
Nečas Center for Mathematical Modeling

A parallel fully-implicit discontinuous
Galerkin method for the compressible

flows

V. Doleǰśı, V. Š́ıp

Preprint no. 2013-016

http://ncmm.karlin.mff.cuni.cz/

A parallel fully-implicit discontinuous Galerkin method for

the compressible flows

Vı́t Doleǰśı, Viktor Š́ıp

May 3, 2013

Abstract

We deal with the numerical simulation of a motion of inviscid as well as viscous com-
pressible fluids. We discretize the governing Navier-Stokes and the Euler equations by the
backward difference formula – discontinuous Galerkin finite element (BDF-DGFE) method,
which exhibits a sufficiently stable, efficient and accurate numerical scheme. We focus on the
parallelization of this method. We describe the implementation issues and present several
numerical experiments demonstrating its efficiency.

Key words: discontinuous Galerkin method, compressible Navier-Stokes equations, linear algebra
problems, preconditioning, stopping criterion, choice of the time step
AMS Subject Classification: 76M10, 76N15, 35Q35, 65L06

Contents

1 Introduction 2

2 Compressible flow problem 2

3 DGFE discretization 3

3.1 Triangulations . 3
3.2 Discontinuous finite element spaces . 4
3.3 Discretization of the Navier-Stokes equations . 4

3.3.1 Inviscid terms . 4
3.3.2 Viscous terms . 5
3.3.3 Interior and boundary penalties . 5
3.3.4 Fully implicit BDF-DGFE discretization . 6

4 Solution strategy 7

4.1 Algebraic representation . 7
4.2 Flux matrix . 8
4.3 Iterative algorithm . 9

4.3.1 Choice of the damping parameter . 9
4.3.2 Update of the flux matrix . 9
4.3.3 Termination of iterative process . 10

5 Parallelization 10

5.1 Implementation issues . 10
5.2 Numerical experiments . 11

5.2.1 Mesh decomposition . 11
5.2.2 Linear solvers and preconditioners . 12
5.2.3 Efficiency of the parallelization . 13

1

Parallel DGM for the compressible Navier-Stokes equations 2

6 Conclusion 16

1 Introduction

Our aim is to develop a sufficiently robust, efficient and accurate numerical scheme for the simu-
lation of steady as well as unsteady viscous compressible flows. The discontinuous Galerkin (DG)
methods have become very popular numerical technique for the solution of the compressible Navier-
Stokes equations. DG space discretization uses (higher order) piecewise polynomial discontinuous
approximation on arbitrary meshes. DG methods were employed in many papers for the discretiza-
tion of compressible fluid flow problems, see, e.g., [2, 3, 4, 22, 10, 23, 24, 27, 28, 16, 18, 11, 9, 15, 19],
and the references cited therein. Recent progress of the use of the DG method for compressible
flow simulations can be found in [29].

The time discretization can be carried out also by a discontinuous approximation (e.g., [27, 20])
but the most usual approach is an application of the method of lines. In this case, Runge-Kutta
methods are very popular for their simplicity and high order of accuracy, see [2, 4, 6, 10]. Their
drawback is a strong restriction of the size of the time step. To avoid this disadvantage, it is
suitable to use an implicit time discretization, e.g., [3, 23]. However, a fully implicit scheme leads
to the necessity to solve a nonlinear system of algebraic equations at each time level, which is
rather expensive. Therefore, in [11, 13], we developed the semi-implicit method which is based on
a suitable linearization of the inviscid and viscous fluxes. The linear terms are treated implicitly
(by a multistep BDF formula), whereas the nonlinear ones by an explicit extrapolation, which leads
to a linear algebraic system at each time level. We called this approach the backward difference
formula – discontinuous Galerkin finite element (BDF-DGFE) method.

The BDF-DGFE method leads to a sequence of linear algebraic systems which should be solved
by a suitable solver. It is advantageous to use an iterative method (e.g., GMRES method [30] with
a suitable preconditioner), since the solution of the previous system can be used as an initial guess
of the solution of the next system. Moreover, it is not necessary to solve the systems too precisely,
since they arise from a discretization of partial differential equations and therefore the systems
already contain discretization errors. Numerical experiments presented in [11] showed that the
BDF-DGFE method is efficient for unsteady flow problems but its efficiency for steady-state flow
regimes is very low. The solution of the linear algebraic systems consumes more than 90% of the
total computational time.

Therefore, we develop a new solution strategy which significantly reduces the computational
time for steady state flows in comparison with [11]. We were inspired by the idea of the inexact
Newton method [7], where a sequence of linear algebraic systems also has to be solved. The key
is to define a relatively weak stopping criterion which guarantees convergence to the steady state
solution but requires only a few GMRES steps at each time level.

Although we focus in this paper on steady-state flows, we employ the “unsteady” formulation
since our aim is to solve also unsteady flows with the same method. This approach is practical in
situations when it is not known a priori if the flow regime is steady or unsteady. Therefore, we
develop a simple technique for the adaptive choice of the size of the time step.

The content of the rest of the paper is the following. In Section 2, we introduce the system of
the compressible Navier-Stokes equations. In Section 3, we recall the BDF-DGFE discretization of
the Navier-Stokes equations from [11]. In Section 4, we discuss the numerical solution of the arising
linear algebraic systems. Particularly, we deal with the choice of preconditioner of the GMRES
method, stopping criteria and the size of the time step. Section 5 describe the paralelization of
the presented numerical method. Concluding remarks are given in Section 6.

2 Compressible flow problem

Let Ω ⊂ R
d, d = 2, 3, be a bounded domain with a piecewise polynomial Lipschitz boundary

and T > 0. We set QT = Ω × (0, T) and by ∂Ω denote the boundary of Ω which consists of

Parallel DGM for the compressible Navier-Stokes equations 3

several disjoint parts. We distinguish inlet ∂Ωi, outlet ∂Ωo and impermeable walls ∂ΩW , i.e.
∂Ω = ∂Ωi ∪ ∂Ωo ∪ ∂ΩW . The system of the Navier-Stokes equations describing the motion of a
non-stationary viscous compressible flow can be written in the dimensionless form

∂w

∂t
+

d
∑

s=1

∂fs(w)

∂xs

=

d
∑

s=1

∂

∂xs

(

d
∑

k=1

Ksk(w)
∂w

∂xk

)

in QT , (1)

where
w = w(x, t) : QT → R

d+2, the state vector,
fs : R

d+2 → R
d+2, s = 1, . . . , d, the inviscid fluxes,

Ksk : Rd+2 → R
(d+2)×(d+2), s, k = 1, . . . , d, the viscous terms.

(2)

The forms of vectors w, fs, s = 1, . . . , d, and matrices Ksk, s = 1, . . . , d, can be found, e.g.,
in [11] or [17, Section 4.3]. We consider the Newtonian type of fluid accompanied by the state
equation of a perfect gas and the definition of total energy. System (1) is of hyperbolic-parabolic
type and it is equipped with suitable initial and boundary conditions, see [10, 11]. On the inlet and
outlet, we prescribe Dirichlet boundary conditions for some of the flow variables, while Neumann
conditions are used for the remaining variables. On the impermeable walls, we put

v = 0, ∂θ/∂n = 0 on ∂ΩW , (3)

where v is the velocity vector and ∂θ/∂n denotes the normal derivative of the temperature.
The problem of solving the Navier-Stokes equations (1) equipped with initial and boundary

conditions will be denoted by (CFP) (compressible flow problem).
Let us mention that the Euler fluxes fs, s = 1, . . . , d, satisfy (see [17, Lemma 3.1]) fs(w) =

As(w)w, s = 1, . . . , d, where As(w) =
Df

s
(w)

Dw , s = 1, . . . , d, are the Jacobi matrices of fs.
Moreover, we define the matrix

P (w,n) =

d
∑

s=1

As(w)ns, (4)

where n = (n1, . . . , nd) ∈ R
d, |n|2 =

∑d
l=1 n

2
l = 1, which plays a role in the definition of the

numerical flux. Finally, if w is the state vector satisfying the wall boundary condition (3) then

d
∑

k=1

Ks,k(w)
∂w

∂xk

∣

∣

∣

∣

∣

∂ΩW

= (0, t1s, . . . , tds, 0)
T
=:

d
∑

k=1

KW
s,k(w)

∂w

∂xk

∣

∣

∣

∣

∣

∂ΩW

, s = 1, . . . , d, (5)

where tij are the components of the stress tensor and KW
s,k, s, k = 1, . . . , d are matrices which have

the last row equal to zeros and the other rows are identical with the rows of Ks,k, s, k = 1, . . . , d.

3 DGFE discretization

3.1 Triangulations

Let Th (h > 0) be a partition of the closure Ω of the domain Ω into a finite number of closed
d-dimensional elements K with mutually disjoint interiors. I.e., Ω =

⋃

K∈Th
K. Moreover, let

FK : K̂ → R
d be a polynomial mapping such that FK(K̂) = K where K̂ = {(x̂1, . . . , x̂d); x̂i ≥

0, i = 1, . . . , d,
∑d

i=1 x̂i ≤ 1} is the reference simplex.
If K ∩ ∂Ω = ∅ or K ∩ ∂Ω is a straight line, then FK is an affine mapping and K is a simplex.

Otherwise, FK is a polynomial mapping of the same degree as the segment K ∩ ∂Ω and K is a
curved simplex. We call Th = {K}K∈Th

a triangulation of Ω and do not require the conforming
properties from the finite element method, see, e.g, [5].

By Fh we denote the set of all open (d − 1)-dimensional faces (open edges when d = 2 or
open faces when d = 3) of all elements K ∈ Th. Further, the symbol F I

h stands for the set of all

Parallel DGM for the compressible Navier-Stokes equations 4

Γ ∈ Fh that are contained in Ω (inner faces). Moreover, we define FW
h , F i

h and F o
h as the sets

of all Γ ∈ Fh such that Γ ⊂ ∂ΩW , Γ ⊂ ∂Ωi and Γ ⊂ ∂Ωo, respectively. In order to simplify the
notation, we put F io

h = F i
h ∪ F o

h and FB
h = FW

h ∪ F i
h ∪ F o

h .
Finally, for each Γ ∈ Fh we define a unit normal vector nΓ. We assume that for Γ ∈ FB

h the
vector nΓ has the same orientation as the outer normal of ∂Ω. For each Γ ∈ F I

h , the orientation
of nΓ is arbitrary but fixed.

3.2 Discontinuous finite element spaces

DGFE allows the use of different polynomial degrees over elements. Therefore, although all nu-
merical experiments in this article are carried out for a constant polynomial degree, we assign
a positive integer pK (local polynomial degree) to each K ∈ Th. Then we define the vector
p = {pK ,K ∈ Th}. Over the triangulation Th we define the finite dimensional space of discontin-
uous piecewise polynomial functions associated with the vector p by

Sp
h = {v; v ∈ L2(Ω), v|K ◦ FK ∈ PpK

(K̂) ∀K ∈ Th}, (6)

where PpK
(K̂) denotes the space of all polynomials on K̂ of degree ≤ pK , K ∈ Th. We seek the

approximate solution in the space of vector-valued functions SSSp
h = [Sp

h]
d+2, whose dimension is

Nh = (d+2)
d!

∑

K∈Th
(Πd

i=1(pK + i)).

For each Γ ∈ F I
h there exist two elements K(+),K(−) ∈ Th such that Γ ⊂ K(+) ∩K(−). We

use the convention that K(−) lies in the direction of nΓ and K(+) in the opposite direction of nΓ.

Then for v ∈ Sp
h, we introduce the notation: v|

(+)
Γ is the trace of v|K(+) on Γ, v|

(−)
Γ is the trace of

v|K(−) on Γ, and 〈v〉Γ :=
(

v|
(+)
Γ + v|

(−)
Γ

)

/2, [[v]]Γ := v|
(+)
Γ − v|

(−)
Γ . In case that [[·]]Γ and 〈·〉Γ are

arguments of
∫

Γ
. . . dS, Γ ∈ Fh we omit the subscript Γ and write simply [[·]] and 〈·〉, respectively.

Finally, for Γ ∈ FB
h we denote by v|

(+)
Γ the trace of v|K(+) on Γ, where K(+) ∈ Th such that

Γ ⊂ K(+) ∩ ∂Ω.

3.3 Discretization of the Navier-Stokes equations

In this section, we recall the backward difference formula – discontinuous Galerkin finite element
(BDF-DGFE) method for the solution of the Navier-Stokes equations (1) presented in [11]. How-
ever, in comparison with [11], we employ a little different treatment of the boundary conditions
which has better convergence properties.

3.3.1 Inviscid terms

For wh,ϕϕϕh ∈ SSSp
h, we define the forms

bh(wh,ϕϕϕh) :=
∑

Γ∈Fh

∫

Γ

(

P+ (〈wh〉 ,n)wh|
(+)
Γ + P− (〈wh〉 ,n)wh|

(−)
Γ

)

· [[ϕϕϕh]] dS

−
∑

K∈Th

∫

K

d
∑

s=1

As(wh)wh ·
∂ϕϕϕh

∂xs

dx, (7)

where As are the Jacobi matrices of the inviscid fluxes fs, s = 1, . . . , d, P± are the positive and
negative parts of the matrix P given by (4) which define the Vijayasundaram numerical flux [31]
used for the approximation of inviscid fluxes through Γ ∈ Fh. For Γ ∈ FB

h , we have to specify

the meaning of wh|
(−)
Γ . For Γ ∈ FW

h , we put

wh|
(−)
Γ := M

(

wh|
(+)
Γ

)

, (8)

Parallel DGM for the compressible Navier-Stokes equations 5

where M : Rd+2 → R
d+2 is the “mirror operator” defined on Γ ∈ ∂ΩW such that

w = (ρ,v, e)T ⇒

{

M(w) = (ρ, ρv − 2ρ(v · n)n, e)T for inviscid flow,
M(w) = (ρ,−ρv, e)T for viscous flow,

(9)

where ρ is the density, e is the total energy, v is the velocity vector and n is the unit outer normal
to ∂ΩW . Therefore, for inviscid flow, the normal components of the velocities of w and M(w)
have the same magnitude but opposite direction. For viscous flow, the velocities of w and M(w)
have the same magnitude and the opposite directions. The remaining components of w and M(w)
(density, energy and tangential component of the velocity) are the same.

Finally, for Γ ∈ F io
h , we put

wh|
(−)
Γ := LRP (wh|

(+)
Γ ,wD,nΓ), Γ ∈ F

io
h , (10)

where LRP (·, ·, ·) represents the solution of the local Riemann problem considered on edge Γ ∈ F io
h

and wD is a given state vector (e.g. from far-field boundary conditions), see [12]. For more details,
we refer to [13] or [14].

3.3.2 Viscous terms

For wh,ϕϕϕh ∈ SSSp
h, we define the forms

ah(wh,ϕϕϕh) =
∑

K∈Th

∫

K

d
∑

s,k=1

(

Ks,k(wh)
∂wh

∂xk

)

·
∂ϕϕϕh

∂xs

dx (11)

−
∑

Γ∈FI

h

∫

Γ

d
∑

s=1

〈

d
∑

k=1

Ks,k(wh)
∂wh

∂xk

〉

ns · [[ϕϕϕh]] dS

−
∑

Γ∈F io

h

∫

Γ

d
∑

s,k=1

Ks,k(wh)
∂wh

∂xk

ns ·ϕϕϕh dS

−
∑

Γ∈FW

h

∫

Γ

d
∑

s,k=1

KW
s,k(wh)

∂wh

∂xk

ns ·ϕϕϕh dS

where KW
s,k, s, k = 1, . . . , d are defined by (5).

3.3.3 Interior and boundary penalties

For wh,ϕϕϕh ∈ SSSp
h, we define the forms

Jσ
h(wh,ϕϕϕh) =

∑

Γ∈FI

h

∫

Γ

σ[[wh]] · [[ϕϕϕh]] dS +
∑

Γ∈F io

h

∫

Γ

σ(wh − B(wh)) ·ϕϕϕh dS

+
∑

Γ∈FW

h

∫

Γ

σ(wh − B(wh)) · V(ϕϕϕh) dS, (12)

where B(·) : Rd+2 → R
d+2 is the operator of the boundary condition given by

B(wh) := (ρ|Γ, 0, . . . , 0, ρ|Γθ|Γ) for Γ ∈ F
W
h , (13)

B(wh) := LRP (wh|
(+)
Γ ,wD,nΓ) for Γ ∈ F

io
h , (14)

where LRP is given by (10). Moreover, the operator V : R
d+2 → R

d+2 is given by V(ϕϕϕ) =
(0, ϕ2, . . . , ϕd+1, 0) for ϕϕϕ = (ϕ1, ϕ2, . . . , ϕd+1, ϕd+2). The role of V is to penalize only the compo-
nents of w, for which the Dirichlet boundary conditions are prescribed on fixed walls. Moreover,
the penalty parameter σ is chosen by

σ|Γ = CW /(diam(Γ)Re) , Γ ∈ Fh, (15)

Parallel DGM for the compressible Navier-Stokes equations 6

where Re is the Reynolds number of the flow, and CW > 0 is a suitable constant which guarantees
the convergence of the method.

3.3.4 Fully implicit BDF-DGFE discretization

In order to simplify the notation, for wh, ϕϕϕh ∈ SSSp
h, we put

ch (wh,ϕϕϕh) := ah (wh,ϕϕϕh) + bh (wh,ϕϕϕh) + Jσ
h (wh,ϕϕϕh) , (16)

The form ch makes sense also for functions from H2(Ω,Th) := {ϕϕϕ;ϕϕϕ|K ∈ (H2(K))d+2 ∀K ∈ Th}
where H2(K) is the standard Sobolev space over K.

It is possible to show (see, e.g., [10, 11]) that if w : Ω× (0, T) → R
d+2 is a sufficiently regular

function satisfying the Navier-Stokes equations (1) and the corresponding initial and boundary
conditions, then

d

dt
(w,ϕϕϕ)0,Ω + ch (w,ϕϕϕ) = 0 ∀ϕϕϕ ∈ SSSp

h, (17)

where (·, ·)0,Ω denotes the L2-scalar product over Ω.

Now, we introduce the space semi-discretization of (CFP). Let C1([0, T];SSSp
h) denote the space

of continuously differentiable mappings of the interval [0, T] into SSSp
h.

Definition 3.1. A function wh ∈ C1([0, T];SSSp
h) is called the space semi-discrete solution of (CFP),

if

(

∂wh(t)

∂t
,ϕϕϕh

)

0,Ω

+ ch(wh(t),ϕϕϕh) = 0 ∀ϕϕϕh ∈ SSSp
h ∀ t ∈ (0, T),(18a)

& wh(0) = wh,0, (18b)

where wh,0 ∈ SSSp
h denotes the SSSp

h-approximation of the initial condition.

Problem (18) represents a system of ordinary differential equations (ODEs) for wh(t), which
has to be discretized in time by a suitable method. Since these ODEs represent a stiff system,
it is advantageous to use an implicit time discretization. In order to obtain a sufficiently stable
and accurate approximation with respect to the time coordinate, we use the backward difference
formula (BDF), see, e.g., [21], for the solution the ODE problem (18).

Let Iτ = {(tk−1, tk)}
r
k=1 be a partition of the time interval (0, T) with 0 = t0 < t1 < t2 <

. . . tr = T . We put Ik := (tk−1, tk) and τk := tk − tk−1, k = 1, . . . r. Formally, we define
I0 := (−t1, t0), this formalism will simplify the later relations. Let wk

h ∈ SSSp
h denote a piecewise

polynomial approximation of wh(tk), k = 0, 1, . . . , r. We define the following scheme.

Definition 3.2. The approximate solution of (CFP) by the implicit BDF-DGFE method is defined
as functions wk

h ∈ SSSp
h, k = 0, . . . , r, satisfying the conditions

1

τk

(

n
∑

l=0

αn,lw
k−l
h ,ϕϕϕh

)

0,Ω

+ ch
(

wk
h,ϕϕϕh

)

= 0 ∀ϕϕϕh ∈ SSSp
h, k = n, . . . , r, (19a)

w0
h is the L2-projection of w0 in SSSp

h, (19b)

wl
h ∈ SSSp

h, l = 1, . . . , n− 1 are given by a suitable “less-step” method, (19c)

where n ≥ 1 is the degree of the BDF scheme, the BDF coefficients αn,l, l = 0, . . . , n depend on
time steps τk−l, l = 0, . . . , n.

The n-step BDF-DGFE method (shortly n-BDF-DGFEM) has formally the order of conver-
gence O(hp + τn) in the L2(0, T ;H1(Ω))-norm. For n = 1 and n = 2 these methods are uncondi-
tionally stable, and for increasing n they lose more and more stability, for n > 7 these methods

Parallel DGM for the compressible Navier-Stokes equations 7

constant time step variable time step
n = 1 n = 2 n = 3 n = 1 n = 2 n = 3

αn,0 1 3
2

11
6 1 2 θk+1

θk+1
θkθk−1

θkθk−1+θk−1+1 + 2θk+1
θk+1

αn,1 -1 −2 −3 -1 −(θk + 1) − (θk+1)(θkθk−1+θk−1+1)
θk−1+1

αn,2 — 1
2

3
2 —

θ2
k

θk+1
θ2
k
(θkθk−1+θk−1+1)

θk+1

αn,3 — — − 1
3 — — −

(θk+1)θ2
k
θ3
k−1

(θk−1+1)(θkθk−1+θk−1+1)

Table 1: Values of αn,l, l = 0, . . . , n for n = 2, 3, θk := τk/τk−1, k = 1, 2, . . . , r

are definitely unstable, see [21, Section III.5]. In practice, we employ the BDF-DGFE scheme for
n = 1, 2, 3, the values of corresponding coefficients αn,l, l = 0, . . . , n are given in Table 1.

Problem (19) represents a nonlinear algebraic system for each k = 1, . . . , r which should be
solved by a suitable solver, which is discussed in Section 4. Numerical experiments show that
the resulting semi-implicit DGFE method is practically unconditionally stable, i.e., the size of the
time step can be chosen very large, see [11].

Remark 3.3. In practice, we realise relation (19c) in such a way, that for l = 1, . . . , n − 1 we
employ the l-step BDF-DGFE scheme, i.e., the one step BDF at first time step, the two steps
BDF at second time step, etc. For simplicity, we formally replace (19a) and (19c) by

1

τk

(

n
∑

l=0

αn,lw
k−l
h ,ϕϕϕh

)

0,Ω

+ ch
(

wk
h,ϕϕϕh

)

= 0 ∀ϕϕϕh ∈ SSSp
h, k = 1, . . . , r. (20)

4 Solution strategy

In this section, we deal with an efficient solution strategy of the nonlinear discrete problem (19).

4.1 Algebraic representation

Let Nh denote the dimension of the piecewise polynomial space SSSp
h and

Bh := {ϕϕϕi(x), i = 1, . . . , Nh} (21)

denote a set of linearly independent functions forming a basis of SSSp
h. It is possible to construct a

basis Bh as a composition of local bases constructed separately for each K ∈ Th. See [14], where
one possibility is described in details.

Let wh ∈ SSSp
h be a piecewise polynomial function. It can be expressed as

wk
h(x) =

Nh
∑

j=1

ξk,jϕϕϕj(x), ξk := {ξk,j}Nh

j=1 ∈ R
Nh , k = 1, . . . , r, (22)

where ξk,j ∈ R, j = 1, . . . , Nh, k = 1, . . . , r are the basis coefficients. Obviously, (22) defines an
isomorphism between wk

h ∈ SSSp
h and ξk ∈ R

Nh .
In order to rewrite the discrete problem (19), we define the vector-valued function F h : [RNh]n×

R
Nh → R

Nh by

F h

({

ξk−l

}n

l=1
; ξk
)

:=

{

1

τk

(

n
∑

l=0

αn,lw
k+1−l
h ,ϕϕϕi

)

+ ch(w
k
h,ϕϕϕi)

}Nh

i=1

, (23)

Parallel DGM for the compressible Navier-Stokes equations 8

where ξk−l ∈ R
Nh is the algebraic representation of wh,k−l ∈ SSSp

h for l = 1, . . . , n. Therefore, the
algebraic representation of the discrete problem (19) reads: for the initial vectors ξ0, ξ1, . . . , ξn−1 ∈
R

Nh

find ξk ∈ R
Nh such that F h(

{

ξk−l

}n

l=1
; ξk) = 0, k = n, . . . , r. (24)

The system (24) is strongly nonlinear and its solution is not easy. Nonlinear algebraic systems
are usually solved with the aid of the Newton methods, see, e.g., [8], which (usually) requires the
evaluation of the Jacobi matrix DF h(

{

ξk−l

}n

l=1
; ξ)/Dξ or its approximation. A differentiation of

F h can be done either symbolically (which requires a lot of manual work) or numerically (which
is time consuming and can be inexact).

Here we present an approach where the Jacobi matrix in the Newton method is replaced by the
so-called flux matrix developed in the context of the semi-implicit DGFE method in [11, 13, 14].

4.2 Flux matrix

In virtue of (7), (11), (12), for w̄h,wh,ϕϕϕh ∈ SSSp
h, we define the form cLh : SSSp

h ×SSSp
h ×SSSp

h → R

cLh (w̄h,wh,ϕϕϕh) (25)

:=
∑

Γ∈Fh

∫

Γ

P+ (〈w̄h〉 ,n)wh|
(+)
Γ · [[ϕϕϕh]] dS +

∑

Γ∈Fh\F io

h

∫

Γ

P− (〈w̄h〉 ,n)wh|
(−)
Γ · [[ϕϕϕh]] dS

−
∑

K∈Th

∫

K

d
∑

s=1

As(w̄h)wh ·
∂ϕϕϕh

∂xs

dx+
∑

K∈Th

∫

K

d
∑

s,k=1

(

Ks,k(w̄h)
∂wh

∂xk

)

·
∂ϕϕϕh

∂xs

dx

−
∑

Γ∈FI

h
∪F io

h

∫

Γ

d
∑

s=1

〈

d
∑

k=1

Ks,k(w̄h)
∂wh

∂xk

〉

ns · [[ϕϕϕh]] dS

−
∑

Γ∈FW

h

∫

Γ

d
∑

s,k=1

KW
s,k(w̄h)

∂wh

∂xk

ns ·ϕϕϕh dS

+
∑

Γ∈FI

h

∫

Γ

σ[[wh]] · [[ϕϕϕh]] dS +
∑

Γ∈F io

h

∫

Γ

σwh ·ϕϕϕh dS +
∑

Γ∈FW

h

∫

Γ

σwh · V(ϕϕϕh) dS

and the form dh : RNh × R
Nh → R by

dh(w̄h,ϕϕϕh) :=−
∑

Γ∈F io

h

∫

Γ

P− (〈w̄h〉 ,n) w̄h|
(−)
Γ · [[ϕϕϕh]] dS (26)

+
∑

Γ∈F io

h

∫

Γ

σB(w̄h) ·ϕϕϕh dS +
∑

Γ∈FW

h

∫

Γ

σB(w̄h) · V(ϕϕϕh) dS.

Obviously, due to relations (7), (11), (12) and (25) – (26), we have the consistency between
forms ch and cLh , namely

ch(wh,ϕϕϕh) = cLh (wh,wh,ϕϕϕh)− dh(wh,ϕϕϕh) ∀wh,ϕϕϕh ∈ SSSp
h. (27)

Furthermore, form cLh is linear with respect to its second (and third) argument.
Using the notation from Section 4.1, we define the flux matrix

Ch

(

ξ̄
)

:=

{

αn,0

τk
(ϕϕϕj ,ϕϕϕi)0,Ω + cLh (w̄h,ϕϕϕj ,ϕϕϕi)

}Nh

i,j=1

(28)

and the vector

qh

({

ξk−l

}n

l=1
, ξ̄
)

:=







−
1

τk

(

n
∑

i=1

αn,iw
k−l
h ,ϕϕϕi

)

0,Ω

+ dh(w̄h,ϕϕϕi)







Nh

i=1

, (29)

Parallel DGM for the compressible Navier-Stokes equations 9

where ξ̄ ∈ R
Nh and ξk−l ∈ R

Nh , l = 1, . . . , n are the algebraic representation of w̄h ∈ SSSp
h and

wk−l
h ∈ SSSp

h, l = 1, . . . , n, respectively. Finally, using (23) and (28) –(29), we have

F h(
{

ξk−l

}n

l=1
; ξk) = Ch(ξk)ξk − qh(

{

ξk−l

}n

l=1
, ξk). (30)

Let us note that the flux matrix Ch has a block structure and it is sparse. In virtue of
(25) we easily find that each block-row of Ch corresponds to one K ∈ Th and it contains
a diagonal block and several off-diagonal blocks. Each off-diagonal block corresponds to one
face Γ ∈ Fh. Obviously, the sparsity of Ch is identical to the sparsity of the Jacobi matrix
DF h(

{

ξk−l

}n

l=1
; ξ)/Dξ. Therefore, in the following Newton-like method, we use Ch as the ap-

proximation of DF h(
{

ξk−l

}n

l=1
; ξ)/Dξ. This approximation follows from relation (30), when we

fix the arguments of Ch and qh and perform the differentiation with respect to ξk.

Remark 4.1. We easily find that for the evaluation of each entry of F h and/or Ch we need
solution wh from at most two neighboring elements. This is a favorable property which simplifies
the parallelization of the algorithm, see Section 5.

Remark 4.2. Let us mention computational costs of the evaluation of F h and Ch. For simplicity,
let us consider the case d = 2, pK = p ∀K ∈ Th and Th conforming triangular grid. Then F h

has Nh = #Th(p + 1)(p + 1)/2 entries and Ch has approximately 4#Th((p + 1)(p + 1)/2)2 non-
vanishing entries. Therefore, an evaluation of F h is approximately 2(p + 1)(p + 2) cheaper than
an evaluation of Ch.

4.3 Iterative algorithm

To determine solution ξk of the system (24), we employ a damped Newton-like method which
generates a sequence of approximations ξnk , n = 0, 1, . . . to the actual numerical solution ξk using
the following algorithm. Given an iterate ξnk , the update dn of ξnk to get to the next iterate

ξn+1
k := ξnk + λndn (31)

is defined by: find dn ∈ R
Nh such that

Ch(ξ
n
k)d

n = −F h(ξ
n
k), (32)

where Ch is the flux matrix given by (30) and λn ∈ (0, 1] is a damping parameter which ensures
convergence of (31) – (32) in case when the initial guess ξ0k is far from the solution of (24).

4.3.1 Choice of the damping parameter

We start from the value λn = 1 and evaluate a monitoring function θn :=
∥

∥F h(ξ
n+1
k)

∥

∥/‖F h(ξ
n
k)‖.

If θn < 1 we proceed to the next Newton iteration. Otherwise, we put λn := λn/2 and repeat the
actual Newton iteration. Analysis of the convergence of this simplified Newton method and the
monitoring function can be found in [8].

4.3.2 Update of the flux matrix

Obviously, it is not necessary to update the flux matrix Ch(ξ
n
k) at each Newton iteration n =

1, 2, . . . and each time level k = 1, . . . , r. In virtue of Remark 4.2, it is much cheaper to evaluate
F h than Ch. Therefore, it is more efficient to perform more Newton iterations than to update Ch.
In practice, we update Ch either the damping parameter λ achieves a minimal prescribed value
(using the algorithm described in Section 4.3.1) or the prescribed maximal number of Newton
iteration was achieved.

Parallel DGM for the compressible Navier-Stokes equations 10

4.3.3 Termination of iterative process

The iterative process (31) – (32) is terminated if a suitable algebraic stopping criterion is achieved,
e.g.,

‖F h(ξ
n
k)‖ ≤ TOL, (33)

where ‖·‖ and TOL are a given norm and a given tolerance, respectively.

5 Parallelization

5.1 Implementation issues

DGFE method can be easily parallelized since the corresponding stencils do not grow in size with
increasing order. In the following, we briefly describe the parallel implementation of method (19),
a) – c) which is based on the decomposition of the mesh to the particular processors of a cluster
with a distributed memory.

First, we decompose triganulation Th into several subtriagulations T i
h , i = 1, . . . , π, where

π is the number of the processors. Let NK denote the local number of degree of freedom per

element, i.e, NK = (d+2)
d! (Πd

j=1(pK + j)), K ∈ Th, where
′
K denotes the degree of polynomial

approximation over K ∈ Th. In order to equilibrate the computational work and the use of the
memory for each processor, we requires that

∑

K∈T i

h

(NK)2 ≈
1

π

∑

K∈Th

(NK)2, i = 1, . . . , π, (34)

since the count of computational operations and the amount of the memory corresponding to
matrix C is proportional to the square of the degree of freedom. If the fixed degree of polynomial
approximation is used for all K ∈ Th then relation (34) reduces to #T i

h ≈ #Th, i = 1, . . . , π,
where #Th denotes the number of elements of Th. Moreover, in order to minimize the communi-
cation between processor we minimize the amount of Γ ∈ Fh such that Γ ⊂ ∂K ∩ ∂K ′, K ∈ T i

h ,

K ′ ∈ T
j
h and i 6= j, see Remark 4.1. For the mesh decomposition we employ software package

METIS [26], see also [25].
Since the memory is distributed, we accociate to each element i = 1, . . . , π the rows of F h and

Ch corresponding to K ∈ T i
h , i = 1, . . . , π. Figure 1 illustrates a decomposition of a fictitious

mesh Th and the corresponding matrix C into three processors.

1

2

3

4

5

6

0

12

C1,1 C1,2 C1,5

C2,1 C2,2 C2,3

C3,2 C3,3 C3,4

C4,3 C4,4 C4,5

C5,1 C5,4 C5,5 C5,6

C6,5 C6,6

0

1

2

Figure 1: Decomposition of triangulation Th having 6 elements (left) and the corresponding matrix
C (right) into three parts (processors) indexed 0,1,2.

For the evaluation of off-diagonal blocks of C the information from two neighboring elements
K ∈ Th corresponding two different processors is also requires. In order to save the computa-
tional time, we employ the ability of a simultaneous computation and processor communication.

Parallel DGM for the compressible Navier-Stokes equations 11

Therefore, each processor i = 1, . . . , π sends and receives data during evaluation of the volume
integrals and face integrals lying in interior of T i

h .
Finally, the corresponding linear algebraic systems are solved with the aid of PETSc (Portable,

Extensible Toolkit for Scientific Computation, [1]) library. We tested GMRES and BiCGStab
solved together with the block Jacobi and the additive Schwarz preconditioners which are imple-
mented in PETSc.

5.2 Numerical experiments

In this section we present the computational performance of the parallel implementation of (19)
described above. The presented results correspond to the subsonic viscous flow around NACA0012
profiles with M = 0.5, α = 0◦, Re = 5000. We employ Pl, l = 1, 2, 3 polynomial approximation
on meshes Th1 and Th2 having 6 876 and 29 040 elements. The corresponding number of degree
of freedom is given in Table 2.

Th1 Th2

P1 82 512 348 480
P2 165 024 696 960
P3 275 040 1 161 600

Table 2: Number of degree of freedom for each computation

In the following we study

5.2.1 Mesh decomposition

We already mention that triangulation Th is decomposed on sub-triangulations T i
h , i = 1, . . . , π

with the aid of METIS software. The quality of decomposition is characterized by the load bal-
ancing and the relative number of ghost cells. We characterize the load balancing by the minimal
and maximal number of elements of meshes T i

h for i = 1, . . . , π. Moreover, the relative number
of ghost cells is the ratio of GC (=the number of the elements having an edge on the boundary
between T i

h and T
j
h , i 6= j) and the number of processors.

Table 3 shows the results of the mesh decomposition of grids Th1 and Th2, namely the values
mini=1,...,π #T i

h , maxi=1,...,π #T i
h , number of ghost cells GC and the relative number of ghost

cells GC/π, for the number of processors π ∈ {1, 2, 4, 16, 32}. We easily observe very good load
balancing and the decreasing value of the relative number of ghost cells for increasing number
of processors. Finally, Figure2 illustrates the mesh decomposition of Th2 between 16 and 32
processors.

Th1 Th2

π min#T i
h max#T i

h GC GC/π min#T i
h max#T i

h GC GC/π
1 6876 6876 0 0.00 % 29040 29040 0 0.00 %
2 3438 3438 45 0.76 % 14520 14520 103 0.36 %
4 1719 1719 107 0.78 % 7260 7260 214 0.42 %
8 859 860 195 0.71 % 3630 3630 415 0.36 %
16 428 431 311 0.57 % 1814 1816 669 0.29 %
32 214 216 518 0.47 % 907 908 1101 0.24 %

Table 3: Quality of mesh decomposition, load balancing characterized by mini=1,...,π #T i
h and

maxi=1,...,π #T i
h , number of ghost cells GC and the relative number of GC per processor GC/π

Parallel DGM for the compressible Navier-Stokes equations 12

-60

-40

-20

 0

 20

 40

 60

-50 -40 -30 -20 -10 0 10 20 30 40 50
-60

-40

-20

 0

 20

 40

 60

-50 -40 -30 -20 -10 0 10 20 30 40 50

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0 0.5 1 1.5

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0 0.5 1 1.5

Figure 2: Mesh decomposition of Th2 between 16 (left) and 32 (right) processors, the global view
(top) and details around profile (bottom)

GMRES BiCGStab
block Jacobi (BJ) 160 MB 150 MB

additive Schwarz (AS) 201 MB 195 MB

Table 4: Comparison of memory requirement for one processor

5.2.2 Linear solvers and preconditioners

We carried out a comparison of the computational performance of linear iterative solvers with
preconditioner implemented in PETSc. Particularly, we employ GMRES and BiCGStab solvers in
combination with block Jacobi (BJ) and additive Schwarz (AS) preconditioners. We presented ex-
periments achieved by P2 approximation on mesh Th2 with the aid of 16 processors. Figure 3 show
the convergence to the steady-state solution for all four combinations of solvers and precondition-
ers with respect to the computational time and the number of time steps. In AS preconditioner,
we choose the overlap δ = 1. We simply observe that the difference between solvers and precon-
ditioners is not essential with respect to the computational time as well as the number of time
steps. Slightly better is the BiCGStab solver with AS preconditioner.

Moreover, we investigate the influence of the size of the overlapping in AS preconditioner (δ)
to the steady-state convergence. Figure 4 shows the convergence to the steady state for the values
δ = 0, δ = 1, δ = 3 and δ = 5. We observe that the fastest is the smaller overlapping with δ = 0
and δ = 1 since the lager values of δ requires more time for processors communications.

Finally, Table 4 shows the maximal memory requirement for one processor. Obviously, BJ
preconditioner need less memory. Since the computational performance of all tested method is
similar, in the following we employ the combination with the smallest memory requirements, i.e.,
BiCGStab with block Jacobi preconditioner.

Parallel DGM for the compressible Navier-Stokes equations 13

 0.0001

 0.001

 0.01

 0.1

 1

 0 20 40 60 80 100 120 140 160 180

S
S

re
s

CPU [s]

BiCGStab, BJ
BiCGStab, AS

GMRES, BJ
GMRES, AS

 0.0001

 0.001

 0.01

 0.1

 1

 0 20 40 60 80 100 120 140

S
S

re
s

time steps

BiCGStab, BJ
BiCGStab, AS

GMRES, BJ
GMRES, AS

Figure 3: Convergence to the steady-state solution for all four combinations of solvers and pre-
conditioners with respect to the computational time (left) and the number of time steps (right)

 0.0001

 0.001

 0.01

 0.1

 1

 20 40 60 80 100 120 140 160 180 200

S
S

re
s

Cas [s]

delta = 0
delta = 1
delta = 3
delta = 5

 0.0001

 0.001

 0.01

 0.1

 1

 20 40 60 80 100 120 140 160 180 200

S
S

re
s

Cas [s]

delta = 0
delta = 1
delta = 3
delta = 5

 0.0001

 0.001

 0.01

 0.1

 1

 0 20 40 60 80 100 120

S
S

re
s

Iterace

delta = 0
delta = 1
delta = 3
delta = 5

Figure 4: Dependence of the overlapping in AS preconditioner to the convergence to steady-state
solution with respect to the computational time (left) and the number of time steps (right)

5.2.3 Efficiency of the parallelization

We study the computational time Tπ necessary to achieve the steady state solution in the depen-
dence on the number of processors π. We define the acceleration Sπ = T1/Tπ and the efficiency
Eπ = Sππ. In ideal case, Sπ = π and hence Eπ = 1.

Table 5 shows the computational times Tπ (in seconds), acceleration Sπ and efficiency Eπ for
π ∈ {1, 2, 4, 16, 32} achieved with the aid of Pk, k = 1, 2, 3 approximation on grids Th1 and
Th2.

Moreover, Figure 5 shows the acceleration Sπ and Figure 6 the efficiency Eπ.
We observe that for the small number of processors (1 − −4), the efficiency is high even for

coarser grids. For increasing number of processors, the efficiency is decreasing for the increasing
number of processors in the dependence on number of elements of Th. It is caused by some
non-negligible computational time necessary for the pre- and post-processing independent of π.
Obviously, for the finner Th and higher degree of polynomial approximation, the decrease of
efficiency is slower since the pre- and post-processing are less substantial.

Moreover, the decrease of efficiency is less essential for higher degree of polynomial approx-
imation since the computational time of the pre- and post-processing depends mostly on the
number of elements of Th and not so strongly on the degree of polynomial approximation. In
order to eliminate the decrease of efficiency for increasing π, we should parallelize also the pre-
and post-processing

Furthermore, let us note that it some situations Eπ > 1. It can be caused from two reasons.
Firstly, we should take into account the numbering of matrix block of Ch is different for different π.

Parallel DGM for the compressible Navier-Stokes equations 14

Th1, P1 Th2, P1

π Tπ Sπ Eπ Tπ Sπ Eπ

1 102.43 s 1.00 1.00 539.73 s 1.00 1.00
2 50.75 s 2.02 1.01 258.16 s 2.09 1.05
4 25.90 s 3.95 0.99 131.49 s 4.10 1.03
8 15.07 s 6.80 0.85 65.80 s 8.20 1.03

16 9.79 s 10.46 0.65 35.21 s 15.33 0.96
32 7.77 s 13.19 0.41 26.75 s 20.18 0.63

Th1, P2 Th2, P2

π Tπ Sπ Eπ Tπ Sπ Eπ

1 357.20 s 1.00 1.00 1846.29 s 1.00 1.00
2 179.08 s 1.99 1.00 886.30 s 2.08 1.04
4 90.19 s 3.96 0.99 461.60 s 4.00 1.00
8 49.13 s 7.27 0.91 238.03 s 7.76 0.97

16 27.01 s 13.22 0.83 131.04 s 14.09 0.88
32 16.33 s 21.87 0.68 79.88 s 23.11 0.72

Th1, P3 Th2, P3

π Tπ Sπ Eπ Tπ Sπ Eπ

1 1278.27 s 1.00 1.00 5988.53 s 1.00 1.00
2 651.42 s 1.96 0.98 3026.76 s 1.98 0.99
4 310.50 s 4.12 1.03 1526.50 s 3.92 0.98
8 156.58 s 8.16 1.02 760.79 s 7.87 0.98

16 87.28 s 14.65 0.92 395.66 s 15.13 0.94
32 50.07 s 25.53 0.80 206.64 s 28.98 0.91

Table 5: Computational times Tπ, acceleration Sπ and efficiency Eπ for π ∈ {1, 2, 4, 16, 32}
achieved with the aid of Pk, k = 1, 2, 3 approximation on grids Th1 and Th2

 1

 2

 4

 8

 16

 32

 1 2 4 8 16 32

a
c
c
e
la

ra
ti
o
n

number of processors

ideal acceleration
mesh T_h1, P1
mesh T_h1, P2
mesh T_h1, P3

 1

 2

 4

 8

 16

 32

 1 2 4 8 16 32

a
c
c
e
la

ra
ti
o
n

number of processors

ideal acceleration
mesh T_h2, P1
mesh T_h2, P2
mesh T_h2, P3

Figure 5: Acceleration Sπ on meshes Th1 (left) and Th2 (right)

Hence, although we solve the same linear system, the iterative solvers achieve generally different
numerical solution for different π, i.e., the iterative process can be stopped earlier. Secondly,
we should take into the cache effect when more the faster cache memory is employed for higher
number of processors.

Finally, let us mention the memory requirement of our parallel implementation The highest
amount of memory is requires for the linear iterative solvers from the PETSc library. Let mi

π, i =
1, . . . , π denotes the number of allocated memory on th ith processor when π processors was

Parallel DGM for the compressible Navier-Stokes equations 15

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1 2 4 8 16 32

e
ff
ic

ie
n
c
y

number of processors

 T_h1, P1
 T_h1, P2
 T_h1, P3

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1 2 4 8 16 32

e
ff
ic

ie
n
c
y

number of processors

 T_h2, P1
 T_h2, P2
 T_h2, P3

Figure 6: Efficiency Eπ on meshes Th1 (left) and Th2 (right)

employed. Table 6 shows the quantities

mπ := max
i=1,...,π

mi
π, mπ := min

i=1,...,π
mi

π, mtot
π :=

π
∑

i=1

mi
π, Mπ :=

m1

mπ

(35)

The scaling factor measures the decrease of the memory requirement per one processor for in-
creasing π. In ideal case, Mπ = π. Table 6 shows the values defined in (35) for Pk, k = 1, 2, 3
approximation on grids Th1 and Th2.

Th1, P1 Th2, P1

p mπ mπ
mπ

m
π

mtot
π Mπ mπ mπ

mπ

m
π

mtot
π Mπ

1 111 111 1.00 111 1.00 425 425 1.00 425 1.00
2 71 71 1.00 146 1.57 249 249 1.00 497 1.71
4 50 49 1.04 197 2.20 159 156 1.02 629 2.67
8 39 37 1.05 299 2.85 115 111 1.04 892 3.70

16 33 32 1.04 521 3.35 92 89 1.03 1441 4.63
32 31 30 1.05 973 3.58 87 77 1.13 2568 4.88

Th1, P2 Th2, P2

p mπ mπ
mπ

m
π

mtot
π Mπ mπ mπ

mπ

m
π

mtot
π Mπ

1 336 336 1.00 336 1.00 1260 1260 1.00 1260 1.00
2 183 183 1.00 365 1.85 669 668 1.00 1337 1.88
4 105 104 1.01 418 3.20 399 396 1.01 1589 3.15
8 67 65 1.03 525 5.00 234 231 1.02 1851 5.37

16 47 46 1.03 736 7.15 150 148 1.02 2374 8.38
32 38 37 1.02 1189 8.91 117 109 1.07 3512 10.80

Th1, P3 Th2, P3

p mπ mπ
mπ

m
π

mtot
π Mπ mπ mπ

mπ

m
π

mtot
π Mπ

1 779 779 1.00 779 1.00 3259 3259 1.00 3259 1.00
2 404 403 1.00 808 1.93 1659 1657 1.00 3316 1.96
4 237 235 1.01 944 3.29 865 861 1.00 3452 3.77
8 133 131 1.01 1050 5.87 470 465 1.01 3736 6.94

16 79 78 1.02 1258 9.81 289 286 1.01 4591 11.28
32 54 52 1.02 1690 14.55 180 178 1.01 5730 18.07

Table 6: The memory requirement (in MB) for Pk, k = 1, 2, 3 approximation on grids Th1 and
Th2, coefficient defined in (35) .

We observe that the memory is well distributed among the processors since mπ/mπ is close

Parallel DGM for the compressible Navier-Stokes equations 16

to one. On the other hand, the parallel implementation is far from an ideal one since the total
amount of memory mtot

π is increasing for increasing π. Although the scaling factor Mπ is far from
the ideal value (=π), it is closer to the ideal value for the increasing number of elements of Th

and for the increasing degree of polynomial approximation.

6 Conclusion

We deal with the semi-implicit discontinuous Galerkin method for the numerical solution of viscous
compressible flows, which leads to the solution of a sequence of linear algebraic systems. We
developed an efficient solution strategy for steady-state flow regimes. The presented numerical
experiments show that the parallelization gives almost linear acceleration of the computation with
respect to the number of processors.

References

[1] S. Balay, J. Brown, K. Buschelman, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes,
B. F. Smith, and H. Zhang. PETSc – Portable, Extensible Toolkit for Scientific Computation,
2011. <http://www.mcs.anl.gov/petsc/>.

[2] F. Bassi and S. Rebay. A high-order accurate discontinuous finite element method for the
numerical solution of the compressible Navier–Stokes equations. J. Comput. Phys., 131:267–
279, 1997.

[3] F. Bassi and S. Rebay. A high order discontinuous Galerkin method for compressible turbulent
flow. In B. Cockburn, G. E. Karniadakis, and C.-W. Shu, editors, Discontinuous Galerkin
Method: Theory, Computations and Applications, Lecture Notes in Computational Science
and Engineering 11, pages 113–123. Springer-Verlag, 2000.

[4] C. E. Baumann and J. T. Oden. A discontinuous hp finite element method for the Euler and
Navier-Stokes equations. Int. J. Numer. Methods Fluids, 31(1):79–95, 1999.

[5] P. G. Ciarlet. The Finite Elements Method for Elliptic Problems. North-Holland, Amsterdam,
New York, Oxford, 1979.

[6] B. Cockburn, S. Hou, and C. W. Shu. TVB Runge-Kutta local projection discontinuous
Galerkin finite element for conservation laws IV: The multi-dimensional case. Math. Comp.,
54:545–581, 1990.

[7] R. S. Dembo, S. C. Eisenstat, and T. Steihaug. Inexact newton methods. SIAM J. Numer.
Anal., 19:400–408, 1982.

[8] P. Deuflhard. Newton Methods for Nonlinear Problems, volume 35 of Springer Series in
Computational Mathematics. Springer, 2004.

[9] L. T. Diosady and D. L. Darmofal. Preconditioning methods for discontinuous Galerkin
solutions of the Navier-Stokes equations. J. Comput. Phys., 228:3917–3935, 2009.

[10] V. Doleǰśı. On the discontinuous Galerkin method for the numerical solution of the Navier–
Stokes equations. Int. J. Numer. Methods Fluids, 45:1083–1106, 2004.

[11] V. Doleǰśı. Semi-implicit interior penalty discontinuous Galerkin methods for viscous com-
pressible flows. Commun. Comput. Phys., 4(2):231–274, 2008.

[12] V. Doleǰśı. Discontinuous Galerkin method for the numerical simulation of unsteady com-
pressible flow. WSEAS Transactions on Systems, 5(5):1083–1090, 2006.

Parallel DGM for the compressible Navier-Stokes equations 17

[13] V. Doleǰśı and M. Feistauer. Semi-implicit discontinuous Galerkin finite element method for
the numerical solution of inviscid compressible flow. J. Comput. Phys., 198(2):727–746, 2004.

[14] V. Doleǰśı, M. Hoĺık, and J. Hozman. Efficient solution strategy for the semi-implicit discontin-
uous Galerkin discretization of the Navier-Stokes equations. J. Comput. Phys., 230:41764200,
2011.

[15] M. Dumbser. Arbitrary high order PNPM schemes on unstructured meshes for the compress-
ible Navier-Stokes equations. Comput. Fluids, 39(1):60–76, 2010.

[16] M. Dumbser and C.-D. Munz. Building blocks for arbitrary high-order discontinuous Galerkin
methods. J. Sci. Comput., 27:215–230, 2006.

[17] M. Feistauer, J. Felcman, and I. Straškraba. Mathematical and Computational Methods for
Compressible Flow. Oxford University Press, Oxford, 2003.

[18] M. Feistauer and V. Kučera. On a robust discontinuous Galerkin technique for the solution
of compressible flow. J. Comput. Phys., 224(1):208–221, 2007.

[19] M. Feistauer, V. Kučera, and J. Prokopová. Discontinuous Galerkin solution of compressible
flow in time dependent domains. Mathematics and Computers in Simulations, 80(8):1612–
1623, 2010.

[20] G. Gassner, F. Lörcher, and C.-D. Munz. A discontinuous Galerkin scheme based on a
spacetime expansion. I. Inviscid compressible flow in one space dimension. J. Sci. Comput.,
32(2):175–199, 2007.

[21] E. Hairer, S. P. Norsett, and G. Wanner. Solving ordinary differential equations I, Nonstiff
problems. Number 8 in Springer Series in Computational Mathematics. Springer Verlag, 2000.

[22] R. Hartmann and P. Houston. Adaptive discontinuous Galerkin finite element methods for
the compressible Euler equations. J. Comput. Phys., 183(2):508–532, 2002.

[23] R. Hartmann and P. Houston. Symmetric interior penalty DG methods for the compressible
Navier-Stokes equations I: Method formulation. Int. J. Numer. Anal. Model., 1:1–20, 2006.

[24] R. Hartmann and P. Houston. Symmetric interior penalty DG methods for the compressible
Navier-Stokes equations II: Goal-oriented a posteriori error estimation. Int. J. Numer. Anal.
Model., 3:141–162, 2006.

[25] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning irregular
graphs. SIAM J. Sci. Comput., 20:359–392, 1998.

[26] G. Karypis and V. Kumar. METIS – A Software Package for Partitioning Unstructured
Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse Matrices,
2011. <http://glaros.dtc.umn.edu/gkhome/metis/metis/overview>.

[27] C. M. Klaij, J.J.W. van der Vegt, and H. Van der Ven. Pseudo-time stepping for space-
time discontinuous Galerkin discretizations of the compressible Navier-Stokes equations. J.
Comput. Phys., 219(2):622–643, 2006.

[28] C. M. Klaij, J.J.W. van der Vegt, and H. Van der Ven. Space-time discontinuous Galerkin
method for the compressible Navier-Stokes equations. J. Comput. Phys., 217(2):589–611,
2006.

[29] N. Kroll, H. Bieler, H. Deconinck, V. Couallier, H. van der Ven, and K. Sorensen, editors.
ADIGMA A European Initiative on the Development of Adaptive Higher-Order Variational
Methods for Aerospace Applications, volume 113 of Notes on Numerical Fluid Mechanics and
Multidisciplinary Design. Springer Verlag, 2010.

Parallel DGM for the compressible Navier-Stokes equations 18

[30] Y. Saad and M. H. Schultz. GMRES: A generalized minimal residual algorithm for solving
nonsymmetric linear systems. SIAM J. Sci. Stat. Comput., 7:856–869, 1986.

[31] G. Vijayasundaram. Transonic flow simulation using upstream centered scheme of Godunov
type in finite elements. J. Comput. Phys., 63:416–433, 1986.

