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Abstract

We present a new anisotropic hp-adaptive technique, which can be employed for the numerical solution
of partial differential equations in 2D with the aid of a discontinuous piecewise polynomial approxima-
tion. This method generates anisotropic triangular grids and the corresponding polynomial approximation
degrees based on the minimization of the interpolation error in the Lq-norm (q ∈ [1,∞]). We develop
the theoretical background of this approach and present several numerical examples demonstrating the
efficiency of the anisotropic adaptive strategy.
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1 Introduction

Adaptive methods exhibit an efficient tool for the numerical solution of partial differential equa-
tions (PDEs). An automatic mesh refinement or, more generally, an enhancement of the functional
space where the approximate solution is sought, can significantly reduce the computational costs.

Among very efficient techniques belong the hp-adaptive methods, which allow the adaptation
in the element size h as well as in the polynomial degree of approximation p. Based on many
theoretical works, e.g., monographs [37, 35] or papers [5, 12, 39], we expect that the discretization
error of a hp-method converges at an exponential rate in the number of degrees of freedom.
Several hp-adaptive strategies have been proposed over the years, see, e.g., [29] or [22] for a survey.
However, most of hp-adaptive methods deal with h-isotropic refinement when each element marked
for h-refinement is split (isotropically) into several (usually four in 2D) daughter elements. Some
exceptions are, e.g., [25, 34, 24], where quadrilateral elements can be split onto two daughter
elements by a line in either the vertical or the horizontal directions.

On the other hand, many works (e.g., [2, 1, 3, 8, 13, 19, 21, 23, 26, 38, 42]) showed that
anisotropic elements (i.e., long and thin triangles) are suitable in computation of problems with
boundary or internal layers. The anisotropic element has shape extended in one dominant direction
and it is characterized by three geometric features: the size, the orientation, and the aspect ratio.
The orientation of the anisotropic element is the direction, along which its shape is extended, the
size of the element corresponds to its diameter and the aspect ratio of the element is (roughly
speaking) to the ratio between the size of the element and its “width”. The anisotropic triangular
grids are usually defined as grids consisting of equilateral triangles under a given Riemann metric.

The works mentioned above dealt mostly with first order finite volume or finite element meth-
ods. Thus the Hessian matrix (=matrix of the second order derivatives) is naturally employed
for the definition of the Riemann metric. Furthermore, in [6, 7], the Riemann metrics (defining
the optimal anisotropic mesh in the W k,q-norm) were derived for the polynomial approximations
of the higher degree (>1). This approach is based on a particular definition of the magnitude,
orientation, and anisotropic ratio of the higher order derivatives of a function u, which characterize
its anisotropic behaviour.

Our aim is to develop an efficient adaptive technique which employs both aspects mentioned
above, i.e., it generates the so-called anisotropic hp-grids, where each element is characterized
by its size, the orientation, the aspect ratio, and the local polynomial approximation degree. A
hp-mesh is described by two functions: M : Ω → Sym (Ω ⊂ R2 is the computational domain
and Sym is the space of 2 × 2 symmetric, positively definite matrices) and P : Ω → R+ (= the
set of positive real numbers). The function M represents the Riemann metric and thus defines a
triangular grid. The function P defines the polynomial approximation degree on each triangle of
this grid.

In this paper, we deal with the following main problem. Let Shp denote the space of discontin-
uous piecewise polynomial functions uniquely defined for each hp-grid, cf. relation (2.2) bellow.
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For a given function u, we seek a hp-mesh such that
i) the interpolation error of a projection of u on Shp in the Lq-norm (q ∈ [1,∞]) is under a given
tolerance,
ii) the dimension of Shp (=number of degrees of freedom) is the smallest possible.

This problem exhibits a complicated task which we are not able to solve. Therefore, we define
an auxiliary (local) problem whose solution will be heuristically employed for the solution of the
main problem. Then the output of the presented considerations is the algorithm which generates,
for a given u and a tolerance ω, the hp-mesh where the interpolation error is bounded by ω and
the number of degrees of freedom is reasonably small (but not the smallest possible in general).
This algorithm can be directly employed in the framework of the numerical solution of PDEs with
the aid of the discontinuous Galerkin method (DGM), which is based on a discontinuous piecewise
polynomial approximation.

The content of the rest of the paper is the following. In Section 2, we introduce basic notations
and properties of anisotropic hp-meshes. Section 3 contains the definition of the main problem
of this paper whose result is an optimal anisotropic hp-mesh. Moreover, we define and solve two
auxiliary problems. In Section 4 we discuss the solution of the main problem and present the
algorithm for a construction of the anisotropic hp-mesh. In Section 5 we describe the practical
implementation of this algorithm and finally, Section 6 contains several numerical experiments
demonstrating the efficiency of the proposed adaptive technique.

2 Anisotropic hp-meshes

We introduce the definition of hp-meshes with the aid of a matrix-valued function M (which we
call the Riemann metric) and a function P (which we call the polynomial degree distribution
function). The functions M and P are employed later for a practical construction of anisotropic
hp-meshes.

2.1 Definition of hp-meshes

Let Ω ⊂ R2 be a bounded computational domain with a polygonal boundary ∂Ω. For simplicity,
we assume that Ω is convex, however this assumption can be relaxed. By Th = {K} (h > 0) we
denote a conforming triangulation of Ω with standard finite element properties, see, e.g., [9] and
|K| is the area (= 2D Lebesgue measure) of K ∈ Th. Moreover, by Fh we denote the set of edges
of Th. Here the edges e ∈ Fh are considered as vectors from R2 given by its endpoints. The
orientation of e ∈ Fh is arbitrary.

Definition 2.1. Let Th = {K} be a triangulation of Ω. To each K ∈ Th, we assign a positive
integer pK (=local polynomial approximation degree on K). Then we define the polynomial degree
vector p := {pK ; K ∈ Th}. Moreover, the pair

Thp := {Th, p} (2.1)

is called the hp-mesh.

For the given hp-mesh Thp, we construct the space of piecewise polynomial discontinuous
functions by

Shp := {v ∈ L2(Ω); v|K ∈ P pK (K) ∀K ∈ Th}, (2.2)

where P pK (K) is the space of polynomials of degree ≤ pK on K ∈ Th. The dimension of P pK (K)
is equal to (pK + 1)(pK + 2)/2 and the dimension of Shp is

Nhp :=
∑

K∈Th

(pK + 1)(pK + 2)/2. (2.3)

We call Nhp the number of degrees of freedom of the hp-mesh Thp. In order to proceed to the
construction of anisotropic meshes, we introduce the anisotropy of triangles.
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Fig. 1: The ellipse ΣM with the length of semi-axes rM,1, rM,2 and the orientation φM, and the
triangle KM generated by M having the anisotropy {rM,1, rM,1/rM,2, φM}.

2.2 Anisotropy of element

Similarly as in [6, 7], we define the anisotropy of a triangle with the aid of three parameters: the
size, the aspect ratio and the orientation. We define the set of 2 × 2 symmetric and positively
definite matrices

Sym :=
{

M = {mij}2i,j=1 ∈ R2×2; m12 = m21, x
TMx > 0 ∀x ∈ R2, x 6= 0

}

, (2.4)

where xT denotes the row vector corresponding to the column vector x = (x1, x2) and x
TMx :=

m11x
2
1 + 2m12x1x2 +m22x

2
2.

Let M ∈ Sym. Then it can be decomposed in the form

M =

(

m11 m12

m12 m22

)

= QT
φM

(

λM,1 0
0 λM,2

)

QφM
, (2.5)

where 0 < λM,1 ≤ λM,2 are the eigenvalues of M, φM ∈ [0, π), Qφ is the rotation through angle φ
given by

Qφ :=

(

cosφ − sinφ
sinφ cosφ

)

(2.6)

and QT
φM

is the transpose matrix of QφM
.

Further, we put
ΣM :=

{

x ∈ R2; xTMx ≤ 1
}

, (2.7)

which defines the ellipse with the centre at origin, the semi-axes lengths

rM,1 := 1/
√

λM,1 ≥ rM,2 := 1/
√

λM,2 (2.8)

and the angle between the axis x1 and the major axis of ΣM is φM, see Figure 1.

Definition 2.2. Let M ∈ Sym and ΣM be the ellipse given by (2.7). Let KM be an acute isosceles
triangle which is inscribed into the ellipse ΣM and which has the maximal possible area, see Figure
1. We say that KM is generated by the matrix M ∈ Sym, KM is the triangle corresponding to the
ellipse ΣM and ΣM is the ellipse corresponding to the triangle KM.

With the aid of techniques presented in [15] or [13, Section 3] we can prove that the base of
KM is equal to

√
3 rM,2 and its height is equal to 3

2rM,1. Thus, the areas of KM and ΣM read

|KM| =
3
√
3

4
rM,1rM,2 =

3
√
3

4
√

λM,1λM,2
=

3
√
3

4
√
detM

, (2.9)

|ΣM| = πrM,1rM,2 =
π

√

λM,1λM,2
=

π√
detM

.

Now, we are ready to define the anisotropy of a triangular element.
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Definition 2.3. Let KM be the triangle generated by M ∈ Sym. Let rM,i, i = 1, 2 are given by
(2.8) and φM by (2.5). We say that rM,1 is the size of KM, σM :=

rM,1

rM,2
≥ 1 is the aspect ratio of

KM and φM is the orientation of KM. Moreover, the triple {rM,1, σM, φM} defines the anisotropy of
KM. Furthermore, this triple defines also the anisotropy of the ellipse ΣM given by (2.7). Hence,
we speak also about the size, the aspect ratio and the orientation of the ellipse ΣM.

Remark 2.4. Let r > 0, σ ≥ 1 and φ ∈ [0, 2π) be arbitrary. The triple {r, σ, φ} defines (in agree-
ment with Definition 2.3) an anisotropic (acute isosceles) triangle K (and also the corresponding
ellipse). Moreover, we can find a matrix MK ∈ Sym such that K is generated by MK .

Furthermore, let M ∈ Sym. We put

‖e‖M :=
(

e
TMe

)1/2
, e = (e1, e2)

T ∈ R2. (2.10)

Obviously, the matrix M defines (by (2.10)) the Riemann metric in R2. The value ‖e‖M is called
the size of e with respect to M. Finally, we recall one result from [13, Section 3].

Lemma 2.5. Let M ∈ Sym and KM be the triangle generated by M. Let eKM

i , i = 1, 2, 3 denote
the edges of KM, which are considered as vectors from R2 given by their endpoints. Then

‖eKM

i ‖M =
√
3, i = 1, 2, 3. (2.11)

Hence KM is equilateral with respect to M.

2.3 Riemann metric and the polynomial degree distribution function

In this section, we introduce the concept of the definition of the hp-mesh Thp = {Th, p} from
Definition 2.1 with the aid of a Riemann metric M and a polynomial degree distribution function
P. Similarly as in, e.g., [13, 19, 21, 23, 26, 38], the idea is to define an anisotropic triangular grid
Th as a mesh consisting of equilateral triangles with respect to a given Riemann metric.

Definition 2.6. Let M : Ω → Sym be an integrable mapping. Moreover, let v0,v1 ∈ R2 be such
that v0 ∈ Ω and v0+v1 ∈ Ω. The mapping v : [0, 1] → R2, v(t) = v0+ tv1, t ∈ [0, 1] parametrises
a straight line in Ω between v0 and v0 + v1. Furthermore, we set

‖v‖M :=

∫ 1

0

(

v
′(t)TM(v0 + tv1)v

′(t)
)1/2

dt =

∫ 1

0

(

v
T
1 M(v0 + tv1)v1

)1/2
dt. (2.12)

We call M the Riemann metric on Ω and ‖v‖M the size of edge v in the Riemann metric M
(=distance between v0 and v0 + v1).

Remark 2.7. Let us note that ifM is constant along v then (2.12) reduces to ‖v‖M = (vT
1 Mv1)

1/2

(compare with (2.10)). Moreover, if M(x) = I ∀x ∈ v (I= the identity matrix) then ‖v‖M = |v|
(=length of v in the Euclidean metric).

In virtue of (2.11), the aim is to define a mesh Th such that

‖e‖M =
√
3 ∀e ∈ Fh, (2.13)

where Fh is the set of edges of Th. However, for the given metric M, there does not exist
(except special cases) any triangulation satisfying (2.13). Therefore, we define the triangulation
generated by metric M such that the equalities (2.13) are satisfied approximately by the least
square technique, see [13, 19]. Hence:

Definition 2.8. Let M be the Riemann metric on Ω. We say that the triangulation Th of Ω is
generated by metric M if

Th = argmin
T ′

h

∑

e∈F ′

h

(

‖e‖M −
√
3
)2

, (2.14)

where the minimum is taken over all possible triangulations T ′
h of Ω and F ′

h is the set of edges of
T ′
h .
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Let us note that there exist algorithms and codes, e.g., [33], [14], which construct mesh Th for
the given metric M in the sense of Definition 2.8.

Furthermore, the polynomial degree vector p = {pK ; K ∈ Th} can be defined in the following
way.

Definition 2.9. Let P : Ω → R+ be a given integrable function, which we call the polynomial
degree distribution function. Moreover, let Th be a triangulation of Ω, then using P, we define the
polynomial degree vector p = {pK ; K ∈ Th} from Definition 2.1 by

pK := int

[

1

|K|

∫

K

P(x) dx

]

, K ∈ Th, (2.15)

where int[a] := ⌊a+ 1/2⌋ denotes the integer part of the number a+ 1/2, a ≥ 0.

We conclude that for the given Riemann metric M : Ω → Sym and for the given polynomial
degree distribution function P : Ω → R+, there exists the unique hp-mesh Thp = {Th, p} where
Th and p are given by Definitions 2.8 and 2.9, respectively.

Remark 2.10. Let M : Ω → Sym and P : Ω → R+ be given, and let Thp = {Th, p} be the
corresponding hp-mesh given by Definitions 2.8 and 2.9. Let x̄ ∈ Ω be arbitrary but fixed. Let
K̄ ∈ Th be such that x̄ ∈ K̄ and let pK̄ ∈ p be the corresponding polynomial approximation
degree on K̄. Moreover, let Kx̄ be the triangle generated by M(x̄) ∈ Sym (in virtue of Definition
2.2). From the definition of Thp, we expect that the anisotropies of triangles Kx̄ and K̄ are similar
and also that pK̄ is close to P(x̄), i.e., there exist constants c̃1 ≥ 1 and c̃2 ≥ 0 independent of h
and p such that

1

c̃1
hKx̄

≤ hK̄ ≤ c̃1hKx̄
,

1

c̃1
σKx̄

≤ σK̄ ≤ c̃1σKx̄
, (2.16)

|φKx̄
− φK̄ | ≤ c̃2,

1

c̃1
P(x̄) ≤ pK̄ ≤ c̃1P(x̄),

where {hKx̄
, σKx̄

, φKx̄
} and {hK̄ , σK̄ , φK̄} are the anisotropies of Kx̄ and K̄, respectively. There-

fore, the matrix M(x̄) ∈ Sym and the integer P(x̄) describe locally the hp-mesh Thp at x̄.

In Section 4, we derive M and P such that the corresponding hp-mesh is optimal in the sense
specified later. Let us note that in practice, it is sufficient to evaluate M and P only in a finite
number of nodes x ∈ Ω.

2.4 Generalized number of degrees of freedom

For the purpose of the construction of the anisotropic hp-meshes, it is suitable to introduce a
quantity, which gives information about the number of degrees of freedom of the hp-mesh generated
by the Riemann metric M and the polynomial degree distribution function P.

First, we consider the following case. Let {Th, p} be a given hp-mesh of Ω. We define piecewise
constant functions ν̃ : Ω → (0,∞) and d̃(x) : Ω → N (=set of all integers) by

ν̃(x) :=

{

|K| if x ∈ K̊ of some K ∈ Th,
arbitrary if x ∈ ∂K of some K ∈ Th,

(2.17)

d̃(x) :=

{

(pK + 1)(pK + 2)/2 if x ∈ K̊ of some K ∈ Th,
arbitrary if x ∈ ∂K of some K ∈ Th,

(2.18)

where |K| is the area of K ∈ Th, K̊ denotes the interior of K ∈ Th and pK ∈ p is the polynomial
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approximation degree on K ∈ Th. We find that

∫

Ω

1

ν̃(x)
dx =

∑

K∈Th

∫

K

1

ν̃(x)
dx =

∑

K∈Th

∫

K

1

|K| dx =
∑

K∈Th

1 = Nh, (2.19)

∫

Ω

d̃(x)

ν̃(x)
dx =

∑

K∈Th

∫

K

d̃(x)

ν̃(x)
dx =

∑

K∈Th

∫

K

(pK + 1)(pK + 2)/2

|K| dx (2.20)

=
∑

K∈Th

(pK + 1)(pK + 2)/2 = Nhp,

where Nh is the number of triangles of Th and Nhp is the number of degrees of freedom of Thp

given by (2.3). Therefore, we interpret the function d̃(x)/ν̃(x) as the “density of the number of
degrees of freedom”.

Our aim is to evaluate (at least approximately) the number of triangles of Th and the number of
degrees of freedom of Thp directly from functions M and P. Let M : Ω → Sym and P : Ω → R+

be given and let x ∈ Ω be arbitrary but fixed. Then M(x) ∈ Sym and let Kx denote the
triangle generated by M(x) in virtue of Definition 2.2. Using (2.9), the area of Kx is |Kx| =
3
√
3

4 (detM(x))
−1/2

. Thus, we define the function

ν(x) :=
3
√
3

4
(detM(x))

−1/2
, x ∈ Ω, (2.21)

which represents a generalization of the function ν from (2.17). Then, in virtue of (2.19), the
value

∫

Ω
ν(x)−1 dx corresponds to the number of the triangles of Th generated by the metric M

in the sense of Definition 2.8.
Furthermore, we define the function

d(x) :=
1

2
(P(x) + 1)(P(x) + 2), x ∈ Ω, (2.22)

which represents a generalization of the function d from (2.18). Then, in virtue of (2.20), we define
the generalized number of degrees of freedom of a hp-mesh Thp generated by M and P by

N(M,P) :=

∫

Ω

d(x)

ν(x)
dx =

∫

Ω

2

3
√
3
(P(x) + 1)(P(x) + 2) (detM(x))

1/2
dx. (2.23)

Hence, the function η(x) := d(x)/ν(x) represents the “density of the number of degrees of free-
dom”.

3 The main problem formulation

In this section we formulate the main problem of this paper mentioned in Introduction. Namely, we
introduce the criteria defining the optimal hp-grid for a given function u : Ω → R. For simplicity,
we deal with functions from V := C∞(Ω).

Let u ∈ V be a given function, x̄ ∈ Ω and p ∈ N be an integer. We define the projection
operator πx̄,p : V → P p(Ω̄) such that

∂k

∂xl1∂x
k−l
2

πx̄,pu(x̄) =
∂k

∂xl1∂x
k−l
2

u(x̄) ∀l = 0, . . . , k ∀k = 0, . . . , p, u ∈ V. (3.1)

Therefore, πx̄,pu is the polynomial function of degree p on Ω which has the same values of all
partial derivatives up to order p at x̄ as the function u. The existence and uniqueness of πx̄,pu is
obvious. Using the operator πx̄,p, we define the projection into the space Shp.
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Definition 3.1. Let Thp = (Th, p) be a hp-mesh, xK , K ∈ Th be the barycentres of K ∈ Th and
Shp be the corresponding space of discontinuous piecewise polynomial functions defined by (2.2).
We define the operator Πhp : V → Shp by

Πhpu|K := πxK ,pKu|K ∀K ∈ Th. (3.2)

Hence, the operator Πhpis defined separately for each K ∈ Th and its definition is unique for the
given hp-mesh.

Now, we are ready to formulate the main problem of this paper.

Problem 3.2. Let u ∈ V be a given function, q ∈ [1,∞] be a given degree of the Lebesgue norm
and ω > 0 be a given tolerance. We seek a hp-mesh Thp such that

(P1) ‖u−Πhpu‖Lq(Ω) ≤ ω, where Πhp : V → Shp is defined by (3.2),

(P2) the number of degrees of freedom Nhp of Thp is minimal.

The Problem 3.2 is complex and we are not able to solve it. However, in virtue of Remark
2.10, we introduce two equivalent auxiliary local problems whose solution is an optimal anisotropic
element with the barycentre at the given node x̄ ∈ Ω. Then, using the solution of the auxiliary
problem and heuristic considerations, we derive the Riemann metric M : Ω → Sym and the
polynomial degree distribution function P : Ω → R+, which define the hp-mesh Thp. This hp-mesh
satisfies condition (P1) of Problem 3.2 and the corresponding number Nhp is small. Therefore, we
expect that this resulting hp-mesh is close to the (hypothetical) solution of Problem 3.2.

3.1 Auxiliary problems

Let u ∈ V , x̄ = (x̄1, x̄2) ∈ Ω and p ∈ N be given. Using the Taylor expansion of degree p+ 1 at x̄,
we have

u(x) =

p+1
∑

k=0

1

k!

(

k
∑

l=0

(

k

l

)

∂ku(x̄)

∂xl1∂x
k−l
2

(x1 − x̄1)
l(x2 − x̄2)

k−l
)

+O(|x− x̄|p+2), x ∈ Ω, (3.3)

where (kl ) =
k!

l !(k−l)! . Let πx̄,pu be given by (3.1), then (3.3) reads

u(x)− πx̄,pu(x) = eintx̄,p(x) +O(|x− x̄|p+2), (3.4)

where

eintx̄,p(x) :=
1

(p+ 1)!

p+1
∑

l=0

[

(

p+ 1

l

)

∂p+1u(x̄)

∂xl1∂x
p+1−l
2

(x1 − x̄1)
l(x2 − x̄2)

p+1−l
]

(3.5)

is the interpolation error function of degree p located at x̄. Obviously, eintx̄,p(x̄) = 0 and eintx̄,p(x) ≈
u(x)− πx̄,pu(x) up to the higher order terms. Moreover, (3.2) and (3.4) give

(u−Πhpu) |K ≈ eintxK ,pK |K ∀K ∈ Th, (3.6)

where xK is the barycentre of K ∈ Th.
Now, we introduce the following auxiliary local problem.

Problem 3.3. Let u ∈ V , x̄ ∈ Ω, p ∈ N, q ∈ [1,∞] and ω̄ > 0 be given. We seek an anisotropic
triangle K (i.e., its anisotropy {hK , σK , φK}) having the barycentre at x̄ such that

(p1)
∥

∥eintx̄,p
∥

∥

Lq(K)
≤ ω̄,

(p2) the area of K is the maximal possible.
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The condition (p2) follows from the consideration that in order to minimize the number Nhp of
the hp-mesh, we have to construct triangles with the maximal possible area (for the given degree
of the polynomial approximation).

We assume that Problem 3.3 is equivalent with the following one.

Problem 3.4. Let u ∈ V , x̄ ∈ Ω, p ∈ N and ν̄ > 0 be given. We seek an anisotropic triangle K
with the barycentre at x̄ such that

(p1⋆)
∥

∥eintx̄,p
∥

∥

Lq(K)
is minimal,

(p2⋆) the area of K is equal to ν̄.

Remark 3.5. By the equivalency of Problems 3.3 and 3.4 we mean the following:

• If the triangle K̃ is the solution of Problem 3.3 then K̃ is also the solution Problem 3.4 with
ν̄ := |K̃|. Moreover,

∥

∥eintx̄,p
∥

∥

Lq(K̃)
= ω̄.

• If the triangle K̃ is the solution of Problem 3.4 then K̃ is also the solution Problem 3.3 with
ω̄ :=

∥

∥eintx̄,p
∥

∥

Lq(K̃)
. Moreover, |K̃| = ν̄.

Let B1 := {ξ; ξ = (ξ1, ξ2) ∈ R2, ξ21 + ξ22 = 1} denote the unit sphere in R2. We define the
kth-(scaled) directional derivative of u ∈ V along the direction ξ ∈ B1 at x ∈ Ω by

dku(x; ξ) :=
1

k!

k
∑

l=0

(

k

l

)

∂ku(x)

∂xl1∂x
k−l
2

ξl1 ξ
k−l
2 , x ∈ Ω, ξ = (ξ1, ξ2) ∈ B1. (3.7)

From (3.5) and (3.7), we deduce that

eintx̄,p(x) = dp+1u

(

x̄;
x− x̄

|x− x̄|

)

|x− x̄|p+1 ∀x ∈ Ω, p ∈ N, x̄ ∈ Ω. (3.8)

In order to understand the behaviour of eintx̄,p, for the given u ∈ V , x̄ ∈ Ω and p ∈ N, we define the
domain

F p := {x̄} ∪
{

x ∈ R2; x 6= x̄, |x− x̄| ≤
∣

∣

∣

∣

dp+1u

(

x̄;
x− x̄

|x− x̄|

)∣

∣

∣

∣

=

∣

∣eintx̄,p(x)
∣

∣

|x− x̄|p+1

}

. (3.9)

The geometric meaning of F p is the following. If x ∈ F p then its distance to x̄ is less or equal to
the directional derivative dp+1u(x̄, ·) along the direction (x− x̄)/|x− x̄|. In the other words, F p is
the image of a unit ball with the center at x̄ given by the mapping ζ → dp+1u(x̄; ζ/|ζ|)ζ. Hence, it
shows the size of the scaled directional derivative of u ∈ V at x̄ ∈ Ω along each direction ξ ∈ B1.

Example 3.6. Let us consider the function

u(x1, x2) = 0.01(6x71 + 4x61x2 − 3x51x
2
2 + 8x41x

3
2 + 12x31x

4
2 + 5x21x

5
2 + x1x

6
2 − x72). (3.10)

Figure 2 shows the sets F p for p = 1, 3, 5, x̄ = (1, 1) and u given by (3.10).

3.2 Anisotropy of the interpolation error function

The interpolation error function eintx̄,p depends in general on all partial derivatives of order p + 1

of u. In order to solve Problems 3.3 and 3.4, it is advantageous to estimate eintx̄,p by an expression
depending on three parameters only since the anisotropy of a triangle is given by 3 parameters:
its size, aspect ratio and orientation.
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Fig. 2: The boundaries of domains F p, p = 1, 3, 5 for Example 3.6.

First, we consider the case p = 1. Let x̄ ∈ Ω, u ∈ V and p = 1 be given. We define the values
A1 ≥ 0, ξ1 ∈ B1, ϕ1 ∈ [0, 2π), A⊥

1 ≥ 0, ξ⊥1 ∈ B1 and ρ1 ≥ 1 by

A1 := max
ξ∈B1

|d2u(x̄; ξ)|, (3.11a)

ξ1 := arg max
ξ∈B1

|d2u(x̄; ξ)|, (3.11b)

ϕ1 ∈ [0, 2π) such that (cosϕ1, sinϕ1)
T = ξ1, (3.11c)

A⊥
1 := |d2u(x̄; ξ⊥1 )|, where ξ⊥1 ∈ B1, ξ

⊥
1 · ξ1 = 0, (3.11d)

ρ1 :=
A1

A⊥
1

, (3.11e)

where a · b = (a1b1+a2b2), a, b ∈ R2 is the scalar product in R2. It means that A1 is the maximal
value of the second order scaled directional derivative of u at x̄, ξ1 is the direction which maximizes
this derivative, ϕ1 is the angle corresponding to ξ1, ξ

⊥
1 is the direction perpendicular to ξ1, A

⊥
1 is

the second order scaled directional derivative of u along the direction ξ⊥1 at x̄ and ρ1 is the ratio
between A1 and A⊥

1 .
Let us define a matrix Dρ1 by

Dρ1 :=

(

1 0
0 (ρ1)

−1

)

, (3.12)

where ρ1 is given by (3.11e). Then, we have the following equality.

Lemma 3.7. Let x̄ ∈ Ω, u ∈ V and p = 1 be given. We set A1 ≥ 0, ϕ1 ∈ [0, 2π) and ρ1 by
(3.11a), (3.11c) and (3.11e), respectively. Then

∣

∣eintx̄,1(x)
∣

∣ =
∣

∣eintx̄,1(x̄+ ζ)
∣

∣ = A1ζ
TQϕ1

Dρ1Q
T
ϕ1
ζ ∀ζ = x− x̄, x ∈ Ω, (3.13)

where eintx̄,1 is given by (3.5), Qϕ1
is the rotation (2.6) and Dρ1 is defined by (3.12).

Proof. Obviously, both sides of (3.13) are 2-homogeneous with respect to ζ, i.e.,

eintx̄,1(x̄+ βζ) = β2eintx̄,1(x̄+ ζ) ∀ζ ∈ R2 ∀β ∈ R, (3.14)

A1(βζ)
TQϕ1

Dρ1Q
T
ϕ1
(βζ) = β2A1ζ

TQϕ1
Dρ1Q

T
ϕ1
ζ ∀ζ ∈ R2 ∀β ∈ R.

Therefore, it is enough to prove (3.13) for all ζ ∈ B1, where B1 is the unit sphere in R2. From
(3.5), we have

eintx̄,1(x̄+ ζ) =
1

2

2
∑

i,j=1

∂2u(x̄)

∂xi∂xj
ζiζj =

1

2
ζTHζ ∀ζ = (ζ1, ζ2), H :=

{

∂2u(x̄)

∂xi∂xj

}2

i,j=1

, (3.15)
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where H is the Hessian matrix. Since H is symmetric, we decompose it in the form

H = QT
φdiag(λ1, λ2)Qφ = QT

φ

(

λ1 0
0 λ2

)

Qφ, (3.16)

where λ1, λ2 are the real eigenvalues of H and Qφ is the rotation through angle φ ∈ [0, 2π) given by
(2.6). The eigenvalues are indexed such that |λ1| ≥ |λ2|. The columns of Qφ are the eigenvectors
corresponding to λ1 and λ2, hence the eigenvector corresponding to λ1 is (cosφ, sinφ)T.

Moreover, we express ζ ∈ B1 as a function of the corresponding angle, i.e., ζ = ζ(α) =
(cosα, sinα)T, α ∈ [0, 2π). By a direct computation, we have Qφζ = (cos(φ + α), sin(φ + α))T.
Then, using (3.15) – (3.16), we obtain

eintx̄,1(x̄+ ζ) =
1

2
ζTHζ =

1

2
ζTQT

φdiag(λ1, λ2)Qφζ (3.17)

=
1

2
(cos(φ+ α), sin(φ+ α))

(

λ1 0
0 λ2

)(

cos(φ+ α)
sin(φ+ α)

)

.

On the other hand, QT
ϕ1
ζ = (cos(α − ϕ1), sin(α − ϕ1))

T and the right-hand side of (3.13) can be
expressed by

A1ζ
TQϕ1

Dρ1Q
T
ϕ1
ζ = (cos(α− ϕ1), sin(α− ϕ1))

(

A1 0
0 A1/ρ1

)(

cos(α− ϕ1)
sin(α− ϕ1)

)

. (3.18)

Therefore, (3.17) and (3.18) implies that in order to prove (3.13), we have to show that A1 = λ1/2,
A1/ρ1 = λ2/2 and φ = −ϕ1. The relation (3.17) implies that

|eintx̄,1(x)| = |eintx̄,1(x̄+ ζ(α))| = 1

2

∣

∣λ1 cos
2(φ+ α) + λ2 sin

2(φ+ α)
∣

∣ , α ∈ [0, 2π). (3.19)

Since |λ1| ≥ λ2, then

max
α∈[0,2π)

|eintx̄,1(x̄+ ζ(α))| = |λ1|
2
, arg max

α∈(0,2π)
|eintx̄,1(x̄+ ζ(α))| = −φ, (3.20)

which together with (3.8) and (3.11a)–(3.11c) gives

A1 = max
ξ∈B1

|d2u(x̄; ξ)| = max
α∈[0,2π)

|eintx̄,1(x̄+ ζ(α))| = |λ1|
2
, (3.21)

ξ1 = argmax
ξ∈B1

|d2u(x̄; ξ)| = arg max
α∈(0,2π)

|eintx̄,1(x̄+ ζ(α))| = −φ.

Moreover, let φ⊥ := −φ + π/2 then the vector (cosφ⊥, sinφ⊥) is perpendicular to the vector
(cos(−φ), sin(−φ)). The relation (3.19) implies

|eintx̄,1(x̄+ ζ(φ⊥))| = |λ2|
2
. (3.22)

Using (3.8), (3.11d)–(3.11e) and (3.22), we obtain

A1/ρ1 = A⊥
1 = |d2u(x̄; ξ⊥1 )| = |eintx̄,1(x̄+ ζ(φ⊥))| = |λ2|

2
, (3.23)

which together with (3.17), (3.18) and (3.21) proves (3.13).

The relation (3.13) represents the estimate of the interpolation error function eintx̄,p for p = 1
using the quantities A1, ρ1 and ϕ1 denoting the size, the aspect ratio and the orientation of the
interpolation error function, respectively.
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Our aim is to find an estimate of eintx̄,p also for p > 1. Motivated by [6, 7], we intent to derive
the anisotropic estimate in the form

∣

∣eintx̄,p(x)
∣

∣ =

∣

∣

∣

∣

dp+1u

(

x̄;
ζ

|ζ|

)

|ζ|p+1

∣

∣

∣

∣

≤ Ap

(

ζTQϕp
DρpQ

T
ϕp
ζ
)

p+1
2 ∀ζ = x− x̄, x ∈ Ω, (3.24)

where Qϕp
is the rotation through angle ϕp (2.6) and Dρp is the matrix given by

Dρ :=

(

1 0

0 ρ−
2

p+1

)

, ρ ≥ 1, (3.25)

the parameter ρ plays a role of the anisotropy. The values Ap ≥ 0, ρp ≥ 1 and ϕp ∈ [0, 2π)
represent the size, the aspect ratio and the orientation of the interpolation error function eintx̄,p,
which have to be defined.

First, we formally extend (3.11) for p > 1. Let x̄ ∈ Ω, u ∈ V and p ∈ N be given. We define
the values Ãp ≥ 0, ξ̃p ∈ B1, ϕ̃p ∈ [0, 2π), Ã⊥

p ≥ 0 and ρ̃p ≥ 1 by

Ãp := max
ξ∈B1

|dp+1u(x̄; ξ)|, (3.26a)

ξ̃p := arg max
ξ∈B1

|dp+1u(x̄; ξ)|, (3.26b)

ϕ̃p ∈ [0, 2π) such that (cos ϕ̃p, sin ϕ̃p)
T = ξ̃p, (3.26c)

Ã⊥
p := |dp+1u(x̄; ξ̃⊥p )|, where ξ⊥p ∈ B1, ξ̃

⊥
p · ξ̃p = 0, (3.26d)

ρ̃p :=
Ãp

Ã⊥
p

. (3.26e)

Hence, Ãp is the maximal value of the (p + 1)th-order scaled directional derivative of u at x̄, ξ̃p
is the direction which maximizes this derivative, ϕ̃p is the angle corresponding to ξ̃p, Ã

⊥
p is the

(p+ 1)th-order scaled directional derivative of u along the direction perpendicular to ξ̃p and ρ̃p is

the ratio between Ãp and Ã⊥
p .

However, numerical experiments show (see Example 3.8) that the estimate

∣

∣eintx̄,p(x̄+ ζ)
∣

∣ ≤ Ãp

(

ζTQϕ̃p
Dρ̃pQ

T
ϕ̃p
ζ
)

p+1
2

, ζ ∈ R2 (3.27)

does not valid for the values Ãp, ϕ̃p and ρ̃p defined by (3.26a), (3.26c) and (3.26e), respectively

Example 3.8. Let x̄ ∈ Ω, p ∈ N, A ≥ 0, ρ ≥ 1 and ϕ ∈ [0, 2π) be given. We define the domain

G (p,A, ρ, ϕ) := {x̄} ∪







x̄+ ζ ∈ R2; ζ 6= 0, |ζ| ≤
A

(

ζTQϕDρQ
T
ϕζ

)
p+1
2

|ζ|p+1







. (3.28)

We consider again the function u given by (3.10), x̄ = (1, 1) and p = 1, 3, 5. Figure 3 shows the
domains F p, p = 1, 3, 5 (given by (3.9)) and the domains Gp = G (p, Ãp, ρ̃p, ϕ̃p), p = 1, 3, 5, where

Ãp, ϕ̃p and ρ̃p are given by (3.26a), (3.26c) and (3.26e), respectively. We observe that F p 6⊂ Gp

for some p, which means that the inequality (3.27) does not valid in general, compare (3.9) with
(3.28).

Remark 3.9. Let us note that the domain G (p,A, ρ, ϕ) can be parametrized in the coordinate
system (x̃1, x̃2), where x̃1 is parallel with the direction (cosϕ, sinϕ)T by

x̃1 = t cosφ
(

A
1

p+1 cos2 φ+ (A/ρ)
1

p+1 sin2 φ
)p+1

x̃2 = t sinφ
(

A
1

p+1 cos2 φ+ (A/ρ)
1

p+1 sin2 φ
)p+1











t ∈ [0, 1],
φ ∈ [0, 2π).

(3.29)

Obviously, if ρ = 1 then G reduce to the circle with the radius A.
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Fig. 3: The boundaries of domains F p, Gp = G (p, Ãp, ρ̃p, ϕ̃p) for Example 3.8.

A

ρ

Ãp

ρ̃p

1

R

Fig. 4: Example of the set R given by (3.32), the values Ãp and ρ̃p are given by (3.26a) and (3.26e),
respectively.

Probably, the estimate (3.27) is valid with some constant C > 0, i.e.,

∣

∣eintx̄,p(x)
∣

∣ ≤ CÃp

(

ζTQϕ̃p
Dρ̃pQ

T
ϕ̃p
ζ
)

p+1
2 ∀ζ = x− x̄, x ∈ Ω, (3.30)

however, we are not able to verify it. Therefore, we modify the definitions of Ãp and ρ̃p such that
the estimate (3.24) will be valid without any unknown constant.

Let x̄ ∈ Ω, u ∈ V and p ∈ N be given. Similarly as in (3.26b) – (3.26c), we put

ξp := arg max
ξ∈B1

|dp+1u(x̄; ξ)|, (3.31a)

ϕp ∈ [0, 2π) such that (cosϕp, sinϕp)
T = ξp, (3.31b)

hence the (p+1)th-order scaled directional derivative of u at x̄ is the maximal along the direction
(cosϕp, sinϕp). We define the set of pairs (A, ρ) by

R :=

{

(A, ρ); A ≥ 0, ρ ≥ 1 :
∣

∣eintx̄,p(x̄+ ζ)
∣

∣ ≤ A
(

ζTQϕp
DρQ

T
ϕp
ζ
)

p+1
2 ∀ζ ∈ R2

}

. (3.32)

Obviously, R ⊂ R2 is nonempty since (Ãp, 1) ∈ R, where Ãp is given by (3.26a). This follows
from (3.7), (3.8), (3.26a) and the fact that ζTQϕp

DρQ
T
ϕp
ζ = |ζ|2 for ρ = 1. Moreover, if a pair

(A, ρ) ∈ R then (A′, ρ′) ∈ R for any A′ ≥ A and ρ′ ∈ [1, ρ]. On the other hand, if A′ < Ãp and

ρ′ > ρ̃p, where Ãp and ρ̃p are given by (3.26a) and (3.26e), respectively, then (A′, ρ′) 6∈ R. An
example of the set R is shown in Figure 4.

Obviously, if we choose any pair (Ap, ρp) from R and ϕp is given by (3.31b), then the esti-
mate (3.24) is valid and the corresponding set G (p,Ap, ρp, ϕp), given by (3.28), satisfies F p ⊂
G (p, Ãp, ρ̃p, ϕ̃p). On the other hand, in order not to “over-estimate” eintx̄,p, it is desirable to choose
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Fig. 5: The boundaries of domains F p, Gp = G (p, Ãp, ρ̃p, ϕ̃p) and g
p = G (p,Ap, ρp, ϕp) for Exam-

ple 3.8.

the pair (Ap, ρp) from R such that the corresponding set G (p,Ap, ρp, ϕp) has the minimal possible
area. Therefore we define the values Ap, ρp and ϕp (already defined by (3.31b)) by

ϕp ∈ [0, 2π) such that (cosϕp, sinϕp)
T = argmax

ξ∈B1

|dp+1u(x̄; ξ)| (3.33)

(Ap, ρp) := arg min
A,ρ∈R

|G (p,A, ρ, ϕp)|

where R and G are given by (3.32) and (3.28), respectively, and |G (p,A, ρ, ϕp)| denotes the area
of G (p,A, ρ, ϕp). Using the parametrization (3.29), we derive

|G (p,A, ρ, φ| =
∫ 1

t=0

∫ 2π

φ=0

det
D(x̃1, x̃2)

D(t, φ)
dφ dt = A2

2(p+1)
∑

l=0

clρ
− l

p+1 , (3.34)

where

cl = 2

(

2(p+ 1)

l

)∫ π/2

0

(sinφ)2l(cosφ)2(p+1−l)dφ, l = 0, . . . , 2(p+ 1). (3.35)

The coefficients cl, l = 0, . . . , 2(p+1) can be expressed analytically. Figure 5 shows the domain F p

(given by (3.9)), the domain Gp = G (p, Ãp, ρ̃p, ϕp) with the parameters Ãp, ϕ̃p and ρ̃p defined by
(3.26a), (3.26c) and (3.26e), respectively, and the domain gp := G (p,Ap, ρp, ϕp) with the optimal
parameters Ap, ϕp and ρp defined by (3.33) for p = 1, 3, 5. We observe that F p ⊂ gp for each
p. Moreover, the estimate (3.24), which is valid, is not over-estimated, since the boundary of F p

touch the boundary of gp from the interior.

Remark 3.10. The values Ap, ρp and ϕp given by (3.33) can by evaluated approximately by the
following iterative algorithm. First, we find ϕp by seeking the maximum of |dp+1u(x̄; ξ)| over the
set ξ ∈ Ξ := {cos(iπ/n), sin(iπ/n), i = 1, . . . , n}, where n is a suitable chosen parameter. E.g., the

choice n = 180 gives the angle ϕp with the accuracy 1◦. Secondly, we put A(l)
p := Ãpγ

l, l = 0, 1, . . . ,

where Ãp is given by (3.26a) and γ > 1 is a chosen constant. For each l = 0, 1, . . . , we find the

maximal value ρ
(l)
p ≥ 1 such that F p ⊂ G (p,A

(l)
p , ρ

(l)
p , ϕp) ⇐⇒ (3.24) is valid. The value ρ

(l)
p always

exists since F p ⊂ G (p,A, 1, ϕp) for any A ≥ Ãp. Again, it is sufficient to test (3.24) for ζ ∈ Ξ. The
relation (3.34) implies that the area of G depends monotonously on A and ρ. Hence, we proceed

with the iterations l = 0, 1, . . . until the area of G (p,A
(l)
p , ρ

(l)
p , ϕp) decreases otherwise we stop the

iterative process. Let us note, that this algorithm is not time consuming in comparison to the
anisotropic mesh adaptation.

A simple consequence of (3.32) and (3.33) is the following anisotropic estimate of the interpo-
lation error function.
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Lemma 3.11. Let x̄ ∈ Ω, u ∈ V and p ∈ N be given. Let Ap ≥ 0, ρp and ϕp ∈ [0, 2π) be given by
(3.33). Then

∣

∣eintx̄,p(x)
∣

∣ ≤ Ap

(

(x− x̄)TQϕp
DρpQ

T
ϕp
(x− x̄)

)
p+1
2 ∀x ∈ Ω, (3.36)

where Qϕp
is the rotation (2.6), and Dρp is defined by (3.25). Moreover, the estimate (3.36) is

sharp, i.e., there exists x ∈ Ω such that

∣

∣eintx̄,p(x)
∣

∣ = Ap

(

(x− x̄)TQϕp
DρpQ

T
ϕp
(x− x̄)

)
p+1
2

.

Now, we define the anisotropy of the interpolation error function eintx̄,p.

Definition 3.12. Let x̄ ∈ Ω, u ∈ V and p ∈ N be given. The triple {Ap, ϕp, ρp} defined by (3.33)
is called the anisotropy of the interpolation error function eintx̄,p.

Let us note that the defined anisotropy of eintx̄,p differs from the anisotropy presented in [6, 7].
The importance of estimate (3.36) is the following: whereas the interpolation error function (as
well as F p) depends on all partial derivatives of order p+ 1, the right-hand side of (3.36) (as well
as gp = G (p,Ap, ρp, ϕp)) depends only on three parameters Ap, ϕp and ρp for fixed p. Moreover,
estimate (3.36) is independent of a generic constant.

3.3 Solution of the auxiliary Problems 3.3 and 3.4

In order to solve the auxiliary Problem 3.4, we have to evaluate
∥

∥eintx̄,p
∥

∥

Lq(K)
, which requires a

(little complicated) integration over a triangle K. We simplify this task by a modification of
Problem 3.4 in such a way that we replace the sought triangle K by its corresponding ellipse E,
see Definition 2.2. Since K ⊂ E then we have the bound

∥

∥eintx̄,p
∥

∥

Lq(K)
≤

∥

∥eintx̄,p
∥

∥

Lq(E)
.

Hence, let x̄ ∈ Ω, u ∈ V , p ∈ N be given and let {Ap, ϕp, ρp} be the anisotropy of the
corresponding interpolation error function eintx̄,p introduced in Definition 3.12. We seek an ellipse
E having barycentre x̄ with the anisotropy {hE , σE , φE} (introduced by Definition 2.3) such that

(p2⋆⋆) the area of E is equal to the given value νx̄,p > 0,

(p1⋆⋆)
∥

∥eintx̄,p
∥

∥

Lq(E)
is minimal.

We denote by hE and h⊥E = hE/σE the size of the semi-axes of the sought ellipse E and the

angle between the main axes of E and axis x1 by φE . Let Ê := {ξ ∈ R2; |ξ| ≤ 1} be the closed
unit ball (= the reference circle), we define the mapping FE : Ê → R2 by

FE(x̂) := QφE
SE x̂+ x̄, (3.37)

where QφE
is the rotation trough angle φE given by (2.6) and

SE =

(

hE 0
0 h⊥E

)

= hE

(

1 0
0 1

σE

)

. (3.38)

We can simply verify that FE maps Ê onto E, i.e., FE(Ê) = E. Moreover, let us note that if K̂

is the reference equilateral triangle having vertices [1; 0], [− 1
2 ,

√
3
2 ] and [− 1

2 ,−
√
3
2 ] (lying on ∂Ê)

then its image K = FE(K̂) is the isosceles triangle with the anisotropy {hE , σE , φE} and the
barycentre at x̄. In virtue of Definition 2.2, this ellipse E (and the triangle K) are generated by
the matrix

Mx̄,p := QT
φE

(

1
h2
E

0

0 1
(h⊥

E
)2

)

QφE
=

1

h2E
QT
φE

(

1 0
0 σ2

E

)

QφE
. (3.39)

Furthermore, (3.37) implies that

x = FE(x̂) ⇒ x− x̄ = QφE
SE x̂ ⇒ (x− x̄)T = x̂TSTEQ

T
φE
. (3.40)
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Finally, the Jacobi matrix DF E

Dx̂ = QφE
SE has the determinant det DF E

Dx̂ = hEh
⊥
E . The area of

the ellipse E is equal to
νx̄,p = πhEh

⊥
E = πh2E/σE = π det SE . (3.41)

In the following, we derive the optimal orientation φE and the aspect ratio σE of E in the Lq-norm,
1 ≤ q <∞ and in the L∞-norm separately.

3.3.1 Estimate in the Lq-norm, 1 ≤ q <∞
With the aid of (3.36), the theorem of substitution and (3.40), we have

∥

∥eintx̄,p
∥

∥

q

Lq(E)
=

∫

E

∣

∣eintx̄,p(x)
∣

∣

q
dx ≤

∫

E

A q
p

(

(x− x̄)TQϕp
DρpQ

T
ϕp
(x− x̄)

)

q(p+1)
2

dx (3.42)

=

∫

Ê

A q
p

(

x̂TSTEQ
T
φE

Qϕp
DρpQ

T
ϕp
QφE

SE x̂
)

q(p+1)
2

hEh
⊥
E dx̂.

Let us put G := STEQ
T
φE

Qϕp
DρpQ

T
ϕp
QφE

SE . Obviously, G ∈ Sym; cf. (2.4). Using the identity

QT
ϕp
QφE

= QφE−ϕp
=: Qτ (i.e., τ := φE − ϕp), we have G = STEQ

T
τ DρpQτSE . The direct

computation gives

QT
τ DρpQτ =







cos2 τ + ρ
− 2

p+1
p sin2 τ − sin τ cos τ(1− ρ

− 2
p+1

p )

− sin τ cos τ(1− ρ
− 2

p+1
p ) sin2 τ + ρ

− 2
p+1

p cos2 τ






, (3.43)

and thus

G =







h2E(cos
2 τ + ρ

− 2
p+1

p sin2 τ) −hEh⊥E sin τ cos τ(1− ρ
− 2

p+1
p )

−hEh⊥E sin τ cos τ(1− ρ
− 2

p+1
p ) (h⊥E)

2(sin2 τ + ρ
− 2

p+1
p cos2 τ)






(3.44)

Using relation σE = hE/h
⊥
E , we rewrite G by

G = hEh
⊥
E Ḡ, Ḡ :=







σE(cos
2 τ + ρ

− 2
p+1

p sin2 τ) − sin τ cos τ(1− ρ
− 2

p+1
p )

− sin τ cos τ(1− ρ
− 2

p+1
p ) σ−1

E (sin2 τ + ρ
− 2

p+1
p cos2 τ)






. (3.45)

Therefore, (3.42), (3.45) and (3.41) give

∥

∥eintx̄,p
∥

∥

q

Lq(E)
≤ A q

p

(

hEh
⊥
E

)

q(p+1)
2 +1

∫

Ê

(

x̂TḠx̂
)

q(p+1)
2 dx̂ (3.46)

= A q
p

(νx̄,p
π

)

q(p+1)
2 +1

∫

Ê

(

x̂TḠx̂
)

q(p+1)
2 dx̂.

The inequality (3.46) gives the upper bound of the interpolation error function on the (up to
now unknown) ellipse E in the Lq-norm depending on its area νx̄,p, its aspect ratio σE and its
orientation φE . These quantities can be used for an alternative definition of the anisotropy of E
instead of (hE , σE , φE). From the constrain (p2⋆⋆), the value νx̄,p is given, hence we seek σE ≥ 1
and φE ∈ [0, 2π), which minimize the estimate (3.46).

Let us deal with the integral on the right-hand side of (3.46). Let ḡi,j , i, j = 1, 2 denote the
entries of Ḡ, i.e., Ḡ = {ḡij}2i,j=1. We express the determinant of Ḡ by

det Ḡ =(cos2 τ + ρ
− 2

p+1
p sin2 τ)(sin2 τ + ρ

− 2
p+1

p cos2 τ) (3.47)

−
(

sin τ cos τ(1− ρ
− 2

p+1
p )

)2

= ρ
− 2

p+1
p .
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Moreover, since Ḡ ∈ Sym, we can diagonalize it in the form Ḡ = QT
ψLQψ, where Qψ is the

rotation through an angle ψ and L = diag(L1, L2) where Li > 0, i = 1, 2 are the eigenvalues of
Ḡ. Furthermore, since Qψ is the rotation, it maps the reference circle Ê onto itself. (Here is the
point, where it is advantageous to seek the ellipse E instead of the triangle K.) Hence, using the
transformation ŷ = Qψx̂, we have

∫

Ê

(

x̂TḠx̂
)

q(p+1)
2 dx̂ =

∫

Ê

(

x̂TQT
ψLQψx̂

)

q(p+1)
2 dx̂ =

∫

Ê

(

ŷTLŷ
)

q(p+1)
2 dŷ. (3.48)

The eigenvalues Li, i = 1, 2 of matrix of Ḡ are the roots of the polynom

(ḡ11 − L)(ḡ22 − L)− ḡ212 = L2 − (ḡ11 + ḡ22)L+ ḡ11ḡ22 − ḡ212 = 0,

hence

L1,2 =
ḡ11 + ḡ22

2
± 1

2

√

(ḡ11 + ḡ22)2 − 4(ḡ11ḡ22 − ḡ212) (3.49)

=
ḡ11 + ḡ22

2
± 1

2

√

(ḡ11 − ḡ22)2 + 4ḡ212.

Moreover, since det Ḡ = detL, we have due to (3.47) the equality L1L2 = ρ
− 2

p+1
p . Hence, we put

L1 = aδ, L2 =
a

δ
, (3.50)

where a := ρ
− 1

p+1
p is given and δ ≥ 1 is unknown.

In order to evaluate the last integral in (3.48), we use the polar coordinates, i.e., ŷ1 = r cos t,
ŷ2 = r sin t. Then together with (3.50), we have

∫

Ê

(

ŷTLŷ
)

q(p+1)
2 dŷ =

∫

Ê

(

L1ŷ
2
1 + L2ŷ

2
2

)

q(p+1)
2 dŷ (3.51)

=

∫ 1

r=0

∫ 2π

t=0

rq(p+1)
(

L1 cos
2 t+ L2 sin

2 t
)

q(p+1)
2 r dt dr

=

∫ 1

r=0

∫ 2π

t=0

rq(p+1)+1a
q(p+1)

2

(

δ cos2 t+
1

δ
sin2 t

)

q(p+1)
2

dt dr =: D(δ).

We have to seek the value δ ≥ 1 such that D(δ) is minimal. We introduce the following
auxiliary lemma which is proved in Appendix.

Lemma 3.13. Let s ≥ 1. We set

S(δ) :=

∫ 2π

t=0

(

δ cos2 t+
1

δ
sin2 t

)s

dt, δ ≥ 1. (3.52)

Then

S(δ) > S(1) = 2π ∀δ > 1. (3.53)

Lemma 3.13 implies that D(δ) defined by (3.51) is minimal for δ = 1. Therefore, (3.50) gives
L1 = L2 and consequently (3.49) implies that ḡ11 = ḡ22 and ḡ12 = 0. From (3.45) we found that
ḡ12 = 0 if either sin τ = 0 or cos τ = 0. Let us consider the latter case. Then

cos τ = 0 ⇒ τ = φE − ϕp = π/2 (3.54)

and then ḡ11 = ḡ22 ⇒ σEρ
− 2

p+1
p = σ−1

E ⇒ σE = ρ
1

p+1
p .
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For the former case sin τ = 0 we have

sin τ = 0 ⇒ τ = φE − ϕp = 0 (3.55)

and then ḡ11 = ḡ22 ⇒ σE = σ−1
E ρ

− 2
p+1

p ⇒ σE = ρ
− 1

p+1
p ,

which is a unacceptable case because ρ
− 1

p+1
p ≤ 1 and we require σE ≥ 1. Therefore, (3.54)

defines the aspect ratio σE and orientation φE of element E satisfying condition (p1⋆⋆) and
(p2⋆⋆) presented at the beginning of this section. The area of this element satisfies (3.41), hence
hE = (σEνx̄,p/π)

1/2. We observe that the orientation φE of the sought ellipse E is perpendicular
to the orientation of the interpolation error function ϕp, i.e., the “element is small” along the
direction of the highest directional derivative dp+1u(x̄; ·), which is in agreement with the general
expectation.

Furthermore, from (3.54), we have ḡ11 = ḡ22 = ρ
− 1

p+1
p and thus

Ḡ :=

(

ρ
− 1

p+1
p 0

0 ρ
− 1

p+1
p

)

. (3.56)

Moreover, (3.48) and (3.51) (together with δ = 1) gives

∫

Ê

(

x̂TḠx̂
)

q(p+1)
2 dx̂ = 2π

∫ 1

0

rq(p+1)+1(ρ
− 1

p+1
p )

q(p+1)
2 dr =

2π ρ
− q

2
p

q(p+ 1) + 2
. (3.57)

Finally, from (3.46) and (3.57), we have

∥

∥eintx̄,p
∥

∥

q

Lq(E)
≤ A q

p

(νx̄,p
π

)

q(p+1)
2 +1 2π ρ

− q

2
p

q(p+ 1) + 2
. (3.58)

Then

∥

∥eintx̄,p
∥

∥

Lq(E)
≤ cp,qApρ

− 1
2

p

(

(νx̄,p)
q(p+1)

2 +1
)1/q

(3.59)

with cp,q :=

(

2π
q(p+1)+2

(

1
π

)

q(p+1)
2 +1

)1/q

gives the estimate of the interpolation error function eintx̄,p

in the Lq-norm on the optimal ellipse E with the anisotropy

hE =

(

ρ
1

p+1
p

νx̄,p
π

)1/2

, σE = ρ
1

p+1
p , φE = ϕp − π/2, (3.60)

as follows from (3.41) and (3.54). Therefore, we conclude that the ellipse E with the barycentre x̄
and the anisotropy {hE , σE , φE} given by (3.60) satisfies the conditions (p1⋆⋆) and (p2⋆⋆) presented
at the beginning of this section.

Moreover, we expect that if K is the triangle with the same barycentre x̄ and having the same
anisotropy {hE , σE , φE} as the ellipse E, then K is the solution of Problem 3.4. In Section 2.2, we
mentioned the equivalency between a triangle and the corresponding ellipse, they areas are equal
up to a multiplicative constant.

3.3.2 Estimate in the L∞-norm

The estimate the L∞-norm is more simple, we follow the approach from the previous section.
Instead of (3.42), we have

∥

∥eintx̄,p
∥

∥

L∞(E)
= max

x∈E

∣

∣eintx̄,p(x)
∣

∣ ≤ max
x∈E

Ap

(

(x− x̄)TQϕp
DρpQ

T
ϕp
(x− x̄)

)
p+1
2

(3.61)

= max
x̂∈Ê

Ap

(

x̂TSTEQ
T
φE

Qϕp
DρpQ

T
ϕp
QφE

SE x̂
)

p+1
2

.
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Using (3.43) – (3.48), we obtain

∥

∥eintx̄,p
∥

∥

L∞(E)
≤ Ap

(

hEh
⊥
E

)

p+1
2 max

x̂∈Ê

(

x̂TḠx̂
)

p+1
2 = Ap

(νx̄,p
π

)
p+1
2

max
ŷ∈Ê

(

ŷTLŷ
)

p+1
2 , (3.62)

where L is the diagonal matrix with eigenvalues satisfying (3.50). Obviously, the term

max
ŷ∈Ê

(

ŷTLŷ
)

p+1
2 = max

ŷ∈Ê

(

L1ŷ
2
1 + L2ŷ

2
2

)

p+1
2

is minimal for L1 = L2. Hence using (3.54) – (3.55) we obtain that the element with the anisotropy
given by (3.60) satisfies conditions (p1⋆⋆) and (p2⋆⋆). Finally, (3.54) gives (3.56) also for q = ∞
and then

x̂TḠx̂ = ρ
− 1

p+1
p ∀|x̂| = 1,

which together with (3.61) gives

∥

∥eintx̄,p
∥

∥

L∞(E)
≤ Ap

(νx̄,p
π

)
p+1
2

max
x̂∈Ê

(

x̂TḠx̂
)

p+1
2 = Apρ

− 1
2

p

(νx̄,p
π

)
p+1
2

. (3.63)

Similarly as in Section 3.3.1, the triangle K having the anisotropy (3.60) is the solution of the
auxiliary Problem 3.4 for q = ∞ and the minimal error is given by (3.63).

3.3.3 Solution of the auxiliary Problem 3.4

Finally, due to the equivalency of Problems 3.3 and 3.4, using (3.59), (3.60) and (3.63), we obtain
the solution of Problem 3.3 which is formulated in the following Lemma.

Lemma 3.14. Let u ∈ V , x̄ ∈ Ω, p ∈ N, q ∈ [1,∞] and ω̄ > 0 be given. Let {Ap, ϕp, ρp} defined
by (3.33) be the anisotropy of the corresponding interpolation error function eintx̄,p. We set νx̄,p by

νx̄,p :=

(

ω̄ρ
1
2
p

cp,qAp

)

2q
q(p+1)+2

=⇒ ω̄ = cp,qApρ
− 1

2
p (νx̄,p)

q(p+1)+2
2q , for q ∈ [1,∞),

νx̄,p :=

(

ω̄ρ
1
2
p

Ap

)

2
p+1

=⇒ ω̄ = Apρ
− 1

2
p (νx̄,p)

p+1
2 , for q = ∞,

(3.64)

where cp,q appears in (3.59). Then the triangle Kx̄,p with the anisotropy {hE , σE, φE} given by

hE =

(

ρ
1

p+1
p

νx̄,p
π

)1/2

, σE = ρ
1

p+1
p , φE = ϕp − π/2 (3.65)

is the solution of Problem 3.3. Moreover, we have the bound

∥

∥eintx̄,p
∥

∥

Lq(Kx̄,p)
≤ ω̄. (3.66)

Let us note that ω̄ can be considered as a local tolerance for each element K and it will be
specified in Section 4.

4 Solution of the main Problem 3.2

We proceed to the solution of the main Problem 3.2. We have already mentioned, we are not
able to solve Problem 3.2 exactly. However, with the aid of the auxiliary Problem 3.3, we derive
a Riemann metric M : Ω → Sym and a polynomial degree distribution function P : Ω → R+,
which define the hp-mesh Thp (by Definitions 2.8 and 2.9). This hp-mesh satisfies condition (P1)
of Problem 3.2 and the corresponding number of degrees of freedom is small. Therefore, we expect
that this resulting hp-mesh is close to the (hypothetical) solution of Problem 3.2.



4 Solution of the main Problem 3.2 20

We define formally the optimal mesh as a mesh, whose each element K is the solution of the
auxiliary Problem 3.3 considered at the barycentre of K. Lemma 3.14 gives the anisotropy (the
size, the aspect ration and the orientation) of the “optimal triangle” with the barycentre at any
x̄ ∈ Ω, the anisotropy depends on the local tolerance ω̄. Therefore, we need to specify the size of
ω̄ (or the area νx̄,p) in (3.64) in such a way that the interpolation error over Ω is under the given
(global) tolerance ω.

Moreover, we need to specify the polynomial approximation degree for each element of the
mesh, i.e., we have to define the polynomial degree distribution function P. Hence, with respect
to Remark 2.10, we find the optimal degree of the polynomial approximation for each x̄ ∈ Ω.

4.1 Setting of the local tolerance

The main Problem 3.2 requires the error bound

‖u−Πhpu‖Lq(Ω) ≤ ω, (4.1)

where ω > 0 is the given (global) tolerance.
First, we consider the case q ∈ [1,∞). Obviously, the condition (4.1) will be satisfied if

‖u−Πhpu‖Lq(K) ≤ ω

( |K|
|Ω|

)
1
q

∀K ∈ Th, (4.2)

because then ‖u−Πhpu‖qLq(Ω) =
∑

K∈Th
‖u−Πhpu‖qLq(K) ≤ ωq

∑

K∈Th

|K|
|Ω| = ωq.

We employ (4.2) for the setting of the local tolerance ω̄ in (3.64). Let x̄ ∈ Ω and p ≥ 1 be
given and let Kx̄,p denote the triangle which is the solution of Problem 3.3 given by Lemma 3.14
with the (so far unknown) local tolerance ω̄. Then, from (3.64) and (3.66), we have the estimate

∥

∥eintx̄,p
∥

∥

Lq(Kx̄,p)
≤ cp,qApρ

− 1
2

p (νx̄,p)
q(p+1)+2

2q , (4.3)

where νx̄,p denotes the area of Kx̄,p which we are going to specify. In virtue of (3.6) and (4.2), we
require that

∥

∥eintx̄,p
∥

∥

Lq(Kx̄,p)
≤ ω

(

νx̄,p
|Ω|

)
1
q

. (4.4)

Hence, in order to specify area νx̄,p, using (4.3) – (4.4), we set the condition

cp,qApρ
− 1

2
p (νx̄,p)

q(p+1)+2
2q = ω

(

νx̄,p
|Ω|

)
1
q

. (4.5)

From the equality (4.5), we obtain

(νx̄,p)
q(p+1)

2q =
ωρ

1
2
p

cp,qAp|Ω|
1
q

⇐⇒ νx̄,p = |Ω|−
2

q(p+1)

(

ωρ
1
2
p

cp,qAp

)

2
p+1

. (4.6)

Finally, inserting (4.6) into the second relation of (3.64), we have

ω̄ = cp,qApρ
− 1

2
p |Ω|−

q(p+1)+2

q2(p+1)

(

ωρ
1
2
p

cp,qAp

)

q(p+1)+2
q(p+1)

, q ∈ [1,∞). (4.7)

For the case q = ∞, we have ‖u−Πhpu‖L∞(Ω) = maxK∈Th
‖u−Πhpu‖L∞(K). Hence, instead

of (4.2), we require

‖u−Πhpu‖L∞(K) ≤ ω ∀K ∈ Th. (4.8)
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Therefore, we put ω̄ := ω and from (3.64), we get

νx̄,p =

(

ωρ
1
2
p

Ap

)

2
p+1

, q = ∞. (4.9)

We summarize the previous derivation in the following lemma.

Lemma 4.1. Let u ∈ V , x̄ ∈ Ω, p ∈ N, q ∈ [1,∞] and ω > 0 be given. Let {Ap, ϕp, ρp}, defined
by (3.33), be the anisotropy of the corresponding interpolation error function eintx̄,p. Let Kx̄,p be the
triangle with the anisotropy {hE , σE , φE} defined by (3.65), where its area νx̄,p is given by (4.6)
for q ∈ [1,∞) and by (4.9) for q = ∞. Then, we have the bounds

∥

∥eintx̄,p
∥

∥

Lq(Kx̄,p)
≤ ω

(

νx̄,p
|Ω|

)
1
q

q ∈ [1,∞) or
∥

∥eintx̄,p
∥

∥

L∞(Kx̄,p)
≤ ω. (4.10)

The meaning of Lemma 4.1 is the following. Let Th be a hypothetical triangulation of Ω
whose all triangles K are the solutions of Problem 3.3 considered at x̄ := xK ∀K ∈ Th, (xK is the
barycentre of K) for given u ∈ V and p ≥ 1 with ω̄ given by (4.7) for q ∈ [1,∞) and ω̄ := ω for
q = ∞. Then

∑

K∈Th

∥

∥eintx̄,p
∥

∥

q

Lq(K)
≤ ωq

∑

K∈Th

νx̄,p
|Ω| = ωq, q ∈ [1,∞) or max

K∈Th

∥

∥eintx̄,p
∥

∥

L∞(K)
≤ ω, (4.11)

and all K ∈ Th has the optimal size, orientation and aspect ratio in the sense of Problem 3.3.

4.2 Choice of the degree of the polynomial approximation

In Sections 3.3 and 4.1, we have derived the anisotropy of the optimal triangle Kx̄,p, which mini-
mizes the norm of the interpolation error function eintx̄,p on Kx̄,p for any x̄ ∈ Ω and for the arbitrary
given polynomial approximation degree p. In this section, we discuss the question which degree p
is the optimal one.

Let x̄ ∈ Ω and Kx̄,p, p ∈ N be the solutions of Problem 3.3 given by Lemma 3.14 for all p ∈ N.
In virtue of (3.39), (3.65) and Definition 2.2, this triangle is generated by the matrix

Mx̄,p =
π

νx̄,p
ρ
− 1

p+1
p QT

φE

(

1 0

0 ρ
2

p+1
p

)

QφE
. (4.12)

Obviously, (detMx̄,p)
−1/2

=
νx̄,p

π , which is in agreement with (2.9) up to the multiplicative con-
stant. The difference follows from the fact that the estimate derived for the ellipse E in Section
3.3 was used for the corresponding triangle.

In Section 2.4, we introduced the so-called “density of the number of degrees of freedom” η(x)
by the ratio of the number of degrees of freedom d(x) and the volume (≈ (detM(x))1/2), x ∈ Ω.
Hence, we define its analogue

ηp(x̄) :=
2

3
√
3
(p+ 1)(p+ 2) (detMx̄,p)

1/2
=

2π

3
√
3

(p+ 1)(p+ 2)

νx̄,p
, p ∈ N, x̄ ∈ Ω. (4.13)

Then, the analogue to the generalized number of degrees of freedom (2.23) is
∫

Ω

ηp(x̄)dx̄. (4.14)

Therefore, in order to minimize (4.14), we choose, for each x̄ ∈ Ω, the polynomial degree p ∈ N

such that the corresponding value ηx̄,p is minimal, i.e., we set

px̄ := argmin
p∈N

ηp(x̄). (4.15)

Let us note that in practical implementation, the degree p is bounded from above by the maximal
implemented polynomial approximation degree, hence the minimum in (4.15) always exists.
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4.3 Setting of the optimal anisotropic hp-mesh

Now we are ready to define the Riemann metricM and the polynomial degree distribution function
P, which generate the hp-mesh Thp by Definitions 2.8 and 2.9, such that Thp is close to the solution
of the main Problem 3.2. Using the derivations from the previous section, we derive the following
algorithm.
Algorithm (A) (Generation of M(x) and P(x) for x ∈ Ω)
Let u ∈ V , q ∈ [1,∞] and ω > 0 be given. Then

1. For each p = 1, 2, . . . ,

(a) We evaluate the anisotropy of the interpolation error function at x with the aid of
(3.33) with x̄ := x, we set the quantities Ap(x) := Ap, ϕp(x) := ϕp and ρp(x) = ρp.

(b) Using (4.6) and (4.9), we set the area νp(x) of the triangle Kx,p by

νp(x) := |Ω|−
2

q(p+1)

(

ωρ
1
2
p (x)c−1

p,qAp
−1(x)

)
2

p+1

for q ∈ [1,∞),

νp(x) :=

(

ωρ
1
2
p

Ap

)

2
p+1

for q = ∞,

with cp,q from (3.59).

(c) Analogously to relation (3.65), we define the optimal anisotropy of Kx,p by the triple
{hE(x), σE(x), φE(x)} given by

hE(x) :=

(

ρ
1

p+1
p (x)

νp(x)

π

)1/2

, σE(x) := ρ
1

p+1
p (x), φE(x) := ϕp(x)− π/2,

(d) Using (3.39) we set

Mp(x) :=
1

hE(x)2
QT
φE(x)

(

1 0
0 σE(x)

2

)

QφE(x). (4.16)

(e) Using (4.13), we evaluate the quantity ηp(x) :=
2π
3
√
3

(p+1)(p+2)
νp(x)

.

2. We find px ∈ N minimizing ηp(x), i.e. px := argminp∈N ηp(x).

3. We set

M(x) := Mpx(x), P(x) := px.

where Mpx(x) is given by (4.16).

Theoretically, we can employ the previous algorithm for any x ∈ Ω. In practical application,
we evaluate M and P only for the finite number of x ∈ Ω and then we continuously interpolate
M and P on Ω.

5 Numerical implementation

In previous sections, we developed the algorithm, which generates, for a given function u, the
anisotropic hp-grid such that the interpolation error is under the given tolerance and the number
of degrees of freedom Nhp is small. We apply this algorithm for the numerical solution of a
boundary value problem (BVP).

Let u : Ω → R be the exact solution of the given BVP. The goal is to find a hp-mesh (and the
corresponding space Shp given by (2.2)) such that the approximate solution uhp ∈ Shp satisfies
‖u− uhp‖Lq(Ω) ≤ ω and the corresponding Nhp is small. The final (optimal) hp-grid is obtained

iteratively after several adaptations with the aid of Algorithm (A) from Section 4.3. Particularly,
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if uhp is an approximate solution of BVP obtained on the given hp-mesh Thp then we generate a
new (better) mesh T N

hp where the more accurate approximate solution can be obtained. In the
following we describe the implementation of Algorithm (A) with the aid of the software package
ANGENER [14]. If a triangular grid Th is given together with the metric M evaluated at the
barycentres xK of all K ∈ Th, then ANGENER creates a new anisotropic triangular grid in the
sense of Definition 2.8. Therefore, for our purposes, it is sufficient to perform Algorithm (A) only
for xK , K ∈ Th.

Furthermore, since the optimal mesh is sought iteratively, it makes no sense to test all possible
polynomial approximation degrees in the step (1) of Algorithm (A). We use the following strategy.
If K is an element from the initial mesh Thp and pK the corresponding polynomial approximation
degree then we perform the step (1) of Algorithm (A) only for p := pK−1, p := pK and p := pK+1.

Moreover, in the step (a) of Algorithm (A), we approximate the p+1 directional derivative of
u for p = pK − 1, pK , pK + 1 in the following way. For each K ∈ Th, we define the patch D(K)
which consists of all K ′ ∈ Th sharing a face with K. Then we define the polynomial function
ũK,p ∈ P p+1(D(K)) by

(ũK,p, φ)1,D(K) = (uhp, φ)1,D(K) ∀φ ∈ P p+1(D(K)), (5.1)

where P p+1(D(K)) is the space of polynomial functions of degree p+1 on D(K) and (·, ·)1,D(K) is

the H1-scalar product on D(K). Then the partial derivative of degree p+ 1 of ũK,p are constant
on K and in step (a) of Algorithm (A), where we evaluate Ap, ϕp and ρp by (3.33), we replace u
by ũK,p.

Hence, the output of the implemented algorithm are

M(xK) ∈ Sym, P(xK) ∈ N, ∀K ∈ Th. (5.2)

The matrices M(xK), K ∈ Th are passed to ANGENER which generates a new mesh T N
h .

Finally, for each vertex xP of the old mesh Th, we set P(xP ) ∈ R+ as the average of P(xK) for
all K having xP as a vertex. Then, we obtain a continuous piecewise linear function P : Ω → R+

on Th and using (2.15) we compute the polynomial approximation degrees on the new mesh T N
h .

6 Numerical experiments

In this Section, we present several numerical examples, which demonstrate the efficiency of the
proposed anisotropic hp-adaptive method. The goal is to compare the proposed anisotropic hp-
adaptive method with the isotropic hp-adaptive method presented in [17], where the exponential
rate of the convergence was numerically justified. Moreover, we apply the presented technique to
the solution of more complicated problems with multiple curved interior layers.

We apply Algorithm (A) from previous Section to the numerical solution of boundary value
problems (BVPs), which are solved with the aid of the discontinuous Galerkin method (DGM).
It approximates the solution by a function from the space of discontinuous piecewise polynomial
functions Shp. We employ the incomplete interior penalty Galerkin (IIPG) variant of DGM, which
was analysed in several papers [11, 40, 16]. We do not present here the discretization of BVP by
IIPG, we refer to [17].

We consider the following examples:

(E1) linear convection-diffusion equation with boundary layers from [10], [20],

(E2) nonlinear convection-diffusion equation with a corner singularity from [30],

(E3) quasi-linear elliptic problem with a corner singularity from [28], [41],

(E4) convection-dominated problem with two curved interior layers from [32],

(E5) a generalization of (E4) with three curved interior layers.
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For the cases (E1) – (E3), we know the exact analytical solution and therefore we are able to
evaluate the computational error ehp = u − uhp, where u is the exact solution and uhp ∈ Shp the
approximate one. For examples (E1) – (E3), we carried out three types of the mesh adaptation:

• isotropic hp-adaptive algorithm from [17], which is based on the residual error estimates
measured in the H1-dual norm,

• anisotropic hp–adaptive algorithm (A) from Sections 4 – 5 for q = ∞,

• anisotropic hp–adaptive algorithm (A) from Sections 4 – 5 for q = 2.

For each case, we carried out several adaptation levels ℓ = 0, 1, . . . until the corresponding estimate
is under the prescribed tolerance. For the isotropic adaptation we chose the tolerance similarly
as in [17]. For the anisotropic adaptations, we set the tolerance ω such that the final numerical
solution has the computational errors approximately equal to the errors obtained by the isotropic
adaptation.

The results are given in Tables 1 – 4, where we present (for each level of adaptation ℓ = 0, 1, . . . )
the numbers of triangles Nh of the mesh Th, the numbers of degrees of freedom Nhp of the hp-mesh
Thp, the computational errors ehp in the L∞-norm, the L2-norm and the H1-norm. Moreover,
we present the values of the corresponding error estimators (“estim”), i.e., the residual error
estimator for the isotropic adaptive algorithm and the values

∥

∥eintx̄,p
∥

∥

Lq(Ω)
, q = ∞ and q = 2 for the

anisotropic adaptations, respectively. Furthermore, we evaluate the corresponding experimental
orders of convergence (EOC) with respect to Nhp given by

EOC =
log e

(ℓ+1)
hp − log e

(ℓ)
hp

log

(

1/
√

logN
(ℓ+1)
hp

)

− log

(

1/
√

N
(ℓ)
hp

) , ℓ = 1, 2, . . . , (6.1)

where e
(ℓ)
hp , ℓ = 0, 1, . . . is either the computational error in the appropriate norm or the estimator

after ℓ levels of mesh adaptation and N
(ℓ)
hp , ℓ = 0, 1, . . . is the corresponding number of degrees of

freedom.
Sometimes, EOC are negative, namely in cases, when the error is decreasing even for the

decreasing number of degrees of freedom. It is in fact an advantage of the presented technique
that it can reduce the number of degrees of freedom as well as the computational error.

The main goal is to compare the number of degrees of freedom Nhp for the three presented
adaptive techniques. Let us note that in same cases, the computational time is larger for the
anisotropic adaptations than for the isotropic one even if Nhp is smaller. This follows from the
fact that the construction of the anisotropic grids requires roughly the same computational time
as the itself solution of BVP by DGM. However, for more complex problems, e.g., computational
fluid dynamics, the construction of the anisotropic hp-grids becomes negligible in comparison to
the DG solver.

For the examples (E4) – (E5), the analytical solution is unknown. However, we employ them
to demonstrate the ability of the proposed algorithm to solve more complicated problems with
thin curved interior layers. Let us note that we do not use any additional stabilization technique
for capturing of boundary or interior layers. Finally, the solution of the examples (E4) – (E5) by
the isotropic adaptation is almost impossible using a standard PC since the number of degrees of
freedom is enormous, hence we do not present them.

6.1 (E1): Linear convection-diffusion equation with boundary layers

We consider the scalar linear convection-diffusion equation (similarly as in [10], [20])

−ε△u− ∂u

∂x1
− ∂u

∂x2
= g in Ω := (0, 1)2, (6.2)
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isotropic hp-adaptation
ℓ Nh Nhp ‖ehp‖L∞ EOC ‖ehp‖L2 EOC ‖ehp‖H1 EOC estim EOC
0 128 384 5.03E-01 – 6.19E-02 – 3.88E+00 – 1.04E+01 –
1 128 768 3.40E-01 1.1 3.46E-02 1.7 3.90E+00 -0.0 6.09E+00 1.5
2 128 1232 2.49E-01 1.3 1.92E-02 2.5 2.51E+00 1.9 3.41E+00 2.5
3 158 1922 5.09E-02 7.1 7.03E-03 4.5 1.20E+00 3.3 1.63E+00 3.3
4 236 3392 2.20E-02 3.0 1.56E-03 5.3 3.72E-01 4.1 4.83E-01 4.3
5 380 6236 9.74E-03 2.7 1.88E-04 6.9 6.93E-02 5.5 7.41E-02 6.2
6 554 10308 1.09E-03 8.7 1.44E-05 10.2 7.85E-03 8.7 8.40E-03 8.7
7 770 16820 7.31E-05 11.0 7.57E-07 12.0 5.80E-04 10.6 5.73E-04 11.0
8 854 19812 3.25E-05 9.9 1.03E-06 -3.7 3.77E-04 5.3 3.91E-04 4.7

anisotropic hp-adaptation using the L∞-norm
ℓ Nh Nhp ‖ehp‖L∞ EOC ‖ehp‖L2 EOC ‖ehp‖H1 EOC estim EOC
0 64 960 1.73E-01 – 1.34E-02 – 1.71E+00 – 1.27E+00 –
1 130 1950 4.63E-02 3.7 2.02E-03 5.3 3.89E-01 4.2 2.32E-01 4.8
2 156 2358 4.69E-03 24.1 1.69E-04 26.1 3.63E-02 25.0 3.35E-02 20.4
3 194 3060 2.55E-04 22.4 1.20E-05 20.3 2.19E-03 21.5 3.48E-03 17.4
4 271 4492 5.07E-05 8.4 3.37E-06 6.6 6.17E-04 6.6 3.43E-03 0.1
5 301 5343 3.58E-05 4.0 2.02E-06 5.9 3.02E-04 8.2 2.82E-04 28.8
6 308 5655 3.57E-05 0.0 1.94E-06 1.5 2.75E-04 3.4 1.34E-04 26.3

anisotropic hp-adaptation using the L2-norm
ℓ Nh Nhp ‖ehp‖L∞ EOC ‖ehp‖L2 EOC ‖ehp‖H1 EOC estim EOC
0 64 960 1.73E-01 – 1.34E-02 – 1.71E+00 – 4.71E-02 –
1 160 2466 3.10E-02 3.6 1.37E-03 4.8 2.48E-01 4.1 2.98E-03 5.9
2 189 3167 2.36E-03 20.6 9.86E-05 21.0 2.29E-02 19.0 1.75E-04 22.7
3 222 4211 1.54E-04 19.2 3.50E-06 23.4 8.25E-04 23.3 9.51E-06 20.4
4 250 5180 2.03E-05 19.5 6.53E-07 16.2 1.27E-04 18.1 2.68E-06 12.2
5 243 5104 2.31E-05 17.8 5.47E-07 -24.4 9.28E-05 -42.5 8.92E-07 -150.4

Tab. 1: Example (E1) with ε = 10−2.

where ε > 0 is a constant diffusion coefficient. We prescribe the Dirichlet boundary condition on ∂Ω
and the source term g such that the exact solution has the form u(x1, x2) =

(

c1 + c2(1− x1) + e−x1/ε
) (

c1 + c2(1− x2) + e−

with c1 = −e−1/ε, c2 = −1 − c1. The solution contains two boundary layers along x1 = 0 and
x2 = 0, whose width is proportional to ε. Here we consider ε = 10−2 and ε = 10−3.

This example is suitable for the anisotropic adaptation since thin and long triangles can em-
ployed in the boundary layers. Tables 1 and 2 show the corresponding results for ε = 10−2 and
ε = 10−3, respectively. We observe that the anisotropic adaptations requires significantly smaller
Nhp than the isotropic one. Namely for ε = 10−3, the difference is more essential.

Furthermore, Figures 6 and 7 show the final hp-grids with the details near origin and the
horizontal boundary layer for ε = 10−2 and ε = 10−3, respectively. Here, each triangle of Th is
highlighted by the colour corresponding to the polynomial approximation degree. Obviously, the
elements are aligned along the boundary layers. For the case ε = 10−2, the “L2-approach” leads
to the slightly higher polynomial approximation degrees than the “L∞-approach”. For the case
ε = 10−3, both anisotropic techniques lead to similar hp-grids.

6.2 (E2): Nonlinear convection-diffusion equation with a corner singularity

We consider the scalar nonlinear convection-diffusion equation

−∇ · (K(u)∇u)− ∂u2

∂x1
− ∂u2

∂x2
= g in Ω := (0, 1)2, (6.3)

where K(u) is the nonsymmetric matrix given by

K(u) = ε

(

2 + arctan(u) (2− arctan(u))/4
0 (4 + arctan(u))/2

)

. (6.4)

We put ε = 10−3 and prescribe the Dirichlet boundary condition on ∂Ω and the source term g
such that the exact solution is

u(x1, x2) = (x21 + x22)
α/2x1x2(1− x1)(1− x2), α ∈ R. (6.5)
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Fig. 6: Example (E1) given with ε = 10−2: the final hp-meshes the total view (left), the detail
around the origin (zoom 5) (centre) and the detail of the boundary layer (zoom 5) (right).
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isotropic hp-adaptation
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Fig. 7: Example (E1) with ε = 10−3: the final hp-meshes the total view (left), the detail around
the origin (zoom 50) (centre) and the detail of the boundary layer (zoom 100) (right).
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isotropic hp-adaptation
ℓ Nh Nhp ‖ehp‖L∞ EOC ‖ehp‖L2 EOC ‖ehp‖H1 EOC estim EOC
0 128 384 1.71E-01 – 1.88E-02 – 5.78E-01 – 2.04E+01 –
1 128 768 2.29E-01 -0.8 1.76E-02 0.2 1.63E+01 -9.6 1.67E+01 0.6
2 146 1068 3.70E-01 -2.9 1.82E-02 -0.2 1.66E+01 -0.1 1.96E+01 -1.0
3 206 1806 4.97E-01 -1.1 1.58E-02 0.6 1.43E+01 0.6 2.09E+01 -0.3
4 350 3738 5.79E-01 -0.4 1.24E-02 0.7 1.23E+01 0.4 1.73E+01 0.5
5 824 9132 3.66E-01 1.0 7.98E-03 1.0 9.61E+00 0.5 1.33E+01 0.6
6 1832 20732 9.06E-02 3.4 2.98E-03 2.4 4.91E+00 1.6 6.63E+00 1.7
7 3716 42032 3.52E-02 2.7 6.20E-04 4.4 1.56E+00 3.2 2.01E+00 3.4
8 6380 72968 8.75E-03 5.0 7.94E-05 7.5 3.17E-01 5.8 3.99E-01 5.9
9 7814 103308 1.62E-03 9.7 9.64E-06 12.1 4.88E-02 10.8 6.28E-02 10.6
10 9548 138384 2.18E-04 13.7 4.38E-06 5.4 2.02E-02 6.0 2.52E-02 6.2

anisotropic hp-adaptation using the L∞-norm
ℓ Nh Nhp ‖ehp‖L∞ EOC ‖ehp‖L2 EOC ‖ehp‖H1 EOC estim EOC
0 64 960 7.41E-01 – 1.71E-02 – 1.81E+01 – 3.08E-01 –
1 84 1260 6.50E-01 1.0 1.51E-02 0.9 1.60E+01 0.9 8.21E-01 -7.2
2 96 1440 5.90E-01 1.5 1.22E-02 3.2 1.36E+01 2.4 2.36E+00 -15.8
3 162 2430 4.92E-01 0.7 9.15E-03 1.1 1.00E+01 1.2 1.81E+00 1.0
4 201 3018 2.46E-01 6.4 4.17E-03 7.3 4.46E+00 7.5 7.28E-01 8.4
5 249 3725 6.75E-02 12.3 9.84E-04 13.7 1.03E+00 13.9 1.04E-01 18.5
6 350 5110 1.25E-02 10.7 8.36E-05 15.6 1.00E-01 14.7 9.51E-02 0.6
7 564 8207 9.52E-04 10.9 1.28E-05 7.9 1.41E-02 8.3 4.60E-03 12.8

anisotropic hp-adaptation using the L2-norm
ℓ Nh Nhp ‖ehp‖L∞ EOC ‖ehp‖L2 EOC ‖ehp‖H1 EOC estim EOC
0 64 960 7.41E-01 – 1.71E-02 – 1.81E+01 – 1.10E-02 –
1 96 1440 6.72E-01 0.5 1.48E-02 0.7 1.60E+01 0.6 1.28E-02 -0.7
2 109 1635 5.64E-01 2.8 1.22E-02 3.0 1.36E+01 2.6 9.38E-03 4.8
3 137 2055 4.07E-01 2.9 8.72E-03 2.9 9.43E+00 3.2 4.77E-03 5.9
4 198 2976 2.05E-01 3.7 3.29E-03 5.3 3.55E+00 5.3 1.75E-03 5.4
5 256 3937 9.68E-02 5.4 1.14E-03 7.6 1.18E+00 7.9 2.91E-04 12.8
6 326 5057 1.39E-02 15.5 9.96E-05 19.5 1.09E-01 19.0 7.71E-05 10.6
7 491 7654 1.24E-03 11.7 1.62E-05 8.8 1.75E-02 8.8 9.74E-06 10.0

Tab. 2: Example (E1) with ε = 10−3.

It is possible to show (see [4]) that u ∈ Hκ(Ω), κ ∈ (0, 3 + α). Here, we choose α = −3/2,
which leads to the solution with a singularity at x1 = x2 = 0. Numerical examples presented
in [18], carried out for a little different problem, show that this singularity avoids to achieve the
order of convergence better than O(h3/2) in the L2-norm and O(h1/2) in the H1-seminorm for
any polynomial approximation degree. Nevertheless, the exact solution is regular outside of the
singularity. The exact solution of this example does not contain any boundary or interior layers,
thus anisotropic adaptation can not give better results than the isotropic one.

Table 3 shows the corresponding results. We observe that the anisotropic adaptations re-
quire approximately the same Nhp as the isotropic one. Moreover, comparing both anisotropic
adaptations we find that the “L∞-approach” gives smaller ‖ehp‖L∞ but larger ‖ehp‖L2 than the
“L2-approach” whereas ‖ehp‖H1 are the same. This indicates that the presented hp-adaptive
method really optimizes the hp-mesh with respect to the given norm.

Finally, Figure 8 shows the final hp-grids with the details around the origin. We observe
that the “L2-approach” leads to the slightly higher polynomial approximation degrees than the
“L∞-approach”.

6.3 (E3): Quasi-linear elliptic problem with a corner singularity

Similarly as in [28] (see also [27], [36]), we consider the quasi-linear elliptic problem

−∇ · (µ(|∇u|)∇u) = f in Ω := (−1, 1)2 \ [0, 1)× (−1, 0), (6.6)

where µ(|∇u|) = 1+e−|∇u|2 . We prescribe the Dirichlet boundary condition on ∂Ω and the source
term g such that the exact solution is (in the polar coordinates)

u(r, ϕ) = r2/3 sin(2ϕ/3). (6.7)

We note that u has a corner singularity at (0, 0) and u 6∈ H2(Ω).
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isotropic hp-adaptation
ℓ Nh Nhp ‖ehp‖L∞ EOC ‖ehp‖L2 EOC ‖ehp‖H1 EOC estim EOC
0 128 384 6.10E-02 – 5.69E-03 – 3.76E-01 – 1.43E+00 –
1 128 756 4.82E-02 0.7 1.45E-03 4.0 1.83E-01 2.1 3.98E-01 3.8
2 128 900 8.79E-02 -6.9 1.29E-03 1.3 1.69E-01 0.9 1.98E-01 8.0
3 128 950 8.99E-02 -0.8 1.06E-03 7.2 1.32E-01 9.3 1.38E-01 13.6
4 134 1064 6.66E-02 5.3 4.39E-04 15.6 9.31E-02 6.1 9.78E-02 6.0
5 140 1166 4.66E-02 7.8 1.81E-04 19.4 6.61E-02 7.5 6.58E-02 8.7
6 152 1350 3.28E-02 4.8 1.01E-04 8.0 4.72E-02 4.6 4.63E-02 4.8
7 158 1432 2.49E-02 9.4 8.64E-05 5.2 3.96E-02 6.0 4.26E-02 2.8
8 161 1459 1.75E-02 39.4 8.28E-05 4.8 3.11E-02 27.2 3.42E-02 24.6
9 164 1490 1.24E-02 31.6 8.23E-05 0.6 2.26E-02 29.3 2.64E-02 23.8
10 170 1560 8.80E-03 14.9 8.22E-05 0.0 1.67E-02 13.0 2.15E-02 8.9
11 176 1633 6.23E-03 15.1 7.70E-05 2.8 1.28E-02 11.9 1.81E-02 7.4

anisotropic hp-adaptation using the L∞-norm
ℓ Nh Nhp ‖ehp‖L∞ EOC ‖ehp‖L2 EOC ‖ehp‖H1 EOC estim EOC
0 64 960 1.09E-01 – 1.90E-03 – 2.04E-01 – 8.17E-02 –
1 33 495 1.18E-01 0.2 1.02E-03 -1.9 1.60E-01 -0.7 5.79E-02 -1.0
2 55 825 8.92E-02 1.1 4.68E-04 3.1 1.17E-01 1.2 7.40E-02 -1.0
3 57 855 5.88E-02 23.4 1.54E-04 62.6 8.32E-02 19.4 6.79E-02 4.9
4 72 1092 3.39E-02 4.5 4.37E-05 10.3 5.11E-02 4.0 3.66E-02 5.0
5 80 1242 1.78E-02 10.1 1.50E-05 16.6 3.02E-02 8.2 1.66E-02 12.3
6 80 1266 1.21E-02 39.9 1.12E-05 30.5 2.41E-02 23.3 1.31E-02 24.4
7 86 1386 1.20E-02 0.1 8.81E-06 5.3 2.19E-02 2.2 1.20E-02 2.0
8 83 1347 1.12E-02 -4.9 1.01E-05 9.4 2.00E-02 -6.1 8.23E-03 -25.7
9 90 1482 9.59E-03 3.2 7.56E-06 6.0 1.72E-02 3.2 7.23E-03 2.7
10 84 1404 8.47E-03 -4.6 9.75E-06 9.4 1.51E-02 -4.9 1.03E-02 13.2
11 85 1437 7.59E-03 9.3 1.49E-05 -36.1 1.36E-02 8.8 5.85E-03 48.3
12 89 1503 6.25E-03 8.7 1.36E-05 4.2 1.15E-02 7.4 4.53E-03 11.4

anisotropic hp-adaptation using the L2-norm
ℓ Nh Nhp ‖ehp‖L∞ EOC ‖ehp‖L2 EOC ‖ehp‖H1 EOC estim EOC
0 64 960 1.09E-01 – 1.90E-03 – 2.04E-01 – 1.22E-03 –
1 48 738 1.07E-01 -0.2 7.94E-04 -6.6 1.40E-01 -2.9 8.88E-04 -2.4
2 68 1080 7.24E-02 2.0 2.84E-04 5.4 1.06E-01 1.4 2.39E-04 6.9
3 75 1269 5.04E-02 4.5 9.03E-05 14.2 6.84E-02 5.5 7.26E-05 14.8
4 71 1227 4.08E-02 -12.6 4.34E-05 -43.6 5.57E-02 -12.3 4.59E-05 -27.3
5 75 1377 2.89E-02 6.0 1.79E-05 15.3 3.98E-02 5.8 3.44E-05 5.0
6 74 1374 2.44E-02 359.6 9.40E-06 1404.1 3.32E-02 389.7 2.71E-05 544.7
7 69 1305 1.93E-02 -9.3 6.58E-06 -13.9 2.59E-02 -9.6 4.49E-05 19.6
8 73 1413 1.56E-02 5.3 4.71E-06 8.4 2.10E-02 5.3 3.83E-05 4.0
9 77 1549 1.21E-02 5.6 3.85E-06 4.4 1.64E-02 5.4 3.77E-05 0.4
10 81 1685 1.07E-02 2.8 2.82E-06 7.4 1.45E-02 2.9 4.05E-05 -1.7
11 84 1815 8.19E-03 7.3 1.81E-06 11.9 1.11E-02 7.3 2.03E-05 18.5

Tab. 3: Example (E2).
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Fig. 8: Example (E2): the final hp-meshes the total view (left) and the details around the origin
singularity, zoom 10 (centre) and 100 (right).
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isotropic hp-adaptation
ℓ Nh Nhp ‖ehp‖L∞ EOC ‖ehp‖L2 EOC ‖ehp‖H1 EOC estim EOC
0 96 288 2.54E-02 – 6.60E-03 – 1.48E-01 – 2.32E-01 –
1 96 576 1.38E-02 1.8 1.83E-03 3.7 5.55E-02 2.8 7.59E-02 3.2
2 96 960 2.07E-02 -1.6 1.63E-03 0.4 3.86E-02 1.4 3.73E-02 2.8
3 96 1255 1.79E-02 1.1 1.17E-03 2.5 2.85E-02 2.3 2.10E-02 4.3
4 96 1387 1.56E-02 2.7 8.14E-04 7.2 2.32E-02 4.1 1.27E-02 9.9
5 96 1499 1.43E-02 2.3 5.84E-04 8.6 2.02E-02 3.6 8.21E-03 11.3
6 96 1579 1.36E-02 1.8 4.30E-04 11.8 1.80E-02 4.3 5.56E-03 15.0
7 96 1685 1.30E-02 1.5 3.24E-04 8.8 1.63E-02 3.1 3.90E-03 10.9
8 108 2285 6.60E-03 4.5 1.20E-04 6.5 1.05E-02 2.9 2.60E-03 2.7
9 138 3571 4.99E-03 1.3 6.24E-05 2.9 7.26E-03 1.7 2.17E-03 0.8
10 168 4395 3.84E-03 2.5 3.67E-05 5.1 5.17E-03 3.3 2.03E-03 0.7
11 183 4622 2.55E-03 16.1 1.75E-05 29.2 3.72E-03 13.1 1.97E-03 1.0
12 198 4707 1.67E-03 50.1 1.17E-05 47.4 2.79E-03 33.5 2.02E-03 -3.1
13 189 4471 9.73E-04 -21.1 4.09E-06 -41.2 1.86E-03 -15.9 1.39E-03 -14.8
14 210 4811 6.15E-04 12.6 2.51E-06 13.4 1.32E-03 9.4 1.04E-03 8.0
15 237 5217 3.88E-04 11.3 1.80E-06 8.1 8.36E-04 11.2 6.66E-04 11.0
16 252 5499 2.44E-04 17.8 1.66E-06 3.2 5.33E-04 17.4 4.34E-04 16.6
17 267 5747 1.54E-04 20.9 1.63E-06 0.7 3.45E-04 19.6 2.95E-04 17.4
18 282 5990 9.69E-05 22.0 1.62E-06 0.4 2.32E-04 18.9 2.17E-04 14.6
19 297 6231 6.11E-05 23.3 1.55E-06 2.1 1.65E-04 17.2 1.72E-04 11.6

anisotropic hp-adaptation using the L∞-norm
ℓ Nh Nhp ‖ehp‖L∞ EOC ‖ehp‖L2 EOC ‖ehp‖H1 EOC estim EOC
0 96 1440 1.79E-02 – 1.16E-03 – 2.85E-02 – 5.54E-03 –
1 190 2970 1.12E-02 1.3 4.44E-04 2.7 1.78E-02 1.3 3.37E-03 1.4
2 234 3678 6.25E-03 5.4 1.54E-04 9.9 1.06E-02 4.9 2.74E-03 1.9
3 272 4308 3.41E-03 7.7 5.88E-05 12.2 6.60E-03 6.0 9.68E-04 13.2
4 284 4592 2.63E-03 8.1 3.43E-05 17.0 5.04E-03 8.5 1.39E-03 -11.4
5 313 5175 1.61E-03 8.3 1.44E-05 14.5 3.37E-03 6.7 8.50E-04 8.2
6 333 5578 9.67E-04 13.5 5.20E-06 27.1 2.19E-03 11.5 1.92E-03 -21.7
7 341 5850 7.68E-04 9.7 3.15E-06 21.0 1.60E-03 13.3 4.59E-04 60.2
8 351 6181 4.86E-04 16.6 1.27E-06 32.9 1.08E-03 14.0 7.91E-04 -19.8
9 353 6395 2.44E-04 41.8 4.70E-07 60.7 8.45E-04 15.2 7.87E-04 0.2
10 351 6423 2.38E-04 9.2 3.24E-07 120.3 5.76E-04 126.2 3.07E-04 307.6
11 358 6720 1.81E-04 12.0 1.95E-07 22.5 4.42E-04 11.7 3.94E-04 -11.0
12 360 6796 1.17E-04 57.9 1.09E-07 77.9 3.57E-04 28.4 2.93E-04 39.3
13 348 6691 8.79E-05 -37.4 7.18E-08 -53.6 2.97E-04 -23.9 1.38E-04 -97.6
14 350 6870 6.89E-05 18.0 5.65E-08 17.8 2.49E-04 13.1 2.38E-04 -39.9
15 350 6893 8.62E-05 -48.3 6.58E-08 -31.0 2.18E-04 28.6 1.17E-04 157.6

anisotropic hp-adaptation using the L2-norm
ℓ Nh Nhp ‖ehp‖L∞ EOC ‖ehp‖L2 EOC ‖ehp‖H1 EOC estim EOC
0 96 1440 1.79E-02 – 1.16E-03 – 2.85E-02 – 1.68E-04 –
1 292 5352 1.01E-02 0.9 3.52E-04 1.8 1.67E-02 0.8 6.68E-05 1.4
2 314 6052 5.20E-03 10.8 1.04E-04 19.9 8.60E-03 10.7 1.49E-05 24.3
3 331 7264 2.65E-03 7.4 2.89E-05 14.0 5.13E-03 5.7 7.62E-06 7.4
4 287 6979 1.44E-03 -31.0 1.14E-05 -47.1 3.45E-03 -20.1 3.77E-06 -35.7
5 252 6815 1.06E-03 -27.0 5.56E-06 -62.7 2.38E-03 -32.7 1.31E-06 -92.7
6 221 6337 8.11E-04 -7.4 2.39E-06 -23.5 1.69E-03 -9.4 2.03E-06 12.2
7 228 6856 5.78E-04 8.6 9.70E-07 22.8 1.14E-03 10.0 4.11E-07 40.5
8 218 6880 3.67E-04 813.1 5.79E-07 926.8 8.09E-04 607.6 2.78E-07 704.7
9 206 6792 3.28E-04 -18.2 4.02E-07 -59.2 6.05E-04 -47.0 5.25E-07 103.4
10 193 6420 2.27E-04 -13.1 2.31E-07 -19.8 4.91E-04 -7.5 9.81E-07 22.4
11 221 7444 1.84E-04 2.8 1.09E-07 10.1 4.01E-04 2.8 4.63E-07 10.1
12 212 7224 1.28E-04 -23.0 6.36E-08 -34.2 3.26E-04 -13.0 6.30E-07 19.5
13 222 7658 1.09E-04 5.4 3.47E-08 20.8 2.76E-04 5.7 5.19E-07 6.6
14 218 7732 8.72E-05 50.2 1.84E-08 140.2 2.63E-04 11.7 4.18E-07 47.1
15 219 7904 7.48E-05 13.8 1.36E-08 26.8 2.49E-04 4.8 4.05E-07 2.9
16 219 8041 7.10E-05 6.5 2.15E-08 -59.1 1.56E-04 59.7 3.61E-07 14.6

Tab. 4: Example (E3).
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Fig. 9: Example (E3): the final hp-meshes the total view (left) and the details around the origin
singularity, zoom 50 (centre) and 500 (right).

Table 4 shows the corresponding results. We observe that the anisotropic adaptation requires
a little more Nhp than the isotropic case. Furthermore, Figure 9 shows the final hp-grids with the
details near origin. We observe very fine refinement near the singularity for all cases. The ‘L2-
approach” leads again to the higher polynomial approximation degrees than the “L∞-approach”.

6.4 (E4): Double curved interior layers problem

We consider a linear convection-dominated problem [32, Example 6.2]

−ε△u+ b1
∂u

∂x1
+ b2

∂u

∂x2
= 0 in Ω := (0, 1)2, (6.8)

where ε = 10−6 and (b1, b2) = (−x2, x1), is the velocity field with curved characteristics. We
prescribe the homogeneous Neumann data at the outflow part ∂ΩN = {0}× (0, 1) and the discon-
tinuous Dirichlet data u = 1 at (x1, x2) ∈ ( 13 ,

2
3 )× {0} and u = 0 elsewhere on ∂ΩD := ∂Ω \ ∂ΩN .

Then this discontinuous profile is basically transported along the characteristic curves leading to
sharp characteristic interior layers.

We investigate the ability of the proposed anisotropic hp-algorithm to capture the sharp curved
interior layers. We present the solution obtained by the anisotropic hp-adaptive technique using
the estimate of the interpolation error function in the L2-norm. Figure 10 shows the final hp-grid
with the zooms of both interior layer. Figure 11 shows the isolines of the solution obtained on the
final grid and the diagonal cut of the approximate solution along x2 = x1. We observe a sharp
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Fig. 10: Example (E4), the total view (left) and the details near the first (centre) and the second
(right) interior layers with zoom 33.
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Fig. 11: Example (E4), the isolines of the solution (left) with the cut along x2 = x1 (right).

capturing of the both interior layers without any overshoots and undershoots of the solution. We
recall that any stabilization technique (see, e.g., [31]) was not used in the DG solver. Similar
results can be obtain also for q = ∞.

6.5 (E5): Triple curved interior layers problem

Here, we consider a generalization of example (E4), namely, the linear convection-dominated
problem (6.8) with Ω := (0, 2) × (0, 1), ε = 10−6, and the velocity field (b1, b2) = (x2, (1 − x1)

2).
We prescribe the homogeneous Neumann data at the outflow part ∂ΩN := {2}×(0, 1)∪(0, 2)×{1}
and the discontinuous Dirichlet data

u =























1 x1 ∈ ( 18 ,
1
2 ), x2 = 0

2 x1 ∈ ( 12 ,
3
4 ), x2 = 0

0 elsewhere on ∂ΩD := ∂Ω \ ∂ΩN .

(6.9)

Then this discontinuous profile is basically transported along the characteristic curves leading to
sharp characteristic interior layers. Figure 12 shows the sketch of the exact solution.

We present the solution obtained by the adaptive technique using the estimate in the L2-norm.
Figure 13 shows the final hp-grid with the zooms of all interior layers near ∂ΩN . Furthermore,
Figure 14, shows the isolines of the solution obtained on the final grid and the vertical cut of the
approximate solution along x1 = 1. Again, due to a strong mesh refinement, we do not observe
any unphysical oscillations of the approximate solution. Similar results can be obtain also for
q = ∞.
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Fig. 12: Example (E5), sketch of the exact solution.
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Fig. 13: Example (E5), the total view (left) and the detail of the right bottom corner (right).
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Fig. 14: Example (E5), the isolines of the solution (left) and the cut of the solution along x1 = 1
(right).
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7 Conclusion and outlook

We developed the technique which generates anisotropic hp-grids based on the interpolation error
estimates in the Lq-norm, q ∈ [1,∞]. These grids can be employed for the numerical solution of
partial differential equations with the aid of the discontinuous Galerkin method. Although the
presented numerical examples demonstrate the efficiency of this approach in comparison to the
isotropic hp-adaptive method, we have no information about the computational error. We suppose
that it will be possible to combine this approach with some a posteriori error estimation technique.
Particularly, we expect that a posteriori error estimate gives us the information about the size of
the error and the presented technique about the anisotropy of the elements. This is the subject
of the future research. Moreover, it is demanding to extend this approach also to time-dependent
problems and to more challenging problems, e.g., from the computational fluid dynamics.

Appendix

We prove Lemma 3.13, i.e.,

S(δ) > S(1) = 2π ∀δ > 1, (7.1)

where

S(δ) :=

∫ 2π

t=0

(

δ cos2 t+
1

δ
sin2 t

)s

dt, δ ≥ 1, s ≥ 1. (7.2)

Proof. We set z(t) := δ cos2 t+1/δ sin2 t. For δ = 1, we have z(t) = 1 on [0, 2π] and thus S(1) = 2π.
Let δ > 1. The function z(t) is viewed in Figure 15, left. First, we consider the case s = 1.

Using identity
∫ 2π

0
cos2(t) dt =

∫ 2π

0
sin2(t) dt = π, we have

S(δ) =

∫ 2π

0

(

δ cos2 t+ 1/δ sin2
)

dt = π(δ + 1/δ) > 2π ∀δ > 1, (7.3)

where the last inequality follows from the inequality (
√
δ − 1/

√
δ)2 > 0 ∀δ > 1.

Let s > 1. The function z(t) is periodic with the period π/2, hence we consider the integral of
z(t) over [0, π/2]. Due to the identities cos2(π/2− t) = sin2 t and sin2(π/2− t) = cos2 t, we have

∫ π
2

0

z(t)s dt =

∫ π
4

0

(z(t)s + z(π/2− t)s) dt =

∫ π
4

0

z̃(t) dt, (7.4)

where

z̃(t) :=

(

δ cos2 t+
1

δ
sin2 t

)s

+

(

δ sin2 t+
1

δ
cos2 t

)s

, (7.5)

see Figure 15, right. We show that z̃(t) > 2 ∀t ∈ [0, π/4]. Obviously,

z̃(0) = δs +
1

δs
=

(

δs − 2 +
1

δs

)

+ 2 =

(√
δs − 1√

δs

)2

+ 2 > 2 ∀δ > 1∀s > 1, (7.6)

z̃(π/4) =

(

δ

2
+

1

2δ

)s

+

(

δ

2
+

1

2δ

)s

= 2
1

2s

(

δ +
1

δ

)s

> 2 ∀δ > 1,

where the last inequality follows from the implications

(√
δ − 1√

δ

)2

> 0 ⇒ δ +
1

δ
> 2 ⇒

(

δ +
1

δ

)s

> 2s ⇒ 1

2s

(

δ +
1

δ

)s

> 1.
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Fig. 15: Illustration for the proof of Lemma 3.13, the function z(t) (left) and function z̃(t) for
δ = 1.1 and s = 1.5.

Further, we show that z̃(t) is non-increasing on [0, π/4]. Hence, we have to verify the inequality
d
dt z̃(t) ≤ 0 for t ∈ [0, π/4], particularly

d

dt
z̃(t) = s

(

δ cos2 t+
1

δ
sin2 t

)s−1 (

−2δ cos t sin t+
2

δ
sin t cos t

)

(7.7)

+ s

(

δ sin2 t+
1

δ
cos2 t

)s−1 (

2δ sin t cos t− 2

δ
sin t cos t

)

= s sin(2t)

(

1

δ
− δ

)

[

(

δ cos2 t+
1

δ
sin2 t

)s−1

−
(

δ sin2 t+
1

δ
cos2 t

)s−1
]

≤ 0.

This inequality is satisfied trivially for t = 0. Let t > 0. Dividing (7.7) by s sin(2t)(1/δ − δ) < 0
for t ∈ (0, π/4) and δ > 1, we obtain

(

δ cos2 t+
1

δ
sin2 t

)s−1

≥
(

δ sin2 t+
1

δ
cos2 t

)s−1

⇐⇒ δ cos2 t+
1

δ
sin2 t ≥ δ sin2 t+

1

δ
cos2 t

⇐⇒
(

δ − 1

δ

)

(

cos2 t− sin2 t
)

≥ 0,

which is true for t ∈ (0, π/4) and δ > 1. Moreover, we have d
dt z̃(0) =

d
dt z̃(π/4) = 0. Hence, the

function z̃(t) is non-increasing on (0, π/4) and attains its minimum for t = π/4. Using (7.6), we
conclude that z̃(t) > 2 on [0, π/4] which together with (7.4) implies

∫ π
2

0

z(t)s dt =

∫ π
4

0

z̃(t) dt >

∫ π
4

0

2 dt =
π

2
.

Similarly, we can prove that
∫ ℓπ/2

(ℓ−1)π/2
z(t) dt > π/2, ℓ = 2, 3, 4, which gives (7.1).
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[13] V. Doleǰśı. Anisotropic mesh adaptation for finite volume and finite element methods on
triangular meshes. Comput. Vis. Sci., 1(3):165–178, 1998.
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