ε ∈ L1(0, T ;W 1,1(Ωε)),

satisfying the boundary condition yη,ε(t, x) = 0 on Σε
D with is called a weak solution of the system (5) if the

following holds:

1. semi-stability:

Gε
η(t) ≤ Gε

η(t, ȳ, λ
η,ε(t),Θ(wη,ε(t))) + η

∫

Ωε

|∇ȳ −∇yη,ε(t)| dx (14)

for all ȳ ∈ W 2,2(Ωε;R
3) such that ȳ(x) = 0 on Γε

D and all t ∈ [0, T ].

2. deformation-related energy equality:

Gε
η(T )−Gε

η(0)+ηVar|·|(∇yη,ε) =

∫ T

0

[Gε
η]

′
t(t) + 2κ((λη,ε − L(∇yη,ε), λ̇η,ε))ε dt (15)

3. flow rule:
∫ s

0

2κ((λη,ε−L(∇yη,ε), v−λ̇η,ε))ε dt+

∫ s

0

∫

Ωε

(Θ(wη,ε)−θtr)a·(v−λ̇η,ε)+2η∇λη,ε·∇v+
α

q
|v|q+δ∗S(v) dxdt

≥ η‖∇λη,ε(s)‖2L2(Ωε;RM+1) − η‖∇λη,ε(0)‖2L2(Ωε;RM+1) +

∫ s

0

∫

Ωε

α

q
|λ̇η,ε|q + δ∗S(λ̇

η,ε) dxdt (16)

for all test functions v ∈ Lq(0, T ;Lq(Ωε;R
M+1)) ∩ L∞(0, T ;W 1,2(Ωε;R

M+1)) and all s ∈ [0, T ].

4. enthalpy equation:

∫

Qε

K(λη,ε, wη,ε)∇wη,ε · ∇ζ−wη,εζ̇ dxdt+

∫

Σε

bΘ(wη,ε)ζ dSdt

=

∫

Qε

(
δ∗S(λ̇

η,ε) + α|λ̇η,ε|q +Θ(wη,ε)a · λ̇η,ε
)
ζ dxdt+ η

∫

Qε

ζHη
ε ( dxdt)

+

∫

Ωε

wη,ε
0 ζ(0) dx+

∫

Σε

bθextζ dSdt (17)

for all ζ ∈ C1(Qε) such that ζ(T ) = 0; the Radon measure Hη
ε ∈ M(Qε), representing the heat

production stemming from the term |∇ẏ| in (4), is defined for every closed set A = [t, s] × B, where
[t, s] ⊆ [0, T ] and B ⊂ Ωε a Borel set, as

Hη
ε (A) := Var|·|(∇yη,ε; [t, s]×B).

5. initial conditions: yη,ε(0) = y0 for some y0 ∈ W 2,2(Ωε;R
3) and λη,ε(0) = λ0 in Ωε with λ0 ∈

Lq(Ωε;R
M+1).

Remark 2 (Weak formulation of the flow-rule (5b)). The weak formulation (16) is a standard weak formu-
lation of the differential inclusion (5b) together with a by-parts integration in the term

∫ s

0

∫

Ωε

2η∇λη,ε · (∇v −∇λ̇η,ε) dxdt

by parts
=

∫ s

0

∫

Ωε

2η∇λη,ε · ∇v dxdt− η‖∇λη,ε(s)‖2L2(Ωε;RM+1) + η‖∇λη,ε(0)‖2L2(Ωε;RM+1).

Further, while standardly one would demand only that it holds for s = T , we require that the flow-rule holds
for all s ∈ [0, T ]. Notice that if we did not perform the aforementioned by-parts integration, both requirements
would be equivalent. Indeed, in such a case, taking a test function such that v ≡ λ̇η,ε on (s, T ] would yield
the flow-rule for any s ∈ [0, T ] if it were known for s = T .

Here, since we used by-parts integration, the required weak formulation is a bit stronger which shall be
advantageous when performing the dimension reduction in Section 4.
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Remark 3. (i) Note that the second law of thermodynamics holds, i.e. the entropy production will be
non-negative, if we can show that θη,ε ≥ 0 (when the assumed positive semi-definiteness of K holds).
(ii) Definition 1 is indeed selective, cf. [7].

3.2 Change of variables and rescaling

In order to prepare for the dimension reduction performed later, let us change variables in order to work on
the fixed domain Ω := Ω1 = ω × (0, 1) by introducing new coordinates z : Ωε → Ω as

z(x) := (z1, z2, z3) = (x1, x2, x3/ε) ∀x = (x1, x2, x3) ∈ Ωε. (18)

Subsequently, the scaled functionals (with unchanged notation)

Gε
η =

1

ε
Gε
η ◦ z

−1 and Rε
η =

1

ε
Rε

η ◦ z
−1, (19)

in terms of the new variables read as

Gε
η(t) =

∫

Ω

W (∇′
εy

η,ε(t)) + κ
∣
∣∇′

ε△
−1
ε

(
λη,ε(t)− L(∇′

εy
η,ε(t))

)∣
∣
2

+ η

(

|∇2
py

η,ε(t)|2 +
2

ε2
|∇py

η,ε
,3 (t)|2 +

1

ε4
|yη,ε,33(t)|

2 + |∇pλ
η,ε(t)|2 +

1

ε2
|λη,ε

,3 (t)|2
)

+ (Θ(wη,ε(t))− θtr)a · λ
η,ε(t)− f(t) · yη,ε(t) dz −

∫

ΓN

g(t) · yη,ε(t) dS

(20a)

and

Rε
η(ẏ

η,ε(t), λ̇η,ε(t)) =

∫

Ω

η |∇′
εẏ

η,ε(t)|+
α

q
|λ̇η,ε(t)|q + δ∗S(λ̇

η,ε) dz. (20b)

The scaling factor 1/ε corresponds to the stiffness of the material (in linearized elasticity to the Lamé
coefficients of order 1/ε).

Above, we denoted by ∇′
εg the scaled gradient, namely,

∇′
εg =

(

∇pg

∣
∣
∣
∣

1

ε
g,3

)

with the 3× 2 planar component (∇pg)ij of the gradient, cf. (7), and (g,3)k := ∂gk/∂x3 for k = 1, 2, 3.
The scaled inverse Laplace operator △−1

ε : L2(Ω;RM+1) → W 1,2(Ω;RM+1) stands for the relation △−1
ε g = h

whenever ∫

Ω

∇′
εh(z) · ∇

′
εϕ(z)− g(z)ϕ(z) dz = 0 (21)

for all ϕ ∈ C∞(Ω;RM+1). Also, we will also keep the notation ((·, ·))ε for the scaled inner product in
W−1,2(Ω) defined as ((f, g))ε =

∫

Ω
∇′

ε△
−1
ε f · ∇′

ε△
−1
ε g dz.

In the same spirit, the transformed initial conditions shall be denoted as

yη,ε(0, z) = y0,ε(z) := y0(zp, εz3),

λη,ε(0, z) = λ0,ε(z) := λ0(zp, εz3),

wη,ε(0, z) = w0,ε(z) := w0(zp, εz3).

(22)

In view of (18)–(20) the transformation of Definition 1 of the weak solution is straightforward.

3.3 Data qualification and existence of weak solutions

Throughout the article, we shall use the following data qualifications:

(D1) Stored energy density: W : R3×3 → R is continuous and frame-indifferent, and there exist positive real
constants c1 and c2 satisfying

c1(−1 + |A|p) ≤ W (A) ≤ c2(1 + |A|p)

for some 2 ≤ p < 6 and all A ∈ R
3×3.
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(D2) External forces:

f ∈ W 1,∞(0, T ;Lp∗
′

(Ωε;R
3)), g ∈ W 1,∞(0, T ;Lp♯′

(Γε
N ;R3)),

such that f ◦ z−1 and g ◦ z−1 (denoted again by f and g) are independent of the thickness ε.

(D3) Phase-distribution function: L : R3×3 → R is continuous and bounded.

(D4) Specific heat capacity: cv : R → R is continuous and satisfies the growth

c1(1 + θ)ς1−1 ≤ cv(θ) ≤ c2(1 + θ)ς2−1

for some real positive constants c1, c2 and q′ ≤ ς1 ≤ ς2.

(D5) Heat-conductivity tensor: K : R×R → R
3×3 is continuous and there exist real positive constants ξ and

Ξ such that
K(λ,w) ≤ Ξ, χ⊤K(λ,w)χ ≥ ξ|χ|2

hold for all λ, w ∈ R and all χ ∈ R
3.

(D6) Initial and boundary data:

b ∈ L∞(Σε), b ≥ 0 and θext ∈ L1(Σε), θext ≥ 0,

y0 ∈ W 2,2(Ωε;R
3), and w0 ∈ L1(Ωε) with θ0 ≥ 0,

and
λ0 ∈ Lq(Ωε;R

M+1) is independent of x3.

Remark 4. Note that (D1) excludes the constraint on the Helmholtz free energy that W (F ) → ∞ whenever
det(F ) → 0, or, in the thin-film setting, whenever the normal of the thin film approaches zero. The results
of [2] would allow us to consider such a constraint in the static case when the Cosserat vector is minimized
out. Here, however, the interplay between the Cosserat vector and the film normal makes the situation
considerably more difficult and results of [2] are not applicable. Let us also point to [5] for further results on
Young measure relaxation considering the non-interpenetration constraint.

To ease notation, we shall from now on use C as a generic constant possibly depending on the given data
but never on ε, η.

Proposition 1 (Existence of a bulk weak solution). Let (D1)–(D6) hold. Then, for every ε > 0, η > 0 fixed,
there exists a weak solution of (5) in the spirit of Definition 1 such that the following a-priori estimates
hold:

‖yη,ε(t)‖BV (0,T ;W 1,1(Ω;R3)) ≤ Cη−1, (23a)

sup
t∈[0,T ]

‖∇′
εy

η,ε(t)‖Lp(Ω;R3×3) ≤ C, (23b)

sup
t∈[0,T ]

∥
∥
∥
∥

1

ε2
yη,ε,33(t)

∥
∥
∥
∥
L2(Ω;R3×3)

≤ Cη−1/2, (23c)

sup
t∈[0,T ]

‖∇′
εy

η,ε(t)‖W 1,2(Ω;R3×3) ≤ Cη−1/2 (23d)

for the deformation,

‖λ̇η,ε‖Lq(0,T ;Lq(Ω;RM+1)) ≤ C, (24a)

sup
t∈[0,T ]

‖∇′
ελ

η,ε(t)‖L2(Ω;R(M+1)) ≤ Cη−1/2 (24b)

for the phase field, and

‖wη,ε‖L∞(0,T ;L1(Ω)) ≤ C, (25a)

‖∇′
εw

η,ε‖Lr(0,T ;Lr(Ω;R3) ≤ C(r) for any r <
5

4
, (25b)

‖ẇη,ε‖M(0,T ;(W 1,∞(Ω))∗) ≤ C (25c)

for the enthalpy.
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Note that in (25c) M denotes the set of Radon measures.

Proof. The proof follows a rather standard procedure, cf. [6, 7] or [44], of showing that the interpolants of a
particular discrete approximation converge to the sought bulk solution, therefore a detailed proof is omitted.
Let us, however, sketch its main ingredients.

Step 1: Time discretization of the weak formulation. Define the discrete weak solution of (5) at
time level k, k = 1, . . . , T/τ , as a triple (yτk , λ

τ
k, w

τ
k) ∈ W 2,2(Ω;R3)× L2q(Ω;RM+1)×W 1,2(Ω) satisfying

1. time-incremental minimization problem:

Minimize Gε
η(tk, y, λ,Θ(wτ

k)) +

∫

Ω

τ |λ|2q + η|∇′
εy −∇′

εy
τ
k−1|

+ δ∗S

(
λ− λτ

k−1

τ

)

+
τα

q

∣
∣
∣
∣

λ− λτ
k−1

τ

∣
∣
∣
∣

q

dz

subject to (y, λ) ∈ W 2,2(Ω;R3)× L2q(Ω;RM+1),

y(z) = 0 for z ∈ ΓD. (26)

2. enthalpy equation:

∫

Ω

wτ
k − wτ

k−1

τ
+K(λτ

k, w
τ
k)∇

′
εw

τ
k · ∇′

εζ dz +

∫

∂Ω

bτkΘ(wτ
k)ζ − bτkθextζ dS

=

∫

Ω

δ∗S

(
λτ
k − λτ

k−1

τ

)

ζ + α

∣
∣
∣
∣

λτ
k − λτ

k−1

τ

∣
∣
∣
∣

q

ζ +

∣
∣
∣
∣

∇′
εy

τ
k −∇′

εy
τ
k−1

τ

∣
∣
∣
∣
ζ +Θ(wτ

k)a ·
(λτ

k − λτ
k−1

τ

)

ζ dz

for all ζ ∈ W 1,2(Ω).

3. initial conditions:
yτ0 = y0,ε, λτ

0 = λτ
0,ε, wτ

0 = wτ
0,ε a.e. in Ω,

where bτk, λ
τ
0,ε, w

τ
0,ε are suitable approximations of the original data (D6).

Notice the added regularization term
∫

Ω
τ |λ|2q dz which allows for a rather standard proof of existence of a

discrete weak solution but vanishes as τ → 0. Details are to be found, e.g., in [6].

Step 2: A-priori estimates. Let us outline the proof of the a-priori estimates (23)–(25) merely heuristi-
cally, on the continuum level instead of the discrete setting, where a rigorous proof would follow the same
ideas but be technically more demanding, cf. [6] again.

First, from the energy equality (15) integrated only to some s ∈ [0, T ] (note that we actually need only
the lower inequality—this can be, on the discrete level, got from (26) integrated to any arbitrary s ∈ [0, T ]),
we get by exploiting the coercivity assumptions (D1) on the left-hand side and the bounds (D2)-(D3) as well
as (D6) on the right-hand side

∫

Ω

C|∇′
εy

η,ε(s)|p + η

(
∣
∣∇2

py
η,ε(s)

∣
∣
2
+ 2

∣
∣
∣
∣

1

ε
∇py

η,ε
,3 (s)

∣
∣
∣
∣

2

+

∣
∣
∣
∣

1

ε2
yη,ε,33(s)

∣
∣
∣
∣

2)

dz

+ ηVar|·|(∇
′
εy

η,ε; Ω× [0, s]) ≤

∫ s

0

∫

Ω

(
α

4q
|λ̇η,ε|q + C|∇′

εy
η,ε|p

)

dzdt+ C. (27)

Further, by testing the flow rule (16) (after the change of scale) with by v = 0 on [0, s] (note that this
test essentially executes the standard test of the strong flow-rule by λ̇η,ε) we get

∫ s

0

∫

Ω

δ∗S(λ̇
η,ε) +

α

q
|λ̇η,ε|q dz dt+ η‖∇′

ελ
η,ε(s)‖2L2(Ωε;R(M+1)×3) + η‖∇pλ0‖

2
L2(Ωε;R(M+1)×2)

≤ −2κ

∫ s

0

((λη,ε − L(∇′
εy

η,ε), λ̇η,ε))ε dt+

∫ s

0

∫

Ω

|Θ(wη,ε)− θext| · |λ̇
η,ε| dzdt, (28)

where we used that [λ0],3 = 0 due to (D6). This, after plugging in the by-parts integration formula

2

∫ s

0

((λη,ε, λ̇η,ε))ε dt =

∫

Ω

|∇′
ε△

−1
ε λη,ε(s)|2 − |∇′

ε△
−1
ε λη,ε(0)|2 dz, (29)

10



yields (with the help of Young’s inequality and (D6) again) the estimate

∫ s

0

∫

Ω

(

δ∗S(λ̇
η,ε) +

α

q
|λ̇η,ε|q

)

dzdt+

∫

Ω

κ|∇′
ε△

−1
ε λη,ε(s)|2 dz + η|∇′

ελ
η,ε(s)|2 dz

≤

∫ s

0

∫

Ω

α

4q
|λ̇η,ε|q + C|w| dzdt+ C.

(30)

Lastly, testing enthalpy equation (13) by α/lq, with some l ≥ 8 such that α ≤ lq, and integrating again over
Ω and [0, s] gives (notice that this test can be straightforwardly executed on the discrete level)

α

lq

∫ s

0

∫

Ω

ẇη,ε dzdt ≤

∫ s

0

∫

Ω

2α

lq
|λ̇η,ε|q + C|wη,ε| dzdt+

αε

lq
Var|·|(∇

′
εy

η,ε; Ω× [0, s]) + C. (31)

Adding (27), (30) and (31) gives then the bounds (23), (24) and (25a). The estimate (25b) on the scaled
gradient of wη,ε follows by fine technique due to [13, 14] from the test of the enthalpy equation in (13) by
1− 1/(1 + wη,ε)α, while (25c) is a standard dual estimate stemming from the enthalpy equation (17) itself.

Step 3: Convergence τ → 0. The proof of convergence for τ → 0 can be performed similarly as in [6, 44],
or the methods exposed in the proof of Theorem 1 are easily applicable to this case, too.

2

4 Dimension reduction to the microscopic thin-film model

Let us now concentrate on the microscopic thin-film model given through the system of inclusion / equations
(8). As mentioned above, particularly the inclusion (8a) is rather formal, therefore we propose its weak
formulation in the spirit of semi-energetic solutions, due to [44], similarly to the previous section. Also,
again, we transformed the heat equation into a enthalpy equation.

4.1 Weak Formulation

To shorten the notation, we shall denote hereinafter Q := [0, T ] × ω, while the in-plane inner product in
W−1,2(ω;RM+1) will be denoted as ((u, v))p :=

∫

ω
∇p△

−1
p u · ∇p△

−1
p v dzp, for all u, v ∈ W−1,2(ω;RM+1),

whereas △−1
p : L2(ω;RM+1) → W 1,2(ω;RM+1) is the in-plane inverse Laplace operator, more precisely,

△−1
p g = h whenever

∫

ω

∇ph(zp) · ∇pφ(zp)− g(zp)φ(zp) dzp = 0

for every φ ∈ C∞(ω;RM+1).

Definition 2. Let us call the quadruple (yη, bη, λη, wη) belonging to

yη ∈ BV (0, T ;W 1,1(ω;R3)) ∩ L∞(0, T ;W 2,2(ω;R3)), (32a)

bη ∈ BV (0, T ;L1(ω;R3)) ∩ L∞(0, T ;W 1,2(ω;R3)), (32b)

λη ∈ W 1,q(0, T ;Lq(ω;RM+1)) ∩ L∞(0, T ;W 1,2(ω;RM+1)), (32c)

wη ∈ L1(0, T ;W 1,1(ω)), (32d)

such that (yη, bη)(t, z1, z2) = 0 for all t ∈ [0, T ] and a.e. on γD, a weak solution of the evolutionary thin-film
problem (8) if it satisfies

1. semi-stability:

Gη(t) ≤ Gη(t, ȳ, b̄, λ
η(t),Θ(wη(t))) +

∫

ω

η
∣
∣(∇py

η(t)|bη(t))−
(
∇pȳ|b̄

)∣
∣ dzp (33)

for every (ȳ, b̄) ∈ W 2,2(ω;R3)×W 1,2(ω;R3) such that (ȳ, b̄) = 0 a.e. on γD (recall the definition (6a)
of the Gibbs free energy Gη(t));
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2. deformation-related energy equality:

Gη(T )−Gη(0)+ηVar|·|((∇py
η|bη);Q) =

∫ T

0

[Gη]
′
t(t) + 2κ((λη − L(∇py

η(t)|bη(t)), λ̇η))p dt (34)

where Gη(t) is defined as

Gη(t) :=

∫

ω

W (∇py
η|bη) + η

(
|∇2

py
η|2 + 2|∇pb

η|2
)
dzp + κ ‖λη − L(∇py

η|bη)‖
2
W−1,2(ω;RM+1)

−

∫

ω

f0 · yη dzp −

∫

γN

g0 · yη dSp; (35)

3. flow rule:

∫ s

0

2κ((λη−L(∇py
η(t)|bη(t)), v−λ̇η))p dt+

∫ s

0

∫

ω

(Θ(wη)−θtr)a·(v−λ̇η)+2η∇pλ
η ·∇pv+

α

q
|v|q+δ∗S(v) dzpdt

≥ η‖∇pλ
η(T )‖2L2(ω;R(M+1)×2) − η‖∇pλ

η(0)‖2L2(ω;R(M+1)×2) +

∫ s

0

∫

ω

α

q
|λ̇η|q + δ∗S(λ̇

η) dzpdt (36)

for all test functions v ∈ Lq(0, T ;Lq(ω;RM+1)) ∩ L∞(0, T ;W 1,2(ω;RM+1) and every s ∈ [0, T ].

4. enthalpy equation:

∫

Q

K(λη, wη)∇pw
η · ∇pζ − wη ζ̇ dzpdt+

∫ T

0

∫

∂ω

bΘ(wη)ζ dSpdt =

∫

ω

w0ζ(0) dzp+

∫

Q

(
δ∗S(λ̇

η) + α|λ̇η|q + (Θ(wη)− θtr)a · λ̇
η
)
ζ dzpdt+ η

∫

Q

ζHη( dzpdt) +

∫ T

0

∫

∂ω

bθextζ dSpdt (37)

for all ζ ∈ C1(Q) such that ζ(T ) = 0. Analogously to (37), here again the Radon measure Hη ∈ M(Q),
η > 0 represents the heat production due to η|(∇pẏ|ḃ)| and is defined for any closed set A = [t, s]×B,
where [t, s] ⊆ [0, T ] and B ⊂ ω a Borel set, as

Hη(A) := Var|·|((∇py
η|bη); [t, s]×B).

5. initial conditions:
yη(0, zp) = y0,0(zp) := y0(zp, 0),

bη(0, zp) = b0(zp) := (y0),3(zp, 0),

λη(0, zp) = λ0,0(zp) := λ0(zp, 0),

(38)

4.2 Existence of weak solutions

Theorem 1. Let (D1)–(D6) hold. Then there exists a quadruple (yη, bη, λη, wη) satisfying (32) such that
(yη, bη)(t, z1, z2) = 0 for all t ∈ [0, T ] and a.e. on γD and a (not relabeled) a subsequence ε → 0+ such that
the following holds

yη,ε(t) → yη(t) in W 2,2(Ω;R3) for all t ∈ [0, T ], (39a)

1

ε
yη,ε,3 (t) → bη(t) in W 1,2(Ω;R3) for all t ∈ [0, T ], (39b)

λη,ε → λη in W 1,q(0, T ;Lq(Ω;RM+1)), (39c)

∇′
ελ

η,ε → (∇pλ
η|0) in L2(Ω;R(M+1)×3) for all t ∈ [0, T ] (39d)

∇pw
η,ε ⇀∇pw

η in Lr(0, T ;Lr(Ω)) for any 1 ≤ r <
5

4
(39e)

wη,ε → wη in Ls(Q) for any 1 ≤ s <
5

3
, (39f)

with {(yη,ε, λη,ε, wη,ε)}ε>0 a family of weak solutions of (5) obtained in Proposition 1; (yη, bη, λη, wη) is then
a weak solution to (8) in the spirit of Definition 2.
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Proof. For the sake of transparency, let us divide the proof into separate distinct steps.

Step 1: Selection of subsequences. The a-priori estimates (23) ensure—by Helly’s selection principle—
the existence of two vector fields yη ∈ BV (0, T ;W 1,1(Ω;R3)), bη ∈ BV (0, T ;L1(Ω;R3)) such that

yη,ε(t)⇀yη(t) in W 2,2(Ω;R3) for all t ∈ [0, T ], (40a)

1

ε
yη,ε,3 (t)⇀bη(t) in W 1,2(Ω;R3) for all t ∈ [0, T ]. (40b)

Similarly, using standard selection and embedding theorems, estimate (24a) ensures the existence of a
limit phase field λη such that

λη,ε ⇀λη in W 1,q(0, T ;Lq(Ω;RM+1)). (40c)

By exploiting further the estimate (24b) and the continuous embedding of W 1,q(0, T ;Lq(Ω;RM+1)) into
C(0, T ;Lq(Ω;RM+1) we get that

∇pλ
η,ε(t)⇀∇pλ

η(t) in L2(Ω;R(M+1)×2) for all t in [0, T ]. (40d)

The situation is more complicated for the third component of ∇′
ελ

η,ε, we shall return to it later in Step
3, where also the strong convergence (39d) will be shown. The strong convergences (39a)–(39b) will be
obtained in Step 5.

Lastly, we may extract a (not relabeled) subsequence of {wη,ε}ε>0 such that (39e) and (39f) are satisfied;
notice that the latter convergence stems from the dual estimate (25c) and the generalized Aubin–Lions
lemma, cf. [43, Corollary 7.8 and 7.9] and [44, equation (4.55)]. Moreover, (39f) yields, together with the
assumption (D4), the strong convergence

Θ(wη,ε) → Θ(wη) in Lq′(Q) . (41)

In order to see this, we exploit the first inequality in assumption (D4)

wη,ε =

∫ θη,ε

0

cv(r) dr ≥ c1

∫ Θ(wη,ε)

0

(1 + r)ς1−1 dr ≥ c1 ((1 + Θ(wη,ε))ς1 − 1) ,

where we used that θη,ε ≥ 0, together with the assumption ς1 ≥ q′ to get the bound

|Θ(wη,ε)| ≤ C
(

1 + |wη,ε|1/q
′

)

.

Hence, by the continuity of the Nemytskii mapping induced by Θ, one arrives to (41).

Step 2: Independence of z3. It follows from the estimates (23d) and the weak lower semicontinuity of
the norm that

0 = lim inf
ε→0+

cε ≥ lim inf
ε→0+

‖yη,ε,3 (t)‖W 1,2(Ω;R3) ≥ ‖yη,3(t)‖W 1,2(Ω;R3) ≥ 0.

This means that yη is independent of z3 for all t ∈ [0, T ]. Analogously, the independence of λη and bη of
z3 follows from the estimate (24b), resp. (23c). For wη we get that it is independent of z3 only for a.a.
t ∈ [0, T ] from (25b).

Step 3: Thin-film flow rule. Recall the bulk flow (16) which we rescale and and in which we expand
the matrix ∇′

ε into its planar and normal components, namely

∫ s

0

∫

Ω

(Θ(wη,ε)− θtr)a·(v − λ̇η,ε) +
α

q
|v|q + δ∗S(v) dzdt+

∫ s

0

2κ((λη,ε − L(∇′
εy

η,ε), v − λ̇η,ε))ε dt

+

∫ s

0

∫

Ω

2η∇pλ
η,ε·∇pv +

2η

ε2
λη,ε
,3 ·v,3 dzdt+ η‖∇pλ0‖

2
L2(Ω;R(M+1)×2)

≥ η‖∇pλ
η,ε(s)‖2L2(Ω;R(M+1)×2) +

η

ε2
‖λη,ε

,3 (s)‖2L2(Ω;RM+1) +

∫ s

0

∫

Ω

α

q
|λ̇η,ε|q + δ∗S(λ̇

η,ε) dzdt
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where we used that, due to (D6), λ0 does not depend on the third component. Let us admit only test
functions independent of z3 which simplifies the flow rule to

∫ s

0

∫

Ω

(Θ(wη,ε)− θtr)a · (v − λ̇η,ε) +
α

q
|v|q + δ∗S(v) dzdt+

∫ s

0

2κ((λη,ε − L(∇′
εy

η,ε), v − λ̇η,ε))ε dt

+

∫ s

0

∫

Ω

2η∇pλ
η,ε·∇pv dzdt+ η‖∇pλ0‖

2
L2(Ω;R(M+1)×2)

≥ η‖∇pλ
η,ε(s)‖2L2(Ω;R(M+1)×2) +

η

ε2
‖λη,ε

,3 (s)‖2L2(Ω;RM+1) +

∫ s

0

∫

Ω

α

q
|λ̇η,ε|q + δ∗S(λ̇

η,ε) dzdt. (42)

Let us take an s ∈ [0, T ] arbitrary but fixed. Then, from (24b), we can choose a further subsequence of
ε’s dependent on s, labeled εk(s), such that

1

εk(s)2
‖λ

η,εk(s)

,3 (s)‖2L2(Ω;R(M+1)) → ds ∈ R
M+1.

Let us work, for the moment, only with this special subsequence and pass to the limit εk(s) → 0+ in (42) to
obtain

∫ s

0

∫

ω

(Θ(wη)− θtr)a · (v − λ̇η) +
α

q
|v|q + δ∗S(v) dzpdt+

∫ s

0

2κ((λη − L(∇py
η|bη), v − λ̇η))p dt

+

∫ s

0

∫

ω

2η∇pλ
η·∇pv dzpdt+ η‖∇pλ0‖

2
L2(ω;R(M+1)×2)

≥ η‖∇pλ
η(s)‖2L2(ω;R(M+1)×2) + ηds +

∫ s

0

∫

ω

α

q
|λ̇η|q + δ∗S(λ̇

η) dzpdt, (43)

for all v ∈ Lq(0, T ;Lq(ω;RM+1)) ∩ L∞(0, T ;W 1,2(ω;R(M+1)×2).
To see this, we employ (40c) and (41) on the left-hand side to pass to the limit (even for the whole

sequence ε → 0+) in
∫ s

0

∫

Ω
(Θ(wη,ε)− θtr)a · (v − λ̇η,ε) dzdt.

Further, let us choose t ∈ [0, T ] arbitrarily but fixed, and denote, for the sake of simplicity, Λη,ε
t :=

λη,ε(t) − L(∇′
εy

η,ε(t)). Then the weak convergences (40a)–(40b), shown in Step 1, yield that ∇′
εy

η,ε(t) →
(∇py

η|bη)(t) strongly in L2(Ω;R3×3). Thus, by (D3), Nemytskii continuity and the estimate (24b) we also
get that Λη,ε

t → λη(t)− L(∇py
η(t)|bη(t)) =: Λη

t strongly in L2(Ω;RM+1).
Let us show that in such a case, for ε → 0+,

∇′
ε△

−1
ε Λη,ε

t → ∇p△
−1
p Λη

t in L2(Ω;RM+1).

Indeed, denote hε
t = △−1

ε Λη,ε
t ; then hε

t solves
∫

Ω

∇ph
ε
t ·∇pφ+

1

ε2
hε
,3φ,3 − Λη,ε

t φ dz = 0 ∀φ ∈ W 1,2
0 (Ω;RM+1). (44)

Taking φ independent of z3 this simplifies to
∫

Ω

∇ph
ε·∇pφ− Λη,ε

t φ dz = 0 ∀φ ∈ W 1,2
0 (ω;RM+1). (45)

Since ‖∇ph
ε
t‖L2(Ω;R(M+1)×2) is uniformly bounded (owing to the bounds on Λη,ε

t ) we pass to the limit ε → 0+
in (45) and get that ∇ph

ε
t ⇀∇pht in L2(Ω;R(M+1)×2) where ht solves

∫

ω

∇pht·∇pφ− Λη
t φ dzp = 0 ∀φ ∈ W 1,2

0 (ω;RM+1). (46)

Here we relied on the fact that the limit difference Λη
t does not depend on z3, i.e. h = △−1

p Λη
t .

Next, test (44) εφ and notice that 1
ε‖h

ε
t,3‖L2(Ω;RM+1) is uniformly bounded (owing to the bounds on Λη,ε

t )

to get 1
εh

ε
t,3 ⇀ 0 in L2(Ω;RM+1). Finally, by testing the difference of (44) and (46) with hε

t − ht, we obtain

even that ∇′
εh

ε
t → (∇pht|0) strongly in L2(Ω;R(M+1)×3). Note that all the above would stay valid even if

we had only Λη,ε
t ⇀Λη

t in L2(Ω;RM+1) at hand.
Thus, relying on Lebegue’s dominated convergence theorem,

∫ s

0
2κ((λη,ε − L(∇′

εy
η,ε), v − λ̇η,ε))ε dt →

∫ s

0
2κ((λη −L(∇py

η|bη), v − λ̇η))p dt. Finally, on the left-hand side of (42) in term
∫ s

0

∫

Ω
2η∇pλ

η,ε·∇pv dzdt
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we use (40d) again combined with Lebegue’s dominated convergence; on the right-hand side of (42) we rely
on the weak lower semicontinuity of the involved convex terms to obtain (43).

Next, we aim to show that ds ≡ 0. Clearly, d ≥ 0 and the opposite inequality could be immediately
seen if we allowed to put v = λ̇η in (43). Yet, λ̇η does not need to have the required regularity. So we
introduce a sequence of smooth functions {λη

ℓ }ℓ>0 such that λη
ℓ → λη strongly in W 1,q(0, T ;Lq(ω;RM+1))

and ∇pλ
η
ℓ (t) → ∇pλ

η(t) strongly in L2(ω;RM+1) for ℓ → 0+ for all t ∈ [0, T ]. Putting then v = λ̇η
ℓ in (43)

yields

∫ s

0

∫

ω

(Θ(wη)− θtr)a · (λ̇
η
ℓ − λ̇η) +

α

q
|λ̇η

ℓ |
q + δ∗S(λ̇

η
ℓ ) dzpdt+

∫ s

0

2κ((λη − L(∇py
η|bη), λ̇η

ℓ − λ̇η))p dt

+

∫ s

0

∫

ω

2η∇pλ
η·∇pλ̇

η
ℓ dzpdt+ η‖∇pλ0‖

2
L2(ω;R(M+1)×2)

≥ η‖∇pλ
η(s)‖2L2(ω;R(M+1)×2) + ηds +

∫ s

0

∫

ω

α

q
|λ̇η|q + δ∗S(λ̇

η) dzpdt. (47)

Reformulating, by means of by parts integration,
∫ s

0

∫

ω
2η∇pλ

η·∇pλ̇
η
ℓ dzpdt as

∫ s

0

∫

ω

2η∇pλ
η·∇pλ̇

η
ℓ dzpdt =

∫ s

0

∫

ω

2η(∇pλ
η −∇pλ

η
ℓ )·∇pλ̇

η
ℓ dzpdt+

∫ s

0

∫

Ω

2η∇pλ
η
ℓ ·∇pλ̇

η
ℓ dzpdt

=

∫ s

0

∫

ω

2η(∇pλ
η −∇pλ

η
ℓ )·∇pλ̇

η
ℓ dzpdt

+ η
(
‖∇pλ

η
ℓ (s)‖

2
L2(ω;R(M+1)×2) − ‖∇pλ

η
ℓ (0)‖

2
L2(ω;R(M+1)×2)

)
(48)

and passing to the limit ℓ → 0+ yiels that
∫ s

0

∫

ω

2η∇pλ
η·∇pλ̇

η
ℓ dzpdt → η

(
‖∇pλ

η(s)‖2L2(ω;R(M+1)×2) − ‖∇pλ0‖
2
L2(ω;R(M+1)×2)

)
.

Therefore, passing ℓ → 0+ in (47) gives that ds ≤ 0.
Last but not least, note that the s-dependent subsequence εk(s) was used to pass to the limit merely

in 1
ε2 ‖λ

η,ε
,3 (s)‖2

L2(Ω;R(M+1))
, all other limit passages hold in the whole sequence of ε’s. Hence, we get that

1
εk(s)

2 ‖λ
η,εk(s)

,3 (s)‖2
L2(Ω;R(M+1))

→ 0 for all subsequences εk(s) in which the left-hand side converges, and, by

uniqueness of the limit, we conclude that

1

ε2
‖λη,ε

,3 (s)‖2L2(Ω;R(M+1)) → 0 (49)

in the original sequence of ε’s, independently of the chosen s ∈ [0, T ]. Thus, we conclude that normal part
of (39d) and (36) hold.

Step 4: Phase-field related energy equality and strong convergence of λ̇η,ε. In this step, let
us deduce an energy equality that is related to the phase field. To this end, we reformulate the flow rule
(16) (exploiting the convexity of | · |q) into the following equivalent form

∫ s

0

∫

Ω

α|λ̇η,ε|q−2λ̇η,ε·(v − λ̇η,ε) + (Θ(wη,ε)− θtr)a·(v − λ̇η,ε) + δ∗S(v) dzdt

+

∫ s

0

2κ((λη,ε − L(∇′
εy

η,ε), v − λ̇η,ε))ε dt+

∫ s

0

∫

Ω

2η∇pλ
η,ε·∇pv +

2η

ε2
λη,ε
,3 ·v,3 dzdt

≥ η‖∇pλ
η,ε(s)‖2L2(Ω;R(M+1)×2) − η‖∇pλ0‖

2
L2(Ω;R(M+1)×2) +

η

ε2
‖λη,ε

,3 (s)‖2L2(Ω;RM+1) +

∫ s

0

∫

Ω

δ∗S(λ̇
η,ε) dzdt

(50)

and test (50) by v = 0 to get

−

(∫ s

0

∫

Ω

α|λ̇η,ε|q−2λ̇η,ε·λ̇η,ε + (Θ(wη,ε)− θtr)a·λ̇
η,ε dzdt+

∫ s

0

2κ((λη,ε − L(∇′
εy

η,ε), λ̇η,ε))ε dt

)

≥ η

(

‖∇pλ
η,ε(s)‖2L2(Ω;R(M+1)×2) − ‖∇pλ0‖

2
L2(Ω;R(M+1)×2 +

1

ε2
‖λη,ε

,3 (s)‖2L2(Ω;RM+1)

)

+

∫ s

0

∫

Ω

δ∗S(λ̇
η,ε) dzdt

(51)
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and also by v = 2λ̇η,ε to get (if λ̇η,ε does not have the required regularity we can proceed as in Step 3 above,
namely, we can smoothen λ̇η,ε, perform by parts integration analogous to (48) and pass to limit with the
mollifying parameter which gives the desired result)

(∫ s

0

∫

Ω

α|λ̇η,ε|q−2λ̇η,ε·λ̇η,ε + (Θ(wη,ε)− θtr)a·λ̇
η,ε dzdt+

∫ s

0

2κ((λη,ε − L(∇′
εy

η,ε), λ̇η,ε))ε dt

)

+ 2η

(

‖∇pλ
η,ε(s)‖2L2(Ω;R(M+1)×2) − ‖∇pλ0‖

2
L2(Ω;R(M+1)×2) +

1

ε2
‖λη,ε

,3 (s)‖2L2(Ω;RM+1)

)

≥ η

(

‖∇pλ
η,ε(s)‖2L2(Ω;R(M+1)×2) − ‖∇pλ0‖

2
L2(Ω;R(M+1)×2) +

1

ε2
‖λη,ε

,3 (s)‖2L2(Ω;RM+1)

)

−

∫ s

0

∫

Ω

δ∗S(λ̇
η,ε) dzdt,

where we relied on the one-homogeneity of δ∗S(·). In other words,

−

(∫ s

0

∫

Ω

α|λ̇η,ε|q−2λ̇η,ε·λ̇η,ε + (Θ(wη,ε)− θtr)a·λ̇
η,ε dzdt+

∫ s

0

2κ((λη,ε − L(∇′
εy

η,ε), λ̇η,ε))ε dt

)

≤ η

(

‖∇pλ
η,ε(s)‖2L2(Ω;R(M+1)×2) − ‖∇pλ0‖

2
L2(Ω;R(M+1)×2) +

1

ε2
‖λη,ε

,3 (s)‖2L2(Ω;RM+1)

)

+

∫ s

0

∫

Ω

δ∗S(λ̇
η,ε) dzdt;

(52)

combining this with (51) we obtain the phase-field related energy equality in the bulk, more precisely

∫ s

0

∫

Ω

α|λ̇η,ε|q dzdt = −

∫ s

0

∫

Ω

(Θ(wη,ε)− θtr)a·λ̇
η,ε dzdt−

∫ s

0

2κ((λη,ε − L(∇′
εy

η,ε), λ̇η,ε))ε dt

− η

(

‖∇pλ
η,ε(s)‖2L2(Ω;R(M+1)×2) − ‖∇pλ0‖

2
L2(Ω;R(M+1)×2) +

1

ε2
‖λη,ε

,3 (s)‖2L2(Ω;RM+1)

)

−

∫ s

0

∫

Ω

δ∗S(λ̇
η,ε) dzdt.

(53)

By an analogous procedure, we get from (36) the phase-field related energy equality in the thin film

∫ s

0

∫

ω

α|λ̇η|q dzpdt = −

∫ s

0

∫

ω

(Θ(wη)− θtr)a·λ̇
η dzpdt−

∫ s

0

2κ((λη − L(∇py
η|bη), λ̇η))p dt

− η
(
‖∇pλ

η(s)‖2L2(ω;R(M+1)×2) − ‖∇pλ0‖
2
L2(ω;R(M+1)×2)

)
−

∫ s

0

∫

ω

δ∗S(λ̇
η) dzpdt. (54)

Having (53) and (54) at hand, we prove the strong convergences (39c) and the in-plane part of (39d). Indeed,
we have
∫ s

0

∫

ω

α|λ̇η|q dzpdt ≤ lim inf
ε→0+

∫ s

0

∫

Ω

α|λ̇η,ε|q dzdt ≤ lim sup
ε→0+

∫ s

0

∫

Ω

α|λ̇η,ε|q dzdt

(I)
= lim sup

ε→0+

(

−

∫ s

0

∫

Ω

(Θ(wη,ε)− θtr)a·λ̇
η,ε + δ∗S(λ̇

η,ε) dzdt−

∫ s

0

2κ((λη,ε − L(∇′
εy

η,ε), λ̇η,ε))ε dt

+ η

(

‖∇pλ0‖
2
L2(Ω;R(M+1)×2) − ‖∇pλ

η,ε(s)‖2L2(Ω;R(M+1)×2)−
1

ε2
‖λη,ε

,3 (s)‖2L2(Ω;RM+1)

))

(II)
=− lim

ε→0+

(∫ s

0

∫

Ω

(Θ(wη,ε)−θtr)a·λ̇
η,ε dzdt+

∫ s

0

2κ((λη,ε−L(∇′
εy

η,ε), λ̇η,ε))ε dt+
η

ε2
‖λη,ε

,3 (s)‖2L2(Ω;RM+1)

)

+ η
(
‖∇pλ0‖

2
L2(Ω;R(M+1)×2) − lim inf

ε→0+
‖∇pλ

η,ε(s)‖2L2(Ω;R(M+1)×2)

)
− lim inf

ε→0+

∫ s

0

∫

Ω

δ∗S(λ̇
η,ε) dzdt

(III)

≤−

∫ s

0

∫

ω

(Θ(wη)− θtr)a·λ̇
η dzpdt−

∫ s

0

2κ((λη−L(∇py
η|bη), λ̇η))p dt

‖∇pλ0‖
2
L2(ω;R(M+1)×2) − ‖∇pλ

η(s)‖2L2(ω;R(M+1)×2) −

∫ s

0

∫

ω

δ∗S(λ̇
η) dzpdt

(IV)
=

∫ s

0

∫

ω

α|λ̇η|q dzpdt,

where the inequalities on the first line follow from the weak lower semicontinuity of the norm and a general
lim inf ≤ lim sup relation, the equality (I) is due to (53), the equality (II) follows from general lim sup, lim inf
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inequalities, the inequality (III) was obtained by lower semicontinuity of the convex terms and (40c) and
(40d), the limit ε → 0+ uses (41), (49) and similar techniques as when passing to the limit in the flow rule
in Step 3. Finally, (IV) is due to (54).

So, we conclude that ‖λ̇η,ε‖Lq(Q;RM+1) → ‖λ̇η‖Lq(Q;RM+1) and, as the space Lq(Q;RM+1) is uniformly
convex, also

λ̇η,ε → λ̇η in Lq(Q;RM+1). (55)

Moreover, using (55) and passing to the limit ε → 0+ in (53) and comparing to (54) yields that

‖∇pλ
η,ε(s)‖2L2(Ω;R(M+1)×2) → ‖∇pλ

η(s)‖2L2(Ω;R(M+1)×2) ∀s ∈ [0, T ]. (56)

Step 5: Thin-film semi-stability. Fix again some t ∈ [0, T ] arbitrarily. Then, we test (14) (formulated
only in the deformation-related energy) by ȳεδ(z) := ỹ(zp) + εz3bδ(zp) with some arbitrary ỹ ∈ W 2,2(ω;R3)

and a smooth approximation {bδ}δ>0 of an arbitrary b̃ ∈ W 1,2(ω;R3) (the smoothing is required in order to
obtain the test function in W 2,2(Ω;R3)) such that ỹ(zp) + εz3bδ(zp) = 0 a.e. on ΓD. Then, by taking first
lim infε→0 then lim infδ→0+ one arrives to

Gη(t) ≤ lim inf
ε→0+

Gε
η(t)

≤ lim
δ→0+

(

lim inf
ε→0+

Gε
η(t, ȳ

ε
δ , λ

η,ε(t)) +

∫

Ω

η |∇′
εȳ

ε
δ −∇′

εy
η,ε(t)| dz

)

≤ lim
δ→0+

(

lim sup
ε→0+

Gε
η(t, ȳ

ε
δ , λ

η,ε(t)) +

∫

Ω

η |∇′
εȳ

ε
δ −∇′

εy
η,ε(t)| dz

)

= Gη(t, ỹ, b̃, λ
η(t)) +

∫

ω

η
∣
∣
∣(∇pỹ|b̃)− (∇py

η(t)|bη(t))
∣
∣
∣ dzp,

where we used (39c),(39d) and the compact embedding Lq(Ω;RM+1) ⋐ W−1,2(Ω;RM+1) (recall that q ≥
2) to pass to the limit in Gε

η(t, ȳ
ε
δ , λ

η,ε(t)) while (40a), (40b) was used to pass to the limit in the term
∫

Ω
η |∇′

εȳ
ε
δ −∇′

εy
η,ε(t)| dz. Observe that this is equivalent to (33).

Moreover, letting ỹ := yη(t) and b̃ := bη(t) yields

lim
ε→0+

Gε
η(t) = Gη(t) for all t ∈ [0, T ] . (57)

From this we may, similarly as in [10], deduce that

∇2
py

η,ε(t) → ∇2
py

η(t) in L2(Ω;R3×2×2),

∇p
1

ε
yη,ε,3 (t) → ∇pb

η(t) in L2(Ω;R3×2),

1

ε2
yη,ε,33(t) → 0 in L2(Ω;R3),

thus showing (39a)–(39b). As we will not need this improved convergence in the following, we omit a detailed
proof.

Step 6: Thin-film deformation-related energy equality. We show the deformation-related energy
equality (34) as two inequalities. One follows from the bulk inequality by taking lim infε→0+ with the aid of
the convergences (39a)–(39d), the data qualification (D2) as

Gη(T )−Gη(0) + ηVar|·|(∇py
η|bη) ≤

lim inf
ε→0+

(
Gε

η(T )−Gε
η(0) + ηVar|·|(∇

′
εy

η,ε)
)
≤

lim sup
ε→0+

∫ T

0

[Gε
η]

′
t(t) +

〈

[Gε
η]

′
λ(t), λ̇

η,ε(t)
〉

dt ≤

∫ T

0

[Gη]
′
t(t) +

〈

[Gη]
′
λ(t), λ̇

η(t)
〉

dt (58)

as far as the first inequality is concerned, recall that Var|·| is lower-semicontinuous under the convergences
(39a)-(39b).
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The opposite inequality is a consequence of the thin-film semistability (33) (cf. [23, 29, 44] and [7] for an
analogous (and more detailed) proof as the one given below). To see this, we introduce a partition of [0, T ],

0 = t0 < t1 < · · · < tN(β) = T , such that max{|tβi−1 − tβi | : i = 1 . . . N(β)} ≤ β and test (33) at the time

tβi−1 by (yη(tβi ), b
η(tβi )), i = 1, . . . , N(β). Summing from 0 to N(β) reveals that

Gη(T )−Gη(0) + ηVar|·|(∇py
η|bη) ≥

N(β)
∑

i=1

∫ tβi

tβi−1

[Gη]
′
t(t, y

η(tβi )) dt

+

N(β)
∑

i=1

∫ tβi

tβi−1

〈

[Gη]
′
λ(y

η(tβi ), b
η(tβi ), λ

η(t)), λ̇η(t)
〉

dt , (59)

where

N(β)
∑

i=1

∫ tβi

tβi−1

〈

[Gη]
′
λ(y

η(tβi ), b
η(tβi ), λ

η(t)), λ̇η(t)
〉

= 2κ

N(β)
∑

i=1

∫ tβi

tβi−1

((λη(t)− L(∇py
η(tβi )|b

η(tβi )), λ̇
η(t)))p

+

N(β)
∑

i=1

∫ tβi

tβi−1

((λη(t)− λη(tβi ), λ̇
η))p

︸ ︷︷ ︸

(i)

+

N(β)
∑

i=1

∫ tβi

tβi−1

((λη(tβi )− L(∇py
η(tβi )|b

η(tβi )), λ̇
η(tβi )))p

︸ ︷︷ ︸

(ii)

+

N(β)
∑

i=1

∫ tβi

tβi−1

((λ̇η(tβi )− L(∇py
η(tβi )|b

η(tβi )), λ̇
η(t)− λ̇η(tβi )))p

︸ ︷︷ ︸

(iii)

(60)

To make the limit passage for β → 0+, one makes use of the fact (cf. [16]) that every Bochner integrable
h : [0, T ] → X, with X a Banach space, can be approached by its piecewise constant interpolant hβ defined

on [0, T ] as hβ |[tβi−1,t
β
i )

:= h(tβi ), i = 1, . . . , N(β) strongly to h in L1(0, T ;X); more precisely

lim
β→0+

N(β)
∑

i=1

∫ tβi

tβi−1

‖hβ(t)− h(t)‖X dt = 0

in the partition of [0, T ] chosen above (in fact this holds for a.a. partitions of [0,T]). Hence, one may assume
that

λη
β ⇀λη in Lq(0, T ;Lq(ω;RM+1)), (61a)

yηβ ⇀yη in Lp(0, T ;W 1,p(ω;R3)), (61b)

bηβ ⇀bη in L2(0, T ;L2(ω;R3)), (61c)

λ̇η
β → λ̇η in L1(0, T ;Lq(ω;RM+1)), (61d)

[

((λη − L(∇py
η|bη), λ̇η))p

]

β
→ ((λη − L(∇py

η|bη), λ̇η))p in L1(0, T ). (61e)

Using (61b) we establish that
∑N(β)

i=1

∫ tβi
tβi−1

[Gη]
′
t(t, y

η(tβi )) dt →
∫ T

0
[Gη]

′
t(t, y

η(t)) dt ; moreover, (61a) as-

sures that (i) in (60) converges to 0, by (61e) we immediately see that (ii) in (60) converges to
∫ T

0
((λη −

L(∇py
η|bη), λ̇η))p dt and, finally, by the uniform boundedness of the term λ̇η(tβi ) − L(∇py

η(tβi )|b
η(tβi )) in

L∞(0, T ;W−1,2(ω;RM+1)) and (61d) (iii) in (60) converges to 0.
Thus, we got that

Gε
η(T )−Gε

η(0) + ηVar|·|(∇
′
εy

η,ε) ≥

∫ T

0

[Gη]
′
t(t) +

〈

[Gη]
′
λ(t), λ̇

η(t)
〉

dt

and combining this with (58) as well as (57) we obtain that

Var|·|(∇
′
εy

η,ε) → Var|·|(∇py
η|bη) (62)
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Step 7: Thin-film enthalpy equation. Recall that the bulk enthalpy equation reads as

∫

Q

K(λη,ε, wη,ε)∇′
εw

η,ε · ∇′
εζ − wη,εζ̇ dzdt+

∫

Σ

bΘ(wη,ε)ζ dSdt =

∫

Q

(
δ∗S(λ̇

η,ε) + α|λ̇η,ε|q +Θ(wη,ε)a · λ̇η,ε
)
ζ dzdt+ η

∫

Q

ζHε( dxdt)

+

∫

Ω

wη,ε
0 ζ(0) dz +

∫

Σ

bθextζ dSdt (63)

with ζ̄ ∈ C1(Q) and ζ̄(T ) = 0. Let us restrict ourselves to test functions independent of z3. When taking
ε → 0+ in (63), we aim to get (37).

First, let us show that

lim
ε→0+

∫

Q

ζHη
ε (dzdt) =

∫

Q

ζHη(dzdt) . (64)

To this end, recall that from the a-priori estimates (23) follows the existence of a limit measure H such that

Hη
ε

*
⇀H in M(Q) , (65)

while, on the other hand, (62) ensures that

lim
ε→0

Hη
ε (Q) = Hη(Q) . (66)

Now, the contradiction argument in [44, Proposition 4.3] supports that (65)–(66) indeed yield (64). More
precisely, if, by contradiction, it held that Hη 6= H, we could define the Borel set B := supp (Hη −H) ⊂ Q
and (66) would imply that

∫

B

(Hη −H) dzdt > 0

(otherwise (66) would be violated), which immediately contradicts the weak∗ lower semicontinuity of the
map ε 7→

∫

B
Hη

ε ( dzdt).
For the other terms in (63), we use λη,ε → λη in Lq(0, T ;Lq(Ω;RM+1)), wη,ε → wη in Ls(0, T ;Ls(Ω)), for

any 1 ≤ s < 5/3; the latter convergence ensures also that wη,ε → wη in L1(0, T ;L1(Σ)) which allows us to
pass to the limit in the boundary terms on the left-hand side of (63) as well as that K(λη,ε, wη,ε) → K(λη, wη)
in Lβ(0, T ;Lβ(Ω;R3×3)) for any 1 ≤ β < +∞. Hence, we obtain (37).

2

5 Relaxation in the microscopic thin-film model

In this section, we surpass scales to rigorously obtain the mesoscopic model formally given by (10a)–(10c).
As mentioned in Section 2, this upscaling lets the interfacial energy vanish; this may lead to fast spatial

oscillations of the deformation gradient, on one hand, as well as of the Cosserat vector, on the other hand.
A standard tool to capture these oscillations is the theory of (gradient) Young measures [28, 51, 38].

Let O ⊂ R
l be a Lebesgue measurable subset with finite measure. Young measures are weakly measurable

and essentially bounded mappings ν ∈ L1(O;C0(R
d))∗ ∼= L∞

w (O;M(Rd)); here C0(R
d) denotes the space of

continuous functions on R
d vanishing at infinity, so that M(Rd) denotes the space of Radon measures on

R
d. Having a bounded sequence {uk}k∈N ⊂ Lp(O;Rd) for 1 ≤ p < +∞ then there is a subsequence (not

relabeled) and a Young measure ν such that limk→∞

∫

O
h(x, uk(x)) dx =

∫

O

∫

Rd h(x, F ) νx(dF )dx whenever

{h(·, uk)}k∈N ⊂ L1(O) is uniformly integrable, where h : O × R
d → R is a Carathéodory integrand. We

then say that ν is generated by {uk}k∈N. The set of mappings from L∞
w (O;M(Rd)) generated by bounded

sequences in Lp(O;Rd) is denoted by Y p(O;Rd).
An important subset of Y p(O;Rd) is the set of so-called p-gradient Young measures (1 < p < +∞) which

consists of measures generated by {∇yk}k∈N of a bounded sequence of mappings {yk}k∈N ⊂ W 1,p(O;Rd). The
set of p-gradient Young measures (shortly gradient Young measures) is denoted by G p(O;Rd×l). Occasionally,
we may write G p

γD
(O;Rd×l) to indicate that yk = 0 on γD ⊂ ∂O.

Further, we use the the shorthand notation (momentum operator) “ • ” defined through

[f • ν](x) :=

∫

Rd×l

f(s)νx(ds).
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Denoting id : R
d×l → R

d×l the identity mapping, we speak of id • ν as the mean value of the gradient

Young measure ν ∈ G p(O;Rd×l). It can be proved, cf. [28], that whenever ν ∈ G p(O;Rd×l) there exists
y ∈ W 1,p(O;R) such that ∇y = id • ν a.e. on O. Additionally, ν is an element of G p

γD
(O;Rd×l) if and only

if y = 0 on γD.

5.1 Weak formulation

Let us now state the weak formulation of (10a)–(10c).

Definition 3. We call the quintuple (y, ν, µ, λ, w), where

y ∈ B(0, T ;W 1,p(ω;R3)), (67a)

ν ∈ (G p
γD

(ω;R3×2))[0,T ], (67b)

µ ∈ (Y p(ω;R3))[0,T ], (67c)

λ ∈ W 1,q(0, T ;Lq( RM+1)), (67d)

w ∈ L∞(0, T ;L1(ω)), (67e)

such that y(t) = id • νzp(t) for a.a. zp ∈ ω and all t ∈ [0, T ] a weak solution of (10a)–(10c) if it satisfies

1. minimization property :

G(t, y(t), ν(t), µ(t), λ(t),Θ(w(t))) ≤ G(t, ȳ, ν̄, µ̄, λ(t),Θ(w(t))) (68)

for every (ȳ, ν̄, µ̄) ∈ W 1,p(ω;R3)×G p
γD

(ω;R3×2)×Y p(ω;R3) such that ȳ = id • ν̄zp for almost all zp ∈ ω

and G defined in (9).

2. flow rule:

∫ T

0

2κ((λ− L • (ν, µ), v − λ̇))p dt+

∫ T

0

∫

ω

(Θ(wη,ε)− θtr)a·(v − λ̇)+
α

q
|v|q + δ∗S(v) dzpdt

≥

∫ T

0

∫

ω

α

q
|λ̇|q + δ∗S(λ̇) dzpdt (69)

for all test functions v ∈ Lq(0, T ;Lq(ω;RM+1)).

3. enthalpy equation:

∫

Q

K(λ,w)∇pw·∇pζ − wζ̇ dzpdt+

∫ T

0

∫

∂ω

bΘ(w)ζ dSpdt =

∫

Q

(
δ∗S(λ̇) + α|λ̇|q + (Θ(w))a·λ̇

)
ζ dzpdt+

∫

ω

w0ζ(0) dzp +

∫ T

0

∫

∂ω

bθextζ dSpdt (70)

for every ζ ∈ C1(Q) such that ζ(T ) = 0.

4. the remaining initial conditions:

νzp(0) = δy0,0(zp), µzp(0) = δb0(zp), λ(0) = λ0,0, (71)

with y0,0(zp), b0(zp) and λ0,0 referring to (38).

Notice that in this formulation we used the (not completely standard) notation B(0, T ;X) for the space
of function [0, T ] 7→ X, X a Banach space, that are bounded but not necessarily Lebesgue measurable. Also,
we used the notation

Ψ • (ν, µ)(zp) :=

∫

R3×2

∫

R3

Ψ(A|b) dνzp(A) dµzp(b),

with Ψ a continuous function with at most p-growth.
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Remark 5 (Deformation-related energy equality). Note that we omit a deformation-related energy equality
analogous to (34). Since we scale down the rate-independent dissipation due to η|(∇pẏ

η|bη)| to zero, such
an equality is a direct consequence of (68) and, hence, becomes redundant. To see this, we may proceed as

Step 6 of the proof of Theorem 1 and introduce a partition of the interval [0, T ], 0 = tβ0 ≤ tβ1 . . . t
β
K(β) = T

and test (68) at t = tβi−1 by (y(tβi ), ν(t
β
i ), µ(t

β
i )); summing and passing to the limit β → 0 leads, as in Step

6 of the proof of Theorem 1, to the inequality

G(T )−G(0) ≥

∫ T

0

G′
t(t) +

〈

G′
λ(t), λ̇(t)

〉

dt, (72)

where

G(t) = G(t, y(t), ν(t), µ(t), λ(t)) :=

∫

ω

W • (ν, µ) + κ
∥
∥
∥λ− L • (ν, µ)

∥
∥
∥

2

W−1,2(ω;R3×3)

−

∫

ω

f0 · y dzp −

∫

γN

g0 · y dSp , (73)

is the deformation-related part of the mesoscopic Gibbs free energy.
The other inequality is then obtained by the same procedure: We test, however, (68) at t = tβi with

by (y(tβi−1), ν(t
β
i−1), µ(t

β
i−1)). We obtain an “energy-related” inequality because the dissipation component

related to η|(∇pẏ
η|bη)| is not present in (68) anymore.

5.2 Existence of weak solutions

Theorem 2. Let {(yη, bη, λη, wη)}η>0 be a family of weak solutions of the thin-film problem (8a)–(8c) as
found in Theorem 1. Then there exist a quintuple (y, ν, µ, λ, w), satisfying (67), and a sequence η → 0+ such
that

λη → λ in W 1,q(0, T ;Lq(ω;RM+1)), (74)

and

wη ⇀w in Lr(0, T ;W 1,r(ω)), for every r <
5

4
, (75a)

wη → w in Ls([0, T ]× ω;RM+1), for every s <
5

3
. (75b)

Moreover, for each t ∈ [0, T ] there exists a subsequence ηk(t) such that ∇yηk(t)
(t) generates a gradient Young

measure ν(t), yηk(t)
(t) ⇀ y(t) in W 1,p(ω;R3) and bηk(t)

(t) generates a Young measure µ(t).
At least one cluster point found in this way is then a weak solution to (10a)–(10c) in the sense of Definition

3.

Proof. For lucidity, let us divide the proof into several steps. Let us note that the idea of the proof, in
particular the technique of selecting a suitable cluster point, roughly follows [7].

Step 1: Selection of subsequences and reformulation of the flow rule. Similarly as in Step
1 of the proof of Theorem 1, we choose, owing to the a-priori estimates (24)–(25) (and the Aubin-Lions
theorem), a (not relabeled) subsequence of η → 0+ and find (λ,w) such that

λη ⇀λ in W 1,q(0, T ;Lq(ω;RM+1)) (76)

and (75) hold as well as the limit limη→0+ Gη(T ) is well defined. Recall that, again as in Step 1 in the
proof of Theorem 1, we have the additional convergences λη(t)⇀λ(t) in Lq(ω;RM+1) for all t ∈ [0, T ] and
Θ(wη) → Θ(w) in Lq′(Q).

Now, let us turn our attention to the flow rule (36), more specifically to the penalty term

∫ T

0

2κ((λη(t)− L(∇py
η(t)|bη(t)), v − λ̇η))p dt (77)

involved in
∫ T

0
〈[Gη]

′
t, v − λ̇η〉 dt, which turns out to be the most troublesome. Indeed, note that since the

limit for (∇yη, bη) is evaluated point-wise in t ∈ [0, T ] the limit of L(∇py
η(t)|bη(t)) (taken again point-wise)

is not guaranteed to be measurable in time. Moreover, λ̇η converges only weakly in Lq(Q;RM+1) and, thus,
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convergence for a.a. t ∈ [0, T ] of this term cannot be expected. To handle the latter obstacle, we plug the
energy equality (34) into (36) with s = T to obtain a weaker reformulated flow rule:

Gη(T ) + ηVar|·|(∇py
η|bη) + η‖∇pλ

η(T )‖2L2(ω;R(M+1)×2) +

∫

Q

α

q
|λ̇η|q + δ∗S(λ̇

η) dzpdt

≤ Gη(0) +

∫ T

0

[Gη]
′
t(t, y

η(t)) dt+

∫

Q

(Θ(wη)−θtr)a·(ṽ−λ̇η) + 2η∇pλ
η·∇pṽ +

α

q
|ṽ|q + δ∗S(ṽ) dzpdt

+

∫ T

0

2κ((λη − L(∇py
η|bη), ṽ))p dt+ η‖∇pλ0‖

2
L2(ω;R(M+1)×2). (78)

Indeed, the term
∫ T

0
2κ((λη(t)− L(∇py

η(t)|bη(t)), λ̇))p dt is no longer present in (78).
Further, inspired by [7, 23, 16], we define

Pv(t) = lim sup
η→0

2κ((λη(t)−L(∇py
η(t)|bη(t)), v(t)))p dt and F(t) = lim sup

η→0
[Gη]

′
t(t, y

η(t))

for any v ∈ Lq(Q;RM+1) and every t ∈ [0, T ]; notice that both Pv and F are measurable. Moreover, by
Fatou’s lemma, we have

∫ T

0

Pv(t) dt ≥ lim sup
η→0+

∫ T

0

2κ((λη(t)− L(∇py
η(t)|bη(t)), v(t)))p dt,

∫ T

0

F(t) dt ≥ lim sup
η→0+

∫ T

0

[Gη]
′
t(t, y

η(t)) dt.

Since Lq(Q;RM+1) is separable, we consider, for now, the test functions v = vℓ only from a countable dense
subset of Lq(Q;RM+1), denoted by V. Next, we fix t ∈ [0, T ] and choose a subsequence of η’s labeled ηt,vℓ

such that

Pvℓ

(t) = lim
η
t,vℓ→0+

2κ((λη
t,vℓ (t)− L(∇py

η
t,vℓ (t)|bηt,vℓ (t)), vℓ(t)))p, (79a)

F(t) = lim
η
t,vℓ→0+

. (79b)

By a diagonal selection, we can find a further subsequence labeled ηt such that (79) holds for all vℓ. Note
that the chosen subsequence remains to be time-dependent.

Now, owing to the a-priori estimates (23b) and (23c), we choose yet another subsequence of ηk(t) (not re-
labeled) such that {∇pyηk(t)

(t)}k∈N generates the gradient Young measure νzp(t) and {bηk(t)
(t)}k∈N generates

the Young measure µzp(t); so,

Pv(t) = lim
ηk(t)→0+

2κ((ληk(t)(t)− L(∇py
ηk(t)(t)|bηk(t)(t)), v(t)))p dt = 2κ((λ(t)− L • (ν, µ), v(t)))p,

F(t) = lim
ηk(t)→0+

[Gη]
′
t(t, yηk(t)

(t)) = G′
t(t, y(t)).

Thus, when passing to the limit η → 0+ in (78), using weak-lower semicontinuity of the convex terms
and non-negativity of ηVar|·|(∇py

η|bη) + η‖∇pλ
η(T )‖2

W−1,2(ω;R(M+1)×2)
we get, similarly as in Step 3 of the

proof of Theorem 1, the reformulated mesoscopic flow rule

G(T ) +

∫

Q

α

q
|λ̇|q + δ∗S(λ̇) dzpdt ≤ G(0) +

∫ T

0

G′
t(t, y(t)) dt

+

∫

Q

(Θ(w)− θtr)a·(v − λ̇) +
α

q
|v|q + δ∗S(v) dzpdt+

∫ T

0

2κ((λ− L • (ν, µ), v))p dt, (80)

where, by density, the test functions can be taken from the whole of Lq(Q;RM+1).

Step 2: Minimization principle, back to the original flow-rule. First, we notice that (68) is
equivalent to

G(t, y, ν, µ, λ(t)) ≤ G(t, ȳ, ν̄, µ̄, λ(t))
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for every (ȳ, ν̄, µ̄) ∈ W 1,p(ω;R3)× G
p
ΓD

(ω;R3×2)× Y p(ω;R3) such that ȳ = id • ν̄zp for a.a. zp ∈ ω

Thus, thanks to (33), we have

G(t, y, ν, µ, λ(t)) ≤ lim inf
ηk(t)→0+

Gηk(t)
(t, yηk(t)(t), bηk(t)(t), ληk(t)(t))

≤ lim inf
ηk(t)→0+

Gηk(t)
(t, ỹ, b̃, ληk(t)(t)) +

∫

ω

ηk(t)|(∇py
ηk(t)(t)|bηk(t)(t))− (∇pỹ|b̃)| dzp

=

∫

ω

W (∇pỹ|b̃) dzp + κ‖λ(t)− L(∇pỹ|b̃)‖
2
W−1,2(ω;RM+1) −

∫

ω

f0 · ỹ dzp −

∫

γN

g0 · ỹ dSp

for every ỹ ∈ W 2,2(ω;R3) and b̃ ∈ W 1,2(ω;R3), such that y = 0 on γD. By density, we have that

G(t, y, ν, µ, λ(t)) ≤

∫

ω

W (∇pỹ|b̃) dzp + κ‖λ(t)− L(∇pỹ|b̃)|
2
W−1,2(ω;RM+1) −

∫

ω

f0 · ỹ dzp −

∫

γN

g0 · ỹ dSp

even for all ỹ ∈ W 1,2(ω;R3) satisfying y = 0 on γD and all b̃ ∈ L2(ω;R3). Take an arbitrary pair of
admissible Young measure (ν̃, µ̃) ∈ G p

γD
(ω;R3×2)×Y p(Ω;R3), then we can always find its bounded generating

sequence {(∇pỹk, b̃k)}k∈N ⊂ Lp(ω;R3×2)× Lp(ω;R3) such that {|∇pỹk|
p + |b̃k|

p}k∈N is equi-integrable [22],
{yk}k∈N ⊂ W 1,p(ω;R3) is bounded and yk(z1, z2) = 0 for z ∈ γD for all k ∈ N. Passing to the limit for k → ∞
in the previous inequality with ỹk and b̃k in place of ỹ and b̃ we get that G(t, y, ν, µ, λ(t)) ≤ G(t, ỹ, ν̃, µ̃, λ(t))
where ỹ is the weak limit of ỹk. Hence, (68) is shown.

Note that as a side product of the above procedure we obtained also that

G(0) := G(0, y(0), ν(0), µ(0), λ(0)) = lim
η→0+

Gη(0), (81a)

G(T ) := G(T, y(T ), ν(T ), µ(T ), λ(T )) = lim
η→0+

Gη(T ). (81b)

Hence, the reformulated flow rule reads as

G(T ) +

∫

Q

α

q
|λ̇|q + δ∗S(λ̇) dzpdt ≤ G(0) +

∫ T

0

G′
t(t, y(t)) dt

+

∫

Q

(Θ(w)− θtr)a·(v − λ̇) +
α

q
|v|q + δ∗S(v) dzpdt+

∫ T

0

2κ((λ− L • (ν, µ), v))p dt, (82)

and exploiting the balance of the mesoscopic deformation-related energy equality—cf. Remark 5 and (73)—
we also get the mesoscopic flow rule (69).

Step 3: Strong convergence of λ̇η. This convergence is obtained from the monotonicity properties of
the dissipation term | · |q in the reformulated flow rule. Indeed, let us rewrite (78) (relying on the convexity
of |·|q) as

Gη(T ) + ηVar|·|(∇py
η|bη) + η‖∇pλ

η(T )‖2L2(ω;R(M+1)×2) +

∫

Q

δ∗S(λ̇
η) dzpdt ≤

∫ T

0

[Gη]
′
t(t, y

η(t)) dt

+Gη(0) +

∫

Q

α|λ̇η|q−2λ̇η·(ṽ − λ̇η) + (Θ(wη)−θtr)a·(ṽ−λ̇η) + δ∗S(ṽ) + 2η∇pλ
η·∇pṽ dzpdt

+

∫ T

0

2κ((λη − L(∇py
η|bη), ṽ))p dt+ η‖∇pλ0‖

2
L2(ω;R(M+1)×2); (83)

similarly, (82) is rewritten as

G(T ) +

∫

Q

α

q
|λ̇|q + δ∗S(λ̇) dzpdt ≤ G(0) +

∫ T

0

G′
t(t, y(t)) dt+

∫ T

0

2κ((λ− L • (ν, µ), v))p dt

+

∫

Q

α|λ̇|q−2λ̇·(v − λ̇) + (Θ(w)− θtr)a·(v − λ̇) + δ∗S(v) dzpdt. (84)

Then, let us test (84) by λ̇η and, symmetrically, (83) by λ′
j , a member of the sequence {λ′

j}j∈N ⊂

V ∩ C(0, T ;W 1,2(ω;RM+1)) such that λ′
j → λ̇ in Lq(Q;RM+1) for j → ∞ (recall that V is the dense
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countable subset of Lq(Q;RM+1) used in Step 1), as λ̇ does not have the required smoothness to be used as
a test function in (83) and, moreover, we wish to use (79) (as well as the resulting convergences in Step 1)
which is only available for test functions from V.

Let us add (83) and (84) and apply limj→∞ lim supη→0 to get

α lim
η→0

(

‖λ̇η‖q−1
Lq(Q;RM+1)

−‖λ̇‖q−1
Lq(Q;RM+1)

)(

‖λ̇η‖Lq(Q;RM+1)−‖λ̇‖Lq(Q;RM+1)

)

≤ lim sup
η→0

α

∫ T

0

∫

ω

(

|λ̇η|q−2λ̇η−|λ̇|q−2λ̇
)

·(λ̇η−λ̇) dzpdt

≤ lim
j→∞

lim sup
η→0

(

G(0)−G(T ) +Gη(0)−Gη(T )
︸ ︷︷ ︸

(I)

−ηVar|·|(∇py
η|bη)

︸ ︷︷ ︸

(II)1

+η

∫

ω

|∇pλ0|
2 − |∇pλ

η(T )|2
︸ ︷︷ ︸

(II)2

dzp

+

∫ T

0

G′
t(t, y) + [Gη]

′
t(t, y

η)
︸ ︷︷ ︸

(III)

dt+

∫

Q

α |λ̇η|q−2λ̇η(λ′
j − λ̇) + δ∗S(λ

′
j)− δ∗S(λ̇)

︸ ︷︷ ︸

(IV)

dzpdt

+

∫ T

0

2κ((λη − L(∇py
η|bη), λ′

j))p
︸ ︷︷ ︸

(V)

+2κ((λ− L • (ν, µ), λ̇η))p
︸ ︷︷ ︸

(VI)

dt

+

∫

Q

(Θ(wη)− θtr)(λ
′
j − λ̇η) + (Θ(w)− θtr)(λ̇

η − λ̇) dzdt
︸ ︷︷ ︸

(VII)

+2η∇pλ
η·∇pλ

′
j

︸ ︷︷ ︸

(VIII)

dzpdt

)

≤ 2G(0)− 2G(T ) +

∫ T

0

2G′
t(t, y) + 4κ((λ− L • (ν, µ), λ̇))p dt = 0.

Here, the first inequality in (85) is due to Hölder’s inequality. Further, we used that term (I) is not smaller
than G(0)−G(T ) by (81) and the non-negativity of (II)1 and (II)2. The convergence of the term between
them to 0 is obvious. Term (III) is, owing to Step 1, bounded from above by G′

t(t, y). Now, as j → ∞ term
(IV) converges to 0 as λ̇η is bounded uniformly in Lq(Q;RM+1). The limsup of the term (V), again by Step
1, is bounded from above by ((λ−L • (ν, µ), λ̇))p; for the terms (VI) and (VII) we proceed analogously as in

Step 1, while the term (VIII) converges to 0 as the limit η → 0+ is executed first.
Finally, note that the last equality is due to the balance of the deformation related energy; cf. Remark 5.

Hence, we obtained ‖λ̇η‖Lq(Q;RM+1) → ‖λ̇‖Lq(Q;RM+1) and from (76) by the uniform convexity of Lq(Q;RM+1)
also (74).

Step 4: Enthalpy equation. It only remains to prove the enthalpy equation (70); to obtain it, we pass
to the limit η → 0+ in (37) following ideas of Step 7 in the proof of Theorem 1. In order to pass to the limit
in the terms expressing the heating due to dissipation, however, we need to show that η

∫

Q̄
ζHη( dzpdt) → 0.

To see this, we actually need only to show that limη→0 ηVar|·|(∇py
η|bη) = 0 which we obtain by passing to

the limit in (34). Indeed,

lim sup
η→0

ηVar|·|(∇py
η|bη) ≤ lim sup

η→0

(

−Gη(T ) +Gη(0)

+

∫ T

0

〈

[Gη]
′
λ(y

η(t), bη(t), λη(t)), λ̇η
〉

+ [Gη]
′
t(t, y

η(t)) dt

)

. (85)

To pass to the limit on the right-hand side, we rewrite
〈

[Gη]
′
λ(y

η(t), bη(t), λη(t)), λ̇η
〉

=
〈

[Gη]
′
λ(y

η(t), bη(t), λη(t)), λ̇
〉

+
〈

[Gη]
′
λ(y

η(t), λη(t)), λ̇η − λ̇
〉

. (86)

Note that for the first term we get by Step 1 (if necessary, we can approximate λ̇ by {λ̇ℓ}ℓ∈N belonging to
the dense countable subset of Lq(Q;RM+1) used in Step 1)

〈

[Gη]
′
λ(y

η(t), bη(t), λη(t)), λ̇
〉

≤

∫ T

0

〈

G′
λ(ν(t), µ(t), λ(t)), λ̇

〉

dt, (87)

while the second term converges to 0 in L1([0, T ]) owing to Step 3. Thus, we get

0 ≤ lim sup
η→0+

ηVar|·|(∇py
η|bη) ≤ G(0)−G(T ) +

∫ T

0

〈

G′
λ(ν(t), µ(t), λ(t)), λ̇

〉

+G′
t(t, y(t)) dt ≤ 0, (88)
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where the last inequality follows from Remark 5.
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Science Foundation) while she has been affiliated to the Institute of Thermomechanics AS CR, MK acknowl-
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[6] B. Benešová, M. Kruž́ık, T. Roub́ıček, Thermodynamically-consistent mesoscopic model for the ferro/para-magnetic
transition. Zeit. angew. Math. Phys. 64 (2013), 1-28.
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