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Abstract. The main purpose of this study is to establish the existence of
a weak solution to the anti-plane stress problem for a class of recently pro-

posed new models that could describe elastic materials in which the stress can

increase unboundedly while the strain yet remains small. We shall also investi-
gate the qualitative properties of the solution that is established. Although the

equations governing the deformation that are being considered share certain

similarities with the minimal surface problem the presence of an additional
model parameter that appears in the equation and its specific range makes the

problem, as well as the result, different from those associated with the minimal

surface problem.

1. Introduction

Few models within the context of continuum mechanics have had the success
of the linearized elastic solid model. Its great success notwithstanding, there are
classes of problems to which the solutions provided by the linearized theory of
elasticity is far from satisfactory, namely in the prediction of the strains and stresses
at and near the tip of a crack and the propagation of cracks. The problem of
fracture engaged the attention of Galileo [14] who in fact states that the problem
had attracted attention much before his studies into fracture began1. Ever since
then the problem of fracture has held the attention of physicists, engineers and
applied mathematicians, but despite all this interest important open issues remain
unresolved. The problem with using linearized elasticity to study the problems of
stresses and strains around cracks stems from the fact that the relationship between
the stress and the strain is linear and thus as the stress increases and becomes
unbounded, the strain also increases and becomes unbounded, thereby violating the
starting assumption in the linearization procedure that the strains are sufficiently
small so that higher order terms in the strain can be neglected. In order to avoid the
singularity that arises in the strains, a variety of ad hoc approaches2 have been used
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(see Broberg [7], C herepanov [9], Kaninnen and Popelar [17] for details). These
approaches vary based on whether the material in question is ductile or brittle.
One such approach that is applied to bodies that are expected to become ductile in
a neighborhood of the crack tip where the stresses are high, is the introduction of
crack surface cohesive zones and a process zone at the crack tip (see Broberg [7])
or plasticity in the neighborhood of the crack tip (see Broberg [7], Kaninnen and
Popelar [17]). In the case of brittle fracture, which is relevant to geomaterials such
as rocks and also to metals at sufficiently low temperatures, there is no significant
inelastic response near the crack tip and one uses either the maximum tensile stress
or the Mohr-Coulomb criterion which is based on the shear stress on a plane reaching
a critical value that depends on the normal stress on the plane (see Nadai [25]), to
determine crack propagation. Several modi fications have been made to the Mohr-
Coulomb criterion to study the fracture of brittle materials but we shall not discuss
them here.

There have been several attempts to describe fracture from the atomistic level
and bootstrapping the same to the continuum level. Popular amongst such nu-
merical approaches are those appealing to the Monte Carlo method and those that
employ the finite element method. These approaches which are mainly computa-
tional in nature involve adjustable parameters that come into play in each situation.
The exact physical relevance of these parameters is not completely clear. Contrary
to the claims to the effect that they are more fundamental with less approximations
being made, the results depend critically on assumptions at a more fundamental
level concerning the force potentials and the nature of the interactions between
the atoms. The point that needs to be recognized is that the modeling is at the
atomistic level and even a small error gets magnified due to the numerous iterations
that are carried out.

Recently, there have been several papers (see Kim, Schiavone and Ru [18], [20],
[21], Kim, Ru and Schiavone [19], Antipov and Schiavone [1]) that study fracture
in brittle materials appealing to an approach by Murdoch and Gurtin [16] that
introduces surface elasticity at the surface of cracks. These studies modify the
classical linearized elasticity theory by allowing for elastic surface energy. The
authors claim that the solutions that they obtain for the problem lead to bounded
stresses and strains. Unfortunately, in all these papers, the authors make the same
mistake and as pointed out by Walton [49] the solutions that they obtain do not
predict bounded strains and stresses - these quantities are singular, the singularity
being logarithmic. This thus leaves open the question of generalizing the classical
theory, while yet retaining the notion of the linearized strain, to lead to a theory
that predicts bounded stra ins and arbitrary stresses at a crack tip.

With a view towards providing a sound thermodynamic basis to fracture within
the context of a theory that appeals to linearized strain, Sendova and Walton [40]
have recently developed a procedure that would be applicable to brittle materials
endowed with cracks. This work builds on the earlier studies of Slattery [41] and Oh
et al. [30] by introducing long range interaction forces in the vicinity of the crack
tip. Sendova and Walton [40] treat the crack surface as a dividing surface and endow

have never been measured and the need to introduce such additional quantities and an additional

balance law are far from compelling. As no specific boundary value problem has been solved within
the context of such recondite theories one cannot even evaluate the usefulness of such theories
even from the point of view of merely carrying out a parametric study.
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the surface with a surface energy. They also introduce several additional properties
associated with the surface such as mass, momentum, stress, and entropy. The
theory predicts a finite stress at the crack tip and an alternative fracture criterion
which states that the crack will propagate if the stress at the crack tip is equal to
or greater than a particular value. Such a fracture criterion is easy to understand
and seems physically reasonable. However, the theory is a non-local theory that
removes the singularities that are present in the classical theory, and is at the cost
of a very complicated formulation for specific boundary value problems, leading to
very daunting computational problems.

It is natural to enquire whether within the context of non-linear elastic models
the singularities in the stresses and strains disappear. In a series of papers concern-
ing both compressible and incompressible non-linear elastic bodies, Knowles and
Sternberg (see [44], [45], [46], [47]) and Knowles [22]) have carried out an asymp-
totic analysis of the stresses and strains in the vicinity of a crack tip for special
non-linear elastic bodies, for plane strain and anti-plane strain problems. Their
studies unfortunately do not lead to bounded solutions for the strains near a crack
tip thereby leaving open the question whether bounded strains at crack tips are
possible. With regard to elastic solids capable of large deformations, this question
was answered in the affirmative for a special class of non-linear elastic materials
by Tarantino [48]. He showed that the singularities in the stresses disappear and
the stresses remain bounded in plane stress problems at a crack tip in the case of
a material which obeys the Bell constraint (see Bell [5], [6])3. Based on his exper-
imental results, Bell proposed the constraint that the trVVV = 3, where VVV is the left
Cauchy stretch tensor. The bodies under consideration undergo large deformations
in the inelastic range. Unfortunately, a material that obeys the Bell constraint can-
not support simple shear undermining the efficacy of the class of materials being
used to describe the response of real bodies. Also, it seems that the constraint
really concerns the inelastic response of solids wherein such a constraint maybe
reasonable.

As mentioned earlier, for brittle materials, fracture seems to occur at small
strains with negligible inelastic response. Thus, one is faced with the following
question: for brittle materials is it possible to develop a small strain theory with
the response being essentially elastic? Recently, Rajagopal and Walton [39] have
answered the question in the affirmative for the problem of a crack subject to
anti-plane strain. However, in order to answer the question in the affirmative,
they have to go beyond the realms of the classical linearized theory of elasticity
or for that matter the general theory of Cauchy elasticity and appeal to a novel
generalization to describe the response of elastic bodies. The generalization of the
class of elastic bodies that they appeal to belongs to the class of elastic bodies
introduced by Rajagopal (see Rajagopal [31]). Instead of restricting oneself to the
class of the classical Cauchy elastic or Green bodies4, Rajagopal [32], [35], [34]
suggested the possibility of implicit models for elastic bodies that greatly enhances
the class of elastic bodies. A rigorous thermodynamic basis has also been provided
for such elastic bodies by Rajagopal and Srinivasa [36], [37] and Rajagopal and Tao

3Beatty and Hayes have studied an elastic material that obeys the Bell constraint in great

detail (see [2], [3], [4]).
4The variou s interpretations of what was considered as an elastic material has been discussed

in a review article titled ”Conspectus of concepts of elasticity” by Rajagopal [33].
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[38]. Interestingly, when such implicit constitutive relations are linearized using the
standard linearization procedure, namely that the trace norm of the displacement
gradient is of order O(δ), δ << 1, it is possible to obtain a sub-class of constitutive
relations wherein the linearized strain is a non-linear function of the stress, see [35].
Moreover, it is possible to obtain such constitutive relations which lead to limiting
values for the linearized stra in. Rajagopal and Walton [39] working within the
framework of such a limiting strain theory and using the methods of asymptotic
analysis (perturbation method) were able to show that unlike the result in the case
of the classical linearized solid, the stresses and the strains remain bounded as
one approaches the crack tip, and one finds that the opposite faces of the crack
undergo a displacement that is shaped like a cusp. More recently, Kulvait et al.
[23] studied the anti-plane stress problem numerically by using the finite element
method. They find that their numerical solutions are stable and provide some
information regarding the nature of the solution near the tip of a V-notch. In
particular, they observe stress concentration in the vicinity of the singularity.

In this paper, we study the question of existence of solution to an elastic body
that is characterized by a constitutive relation of the type considered by Rajagopal
and Walton [39] and Kulvait et al. [23], subject to a state of anti-plane stress. This
reduces the problem to a scalar equation that shares certain similarities with the
Euler-Lagrange equation for the minimal surface problem. In fact, the model that
is considered contains an additional parameter and for a particular value of the
parameter the model coincides with the minimal surface optimality equation. We
investigate the problem for a range of model parameters so that the results that are
presented are different (yet close) with those associated with the minimal surface
problem.

The organization of the paper is as follows. In the next section we introduce the
model, derive the governing equation for the anti-plane stress problem, define its
weak solution, and finally formulate the main result concerning its existence and the
properties of the solution. In section 3 we introduce an δ-approximate problem that
moves the setting of the original problem from W 1,1(Ω) to a problem in W 1,1+δ(Ω);
for fixed δ the existence of weak solution to the δ-approximate problem is standard
and it is known that the solution is smooth for smooth data. In Section 4, we focus
on the derivation of the estimates up to the boundary that are uniform with respect
to δ. These estimates are achieved using techniques of regularity theory; near the
boundary we apply the method of barrier sub- and super-solutions performed on
the convex parts of the boundary and the possibility to extend the solution from the
interior to th e exterior on the remaining flat parts of the boundary. These estimates
are sufficient for taking the limit, as δ → 0+, from δ-approximate problems to the
solution of the original problem. The last step in the proof of the main result is
presented in the final Section 5.

2. The formulation of the problem and the main result

2.1. General formulation of the problem. We suppose that an elastic body
that has undergone a deformation such that the displacement gradient (and hence
the strain) is small, is in equilibrium and occupies a configuration in a three dimen-
sional space and is denoted by the set B with the boundary ∂B. In addition, we
suppose that the body is in equilibrium due to the loading on its boundary. More
specifically, we consider the problem of determining the displacement u : B → R3,
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the Cauchy stress T : B → R3×3
sym and the linearized strain ε : B → R3×3

sym so that

divT = 0, G(T , ε) = 0 and ε =
∇u+ (∇u)T

2
in B,(1)

Tν = g on ∂B,(2)

where G : R3×3
sym × R3×3

sym → R3×3
sym is supposed to be of the form

(3) G(T , ε) = ε− Φ(trT , trT 2)I −Ψ(trT 2)T with Φ(0, .) = 0,

and ν : ∂Ω→ R3 is the outer normal.
The first equation in (1) represents the equilibrium equation (the balance of

linear momentum wherein the inertial effects and the influence of the external body
forces are neglected) and the third equation of (1) links the displacement field to
the linearized strain tensor ε. In simply connected open sets the existence of u
fulfilling (1)3 to a (given) ε is equivalent to the tensorial equation

(4) curl curl ε = 0 in B,

which is usually referred to as the compatibility condition. Note that such u is
determined uniquely modulo the field a + b × x, where a and b are arbitrary
vectors.

Regarding boundary conditions, we restrict ourselves to fixing the traction over
all the boundary ∂Ω. (This restriction is due to our considering the anti-plane
stress problem below in this work.)

As pointed out recently by Rajagopal [32], the framework specified by the implicit
constitutive equation G(T , ε) = 0 tremendously enlarges the class of models in
the elasticity theory wherein one is concerned with the linearized strain and these
models are then capable of describing a non-linear relationship between the strains
and stresses (which could be arbitrarily large), even though the strains are small.
One class of such models has been proposed by Rajagopal (see [35], [8]), where

(5) ε = β

(
1− exp

−λ trT

(1 + |T |b)1/b

)
I +

T

2µ (1 + κ|T | a)
1/a

,

where |T | := (trT 2)1/2 = (T : T )1/2 = (
∑
i,j=1,2,3 T

2
ij)

1
2 and a, b, β, λ, µ and κ are

positive material constants.
The limiting strain model (5) has been designed to describe the response of

materials in which the stress can be high while the strains yet remain small.
The models exhibiting such characteristics may be for example used to describe

the behavior of brittle materials near the tips of cracks or notches, see Kulvait et.
al. [23] or Rajagopal and Walton [39] for further details.

In this study focused on the analysis of the problem (1)-(2) we consider (3) with
Ψ of the form

(6) Ψ(|T |2) =
1

(1 + |T |a)1/a
with a > 0.

Note that up to the constants (that do not play any role in the analysis presented
below), (5) belongs to the class that is being considered. The form of Φ in (3) is
not important here as we restrict ourselves to the anti-plane stress problem that
we shall describe next.
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2.2. Anti-plane stress problem. In this study we reduce the complexity of the
problem (1)-(3), (6) by restricting ourselves to bodies that are in a state of anti-
plane stress. Anti-plane stress is a problem as sketched in Fig. 1, where

Ω

g

g

ν

Figure 1. Anti-plane stress geometry.

B = Ω× R and Ω ⊂ R2 is a simply connected open set,(7)

u = u(x1, x2) = (0, 0, u(x1, x2)), g = (0, 0, g),(8)

and

(9) T =

 0 0 T13(x1, x2)
0 0 T23(x1, x2)

T13(x1, x2) T23(x1, x2) 0

 .

Under such circumstances, it then follows from (3) that the only nonzero com-
ponents of the linearized strain are ε13 and ε23 and they also depend on x1 and
x2.

The problem under consideration (1)-(3) then simplifies to

−∂T13

∂x1
− ∂T23

∂x2
= 0 in Ω,(10)

ε13 = Ψ(|T |2)T13 and ε23 = Ψ(|T |2)T23 in Ω,(11)

ε13 =
1

2

∂u

∂x1
and ε23 =

1

2

∂u

∂x2
in Ω,(12)

T13ν1 + T23ν2 = g on ∂Ω.(13)

While originally we had the system of 15 equations for the components of the
symmetric tensors T and ε and the displacement u, the reduced system consists
of five (in fact three) equations for five scalars u, T13, T23, ε13, ε23 (in fact u, T13,
T13).
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In simply connected domains the existence of u for given ε13 and ε23 fulfilling
(12) is equivalent to the compatibility condition

(14)
∂ε23

∂x1
− ∂ε13

∂x2
= 0 in Ω.

The setting given by (10)-(13), (14) can be simplified further by introducing the
Airy stress function U : Ω→ R satisfying

(15) T13 =
1√
2

∂U

∂x2
and T23 = − 1√

2

∂U

∂x1
.

Then the equilibrium equation (10) is automatically met and (14) together with
(11) and (13) leads to

∂

∂x2

(
Ψ(|∇U |2)

∂U

∂x2

)
+

∂

∂x1

(
Ψ(|∇U |2)

∂U

∂x1

)
= 0 in Ω,(16)

∂U

∂x2
ν1 −

∂U

∂x1
ν2 =

√
2g on ∂Ω.(17)

Let us assume further, merely for simplicity, that the boundary ∂Ω can be pa-
rameterized by a closed curve γ : [a, b] → R2 (γ(s) = (γ1(s), γ2(s))), γ(a) =
γ(b) that is oriented counterclockwise. Then for x = (γ1(s), γ2(s)) ∈ ∂Ω the
tangent vector t(x) = 1√

(γ
′
1(s))2+(γ

′
2(s))2

(γ′1(s), γ′2(s)), the outer normal ν(x) =

1√
(γ
′
1(s))2+(γ

′
2(s))2

(γ′2(s),−γ′1(s)) and (17) yields

√
2g(γ(s))

√
(γ
′
1(s))2 + (γ

′
2(s))2 =

∂U(γ(s))

∂x2
γ′2(s) +

∂U(γ(s))

∂x1
γ′1(s)

=
d

ds
U(γ(s)).

(18)

Hence (17) leads to (x0 ∈ ∂Ω fixed, a0 ∈ R arbitrary)

(19) U(x) = a0 +
√

2

∫ x

x0

g(γ(s))
√

(γ
′
1(s))2 + (γ

′
2(s))2ds =: U0(x) for x ∈ ∂Ω.

For simplicity we set a0 = 0 in the sequel.
We conclude this subsection by summarizing the problem that we aim to solve

and by stating the main result. Introducing for i = 1, 2 the notation Di := ∂
∂xi

and

recalling the definition of Ψ given in (6) we say that U : Ω→ R solves Problem P
if

−Di

(
DiU

(1 + |∇U |a)
1
a

)
= 0 in Ω,(20)

U = U0 on ∂Ω,(21)

where we apply the summation convention in (20), and thus take the sum over the
index i from 1 to 2. Note that the original Neumann-type problem (1)–(3) results
in the non-homogeneous Dirichlet problem (20)–(21).
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In what follows we make the following assumptions concerning Ω and U0:

Ω ⊂ R2 is a simply connected domain with C0,1 boundary ∂Ω consisting

of two subsets ∂Ω1 ∪ ∂Ω2 so that ∂Ω1 := {x ∈ ∂Ω; t(x) ∩ Ω = ∅}.
Both ∂Ω1 and ∂Ω2 may consist of finitely many parts; each of them is

parametrized by γ = γ(s) restricted to an open interval. Each part of

∂Ω2 is flat and U0 is constant there and on each uniformly convex

part of ∂Ω1, U0 is a C1,1-function.

(22)

The main result of this study is stated in the following theorem.

Theorem 2.1. Let Ω ⊂ R2 fulfill (22). Let further Ũ0 ∈ W 1,∞(Ω) be such that

Ũ0|∂Ω = U0 and suppose U0 fulfills the conditions specified in (22). Let a ∈ (0, 2).

Then there is a unique weak solution U ∈W 2,2
loc (Ω) to Problem P satisfying

U − Ũ0 ∈W 1,1
0 (Ω) ,(23) (

∇U
(1 + |∇U |a)

1
a

,∇φ
)

= 0 for all φ ∈W 1,1
0 (Ω) .(24)

Let us first make a few remarks concerning the difficulty of the Problem P
when considered in general in non-convex domains, see Fig. 1 or Fig. 2 below.
Multiplying (20) by U − Ũ0, where Ũ0 : Ω → R is such that its trace on the
boundary equals (almost everywhere if needed) to U0, integrating the result over
Ω, then applying integration by parts and finally using some simple manipulations
including the Hölder inequality we arrive at

‖∇U‖1 ≤ C(|Ω|)‖∇Ũ0‖1 .(25)

This estimate places the problem close to the minimal surface problem in which the
parameter a = 2. It is well known that the space W 1,1(Ω) is not reflexive and the
space of BV -functions or Radon measures has been used to study such problems.
There are also counterexamples showing that solution for a = 2 may not exist in
general. More precisely, Finn in [13] and then also Nitsche in his survey paper
[29] proved nonexistence of the classical solution for smooth data and nonconvex
domains; later on the non-existence of the weak solution on nonconvex domains
was established by Souček in [42]. For further references and for an overview of the
state of the art to this topic we refer the interested reader to [15, 11, 12].

The difficulty associated with such a setting consists in finding appropriate mean-
ing to the value of such functions on the boundary. Here, we overcome this difficulty
by incorporating regularity techniques that help us to observe that for smoother
data the solution belongs to W 1,1(Ω) ∩ W 1,p(Ω \ Kε), where ε > 0 is arbitrary
and Kε is an intersection of ∂Ω with the union of ε-balls centered in the corners
of ∂Ω. Since the nonlinear operator is monotone it is then easy to establish the
existence of a (weak) solution provided that one has some suitable approximate
problems at oneself’s disposal. Here, we base the proof of Theorem (2.1) on solu-
tions of the approximate problems Pδ that are defined in the following subsection
and that moves the setting of the problem from W 1,1(Ω) to the W 1,1+δ(Ω) frame-
work. Consequently, for fixed δ > 0 it is not difficult to establish the existence of
a weak solution to the Problem Pδ and to show that this solution is as smooth as
needed and as the data permit. Then we derive the estimates up to the boundary
that are uniform with respect to δ. These estimates are achieved using techniques
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of regularity theory; near the uniformly convex parts of the boundary we apply
the method of barrier sub- and super-solutions and on the remaining flat parts of
the boundary, where U0 is constant, we use the possibility of extending the solu-
tion from interior to the exterior and then applying the interior regularity results.
These estimates are sufficient for taking the limit, as δ → 0+, from δ-approximate
problems to the solution of the original problem.

3. The approximate Problem Pδ and the properties of its solution

For any (small) δ > 0 we consider the following approximate Problem Pδ: to
find Uδ : Ω→ R satisfying

−Di

(
DiU

δ

(1 + |∇U δ|a)
1−δ
a

)
= 0 in Ω,(26)

U δ = U0 on ∂Ω.(27)

The presence of δ in (26)–(27) leads to stronger apriori estimates namely instead
of (25) we have

‖∇Uδ‖1+δ ≤ C(|Ω|)‖∇Ũ0‖1+δ .(28)

In addition the nonlinear differential operator on the left hand side of (27) generates
a strictly monotone operator on W 1+δ(Ω). Thus it is easy to establish the following
result.

Lemma 3.1. Let Ω ⊂ R2 be a simply connected domain with C0,1 boundary. Let
further Ũ0 ∈ W 1,1+δ(Ω) and a > 0. Then for any δ > 0 there is a unique weak
solution U δ ∈W 1,1+δ(Ω) to Problem Pδ satisfying

Uδ − Ũ0 ∈W 1,1+δ
0 (Ω) ,(29) (

∇U δ

(1 + |∇Uδ|a)
1−δ
a

,∇φ

)
= 0 for all φ ∈W 1,1+δ

0 (Ω) .(30)

In order to underline a remarkable difference between the problem Pδ and the
problem P we state the following monotone-type inequality(

x

(1 + |x|a)
1−δ
a

− y

(1 + |y|a)
1−δ
a

)
· (x− y)

≥ (1− δ)
∫ 1

0

|x− y|2

(1 + |y + s(x− y)|a)
1−δ
a +1

ds

+ δ

∫ 1

0

|x− y|2

(1 + |y + s(x− y)|a)
1−δ
a

ds

(31)

valid for any δ ∈ [0, 1] and x, y ∈ Rd. Obviously, this inequality provides better
information if δ > 0 and it is known that the additional degeneracy in the case
δ = 0 destroys several approaches that are useful in the analysis of the problem
with δ > 0.

Since the work of De Giorgi [10], Nash [26] and Lieberman [24], it is well known
that the problem Pδ admits a smooth solution for smooth data5. We present no

5See also the papers by Nečas [27], [28] and Stará [43] that can serve as the source for the
complete proofs on which our proof is based



10 M. BULÍČEK, J. MÁLEK, K. R. RAJAGOPAL, AND J. R. WALTON

more details concerning the regularity of solution to Problem Pδ for δ > 0 fixed
(on domains with smooth boundary) as we will apply regularity techniques in order
to derive the uniform estimates for Uδ (on non-convex domains with corners). In
particular, we will show in the next section that for any ε > 0

sup
δ>0
‖∇Uδ‖2,Ω\Kε <∞ ,(32)

where Kε is the intersection of ∂Ω with the union of ε-balls centered at the corners
of ∂Ω.

4. Uniform estimates

In this section we write, for simplicity, U instead of Uδ. Since the uniquely
specified weak solution to Problem Pδ is smooth (and thus classical) we can work
with (26) instead of (30). First, we recall the first uniform estimate (28), which is
of the form

‖∇U‖1+δ ≤ C(|Ω|)‖∇Ũ0‖1+δ .(33)

Next, denoting S := ‖Ũ0‖∞, we set

φ := (U ∓ S)±

in (30) (note that it has zero trace) to deduce that

‖U‖∞ ≤ ‖Ũ0‖∞ ≤ C .(34)

Finally, we continue with further uniform estimates based on higher regularity
techniques. For such a purpose, we first derive the identity (and also consequently
the inequality) for the second derivatives of U . Thus, applying Dk to (26) we obtain
the identity6

(35) −Di

(
DikU

(1 + |∇U |a)
1−δ
a

− (1− δ) |∇U |
a−1DiUDk|∇U |

(1 + |∇U |a)
1−δ
a +1

)
= 0 in Ω.

Next, multiplying (35) by DkU and taking the sum over k (k = 1, 2) we conclude
that

−Di

(
DikUDkU

(1 + |∇U |a)
1−δ
a

− (1− δ)DkU |∇U |a−1DiUDk|∇U |
(1 + |∇U |a)

1−δ
a +1

)

+
|∇2U |2

(1 + |∇U |a)
1−δ
a

− (1− δ) |∇U |
a−1DiUDk|∇U |DikU

(1 + |∇U |a)
1−δ
a +1

= 0.

(36)

A simple algebraic manipulation then leads to

−Di

(
|∇U |Di|∇U |

(1 + |∇U |a)
1−δ
a

− (1− δ)DkU |∇U |a−1DiUDk|∇U |
(1 + |∇U |a)

1−δ
a +1

)

+δ
|∇2U |2

(1 + |∇U |a)
1−δ
a

+ (1− δ) |∇2U |2

(1 + |∇U |a)
1−δ
a +1

≤ 0.

(37)

Thus, defining

w := |∇U |

6Here, we use the abbreviation Dik := ∂2

∂xj∂xi
.



ANTI-PLANE STRESS OF AN ELASTIC BODY 11

and multiplying (37) by arbitrary nonnegative nondecreasing Lipschitz f(w), we
deduce

−Di

(
wDiwf(w)

(1 + wa)
1−δ
a

− (1− δ)f(w)DkUw
a−1DiUDkw

(1 + wa)
1−δ
a +1

)

+(δ + (1− δ))wf
′(w)|∇w|2

(1 + wa)
1−δ
a

− (1− δ)f
′(w)DkUw

a−1DiUDkwDiw

(1 + wa)
1−δ
a +1

+δ
|∇2U |2

(1 + wa)
1−δ
a

f(w) + (1− δ) |∇2U |2

(1 + wa)
1−δ
a +1

f(w) ≤ 0 ,

(38)

which again by a simple algebraic manipulation and by neglecting two terms with
coefficient δ leads to

−Di

(
wDiwf(w)

(1 + wa)
1−δ
a

− (1− δ)f(w)DkUw
a−1DiUDkw

(1 + wa)
1−δ
a +1

)

+ (1− δ) |∇
2U |2f(w) + wf ′(w)|∇w|2

(1 + wa)
1−δ
a +1

≤ 0 .

(39)

Next, we focus on the second term of this inequality. Setting

(40) F1(s) :=

∫ s

0

f(t)ta−1

1 + ta
dt,

we observe that

f(w)DkUDiUw
a−1Dkw

(1 + wa)
1−δ
a +1

=
DkU

(1 + wa)
1−δ
a

f(w)wa−1DiUDkw

(1 + wa)

=
DkU

(1 + wa)
1−δ
a

DiUDkF1(w)

=
DkU

(1 + wa)
1−δ
a

Dk (DiUF1(w))− wDiw

(1 + wa)
1−δ
a

F1(w)

= Dk

(
DkUDiU

(1 + wa)
1−δ
a

F1(w)

)
− wDiw

(1 + wa)
1−δ
a

F1(w),

where for the last identity we used (26). Thus, defining in what follows

(41) F2(s) :=

∫ s

0

(f(t) + (1− δ)F1(t))t

(1 + ta)
1−δ
a

dt,

we can rewrite (39) in a more compact form

−4F2(w) + (1− δ) div div

(
∇U ⊗∇U

(1 + wa)
1−δ
a

F1(w)

)

+ (1− δ) |∇
2U |2f(w) + wf ′(w)|∇w|2

(1 + wa)
1−δ
a +1

≤ 0 ,

(42)

which will be finally used to get the desired estimates.
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4.1. Uniform interior estimates. Multiplying (42) by η2k, where η is a smooth
nonnegative cut off function (vanishing in the vicinity of the boundary) and inte-
grating twice by parts we deduce the following inequality (where we already ne-
glected the nonnegative term with f ′)

(1− δ)
∫

Ω

|∇2U |2f(w)η2k

(1 + wa)
1−δ
a +1

dx

≤
∫

Ω

F2(w)4η2k dx− (1− δ)
∫

Ω

DkUDiU

(1 + wa)
1−δ
a

F1(w) ·Dikη
2k dx .

(43)

Since it directly follows from (40) and (41) that F2(w) ≤ C(1 + w1+δF1(w)), we
observe from (43) that

(1− δ)
∫

Ω

|∇2U |2f(w)η2k

(1 + wa)
1−δ
a +1

dx ≤ C(η, k)

(
1 +

∫
Ω

w1+δF1(w)η2k−2 dx

)
.(44)

In what follows we assume that δ ≤ 1
2 and recall the restriction a ∈ (0, 2). We

would also like to emphasize that all estimates below heavily rely on the L∞ bound
(34). Without such information we would need to restrict ourselves only to the case
a ∈ (0, 1).

Setting f(w) := wp for arbitrary p ≥ 2, we see from (40) that F1(w) ≤ Cwp.
Consequently, on inserting it into (44) we obtain, after simple algebraic estimates,
that ∫

Ω

|∇2U |2wpη2k

(1 + wa)
1−δ
a +1

dx ≤ C(a, η, k, p)

(
1 +

∫
Ω

w1+p+δη2k−2 dx

)
.(45)

To estimate the right hand side, we apply interpolation between W 2,2 and L∞.
Thus, using integration by parts, the uniform estimate (34) and the Hölder in-
equality we deduce that (recall that we assume p ≥ 2 for simplicity)∫

Ω

w1+p+δη2k−2 dx =

∫
Ω

∇U · ∇U |∇U |p−1+δη2k−2 dx

= −
∫

Ω

U
(
4U |∇U |p−1+δη2k−2 + (p− 1 + δ)|∇U |p−2+δ∇U · ∇|∇U |η2k−2

)
−
∫

Ω

U |∇U |p−1+δ∇U · ∇η2k−2 dx

≤ C(p, k, Ũ0)

∫
Ω

|∇2U |wp−1+δη2k−2 + wp+δη2k−3 dx.

(46)

Next we focus on the first term on the right hand side. Using Young inequality, we
directly obtain∫

Ω

|∇2U |wp−1+δη2k−2 dx

=

∫
Ω

(
|∇2U |2wpη2k

(1 + wa)
1−δ
a +1

) 1
2

w
p−2+2δ

2 (1 + wa)
1−δ+a

2a ηk−2 dx

≤ ε
∫

Ω

|∇2U |2wpη2k

(1 + wa)
1−δ
a +1

dx+ C(ε)

∫
Ω

wp−2+2δ(1 + wa)
1−δ+a
a η2k−4 dx

≤ ε
∫

Ω

|∇2U |2wpη2k

(1 + wa)
1−δ
a +1

dx+ C(ε)

∫
Ω

(
1 + wp−1+a+δ

)
η2k−4 dx .

(47)
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Hence, on inserting this estimate into (46) we obtain (assuming that k ≥ 2)∫
Ω

w1+p+δη2k−2 dx ≤ ε
∫

Ω

|∇2U |2wpη2k

(1 + wa)
1−δ
a +1

dx

+ C(p, k, Ũ0, ε)

(
1 +

∫
Ω

(wp−1+a+δ + wp+δ)η2k−4 dx

)
.

(48)

Finally, since a < 2 we can estimate the last term by using the Young inequality as

C(p, k, Ũ0, ε)

∫
Ω

(wp−1+a+δ + wp+δ)η2k−4 dx

= C(p, k, Ũ0, ε)

∫
Ω

(
w1+p+δη2k−2

) p−1+a+δ
1+p+δ η

(2k−2)(2−a)
1+p+δ −2 dx

+ C(p, k, Ũ0, ε)

∫
Ω

(
w1+p+δη2k−2

) p+δ
p+1+δ )η

2k−2
p+1+δ−2 dx

≤ 1

2

∫
Ω

w1+p+δη2k−2 dx

+ C(p, k, Ũ0, ε, a)

∫
Ω

η2k−2− 2(p+1+δ)
2−a + η2k−2−2(p+1+δ) dx

(49)

Thus, setting finally k sufficiently large that

k ≥ 1 +
2(p+ 1 + δ)

2− a

we see that the last term in (49) is bounded and the first term on the left hand side
can be absorbed into the right hand side of (48), which then results in the following
inequality∫

Ω

w1+p+δη2k−2 dx ≤ ε
∫

Ω

|∇2U |2wpη2k

(1 + wa)
1−δ
a +1

dx+ C(p, k, Ũ0, ε, a).(50)

Hence, on inserting this into (45), we deduce the uniform estimate∫
Ω

|∇2U |2wpη2k

(1 + wa)
1−δ
a +1

dx ≤ C(a, η, k, p, Ũ0).(51)

This however directly implies by using the uniform bound (33) that for all Ω0 ⊂
Ω0 ⊂ Ω and all q ∈ (1,∞), we have∫

Ω0

|∇U |q dx ≤ C(q, a,Ω0, Ũ0).(52)

In addition, setting now f ≡ 1 in (43) we see by using (52) that∫
Ω

|∇2U |2η2k

(1 + wa)
1−δ
a +1

dx ≤ C(η) =⇒
∫

Ω0

|∇2U |2

(1 + wa)
1−δ
a +1

dx ≤ C(Ω0)(53)
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for all Ω0 ⊂ Ω0 ⊂ Ω. Consequently, combining (52) and (53) we can deduce by
using the Hölder inequality that for all q ∈ [1, 2), we have∫

Ω0

|∇2U |q dx =

∫
Ω0

(
|∇2U |2

(1 + wa)
1−δ
a +1

) q
2

(1 + wa)
q(1−δ+a)

2a dx

≤

(∫
Ω0

|∇2U |2

(1 + wa)
1−δ
a +1

dx

) q
2 (∫

Ω0

(1 + wa)
q(1−δ+a)
a(2−q) dx

) 2−q
2

≤ C(q,Ω0).

(54)

Let us remark that we could also add L∞ estimates for ∇U and consequently we
could establish C1,α regularity for U in the interior of Ω. We omit the proof of such
results here in this study since they are not essential for proving the main result.

4.2. Estimates near the boundary, where L∞ bound for gradients are
available. In this subsection we provide the estimates similar to the preceding
subsection but we focus on the estimates near that parts of the boundary ∂Ω,
where the L∞ bound for ∇U is available. Thus, for an arbitrary smooth Γ ⊂ ∂Ω
assume that

(55) M := M(Γ, U) := sup
x∈Γ
|∇U(x)| <∞.

Next, we follow almost step by step the procedure developed in the preceding
subsection. Thus, we multiply (42) by η2k, where η ∈ D(R2) is nonnegative and
supp η ∩ ∂Ω ⊂ Γ, and integrate twice by parts to obtain the inequality similar to
(44) but we need to keep all boundary integrals. Thus, doing so, we get

(1− δ)
∫

Ω

|∇2U |2f(w)η2k

(1 + wa)
1−δ
a +1

dx ≤ C(η, k)

(
1 +

∫
Ω

w1+δF1(w)η2k−2 dx

)

+

∫
∂Ω

(
DiF2(w)− (1− δ)Dj

(
DiUDjU

(1 + wa)
1−δ
a

F1(w)

))
η2kni dS

−
∫
∂Ω

F2(w)∇η2k · n− (1− δ)

(
∇U ⊗∇U

(1 + wa)
1−δ
a

F1(w)

)
· (∇η2k ⊗ n) dS.

(56)

Next, to avoid the presence of boundary integrals, we need to choose f properly.
Hence assuming that

(57) f(w) = 0 for all w ∈ [0,M ],

we observe from (40) and (41) that

F1(w) = F ′1(w) = F2(w) = F ′2(w) = 0 for all w ∈ [0,M ]

and it follows from the definition of M that all boundary integrals in (56) vanish
provided that f satisfies (57). Hence, in what follows we assume that δ ≤ 1

2 and
for arbitrary p > 0 we set

f(w) := ((w −M)+)p.
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Thus, denoting ΩM := {x ∈ Ω;w(x) > M} we obtain from (56) by using similar
arguments as in preceding subsection (compare with discussion above (45)) that∫

ΩM

|∇2U |2(w −M)pη2k

(1 + wa)
1−δ
a +1

dx ≤ C(η, k)

(
1 +

∫
ΩM

w1+δ+pη2k−2 dx

)
.(58)

Consequently, by simple algebraic manipulations, we deduce that

∫
ΩM

|∇2U |2(w −M)pη2k

(1 + (w −M)a)
1−δ
a +1

dx ≤ C(η, k,M)

(
1 +

∫
ΩM

(w −M)1+δ+pη2k−2 dx

)
.

(59)

Now we are exactly in the same situation as in (45) and just by replacing w by
w −M we can repeat the same procedure to finally obtain for any q ∈ (1,∞)∫

Ω0

|∇U |q dx ≤ C(q, a,Ω0, Ũ0,M)(60)

for all Ω0 ⊂ Ω fulfilling ∂Ω ∩ ∂Ω0 ⊂ Γ.
Let us remark that at this point we could also provide W 2,2 estimates up to

the boundary, but then the procedure (based on difference quotient techniques) is
different from the one just developed. Since this is not needed for proving the main
theorem we skip the proof here.

Next we focus on the estimate for M on some parts of the boundary. We will first
consider the domain drawn in Fig. 2. Such domains have relevance to problems
in fracture mechanics and the analysis for such domains is very explicit. Then
we will consider more general V-notch domains, as those sketched in Fig. 1 and
characterized by the assumption (22).

Considering first the situation sketched in Fig. 2, we assume that the function
g, occuring in (13), is nontrivial but constant only on Γ3 and on Γ5. Consequently,
U0 introduced in (19) is constant on Γi, i = 1, 2, 4, 6, 7 and linear on Γ3 and Γ5.
For such prescribed linear data, we will be able to show the boundedness of ∇U on
Γ2, . . . ,Γ6. To do so, we briefly recall the methods of barrier functions, applicable

Figure 2. Geometry of the V-notch domain.

also here. Thus, for arbitrary x0 ∈ ∂Ω, we say that V± is a upper/lower barrier to
U at x0 if V±(x0) = U(x0) and V+ ≥ U and V− ≤ U on ∂Ω. Moreover, if the upper
barrier V+ is chosen such that V+ is a super-solution to (30), i.e., it fulfills

(61)

∫
Ω

∇V+ · ∇φ
(1 + |∇V+|a)

1−δ
a

dx ≥ 0 for all non-negative φ ∈W 1,1+δ
0 (Ω),
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we can set φ := (U − V+)+ and with the help of (30) we get∫
Ω

(
∇U

(1 + |∇U |a)
1−δ
a

− ∇V+

(1 + |∇V+|a)
1−δ
a

)
· ∇(U − V+)+ dx ≤ 0,

which due to monotonicity directly implies that

(62) U ≤ V+ in Ω.

Similarly, if V− is a sub-solution to (30), i.e., it satisfies

(63)

∫
Ω

∇V− · ∇φ
(1 + |∇V−|a)

1−δ
a

dx ≤ 0 for all non-negative φ ∈W 1,1+δ
0 (Ω),

we can conclude

(64) U ≥ V− in Ω.

Thus, assuming that for the fixed point x0 ∈ ∂Ω we are able to construct upper
and lower barriers satisfying (61) and (63) we can deduce that for all sufficiently
small h:

V+(·)− V+(· − hn(·))
h

≤ U(·)− U(· − hn(·))
h

≤ V−(·)− V−(· − hn(·))
h

,

where · stands for x0. Consequently, letting h → 0+ in the above inequalities we
observe that

(65)

∣∣∣∣∂U(x0)

∂n

∣∣∣∣ ≤ max
V±

∣∣∣∣∂V±(x0)

∂n

∣∣∣∣ .
Consequently, since U = Ũ0 on ∂Ω we directly have the final estimate

(66) |∇U(x0)| ≤ |∇Ũ0(x0)|+ |∇V±(x0)| ≤ ‖∇Ũ0‖∞ + |∇V±(x0)|.
The rest of this subsection, is devoted to finding proper upper and lower barriers

to U at “good” parts of the boundary ∂Ω. Hence, our prototype barrier functions
V± will always be linear functions. Then they are automatically super- and sub-
solutions to (30). Hence, we must check that we can always construct the linear
function that is a barrier. Since we assume that at the boundary U is linear it is
always possible for Γ3,Γ4,Γ5. For simplicity, we show it just for Γ5 ⊂ {(x1, x2) ∈
R2;x2 = m} for some m. Then we can define our barrier functions as

(67) V±(x1, x2) := U(x1,m)± k(x2 −m).

Then it is evident that V± are linear and equal to U on Γ5. Moreover, since Ũ0 is
Lipschitz, we can always choose k so large such that V± are always larger/smaller
than U on ∂Ω. Consequently, we obtain for all x ∈ Γ5 that

|∇V±(x)| ≤ |∇Ũ0|+ k ≤ C(Ũ0).

Hence, it follows from (66) that

sup
x∈Γ5

|∇U(x)| ≤ C̃(Ũ0).

In addition, due to the special geometry and special choice of boundary condi-
tions, we can construct barriers also on Γ2 and Γ6. Indeed, since U ≡ 0 on Γ2 ∪ Γ6

we can set
V± := 0∓ k(x1 −m),

where m is defined through Γ2 ∪ Γ6 ⊂ {(x1, x2) ∈ R2;x1 = m} and k is again
sufficiently large. Then it is easy to check that such V± are admissible barriers.
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Next, we consider more general V-notch geometry, namely that characterized
by the assumption (22) and sketched in Figure 1. We again construct the barriers
provided that7 U0 ∈ C1,1 in a neighborhood of the desired part of the boundary.
For simplicity we illustrate the argument at one such point. Thus, assume that
Ω ⊂ {(x1, x2);x2 > 0} such that (0, 0) ∈ ∂Ω and (1, 0) being the tangent vector. In
addition, we require that Ω∩{(x1, x2);x2 = 0} = (0, 0). Finally, we assume that in
a neighborhood of (0, 0) Ω is a uniformly C1,1 domain. Note that it directly implies
the existence of α, β > 0 and a C1,1 function a : (−α, α)→ R such that

a(0) = a′(0) = 0, a′′(x1) ≥ ε for almost all x1 ∈ (−α, α),

Γc := ∂Ω ∩ {(−α, α)× (−β, β)} = {(x1, x2);x2 = a(x1)}.

Then we define V± in a similar way to (67). Indeed, we set

(68) V±(x1, x2) := U0(0, 0) +Qx1 ± kx2, Q :=
∂U0(0, 0)

∂x1

with k sufficiently large. Since V± are linear functions they are automatically
solutions to (30). Thus, it remains to check if they are indeed barriers. First,
note that it is evident that V±(0, 0) = U0(0, 0). Second, we see that by choosing
sufficiently large k we obtain that V− ≤ U ≤ V+ on ∂Ω \ Γc. Thus, it remains to
discuss only the behavior on Γc. For simplicity, we restrict ourselves to the behavior
of V+. Then for any (x1, x2) ∈ Γc we have

V+(x1, x2)− U0(x1, x2) = V+(x1, a(x1))− U0(x1, a(x1))

= Qx1 + ka(x1) + U0(0, 0)− U0(x1, a(x1))

= ka(x1) +

(
U(0, 0) +

∂U0(0, 0)

∂x1
x1 − U0(x1, 0)

)
+ (U0(x1, 0)− U0(x1, a(x1))

≥ kεx2
1 − C‖∇2U0‖∞x2

1 − C‖∇U0‖∞x2
1.

Consequently, we see that choosing k sufficiently large we get that V+ ≥ U on Γc,
which finishes this part of the proof.

However, on Γ1 and Γ7 we cannot use the procedure described above. We shall
show in the next subsection how to get the estimates near such nonconvex parts of
the boundary.

4.3. Estimates near flat parts of boundary with constant data. This part
is devoted to the estimates near Γ1 and Γ7. To simplify the situation we rotate and
shrink the domain and consider Γ1 := {(x1, x2) ∈ R2;x2 = 0;x1 ∈ (0, 1)} and that
for any ε > 0 there is α > 0 such that

Ω+
ε := {(x1, x2);x1 ∈ (ε, 1− ε), x2 ∈ (0, α)} ⊂ Ω

Ω−ε := {(x1, x2);x1 ∈ (ε, 1− ε), x2 ∈ (−α, 0)} ⊂ R2 \ Ω.

We also set

Ωε := Ω−ε ∪ Ω+
ε ∪ {(x1, x2);x1 ∈ (ε, 1− ε), x2 = 0}.

7Note that in case of minimal surface equation, one does not need to assume the uniform
convexity, due to the ability of finding proper barriers. However, in the setting studied in this

paper we do not know yet, in particular for a < 1, whether such barriers exist.
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Since U is constant on Γ1 we can without loss of generality assume that U ≡ 0 on
Γ1 and we can extend it as follows

(69) U(x1, x2) := −U(x1,−x2) for any x ∈ Ω−ε .

Note that since U is zero on Γ1 such an extension belongs to W 1,1+δ(Ωε), in addition
we keep the estimates (33) and (34), in particular we know that

(70) ‖U‖W 1,1+δ(Ωε) + ‖U‖L∞(Ωε) ≤ C.

Next, for arbitrary x ∈ Ω−ε we can conclude, using (26), that

−div
∇U

(1 + |∇U |a)
1−δ
a

∣∣∣
(x1,x2)

=
−4U

(1 + |∇U |a)
1−δ
a

∣∣∣
(x1,x2)

+
1− δ
a

∇U · ∇|∇U |a

(1 + |∇U |a)
1−δ
a +1

∣∣∣
(x1,x2)

=
4U

(1 + |∇U |a)
1−δ
a

∣∣∣
(x1,−x2)

− 1− δ
a

∇U · ∇|∇U |a

(1 + |∇U |a)
1−δ
a +1

∣∣∣
(x1,−x2)

=
4x1,−x2U

(1 + |∇U |a)
1−δ
a

∣∣∣
(x1,−x2)

− 1− δ
a

∇x1,−x2U · ∇x1,−x2 |∇x1,−x2U |a

(1 + |∇x1,−x2U |a)
1−δ
a +1

∣∣∣
(x1,−x2)

= divx1,−x2

∇x1,−x2U

(1 + |∇x1,−x2U |a)
1−δ
a

∣∣∣
(x1,−x2)

= 0.

Thus, U solves the desired equation also in Ω−ε . In order to show that U solves the
problem in Ωε we observe that for arbitrary φ ∈ D(Ωε) we have

0 = −
∫

Ωε

φ div
∇U

(1 + |∇U |a)
1−δ
a

dx

=

∫
Ωε

∇U
(1 + |∇U |a)

1−δ
a

· ∇φ dx−
∫ 1−ε

ε

φ

[
∂U
∂x2

(1 + |∇U |a)
1−δ
a

]
±

dx1,

where [
∂U
∂x2

(1 + |∇U |a)
1−δ
a

]
±

denotes the jump of the quantity inside. However, it follows from the construction
of the extension of U on Ωε that there are no jumps and consequently we have

(71)

∫
Ωε

∇U
(1 + |∇U |a)

1−δ
a

· ∇φ dx = 0 for all ϕ ∈W 1,1+δ
0 (Ωε).

Thus, we find ourselves in the situation studied in Subsection 4.1 and we may apply
the interior result to get that

(72)

∫
Ωε

|∇U |p ≤ C(p, ε).

Note that in the same way one can proceed with Γ7.
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5. Proof of the main theorem

First, incorporating (34), (52) and (54) we can deduce for a subsequence that

U δ ⇀∗ U ∗-weakly in L∞(Ω),(73)

U δ → U strongly in W 1,q
loc (Ω) for all q <∞,(74)

∇U δ → ∇U a.e. in Ω.(75)

Moreover, using (33) and Fatou’s lemma we can conclude that

(76)

∫
Ω

|∇U | dx ≤ C.

Consequently, it is not difficult to let δ → 0+ in (30) and to get (24). To get also
(23), we use the results from Subsections 4.2–4.3. Indeed, using the estimates there
we can strengthen (74) to get

Uδ → U strongly in W 1,q(Ω \Kε) for all ε > 0 and all q <∞,(77)

where Kε denote the union of balls centered at all corners of Ω of radii ε. From
this it basically follows that

U = U0 on ∂Ω ∩ ∂(Ω \Kε).

But since ε is arbitrary and the trace operator is continuous from W 1,1(Ω) to
L1(∂Ω), it directly implies (23).

The uniqueness is a consequence of the strict monotonicity property of the elliptic
operator that follows from (31) considering the case δ = 0.

The proof of Theorem 2.1 is complete.
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